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Model Development of Slag Foaming
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A general model of foaming has been developed which relates the structure of a foam stabilised by
viscoelastic forces to the bubble rupturing processes. For the specific case of negligible bubble coalescence
within the foam it has been shown that, in the region of linearity between the foam height and gas flux,
the residence time of gas in the foam (Z) is solely a function of the bubble diameter (o), the liquid phase
density (p) and viscosity (u), and the effective elasticity (£q) resulting from the dynamic adsorption of

surface active species:
z=1 x106<—“"'59” )
(pg)*d®

The model, which shows that the gas bubble diameter has the greatest effect on the retention of gas bubbles
within the foam, has been found to be applicable to a range of system in which foams are stabilised by

viscoelastic forces.
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1. Introduction

In our companion paper! experimental data was
presented on a systematic study of foaming behaviour
in water—glycerol solutions. In this paper, a general model
of foaming is developed that is applicable to a wide range
of systems in which foams are stabilised by viscoelastic
forces. Various physicochemical properties of the liquid
phase were taken into consideration in developing a
model: these include viscosity, surface tension, density,
bubble diameter, and surface elasticity.

2. Development of Models

Several different models relating residence time to
surface properties, namely, surface tension depression,
surface elasticity and effective elasticity have been ex-
amined and critically evaluated.

2.1. Model I—Surface Tension Depression

It has been shown® that the residence times of gas
bubbles (X) in spherical foams are a function of the
viscosity (), surface tension (o), and density (p) of the
liquid phase, the gas bubble diameter (d), and the
gravitational constant (g). It is also clear that foams
cannot be produced from pure liquids but can be pro-
duced on the addition of a surface active agent which
lowers the surface tension of the solution relative to the
pure liquid. Noting that the surface tensions of different
pure liquids differ, it is clear that the stability of foam
films is a function of lowering of the solutions surface
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tension on the addition of the surfactant, the surface
tension depression (Ac), rather than the absolute value
of the surface tension. Consequently, any quantitative
description of foaming should consider the following
variables:

2=f(0,0, d,AC L) ceoeeriiiiiin )

Using Buckingham’s method of dimensional analysis®
three dimensionless numbers are obtained from six
variables and three fundamental dimensions. The prob-
lem can be simplified somewhat if it is considered that
the variables (pg) appear as a single term.? In this case
the problem reduces to:

Z=f(pg,d, Ao, 1) ooooviiiirian 2)

and the analysis results in two dimensional numbers,
which are related as follows:

Z'“:k( o )6 ....................... 3)
pud (pg)d?

Using the experimentally determined data for the
spherical foams produced by fine bubbles,!’ the loga-
rithms of the two dimensionless numbers are plotted
in Fig. 1 together with error bars resulting from uncer-
tainties in the properties.* Linear least square analysis
of the data shows the values of the exponent ¢ and the
constant k to be 2.32 and 2.02 x 10° respectively, with a
regression coefficient 2 of 0.926. The explicit relationship
between the experimental variables is therefore:
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Fig. 1. Dimensional analysis on the raw experimental data

obtained from cold modelling experiments!’ using
water—glycerol solutions at 20°C.

Table 1. Calculated properties® and gas residence times of
Ca0-Si0, slags at 1873 K.

Surface Bubble Gas
Basicit Density ~ Viscosity  tension diameter residence

asiaty (kg/m?) (Pa-s) depression (mm) time

(mN/m) (s)
0.67 2545 0.86 219 5 4798
0.8 2576 0.55 203 5 2645
1 2613 0.35 183 5 1397
1.35 2655 0.23 155 5 698

Ao 1.32
. 6
B =202 10 p gy “

Equation (4) shows that the gas residence times are a
linear function of the solution viscosity, and increase
non-linearly with increasing surface tension depression,
decreasing density and bubble diameter. Clearly, the gas
bubble size is the dominant property in determining gas
residence times in these spherical foams.

The gas residence times in foams generated from 5 mm
diameter bubbles in calcium silicate slags at 1 873 K have
been calculated from Eq. (4), with the physico-chemical
properties determined from empirical models.” The
results of these calculations are summarised in Table 1.
The calculated gas residence times are surprisingly high
considering that Cooper and Kitchener found that 5 mm
diameter bubbles did not produce a foam in these slags.®
In the present study it was found that the gas residence
time of non-foaming dispersions is of the order of one
second.¥

Various empirical models’ ~® have been developed to
describe the relationship between gas residence times and
the physico-chemical properties of the slag phase for
foams produced by gas injection. The model of Zhang
and Fruehan®:
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Fig. 2. Comparison of cold modelling experimental data with
the relationship derived by Zhang and Fruehan.”

=115
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shows the gas residence times to be directly proportional
to the liquid viscosity and inversely related to the mean
bubble size. The experimental data obtained from
foaming in the water—glycerol-SDBS solutions is plotted
in Fig. 2 in terms of the dimensionless groups used by
Zhang and Fruehan. Again, there is a poor correlation
between the experimental data and the behaviour pre-
dicted by the high temperature model. The major sources
of disagreement are due to the exponent of the bubble
diameter term and the sensitivity of the gas residence
times to changes in the surface tension of the liquid phase.
For example, a surface tension depression of 10 mN/m
in the cold model system decreases the absolute value of
the surface tension by less than twenty percent, but results
in up to three orders of magnitude change in the gas
residence times." In contrast, Eq. (5) implies that surface
forces have only a minimal influence on slag foaming.

Whilst the use of surface tension depression rather
than surface tension is beneficial in differentiating be-
tween the foaming abilities of different water—glycerol
solutions, it is evident that the resultant model is not
directly applicable to slag systems which have surface
tension depressions more than an order of magnitude
higher.

Noting the arguments for similarity in foam stabilisa-
tion mechanisms for spherical foams at room tempera-
ture and slag foams discussed previously! the discre-
pancies between the above models may result from the
use of equilibrium surface tensions or surface tension
depressions in the derivation of these models. These
assumptions are likely to be in error since foaming is a
dynamic, non-equilibrium phenomenon with bubble
generation, coalescence and rupture occurring simultane-
ously.

Clearly to be applicable to a range of systems, the
model of foaming must take into direct consideration
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the mechanisms of foam stabilisation and their implica-
tions. Accordingly, to develop a model for wet, spherical
foams that is not system specific, the viscoelastic forces
resulting from the adsorption of surface active species
are examined and incorporated into the relationship.

2.2. Model II—Surface Elasticity

Consider a thin film produced from a solution con-
sisting of a solvent and a surface active species, in which
the bulk solution is initially in equilibrium with the film
surfaces. If a section of the film is stretched by some
external force, then the instantaneous surface concen-
tration of the surface active species in this stretched re-
gion of film will be lower than the equilibrium surface
concentration. Therefore the surface tension of the
stretched region will be higher than the adjacent un-
stretched regions, and the surface phase of the stretched
region will no longer in equilibrium with the bulk
solution. The surface concentration of surfactant in the
stretched region can return to equilibrium by one of two
mass transfer processes: diffusional mass transfer and
adsorption from the underlying bulk solution, or surface
flow from the regions of low surface tension to the high
surface tension region.

If the relaxation time for diffusion and adsorption is
shorter than that for surface flow, then the surface tension
gradients generated by stretching are quickly negated by
mass transfer from the bulk. However, if the reverse is
true, then the surfactant flows from the surfaces of the
adjacent unstretched regions of the film to the surfaces
of the stretched region as a result of the surface tension
gradients produced on deformation. Viscous drag on the
underlying bulk solution results in bulk flow accom-
panying the surface flow. It is this net flow of solution
from the thicker sections of the film to the stretched
region, resulting from the viscoelastic characteristic of
the solution, which provides a mechanism for countering
film thinning.!®

Mathematically, the elasticity of a surface (E) can be
expressed as®b:

Ado do

E= = 6
dA dinA ©

where A is the surface area, and ¢ is the surface tension
of the solution. Equation (6) shows that the surface
elasticity is proportional to the change in surface tension
with fractional change in surface area. Cooper and
Kitchener!® propose that any liquid with a positive
coefficient of do/dIn A should be capable of foaming.
Noting that the surface tension depression (Ao) is equal
to the difference in the surface tension of the solvent (o)
and solution (o):

AG=05—0 oo, 7

the elasticity of a single surface can be expressed as'?:
dAo dInT,

E=— 200 ORI @®)
dinT; dinA

where I'; is the Gibbs relative surface excess of the surface
active species. For a film oscillating at high frequencies
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such that there is no mass transfer between the surface
and the bulk solution, the total quantity of adsorbed
surface active species in the surface is constant:

I';Ag=constant ...........cce....... C)]

and the surface behaves as an insoluble monolayer. In
this case the elasticity is at a maximum, referred to as
the Marangoni dilational modulus. Substitution of Eq.
(9) into Eq. (8) results in the following expression for
the Marangoni dilational modulus (E,,):

_ dAc
~dInT,

M

The Marangoni dilational modulus can be readily
determined from Eq. (10) once the equation of state for
the surface of the system is known. For a system ob-

serving ideal, Langmuir behaviour the equation of state
ie13).
ist?:

T.
Aaz—RTFi’w1n<1— - > .............. (1)

Fi.oo
and for a system following the Frumkin isotherm, which
considers attractive interactions between the adsorbed

molecules!?:
I, r, \?
- )—a’( - > ..(12)
Fi,oo Fi,oo

where I'; is the Gibbs relative surface excess, I'; , is the
Gibbs relative surface excess at saturation of the surface,
and a' is related to the enthalpy of adsorption (equal to
zero for the Langmuir isotherm). Differentiating Egs.
(11) and (12) in accordance with Eq. (10) results in the
following expressions for the Marangoni dilational
modulus for the Langmuir:

Ao=—RTT; , ln<1 —

RTT; T,
Ey=—— i, (13)
(Fi,oo_rt)
and Frumkin isotherms:
RTIT; T I, \?
Ey= nel —2a’< : > ............. (14)
(Fi,oo_ri) Fi,oo

Using the expressions for the Marangoni dilational
modulus given in Egs. (13) and (14) the relationship
between surface tension depressions in water—glycerol-
SDBS solutions and the Marangoni dilational moduli
are plotted in Fig. 3—using values for the parameters
I'; , and a’ determined previously.™ It is clear from the
figure that the Marangoni dilational modulus increases
with increasing surface tension depression. Whilst the
Marangoni dilational moduli are similar for all the
water—glycerol-SDBS solutions at low surface tension
depressions, at higher surface tensions depressions the
moduli increase significantly with increasing viscosity of
the solutions. These high viscosity solutions obey the
Frumkin adsorption isotherm.

It can be seen from Eq. (10) that the dimensions of
the Marangoni dilational modulus and the surface
tension depression are identical, and, given that the
Marangoni dilational modulus represents the maximum
elasticity of the film, it is argued that it is appropriate
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Fig. 3. The Marangoni dilational modulus as a function of
surface tension depression for distilled water-AR grade

glycerol-SDBS solutions at 20°C.
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Fig. 4. Dimensional analysis of data obtained from the cold

modelling experiments' using water—-glycerol-SDBS
solutions at 20°C. Data analysed in terms of the
Marangoni dilational modulus, E,,.

that in the dimensional analysis the Marangoni dilational
modulus should be substituted for the surface tension
depression ie.

-fﬂ(z:’ Pg, U, lznls ‘i) = 0

The following relationship is obtained between the re-
sulting dimensionless numbers:
)5

- Ey ( Ey
=k 5
pd (pg)d

The dimensionless groups in Eq. (16) are plotted in Fig.
4 using the experimental data obtained for the water—
glycerol-SDBS solutions. Least squares regression anal-
ysis (§=1.89 and k=5.43 x 10°) results in the following
relationship between the significant system properties:

1211

0.89
M

( 1.89d2.78

pg)

However, the regression coefficient of 0.906 for this re-
lationship indicates that the overall fit of the data is in
fact poorer than for the analysis in terms of the surface
tension depression i.e. Eq. (4).

2.3. Model III—Effective Elasticity

In the derivation of Eq. (17) it has been assumed that
the elasticity of the bubble films is at its maximum
value—the Marangoni dilational modulus. In practice,
the effective elasticity can drop below this maxi-
mum**~ 1% as a result of lower than equilibrium.surface
concentration of the surfactant prior to film deformation,
and reduction of the surface tension gradients generated
on deformation by surfactant mass transfer from the
bulk solution.

The former process results from insufficient time to
attain equilibrium adsorption. The latter results from
diffusional mass transfer to the deformed film and is
dependent on the frequency of film disturbance—the
higher the frequency of disturbance the less time is
available for the surfactant to adsorb/desorb from the
interface and return the film to a state of equilibrium.

2.3.1. Adsorption Time

The diffusion limited adsorption of a surfactant onto
a stationary surface is described by the equation of Ward
and Todai.'” Recently Malysa er al.'*'> have used a
numerical solution of this equation'® to determine the
fraction of equilibrium adsorption as a function of time
for surfactants obeying Langmuir behaviour. Defining
the dimensionless time (@) as:

2
2] :Dzad<—c—">
I

where D is the diffusivity of the surface active species,
l.q is the adsorption time, and ¢; is the bulk molar
concentration of the surfactant, the solution to the
diffusion limited adsorption problem can be expressed
in the following polynomial form!&19):

It _ S,
= i’['
Iﬂi iz;a é

T=543x10%

where I'/(1,4) 1s the Gibbs relative surface excess for an
adsorption time ¢,4, and the values of ¢; are tabulated
as a function of the reduced concentration (¢;/c; ;) where
¢; 1 Is the molar concentration at which I';=0.5I"; ;, and
7 is defined by:

T=1—

O+02%/c;,
The maximum elasticity for a specific adsorption time,
E(t,4), 1s equal to:
_ RIT  I'i(t,0)
(T —Tiltad)
2.3.2. Oscillation Frequency

For a system following Langmuir behaviour, the re-
lationship between the effective elasticity, E., and the

(tad
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maximum elasticity for a specific adsorption time, E(7,q)

ist®:
_ (1T
Ey= (tad)( FO) ) ................. (22)
where
Foo) __oaQ@aytdw) - 23)
F0)  af+(x,+A4,w)?
w 1/2
1 —<§B> ................................. (24)
_ Tiwtis
Dot B T (25)

and w is the frequency of bubble oscillation. Equations
(22)—(25) show that as the frequency of bubble oscillation
increases, the effective elasticity tends to the Marangoni
dilational modulus because mass transfer from the bulk
to the bubble surface is increasingly inhibited.

2.3.3. Effective Elasticity

The decrease in the effective elasticity (E(Z,4)/E)
resulting from the slow diffusion of the surface active
species can be determined from Egs. (18)-(21) by
equating the adsorption time (¢,4) to the residence time
of gas in the system (), as the gas residence time can
be considered to be the maximum time available for
the adsorption of surface active species onto a non-
equilibrium surface. Similarly, the decrease in the effec-
tive elasticity resulting from mass transfer at bubble
oscillation frequencies below those producing insoluble
monolayer behaviour is determined from Eqgs. (22)—(25).
The results of these calculations for the 85 wt% AR grade
glycerol solution are plotted in Fig. 5.

Firstly, with regard to the effect of adsorption time
(diffusion limited adsorption), the figure shows that for
surface tension depressions below 2mN/m the effective
elasticity is markedly smaller than the Marangoni
dilational modulus. This indicates that the surface
concentration of the surfactant is significantly below the
equilibrium value. However, the combination of higher
bulk surfactant concentrations and greater residence
times" with increasing surface tension depression, re-
sults in increased mass transfer to the stagnant surfaces,
such that the effective elasticity is within 10 % of the
Marangoni dilational modulus for surface tension de-
pressions of more than 2 mN/m.

Oscillation frequency shows the opposite trend. While
there is negligible mass transfer to the oscillating film
surfaces at low surface tension depressions, mass transfer
to the bubble surfaces increases significantly with in-
creasing surface tension depression due to the increase
in bulk surfactant concentration.! This results in a
significant decrease in the effective elasticities, especially
at low film oscillation frequencies where the resistance
to mass transfer of surfactant from the bulk solution to
the deforming film surfaces is minimal.

The sum of these two effects results in a shallow
maximum in the effective elasticity for surface tension
depressions within the range 2-5mN/m for the 78-85
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Fig. 5. The effects of diffusion limited adsorption and fre-
quency of film oscillation on the relative elasticity
(Eore/Eyp) of distilled water-85wt% AR grade glyc-
erol-SDBS solutions at 20°C.

wt% glycerol solution. Within this range the effective
elasticity is approximately within 10 % of the Marangoni
dilational modulus.

Whilst the models described above cannot be direct-
ly applied to the 90-95wt% glycerol solutions because
they do not follow the Langmuir isotherm, it is argued
that it is possible to qualitatively extrapolate the con-
clusions from the above calculations to these solutions.

Firstly, a combination of higher bulk surfactant con-
centrations required to generate a specific surface ten-
sion depression and higher residence times indicates that
the effective elasticity tends to the Marangoni dilation-
al modulus more readily at low surface tension depres-
sions in the 90-95wt% solutions than the less viscous
solutions. The fact that the gas residence times of the
90-95wt% glycerol solutions are 5-20 times that of the
78-85wt% solutions® for a surface tension depression
of ImN/m tend to support this argument.

However, it has been shown above that mass trans-
fer to an oscillating surface increases with high bulk
surfactant concentrations {especially at low oscillating
frequencies), thereby decreasing the effective elasticity.
Therefore the effective elasticity of the 90-95wt% so-
lutions may be expected to decrease significantly as the
surface tension depression increases. These predictions
are in agreement with the residence time data for high
surface tension depressions—whilst Fig. 3 shows that
Marangoni dilational modulus for a 95wt% glycerol
solution with a surface tension depression of 10 mN/m
is approximately six times that for a 95wt% glycerol
solution with a surface tension depression of 5mN/m,
the gas residence times for the two solutions differ by
less than twenty-five percent.”

The above analysis shows that the effective elasticity
within a system may be significantly lower than the
Marangoni dilational modulus over a wide range of
surfactant concentrations. It is also evident that the
effective elasticities in the water~glycerol-SDBS solu-
tions are within 90-100 % of the Marangoni dilational
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Fig. 6. Dimensional analysis of data obtained from the cold
modelling study! using water—glycerol-SDBS solu-
tions at 20°C. Analysis conducted using only data with
effective elasticities, E., within 10 % of the Marangoni
dilational modulus.

modulus for surface tension depressions in the range
2-5mN/m for the 78-85wt% glycerol solutions and
1-5mN/m for the 90-95wt% solutions at all but the
lowest oscillation frequencies.

2.3.4. Model Development (Model IIT)

The data for solutions with effective elasticities within
90-100 % of the Marangoni dilational modulus is plotted
in Fig. 6 in the form:

2-F E
] °”>=51 ( off >+1 k.. 26
Og( pd gz )T 0

Least squares regression analysis of the data gives 6=
1.92 and k=9.01 x 10° with a regression coefficient of
0.958. Taking the uncertainty in the elasticities (resulting
from assuming that the effective elasticity is equal to the
Marangoni dilational modulus in the range specified
above) into consideration the relationship can be sim-

plified to:
) 2
( X By >=1 « 106< Eeff_> ............ 7
ud (pg)d*

with all properties in SI units.

3. Discussion of Model ITI

3.1. A Physical Interpretation of the Model
Equation (27) can be expressed as:

. 2
(E_p_gd_>=1 « 106<&> .............. (28)
ud pgd?

The right-hand side dimensionless number is the ratio of
a surface tension related force per unit length and a
hydrostatic pressure force per unit length, representing
the condition for the rupture of liquid films within the
foam—the elastic force counter film rupture while the
hydrostatic pressure determines the rate of film drainage.
A physical interpretation of the left-hand side dimen-

sionless number is not so readily apparent. However, if
it is assumed that the excess liquid resulting from the
rupture of a film drains down the foam through capilaries
of radius R and length d, such that, the mean velocity
of liquid flow (v) is described by the Haggen—Poiseuille
equation for flow resulting from a hydrostatic head, pgd:

pgR>
V=
8u

The capillary drainage time (2,,=d/v) is proportional
to:

and under steady-state conditions represents the time
required for an underlying film to drain the excess liquid
resulting from the rupture of a bubble film without
altering the structure of the foam.

The relationship between the film thickness (2R), the
bubble diameter (d), and the gas fraction (¢) for close
packed spherical foams is described by the following

equation’®):
1 d
2R.—-< ~~~~~~ —1>~~ ...................... (31
¢ 3
Substituting for the capillary radius in Eq. (30):
d (1 -2
5oy <_ﬂ4) .............. (32)
pgd? \ ¢

and substituting Eq. (32) into Eq. (28) results in the
following relationship:

= ~—l—«— _2_ Eeff >
<zmp>(¢ 1> —k1<pgd2 ........... (33)

Clearly the LHS dimensionless number in Eq. (33) is the
product of the ratio of the gas retention (or residence
time) and the film drainage time, and a dimensionless
number representing the geometry of the foam. Equation
(33) shows that the internal dynamics of the foam (in
terms of the foam structure, film drainage and gas
retention) are determined by the dynamics of bubbles
rupture. Therefore the structure of the foam will adjust
until at steady-state the drainage ability of the foam
matches the rate of bubble rupture. It is this combination
of foam structure and the dynamics of bubble rupture
that determines the residence times of gas bubbles within
the foam.

For spherical foams there is negligible coalescence of
bubbles within the foam structure.?? It is clear from Eq.
(33) that under this condition of constant bubble sizes
the internal structure of the foam is determined by the
rupture of bubbles at the top of the foam. Furthermore,
within the regime of linearity between foam height and
gas flux, the gas fraction within spherical foams is
constant.”” Therefore the geometry of the foam (Eq.
(31)) and consequently capillary drainage of liquid (Eq.
(32)) resulting from film rupture at the top of the foam
is fixed by the bubble diameter. Under these circum-
stances, the model can be expressed in the simplified form
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shown in Eq. (28) above, or explicitly in terms of the gas
residence time:

S=1x 106<(‘;gf:;‘3> (S) eorverreein (34)

Equation (34) shows that the gas bubble diameter has
the most significant influence on gas retention within
these foams.

3.2. Comparison with Literature Data

Noting the uncertainties in the gas residence times, the
relatively large bubble size distributions obtained from
the porous disk," and the approximation that the effec-
tive elasticities of the distilled water-AR grade glycerol-
SDBS solutions are equal to the Marangoni dilational
moduli over a significant range of SDBS concentrations,
it is necessary to verify the final form of the model for
the residence times of gas bubbles in spherical foams (Eq.
(34)) with independently determined data. This data was
obtained from the studies of Malysa er al.'**% on
foaming in inviscid solutions of n-alkanols and lower
fatty acids. These authors determined the residence times
of gas in spherical foams generated from these solutions
and calculated the effective elasticities resulting from

adsorption.
The values of the dimensionless groups:
2-E
= e (35)
ud
E,
p= e, (36)
(pg)d
have been calculated using the data of Malysa et al.,**!>

considering the viscosities and densities of the solutions
to be I mPa-s and 1000kg/m? respectively. Whilst the
bubble size was not measured in these studies, the bubble
size in a previous investigation using the same ap-
paratus?® was reported to be in the range 1.3-1.6 mm
diameter. Therefore a mean value of 1.45mm has been
used for the purpose of the present calculation.

The results of these calculations have been plotted in
Fig. 7, which shows that an excellent fit is obtained
between the data of Malysa et al.'* for solutions of
n-alkanols and the model derived in the present study,
and whilst there is a greater scatter in the data for the
lower fatty acids,'® the agreement is still reasonable.

However, it is not surprising that the slope of the data
taken from the studies of Malysa ez al. is approximately
equal to 2 when it is noted that these authors assumed
a linear relationship between the gas residence times and
effective elasticities of the solutions, and then calculated
the oscillation frequency to provide the best fit between
these two properties.

In contrast, no prior assumption was made in the
present study concerning the relationship between these
properties. By conducting the analysis in the region where
the effective elasticity is within 10 % of the Marangoni
dilational modulus, it was possible to determine the
relationship between the effective elasticity and the other
experimental variables without directly accounting for
diffusion phenomena. Consequently, it is clear from Eq.
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Fig. 7. Comparison of the data of Malysa e al. with model
derived in the present study-Eq. (27).

(28) and Fig. 7 that present model validates the as-
sumption of Malysa et al.**!% that the gas residence
time is a linear function of the effective elasticity.

Significantly, the comparison of the present model with
the data of Malysa et al. shows that the data for all these
different systems lie on the same line i.e. both the ex-
ponent, 4, and the constant, k, in Eq. (26) are identical.
Therefore the semi-empirical model described by Eq. (28)
appears to be valid for a range of systems in which wet,
spherical foams are observed.

3.3. Applicability to Metallurgical Slags

The present model for foaming, Eq. (34), considers the
effect of the dynamic adsorption of surface active species
on foaming, rather than indirectly through the equilib-
rium surface tension or surface tension depression. The
present model applies to spherical foams.

There is no direct evidence available as to whether or
not the adsorption of surface active species maintains
equilibrium during foaming in metallurgical slag systems.
However, the following observations have been reported
in the literature, which support the applicability of the
present model to foaming of metallurgical slags:

(1) The stability of polyhedral foams decreases with
increase in gas velocity.?)

(2) Quenched slag samples show the spherical nature
of slag foams generated by chemical reactions.22:23

(3) The thickness of slag film at rupture is observed

to be in the range of 10 to 50 um.?#
Foams are stabilised either by film elasticity!?’ or by the
interaction forces in film.2* If the elasticity of liquid films
is sufficient for the films to thin further, film stability is
determined by interaction forces acting between adsorbed
molecules in this films rather than elastic forces. These
interaction forces operate at film thicknesses of less than
100 nm which is of the order of magnitude for films in
polyhedral foams.?>) Therefore, the slag film thicknesses
of 10 to 50 um at rupture reported above are far too
large for the interaction forces to operate.

The sum of these evidences strongly support that, for
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smelting vessels with large diameters and high gas
velocities within these systems, slag foams produced are
spherical rather than polyhedral in structure and also
stabilised by elastic forces. Consequently the present
model represented by Eq. (34) can be used for the cal-
culation of gas residence time in slag foams.

4. Conclusions

It has been found that by taking the mechanism of
foam stabilisation into direct consideration, a general
model can be developed that describes the residence times
of gas in spherical foams. The model shows that the
internal characteristics of the foam are determined by
the bubble rupturing processes. For the specific case of
bubbles only rupturing at the top of the foam the gas
residence times in the region of linearity between the
foam height and gas flux are solely a function of the gas
bubble diameter, the liquid phase density and viscosity,
and the effective elasticity resulting from the dynamic
adsorption of surface active species:

S=1x 106<-ﬁ£&€£) )
(pg)*d>

This model, using SI units, shows that the bubble di-
ameter has the most significant affect on gas retention,
with gas retention decreasing with the cube of the bubble
diameter.
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