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The inverse probability theorem of Bayes is used, along with sampling theory, to 
obtain objective criteria for choosing among riual models. Formulas are given for the 
relative posterior probabilities of candidate models and for their goodness of fit, when 
the models are fitted to a common data set with Normally distributed errors. Cases of 
full, partial and minimal variance information are treated. The formulas are demon- 
strated with three examples, including a kinetic study of a catalytic reaction. 

Introduction 
It is helpful, in discussions of process modeling, to distin- 

guish between empirical and mechanistic models. Consider 
first what we might mean by a “true” mechanistic model. 
Suppose that a measured response or output y ,  such as the 
yield of a particular product in a chemical process, was known 
to depend upon certain input variables tl, . . . , tk such as ini- 
tial reactant concentrations, temperature, and pressure. Be- 
cause of experimental errors, the output y in replicate trials 
would fluctuate around a typical value called the mathemati- 
cal expectation E(y ) .  This quantity is the mean value of y 
over many conceptual repetitions of the experiment with the 
same settings of the input variables. 

Suppose that a model is available that embodies the physi- 
cal mechanism of the experimental system, so that the expec- 
tation of y at each value 6 of the experimental conditions is 
given exactly by 

where 0: =(el ,  8,, ..., 8,)‘ is a vector of fundamental pa- 
rameters such as activation energies or diffusion coefficients. 
Then we shall say that Eq. 1 is a tme mechanistic model of  
the measured phenomenon. It is not implied that for any given 
case such a functional form f( &, 0) is known, or even that it 
is knowable. A true model is, strictly speaking, a hypothetical 
concept that arises from our faith that physical phenomena 
ought to be explicable in mechanistic terms. Furthermore, al- 
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though in some cases such a model might be expressible ex- 
plicitly in terms of known functions, more often it would be 
definable only in terms of differential or integral equations. 
The methods in this article are applicable to such models 
when implemented with modern equation-solving methods. 

We now consider what might be meant by an empirical 
model. Over limited regions of experimental conditions & it 
would often be true that the relationship between E ( y )  and 
5 was smooth and could be locally approximated by an inter- 
polation function, g( &, 0). Then g( &, 0) might be used over 
such regions as a mathematical French curve to represent 
E( y ). For example, multidimensional polynomials have been 
used successfully for such empirical representation over lim- 
ited ranges (Box and Wilson, 1951; Box, 1954; Box and Youle, 
1955; Box and Hunter, 1957; Hill and Hunter, 1966). 

Now the true mechanistic model and the purely empirical 
model represent extremes. The former would be appropriate 
in the extreme case where the mechanism was fully known, 
and the latter in the opposite extreme where the knowledge 
consisted only of the observations and some smoothness as- 
sumptions. The situation in most real investigations is some- 
where in between, and as experimentation and learning pro- 
ceed, the models used may show more understanding of 
mechanism (Box and Youle, 1955). Since real problems may 
occur anywhere between the two extremes, various statistical 
tools are needed to cope with them. 

In some instances where almost nothing is known or acces- 
sible about the mechanism, only a rough local mapping of the 
response may be obtainable. Such rough mappings, neverthe- 
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less, may have great value. In cases where even a little more 
is known, careful thought can often lead to empirical models 
that reflect important known features of the system. For ex- 
ample, without detailed knowledge of the mechanism we may 
nevertheless know that the function E(y)  must approach an 
asymptote for large values of some variable 6,. We can then 
represent E ( y )  by a function that has such a form rather 
than, say, a second-degree polynomial (Box and Cox, 1964). 

Other situations occur where the hope of representing the 
major features of E(y )  by a mechanistic model is a reason- 
able one. We might wish to obtain such a model for either or 
both of the following reasons: 

1. Basic intellectual curiosity might urge us to find out what 
was happening in a particular system, and such understand- 
ing could lead to important developments. 

2. We might hope to develop a model that permitted some 
extrapolation, at least to indicate regions of the space where 
further investigation could be useful. Extrapolation is risky 
with any model, but becomes more meaningful as the model 
comes closer to the actual mechanism. 

In the present article we address only one special aspect of 
the wide class of problems just implied-that of using exist- 
ing data to discriminate among two or more candidate mech- 
anistic models. The other problems mentioned earlier are of 
equal importance and have been discussed elsewhere (Box 
and Coutie, 1956; Box and Lucas, 1959; Box, 1960; Box and 
Hunter, 1962, 1965). In particular, a very important problem 
is that of choosing experimental conditions that will best dis- 
criminate among a set of mechanistic models. The latter 
problem has been considered by Box and Hill (1967) and many 
other authors, as reviewed by Hill (1978) and Rippin (1988). 
The present analysis is relevant to such studies, as will be 
indicated, but our emphasis is on model discrimination with 
existing data. 

Model Discrimination with Existing Data 
Several approaches to this problem have appeared in the 

literature. Tschernitz et al. (1946) fitted 18 mechanistic mod- 
els to their reactor data, eliminated those whose parameter 
estimates were incompatible with chemical theory, and chose 
the better-fitting of the two remaining models. Lumpkin et 
al. (1969) tested a larger candidate set and reported that sev- 
eral additional models fitted well; they also showed that the 
discrimination would be enhanced by including nonisother- 
ma1 experiments. 

Two statistical approaches to model discrimination are 
prevalent, as discussed by Chow (1981): (i) seeking the best 
predictor according to the data, and (ii) seeking the most 
probable model according to the data. In the first category 
are methods using the Cp statistic (Mallows, 1964, 1973; Gor- 
man and Toman, 1966; Daniel and Wood, 1980) for models 
linear in the parameters, or the information criterion of 
Akaike (1974) based on divergences from a comprehensive 
reference model. In the second category are Bayesian ap- 
proaches, preferably assisted by criticism via sampling theory 
as advocated by Box (1980). The latter path is taken here as a 
natural way to seek a good mechanistic model, with the at- 
tendant benefits of better understanding and a physicochemi- 
cal basis for any extrapolations needed. 

Consider a set of observations y , ,  . . . , y ,  of a single re- 
sponse variable, obtained or to be obtained in independent 
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experiments u = 1, . . . , n on a chemical process. Let 6, de- 
note the setting of the vector 5 of independent variables 
(temperature, pressure, initial concentrations, etc.) in experi- 
ment u. Then the response y ,  consists of an expectation value 
E(y I 6,) plus an error E,. Inserting a model f i (  6, Oj )  for the 
expectation values, we get the representation 

y ,=f i (5 , ,e j )+ E, u = 1 ,  ..., n (2) 

for existing or future observations. For existing observations 
y,, this equation defines the errors E~~ as functions of the 
parameter vector 3, on the postulate that the expectation 
model form f i  is true. For future observations, the distribu- 
tion of possible values of each y ,  will be modeled by the 
same equation with Oi fixed, and with E, a random variable 
simulated by sampling from a Normal error distribution 
N(0, w:). Each model f i  is assumed to be differentiable with 
respect to its parameters. 

The distribution of error becomes simpler if we normalize 
Eqs. 2 to a uniform precision. Let w, = u2/u: be the speci- 
fied ratio of the precision of observations of y at 6, to a 
standard precision l/u2; then multiplication of Eqs. 2 by & 
gives the expressions 

for the weighted observations Y,: = y,& in terms of the 
weighted expectation functions ?( g,, 3): = f i (  g,, Oj)& 
and weighted errors &,: = E,&. Then we model E, ,  . . . , &,, 
as independent samples from the distribution N(0, a’), 
whether analyzing data or simulating future observations. 

Consider a list ( M I ,  . . . , M J }  of candidate expectation mod- 
els. We assign probabilities p ( M , ) ,  . . . , p ( M , )  to these mod- 
els apriori, that is to say, without any reference to the obser- 
vations. It would often be reasonable to choose these values 
to be equal. These probabilities need not add up to 1, since 
only their relative values affect the outcome. 

If the models were completely specified, their ranking on 
the data could be obtained by straightfonvard application of 
Bayes’ theorem (Bayes, 1763; Box and Tiao, 1973). However, 
the models considered here contain unknown parameters, and 
consequently we need a prior probability density for the pa- 
rameter vector 3 of each model Mj. An impartial method of 
choosing such priors was proposed by Box and Henson (1969, 
1970); an improved development of it is included here. 

Case I: Variance known 
For a given experimental design, let p(Y I Mj,  (T) denote 

the probability density of weighted observation vectors Y: = 
(Yl,  , . . , predicted by Eq. 3 with each &, distributed in- 
dependently as N(0, (T *). Then according to Bayes’ theorem, 
the posterior probability of model M .  conditional on the ac- 
tual data Y and a given variance u2 ’is 

in which C is a normalization constant, equal for all the mod- 
els. 
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If the j th model contains an unknown parameter vector Oj, 
then integration over all values of this vector gives the follow- 
ing form of Eq. 4, 

with the same proportionality constant for every model. If 
p ( 0  I Mi) is nearly uniform over the region of Oj in which 
p ( Y  I 0,, Mi, a) is appreciable for the given Y, then Eq. 5 re- 
duces to 

The last integrand takes the form 

at each value of when the error term in each of Eqs. 3 is 
treated as an independent sample from the Normal distribu- 
tion N O ,  a’). 

Local linearization of each 3j termnwith respect to the pa- 
rameters, at the least-squares point Oj for the given Y,  gives 
the approximation 

consistent with the Gaussian normal equations for nonlinear 
least squares (Gauss, 1809; Bates and Watts, 1988). Here 
i j : = S ( i j )  is the minimum sum of squares (also called the 
residual sum of squares) for model Mi, 

(7a) 

and ij is the n x p ,  matrix with elements 

q( gu, evaluatedatOj=Oj( A r = l ,  u = l ,  ..., n 

[‘,Iu,= d@jr 

(7b) 

The index r is numbered here over those parameters of model 
Mj that are estimated by unconstrained least-squares condi- 
tions dS/&3,, = 0. Any indeterminate parameters, and any de- 
termined by constraints (such as nonnegativity in Exampb 31, 
are not counted in Eq. 7b but are included in the vector at 
their last values reache9 in the least-squares computation. 
With this convention, XTX, is a positive definite matrix of 
order pi. The integral in Eq. 6 (taken over the space 0; with 
coordinates Oil, . . . , O j p i )  then can be approximated as 
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and the posterior probability of model Mi becomes 

when the region of intfgmation in, Eq. 8nis treated as un- 
bounded. The values I XTXj  I ,  pi ,  Sj ,  and 0, are readily com- 
putable with modem software. 

Now consider the predictive distribution of the members of 
Eq. 9 over conceptual replications of the experimental pro- 
gram and model fitting. Postulate the model Mj fitted to the 
existing data to be true, and the errors in the conceptual ob- 
servations to be random samples from the Normal distribu- 
tion N(0, a:). In the sample space of data and residuals thus 
generated, Sj/u is a random variable distributed as x ’ with 
n - pi degrees of freedom. Over this space, the exponential 
term in Eq. 9 has the expectation 

E[exp(-ij /2a2)] =/=exp(-x2/2)p( x ’ I n - p - ) d x  I 2 
0 

Y, a) has expectation p ( M j ) .  The formula 

= Const. for all j (1 1) 

for p(Oj I Mi) then follows when one takes the expectation of 
each member of Eq. 9 over the foregoing sample space. 

The quantity p(0,  I M,) thus obtained is a prior density rel- 
ative to the conceptual sampling process just described. Box 
and Henson (1969, 1970) gave a similar formula for p(  0, I Mi), 
but viewed it as an expectation before the taking of any data. 
The present view is required for consistency of Eq. 11 with 
the least-squares analysis of the actual data. 

Equations 9 and 11 gives the posterior probabilities of the 
candidate models as 

after removal of the common factor 2”. Finally, an optional 
normalization over the candidates gives 
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as the posterior probability share held by model Mj accord- 
ing to the data used. 

The factor 2-P~fl in Eq. 12 may be viewed as a penalty 
factor for the number of pa rpe te r s  in a model. It offsets the 
improvement in exp(- S / 2 u 2 )  to be expected if a 
parameter-free model were augmented with p, worthless pa- 
rameters, each of which merely removed one residual degree 
of freedom. Omission of this factor would replace Eq. 12 by a 
likelihood-ratio selection criterion, which is known to favor 
overparameterized models (Reilly, 1970; Chow, 1981). Use of 
Eq. 12 avoids this difficulty. 

Case ZZ: Variance unknown, but estimate available from 
data 

Suppose that u2 is unknown, but that there is genuine 
replication of at least some of the runs. Let these replications 
supply a variance estimate s2  = S,/u, having u, de- 
grees of freedom. Then the residual sums of squares ij for 
the models take the forms 

i, = s; + s, 
i2 = s; + s, 

iJ = s; + s,, 

where S;, S;, ..., S; are the "lack-of-fit" sums of squares 
remaining after the same “pure error”contribution S, is sub- 
tracted from each residual sum of squares Sj. 

In this case, we can take out the common factor 
exp( - S,/2u2) from each posterior probability in Eq. 12 and 
obtain 

p ( M j  I Y ,  u) a p(Mj)2-P~I2exp( - S ( / 2 u 2 ) .  (14) 

The unknown parameter u can be removed by integration, 

with the conditional density function (Box and Tiao, 1973, p. 
100) 

Equations 14, 15, and 16 give the posterior probabilities of 
the candidate models as 

xexp[ - (Se + S i ) / 2 u 2 ] d u  

For large v, Eq. 17 gives a result like Eq. 12, but with the 
sample estimate s2  replacing u2. The larger the value of u,, 
the stronger the discrimination. 

Goodness of Fit 
If the postulated models all fitted the data badly, then the 

preceding results could be misleading. One could be led to 
choose a poor model because it was not as bad as the other 
models. Fortunately, the means for resolving this difficulty 
are immediately available in the form of goodness-of-fit tests, 
closely related to the calculations already described. 

When u2  is known, the goodness of fit of the jt! model 
can be tested by referring the sample value xi’: = Sj/u2 to 
the distribution function P( x 2  I U )  with v = n - pi degrees 
of freedom. This function is widely available in statistical ta- 
bles and software. The related function Q( x 2  I u): = 1 - 
P( xz I u), tabulated in Abramowitz and Stegun (19721, yields 
the probability of obtaining a x 2  value larger than i j /u2  in 
a random replication of the observations and computations, 
on the hypothesis that model Mi and the assumed Normal 
error distribution are t r t e  for the experimental situation. Note 
that the sample value Sj /u2  also appears in Eq. 12. 

When u2  is unknown, but a sample estimate s2  is avail- 
able, the goodness of fit of the jth model can be tested by 
use of the entries in the following analysis of variance 
(ANOVA) table: 

Source of Sum of Deg of 
Variance Squares Freedom Mean Square 

~ 

Lack of Fit Sj n - p, - v, Sl/(n - p,  - v,) = s2  
Pure Error S, Ve S J V ,  = s12 

A test of the hypothesis of adequacy of the jth fitted model 
can be made by referring the ratio FJ = s;/s2 to a table of 
critical values F(u,,  u2 I Q )  at significance level Q with v ,  = 

( n  -p i  - n,) and v 2  = u, degrees of freedom. Fuller infor- 
mation can be obtained by evaluating the probability Q(F,  I v,, 
v 2 )  by interpolation in the same table, or via a Fortran func- 
tion as in Press et al. (1992). The value Q(F, I v I ,  u , )  is the 
probability of obtaining an F value larger than 5 in random 
sampling, on the hypothesis that model Mi and the assumed 
Normal error distribution are true for the experimental situa- 
tion. This test was originally derived from sampling theory, 
but follows equally well from a Bayesian analysis (Box and 
Tiao, 1965). 

Insertion of F, = s;/s2 into Eq. 17 gives 

Thus, the variance ratio F j  appears in the posterior probabil- 
ity for model Mj as well as in the ANOVA test. 

If the variance of y is unknown and no replicate observa- 
tions are available, one may seek an estimate from mass-bal- 
ance residuals as in Stewart and Mastenbrook (19841, or from 
the residuals found by fitting a high-order model as in Exam- 
ple 3 below. 
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Sequential Analysis 
After computing the posterior probabilities for the initial 

set of n observations, one may want to strengthen the dis- 
crimination by taking additional data. Our analysis holds di- 
rectly for such extended data sets, as if the experiments were 
all included in the original plan. 

Equation 12 differs from the posterior density expression 
of Box and Hill (1967) because our prior densities p(@,  I M,) 
are calculated with Eq. 11, using the data available at the 
time. Equation 12 is appropriate when u2  is given, whereas 
Eq. 17 must be used when the variance information comes 
from experiments. 

Examples 
Three examples are provided here to illustrate the use of 

the formulas. Example 1 treats linear models for data with a 
given variance; Example 2 treats a pair of nonlinear models, 
using a variance estimated by replication; and Example 3 
treats a set of eighteen nonlinear models, using a variance 
estimated from residuals of a higher-order model. 

Example 1 
Consider two models, one included in the other, that are 

to be tested with data of known variance u2 from an orthog- 
onal experimental design in the independent variables t1 and 
5 2 :  

The orthogonality relation ZE= , Cul Cu2 = 0 of the experimen- 
tal design makes the least-squares estimates of el identical 
for the two models; therefore, the notation 0. of Eq. 7b is 
abbrevinated !ere t: 0,. The orthogonality also yields the rela- 
tion (S, - S,) = 0,”ZU &?2 between the residual sums of 
squares for these two models. With p ( M , )  = p ( M 2 ) ,  Eq. 12 
gives 

1‘. 

as the ratio of posterior probabilities. This ratio never ex- 
ceeds &. 

If O 2  is nonzero, then only Model 2 is true. The last ex- 
pression for the probability ratio will favor Model 2 as soon 
as enough data are taken to make the exponential factor 
smaller than 1/&. The smaller the true value of 02 ,  the 
greater the number of experiments required to establish the 
appropriateness of Model 2. 

If Model 1 is true, then both models are true and 0, is 
zyo. The estimate 6, then has expectation zero, and (i1 - 
S2)/u2 is distributed as x 2  with 1 degree of freedom. The 
resulting probability ratio has expectation 2VE[exp( - x2 /2 )  
1 y= = 1, computed by the method in Eq. 10. In this case, 
the probability ratio to be obtained from a future set of ex- 
periments is equally likely to favor either model. The lack of 

a trend in the ratio with increasing n would indicate the 
choice to be a hair-splitting one, and the simpler model would 
be preferred on grounds of parsimony. 

In general, if the most probable model includes another 
with comparable posterior probability and adequate good- 
ness of fit, the choice of the simpler model should be consid- 
ered. A reasonable procedure would be to choose whichever 
model wins in the majority of comparisons, when the poste- 
rior probability ratio is calculated for various data sets ob- 
tained from further experiments or from random resampling 
of the data at hand. Ties or close contests would be resolved 
in favor of the simpler model. 

Example 2 
Suppose that some data are available for the concentration 

[B] of species B as a function of time in a constant-volume, 
isothermal batch reactor containing chemical species A, B, 
and C. Sixteen simulated pairs of replicate observations simi- 
lar to those considered by Box and Coutie (1956) are given in 
Table 1 for the initial condition [A], = 1, [Bl, = [Cl, = 0. The 
following two models (derived by integration of the corre- 
sponding differential equations) are postulated. 

Consecutive first-order reactions A + B + C, 
giving 

kl  k2 
Model 1. 

(exp(- k,t)-exp(- k2t)l .  
kl  

k2 - k ,  
[B] = - 

k; k;  

ki 
Model 2. Parallel first-order reactions A + B and A + C, 

giving 

Fitting these models to the data by nonlinear least squares 
yields the results in Table 2. Model 1 fits the data better than 
Model 2 and has a much higher posterior probability. The 
posterior probabilities here are calculated from Eq. 17 with 
p ( M , ) = p ( M 2 )  and normalization to a posterior sum of 1. 

Table 1. Simulated Data for Example 2 

t ,  min [Bl t ,  min IB1 
10 0.192, 0.140 
20 0.144, 0.240 
30 0.211, 0.161 
40 0.423, 0.308 
60 0.406, 0.486 
80 0.421, 0.405 

100 0.457, 0.519 
120 0.505, 0.537 
140 0.558, 0.581 

. .  

160 0.407, 0.464 
180 0.439,0.380 
200 0.387, 0.393 
220 0.362, 0.324 
240 0.269, 0.293 
260 0.240, 0.424 
280 0.269, 0.213 
300 0.297, 0.303 
320 0.271, 0.223 
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Table 2. Model Fitting Results for Example 2 

Model j ’, 1 ‘ j 2  ‘ 1  3 4 P ( M ,  I Y , S , ,  u,) 

1 1.21x10-2 6.44 X 0.1142 0.987 
2 1.58X lo-* 7.8 x 10- 7.8 x 10- 3 0.1748 0.013 

Analyses of variance for both models are given in Table 3 
and show a significant lack of fit for Model 2. These results 
are as expected, since the data were constructed from Model 
1 augmented with simulated random errors. 

Example 3 
Tschernitz et al. (1946) reported a detailed study of the 

kinetics of hydrogenation of mixed isooctenes over a sup- 
ported nickel catalyst. Their article gives 40 unreplicated ob- 
servations of the hydrogenation rate. The independent vari- 
ables investigated were the reaction temperature T and the 
partial pressures p H ,  p a ,  and ps  of hydrogen, unsaturates 
(mixed isooctenes), and saturated products (isooctanes). 
Eighteen rival models of the reaction mechanism were for- 
mulated and fitted by least squares to the experimental data. 
The data and the models are reanalyzed here. 

For the present study, the observations were expressed as 
values of the response function y :  = In CR. Here is the 
hydrogenation rate in mols per hour per unit mass of cata- 
lyst, adjusted to a standard level of catalyst activity. Weights 
were assigned to these adjusted observations according to the 
formula 

based on assigned standard deviations of 0,00001 for the ob- 
servations of refractive-index difference AnR, (used in calcu- 
lating the reactant conversions) and 0.1 for the catalyst activ- 
ity corrections. The activity variance, (0.1)’, proved to be 
dominant in Eq. 19 over the range of the experiments; thus 
the weights w, = lxa;), were nearly equal for the 40 experi- 
ments. 

The eighteen models investigated by Tschernitz et al. are 
expressed in Table 4 as expectation models for y .  Each tem- 
perature-dependent coefficient k i ( T )  or K,(T)  denotes a 
modified Arrhenius function, centered at the mean 1/T value 
of 1,538.9 with T in Kelvins. The function form exp[O,, + 

Oi,(1/538.9 - l/T)] was tried initially to keep k , (T )  and K,(T) 
nonnegative. This form often needed extreme parameter 
values to represent negligible functions; therefore, the form 
O,,exp[ Oi,(1/538.9 - 1/T)] with constraint O,, 2 0 was pre- 
ferred. 

Each weighted model 5 was fitted to the weighted data Y 
by nonlinear least squares, using the program GREG (Stewart 
et al., 1992), which keeps each parameter within its permitted 
range. To test each model with the temperature functions 
included, the data for all temperatures were analyzed at once 
as advocated by Blakemore and Hoerl (1963). 

To estimate the experimental variance, a 30-parameter 
polynomial in the four independent variables ( T ,  p H ,  p a ,  p s )  
was constructed and fitted to the data in the same manner. 
Reduced versions of this polynomial were then selecte! and 
tested until a least value of the residual mean square, Sxn - 
pi), was found with 23 terms, giving the estimate u, = 40 - 23 
= 17 for the “pure error” degrees of freedom. The resulting 
weighted residual sum of squares, S = 60.9, correspondingly 
approximates the pure error sum of squares S,. 

Our tests of the first eighteen models are summarized in 
Table 5,  with the posterior probabilities r ( M j  I Y, S,, u,) cal- 
culated from Eq. 17 and normalized to a total of l. These 
probabilities indicate a strong preference for Model 8, with 
Models 7 and 4 next best and with negligible probabilities for 
the other models. Model 8 also gives the best fit; its variance 
ratio F/ of 1.9 with the indicated degrees of freedom is ex- 
ceeded with probability 0.1 in sampling from Normal error 
distributions, while the next best models (4 and 7) give proba- 
bilities only half as large. 

Our choice of model differs from that of Tschernitz et al. 
(1946), who reported that Eq. 4 fitted best. The difference 
lies in the weightings used. Tschernitz et al. transformed each 
model to get a linear least-squares problem (a necessity for 
their desk calculations), but used weights of 1, which are in- 
appropriate for the resulting transformed response functions. 
For comparison, we have refitted the data with the same lin- 
earized models, but with different weights wu derived for each 

Table 3. Analyses of Variance for Example 2 

ANOVA for Model 1: 
Source of Variance Sum of Squares Deg. of Freedom Mean Square 
Residual 
Lack of fit 
Pure error 

0.1 14243 
0.070335 
0.043908 

34 
16 st = 0.004396 
18 s2 = 0.002439 
Fl = s$’s* = 1.80 
Q(1.80 I16,18) = 0.115 

ANOVA for Model 2: 
Source of Variance Sum of Squares Deg. of Freedom Mean Square 
Residual 0.174806 33 
Lack of fit 0.130898 15 s: = 0.008727 
Pure error 0.043908 18 s2 = 0.002439 

F2 = $/s2 = 3.58 
Q(3.58 I 15,18) = 0.006 
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Table 4. Expectation Models for Response y = In 6i in 
Example 3 

model according to the variance expression in Eq. 19 for In 
(R. The residual sums of squares thus found are comparable 
to those in Table 5, and so confirm the superiority of Model 
8 among those tested. 

Conclusions 
The main results of this work are Eqs. 12 and 17, which 

allow comparison of the posterior probabilities of candidate 
models applied to a given data set. These equations were 
found previously by Box and Henson (1969, 1970), but with 
p (  Oj I M,) regarded as an expectation before the taking of any 
data, a view contradicted by Eq. 11 and questioned by Kane- 
maw (1973). This difficulty is resolved here by evaluating 

Table 5. Testing of Kinetic Models* 

Residual Lack-of-Fit Ekp. Error 
Sum of Posterior Var. Deg. of Deg. of 
Squares Probability Ratio Freedom Freedom 

Model ij n ( M j  1 Y,S,, u,) F, n -pi - ue ue 

1 970.2 0.000 13.4 19 17 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

2,156.7 
279.5 
192.2 

1,013.8 
2,586.3 

211.1 
165.2 
970.2 
844.9 
826.2 

1,013.8 
767.5 
788.8 
420.1 
485.1 

2,156.7 
925.4 

0.000 
0.014 
0.167 
0.000 
0.000 
0.213 
0.605 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

29.3 20 
3.6 17 
2.4 15 

14.0 19 
33.6 21 
2.3 18 
1.9 15 

13.4 19 
11.5 19 
11.9 18 
14.0 19 
10.4 19 
11.3 18 
5.9 17 
6.2 19 

29.3 20 
11.5 21 

17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 
17 

*For data of Tschernitz et al. (1946). 

p(Oj I M j )  after the data are fitted, as an expectation over a 
sample spafe of replicate observations generated by Eq. 3 
with Oj = O, and errors distributed as N(0, u2). By this 
method, we find that Eqs. 12 and 17 hold directly for sequen- 
tial investigations of rival models. The first author introduced 
these changes. 

Bayes' theorem and sampling theory were both essential in 
this work. Both were used in deriving Eq. 11 and the subse- 
quent posterior density formulas for choosing the most prob- 
able model; either approach yields the x2  and F criteria for 
testing the adequacy of each model. This outcome is con- 
sistent with the conclusion of Box (1980), that Bayesian infer- 
ence and sampling theory are both essential in modeling in- 
vestigations. 

The factor 2-Pi/2 in Eqs. 12 and 17 comes from the calcu- 
lation of p(Oj I Mi) as shown in Eq. 11. This factor facilitates 
the selection of a parsimoniously parameterized model, thus 
correcting a reported weakness of previous Bayesian discrim- 
ination methods (Reilly, 1970; Chow, 1981). 

Example 3 illustrates several practical points: 
1. By use of a constrained least-squares algorithm, physi- 

cally acceptable parameter estimates were obtained for every 
candidate model, leaving the discrimination to be done by 
means of posterior probabilities and ANOVA tests. 

2. Weighting of the observations is inherent in any least- 
squares procedure, and needs to be based on a list or model 
of the expected relative precisions of the observations. 

3. Rearrangements of kinetic models into linear forms, 
though useful for graphical analysis, are unnecessary for pa- 
rameter estimation with modem algorithms. Such rearrange- 
ments make discrimination more difficult, by requiring 
model-dependent transformations of the data, the weights, 
and the residuals to get valid comparisons of models. 

4. Replicate experiments are very important for estimation 
of the experimental error statistics, S, and v,. Residuals of 
rigorous constraints, such as mass balances, are also useful 
for this purpose. When such information is lacking, approxi- 
mations of S ,  and v, may be obtainable by high-order poly- 
nomial regression of the observations, or of the residuals for 
the best-fitting model. 
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Notation 
p ( M , )  =prior probability assigned to model M, 

p (  x 2  I v )  =density of x 2  distribution with u degrees of freedom 
s: = S ' / ( n  - p, - ue), lack-of-fit variance for model M, 

A?, =matrix of parametric sensitivities for model M I ;  see Eq. 
u =observation number 

7b 
I i F i I  I =determinant of matrix i?i, 

Y =vector of weighted observations 
I Y x )  =gamma function at x 

mz =variance of observations of unit weight 
(r =expected variance of observations at &, 

=transpose of vector or matrix 
= least-squares value 

"T 

: = =defines the preceding symbol by the next expression 
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