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1 Introduction

The detection of gravitational waves (GW) [1] established a new and independent probe

of New Physics. It has already been suggested that the data from resolvable events such

as from binary mergers could help constrain interacting dark matter [2, 3] or exotic com-

pact objects [4–6]. The observation also implies that we may anticipate the detection of a

stochastic GW background at both current and future detectors. This may be a rare probe

of the Cosmic Dark Ages and the first observational window onto cosmic phase transitions

(PTs). Such cosmic phase transitions leave behind a characteristic broken power-law gravi-

tational wave spectrum. The relic spectral shape depends on the strength of the transition,

the speed of the transition, the bubble wall velocity and the temperature of the transition.

Most work thus far has considered the electroweak phase transition (EWPT), since

a strongly first order electroweak phase transition can catalyze electroweak baryoge-

nesis [7–10] providing an explanation for matter anti-matter asymmetry observed to-

day [8, 9, 11–16]. The phenomenology of EWPTs have been studied abundantly [17–27]
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and the GW production has recently been advanced theoretically [28] and through lattice

simulations [29, 30]. From these results, it has become clear that the successfulness of

electroweak baryogenesis and the observability of the GWs from the EWPT are somewhat

in tension.

In terms of the LISA-inverse problem, much attention has been focused towards ei-

ther arguing for a new scale of physics [10, 25], or for relic backgrounds from certain well

motivated extensions of the standard model, assuming the reheating temperature is suffi-

ciently high [8, 9, 11–24, 31, 32]. Little work to date has focused on the question of model

discrimination [18]. In this work we endeavour to see how much model discrimination is

in principle possible from the frequency spectrum of a future stochastic gravitational wave

signal. In particular, we consider renormalizable and non-renomalizable effective field the-

ories of interacting hidden sectors, in which a gauge symmetry is spontaneously broken.

We also consider the effect of fermions that couple to the scalar.

Simulations of gravitational wave backgrounds from cosmic phase transitions indicate

that there are three spectral contributions: the collision spectrum is the direct effect of

bubbles of true vacuum colliding, the sound wave spectrum is the result of the fluid dy-

namics after such collisions, and the turbulence spectrum, which is usually subdominant.

It has been realized recently that the sound wave contribution dominates in most relevant

scenarios. In particular, this is true in all cases that do not display “runaway” behaviour,

and such runaway is blocked by any gauge bosons acquiring a mass in the transition [33].

All spectra are controlled by four thermal parameters: the velocity of the bubble wall,

vw, the ratio of the free energy density difference between the true and false vacuum and

the total energy density, ξ, the speed of the phase transition β/H and the nucleation

temperature TN . In the special case in which two peaks are visible, the four thermal

parameters can in principle be reconstructed.

In this paper we focus on the thermal parameters TN , β/H and ξ. The first determines

the scale of the phase transition, and the latter two are most powerful at model discrimi-

nation. To study the thermal parameters in a general context, we observe that first order

phase transitions are realized in (effective) double well potentials, from the interaction of

terms with alternating signs. As such, we will study multiple models within two limiting

scenarios,

V (hD, T ) =
1

2
m(T )2h2D − c3(T )h

3
D +

1

4
λ(T )h4D (1.1)

V (hD, T ) =
1

2
m(T )2h2D − 1

4
λ(T )h4D + c6(T )h

6
D (1.2)

where all coefficients are positive at the time of transition. Most phase transitions can

be mapped onto these effective scenarios. In particular, the EWPT in a Higgs+singlet

model is an example of (1.2), upon integrating out the heavy singlet (up to dimension-6

operators).

The thermal parameters are strongly dependent on the nature of the thermal correc-

tions. These thermal corrections are functions of the bosonic and fermionic degrees of

freedom coupling to the scalar. The bosonic degrees of freedom are given by the gauge
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structure of the theory. Here we will consider models within the following scenarios, cor-

responding to the limiting cases (1.1) and (1.2):

1. A dark Higgs — SU(N) breaking into SU(N−1). In this case the barrier between

the true and false vacuum during the transition is caused by dark gauge bosons that

provide an effective cubic term.

2. A dark Higgs — SU(N) breaking into SU(N−1) — with significant non-renormalizable

operators. In this case the barrier between the true and false vacuum is caused by

the quartic dark Higgs coupling being negative and the vacuum being stabilized by

the positive Wilson coefficient of the sextet interaction.

Such scenarios may arise for example in the context of Composite Higgs models of cosmol-

ogy [34, 35], where the Dark Higgs would be represented by a pseudo-Goldstone boson state

(a generalization of a QCD pion) whose interesting potential is due to explicit breaking of

the global symmetry via SU(N) gauge and Yukawa couplings.

In each case we consider gauge groups of different ranks as well as models with and

without a thermal mass produced by dark fermions. For all cases ξ is independent of the

scale of the potential and β/H has a weak logarithmic dependence whereas both thermal

parameters are controlled by the ratio of the vev with the scale of the potential x ≡ v/Λ.

Therefore the renormalizable potentials are a 2(3) parameter problems for each model

and the non-renormalizable potentials are a 3(4) parameter problem without (with) the

addition of a dark fermion.

We find that non-renormalizable operators dramatically improve the visibility of grav-

itational wave spectra, whereas adding a dark fermions Nf and increasing the rank of the

group N provide a more modest boost, which becomes reasonably large in the limit of large

Nf or N . The boosts to visibility in each case are non-degenerate. In the renormalizable

case (1.1), we find that both the effect of a larger gauge group (SU(N) → SU(N + 1)),

and the effect of increasing the number of fermions (with significant thermal mass) are

essentially to shift the thermal parameter space, and increase the detection prospects. Of

course, there is a degeneracy of predictions for specific models. It has been suggested that

anisotropy measurements could break this degeneracy, for example by a cross-correlation

with the CMB data [36].

The structure of this paper is as follows. In section 2 we summarize the models we are

attempting to discriminate. In section 4 we review the spectra of gravitational waves from

a cosmic phase transition and in section 5 we present our results. In section 6 we relate

our results to studies of dark matter, before concluding with a discussion and an outlook

to future work in the final section.

2 Scenarios for a dark first order phase transition

A first order phase transition may occur for a potential with three competing terms, with

alternating signs, such that it has a double well separated by a barrier. Moreover, the

vacuum energy corresponding to these minima will be temperature-dependent, such that
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the ground state changes as the Universe cools. The first order phase transition may then

happen if the potential barrier is present at the critical temperature Tc, when the minima

are degenerate.

We will consider two limiting cases of such potentials. In the renormalizable case,

the potential barrier is generated effectively at finite temperatures, but does not exist at

zero temperature. As we will see, the zero-temperature masses and self-couplings, the

quantum numbers of the scalar, and the couplings to fermions crucially determine the

thermal parameters of the phase transition. For all the models we are considering the part

of the Lagrangian relevant to phase transitions can be written

L ⊃ |DµHD|2 − V (HD) +

Nf
∑

i

iχ̄iDµγ
µχi − yiχvhDχiχ̄i (2.1)

where 〈HD〉 = v, hD is the singlet part of HD, and the covariant derivative of the Higgs

(but not necessarily of the fermion) contains the dark gauge bosons which are in the adjoint

representation of SU(N), with gauge coupling constant g and covariant derivative

Dµ = ∂µ − igτaAa
µ . (2.2)

We will consider potentials of the form (1.1) and (1.2).

2.1 SU(N)/SU(N − 1) models with renormalizable operators

The first case has a double well generated from the quadratic, cubic, and quartic interac-

tions at finite temperature. We parametrize the potential such that the overal scale (Λ) and

the zero temperature vacuum expectation value (v) are inputs. This implies the following

redefinitions for zero temperature parameters in the potential (1.1),

m2(0) = −Λ4

v2
, (2.3)

λ(0) =
Λ4

v4
. (2.4)

As we will see below, we find that some thermal parameters are only functions of the ratio of

the zero temperature vev and the scale of the potential (v/Λ). Using this parametrization,

the finite temperature potential is given by,

V (H,T ) = Λ4

[

−1

2

(

hD
v

)2

+
1

4

(

hD
v

)4
]

+
T 4

2π2





∑

i∈ bosons

niJB

(

m2
i

T 2

)

+
∑

j ∈ fermions

njJF

(

m2
j

T 2

)





= Λ4

[

(

−1

2
+

(

1

8
+

NG

24

)

T 2

v2
+

3

24
NGB

g2

4

T 2v2

Λ4
+ y2Nf

T 2

24

v2

Λ4

)(

hD
v

)2

−
(

NGB

(

g2

4

)3/2
1

4π

v3T

Λ4

)

(

hD
v

)3

+
1

4

(

hD
v

)4
]

, (2.5)
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whereNG is the number of gauge bosons coupling to the scalar sector with coupling constant

g, NGB is the number of Goldstone degrees of freedom, and Nf is the number of fermions

with Yukawa coupling y. For simplicity, we consider degenerate Yukawa couplings, as the

gravitational waves produced by (y,NF ) and ({yi}, N ′

F ) are related by y2×NF =
∑N ′

F y2i .
1

In the second line we have applied a high temperature expansion,

JB

(

m2

T 2

)

∼ m2

24T 2
− m3

12πT 3
, and JF

(

m2

T 2

)

∼ − m2

48T 2
. (2.6)

All field dependent masses which enter into the effective potential are provided in the

appendix.2

2.2 SU(N)/SU(N − 1) models with non-renormalizable operators

The second limiting case has the double well resulting from the interplay between the

quadratic, quartic, and sextic terms. We again choose a parametrization of the potential

such that the scale of the potential Λ and the zero temperature vacuum expectation v value

are inputs. This will leave us with one free parameter α, which parameterizes the differ-

ence in vacuum energy of the two minima at zero temperature. In the high temperature

expansion (2.6), the potential becomes,

V (H,T ) = Λ4

[

(

2− 3α−
[

1

2
+NG

1

6

]

T 2

v2
+

3

24
NGB

g2

4

T 2v2

Λ4
+ y2Nf

T 2

24

v2

Λ4

)(

hD
v

)2

−
(

1− (30 + 6NG)αT
2

v2

)(

hD
v

)4

+ α

(

hD
v

)6
]

. (2.7)

It is seen that at zero temperature, the potential has minima at hD = 0 and hD = v

respectively, overall scale Λ, and the (dimensionless) non-renormalizable coupling is α.

That is, we have made the following redefinitions in eq. (1.2):

m2(0) = (2− 3α)
Λ4

v2
(2.8)

λ(0) = 4
Λ4

v4
(2.9)

c6(0) = α
Λ4

v6
(2.10)

At zero temperature, a value of α = 1/2 corresponds to degenerate minima, and the

upper limit α = 2/3 corresponds to the value for which there is no zero temperature

1Up to a small change in the number of relativistic degrees of freedom g∗. Since the gravitational wave

spectra has a very weak dependence on g∗, making this simplification is at little cost to generality.
2Note that the use of perturbation theory introduces some theoretical uncertainty as perturbativity

at finite temperature breaks down above the critical temperature [37, 38], a fact that can be delayed

somewhat by the inclusion of “daisy terms” [39] although in reality one requires a lattice simulation for

a robust treatment. In spite of this theoretical uncertainty we expect our results to be indicative of the

overall thermal parameter space including its overall scope and dependence on the model. Finally note that

the most important points in our scan are where a lot of supercooling occurs and TC is significantly higher

than TN meaning that these are the points where perturbation theory is most valid.

– 5 –



J
H
E
P
0
8
(
2
0
1
8
)
2
0
3

α❂
1

2

α❂
3

4

0 v

Λ4

4

0

- Λ4

4

ϕ

V(ϕ)

Zero temperature potential

Figure 1. The potential (2.7) at T = 0 for the two limiting values of the parameter α.

barrier between the vacua (as the zero temperature mass term changes sign), see figure 1.

Of course, finite temperature corrections may allow for a higher value of α, as positive

corrections to the mass term may reintroduce the barrier. Note we have once again assumed

degenerate Yukawas with little loss of generality as explained in the previous section.

For operators up to dimension-6, models for the electroweak phase transition (EWPT)

can be captured effectively by a special case of the above, with

V6(h, T ) =

(

aTT
2 − µ2

2

)

h2 +

(

bTT
2 − λ

4

)

h4 +
1

8Λ2
6

h6 (2.11)

where we have defined,

aT =
y2t
8

+ 3
g2

32
+

g′2
32

− λ

4
+

v20
Λ2
6

3

4
(2.12)

bT =
1

4

1

Λ2
6

. (2.13)

Here Λ6 is the scale associated with the dimension-6 operators which arise from integrating

out BSM physics, such as a singlet scalar.3 We will also consider the EWPT with non-

renormalizable operators for the sake of comparison later.

Finally, note that if one rewrites eq. (2.7) in terms of implicitly defined temperature

dependent parameters

V (H,T ) = Λ(T )4

[

(2− 3α(T ))

(

h

v(T )

)2

−
(

h

v(T )

)4

+ α(T )

(

h

v(T )

)6
]

(2.14)

one can follow the process in [31, 40] and fit the action to the function for the range

α(T ) ∈ [0.51, 0.65]

SE =
v(T )3

Λ(T )2
10

∑
3

i=1
ai(α(T )−2/3)i (2.15)

with ai = (−17.446,−132.404,−763.744).

3The notation in (2.11) may differ from the literature, in that we use λ > 1 such that the zero temperature

form of the potential is explicit.

– 6 –



J
H
E
P
0
8
(
2
0
1
8
)
2
0
3

3 Mapping onto dark matter models

In this section we give examples of hidden sector models which can be mapped onto our gen-

eral framework given above. Of course we are not completely general as we do not consider

for example the case where multiple scalars acquire a vev at the same time (such as a multi

dark higgs doublet model) or more complicated gauge group structures SU(N)×SU(N′)

where both gauge couplings are large. However, scenarios which can be mapped onto our

framework are ubiquitous including, Pati-Salem symmetry breaking4 [41], colour breaking

intermediate phase transitions [42, 43], atomic dark matter [44], asymmetric dark mat-

ter [45] and compositeness [46] to give a non-exhaustive list. We give more details of three

of these examples and how they map to the various models we consider below.

3.1 Generalized baryon number

As was suggested in [45], the dark sector relic abundance and the baryon asymmetry in

the SM can have a common origin in models with a generative symmetry breaking. In

such models, there is a generative gauge group G, for example SU(2)G which is broken

spontaneously through a first-order phase transition in the early universe. The asymmetry

generated in this phase transition is communicated to the dark and visible sectors through

a mixed Yukawa term. The degenerative scalar has tree-level zero temperature potential,

V (ϕ) = −
µ2
ϕ

2
|ϕ|2 + λϕ|ϕ|4 (3.1)

and quartic mixing terms with the SM Higgs, B-L breaking scalar σ, and dark scalar χ. For

small mixing, such as is the case in various supersymmetric models, the mass contributions

are small. For non-supersymmetric models, the mixing can be significant, and contribute

to the thermalization and decay properties of the various sectors. The mass hierarchies are

small, such that the scalar ϕ can have a mass at the electroweak scale. In this case there

are significant cosmological and astrophysical constraints as discussed in [45].

The first order PT can be induced when one includes an effective dimension-6 operator,

which can arise at the one loop level from the mixed quartic interactions [21]

V6(ϕ) =
1

8Λ2
φ6 (3.2)

from which it is seen that this an example of a model within the scenario given by (2.7).

3.2 Atomic dark matter

A further possibility is that the dark sector contains a confining group, as well as fermions

charged under an unbroken U(1)′. Then, dark atoms can be formed [44]. The strongest

constraint on atomic dark matter comes from the self scattering bound [47, 48],

α2
D

m3
χ

≤ 10−11(GeV−3) (3.3)

4This phase transition is more likely to occur at a scale visible to aLIGO than LISA.
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where mχ is the heavier particle, which forms the nucleus of dark atoms. The mass of mχ

can be heavier than a TeV [49] in which case the constraint on the gauge coupling is very

modest (αD ∼ 0.1, implying g ∼ O(1)). A simple example is an SU(4) gauge group, which

breaks into SU(3)×U(1), allowing for the formation of nuclei during dark BBN [50].

3.3 Composite dark matter models

A final example is a dark matter candidate as the lightest bound state of a confining gauge

group SU(N), such as has been discussed in [32]. The spontaneous symmetry breaking

of an approximate global symmetry, which is only partially gauged, gives rise to pseudo-

Goldstone bosons. These light states are sensitive to an effective scalar potential at the 1-

loop level, which in turn initiates a further breaking. A particularly interesting possilibility

has the SM Higgs and the dark matter candidate both as pseudo-Goldstone bosons of

the same symmetry breaking [46]. Various symmetry breaking cosets have been studied

in the literature, with scalar potentials of the form (2.5) or (2.7). The couplings in such

scenarios correspond to 1-loop integrals in the UV theory. The GW spectra for benchmarks

of thermal parameters for the breaking SU(3) and SU(4) dark gauge symmetries were

previously considered in [32], where it was argued that scalar DM bound states and dark

quarks (carrying EW quantum numbers) is most relevant for detection at LISA.

4 Gravitational waves from phase transitions

4.1 Thermal parameters

The dynamics of the phase transition are controlled by a bounce solution φc(r, T ), which is

a spherically symmetric classical solution to the Euclidean equations of motion [40, 51, 52]

− 2

r

∂hD
∂r

− ∂2hD
∂r2

+ V ′(φ) = 0 . (4.1)

We compute the bounce solutions with potentials in the previous section. The thermal

parameters of the phase transition can then be computed from the bounce solution.

First, the nucleation temperature of bubbles of the new vacuum TN is conventionally

defined as the temperature for which a volume fraction e−1 is in the true vacuum state.

This corresponds approximately to

p(tN )t4N = 1 (4.2)

where p(t) is the nucleation probability per unit time per unit volume, and where tN is the

nucleation time. The nucleation probability can be calculated from the bounce solution as,

p(T ) = T 4 e−SE/T (4.3)

where SE is the Euclidean action evaluated on the bounce. We assume a radiation dom-

inated universe to relate the nucleation temperature and time. The speed of the phase

transition is controlled by the parameter β, which can also be related to the bounce action,

β

H
∼ T

d(SE/T )

dT

∣

∣

∣

∣

T=TN

. (4.4)

– 8 –



J
H
E
P
0
8
(
2
0
1
8
)
2
0
3

Last, the latent heat parameter is given by,

ξ =
1

ρN

(

∆V − T∆
dV

dT

)∣

∣

∣

∣

T=TN

. (4.5)

Where ∆ indicates that the quantity should be evaluated on both sides of the bubble wall,

and where ρN = π2g∗T 4
N/30 is the equilibrium energy density at TN .

4.2 Gravitational wave spectrum and the LISA inverse problem

The gravitational wave profiles can be related to the thermal parameters. We will adopt a

parametrization introduced by [53], but our analysis can be adapted when future models

become available. In principle, there are three contributions to the power spectrum,

ΩGW = Ωcol +Ωsw +Ωturb (4.6)

Where the first term corresponds to the spectrum from bubble collisions, the second is a

spectrum due to sound waves in the fluid after collisions, and the third a turbulence term.

As realized last year [33], in any model in which gauge bosons gain a mass in the

transition, the bubble wall velocity approaches a finite limit. Therefore, the sound wave

contribution [28] is typically dominant in all of the cases we consider in this work. Its

power spectrum can be expressed as [53],

h2Ωsw = 8.5× 10−6

(

100

g∗

)

−1/3

Γ2Ū4
f

(

β

H

)

−1

vwSsw(f) (4.7)

where Γ ∼ 4/3 is the adiabatic index, and Ū2
f ∼ (3/4)κf ξ is the rms fluid velocity. For

vw → 1, the efficiency parameter is well approximated by [54]

κf ∼ ξ

0.73 + 0.083
√
ξ + ξ

(4.8)

For vw ≈ 0.5, we use [54]

κf ∼ ξ2/5

0.017 + (0.997 + ξ)2/5
(4.9)

and the spectral shape is given by

Ssw =

(

f

fsw

)3







7

4 + 3
(

f
fsw

)2







7/2

(4.10)

with

fsw = 8.9× 10−8Hz

(

1

vw

)(

β

H

)(

TN

GeV

)

( g∗
100

)1/6
. (4.11)

From this we notice that the amplitude of the signal is a function of the parameters β/H,

the wall velocity vw, and the latent heat ξ; whereas the position of the peak depends on

β/H and TN . We will use this insight in the next section, to compare the predictions of

– 9 –



J
H
E
P
0
8
(
2
0
1
8
)
2
0
3

ℒ (ξ, TN, vw, β/H)

(Ωx, fx)

Figure 2. (Schematically) the LISA inverse problem. In the above, the subscript x refers to the

dominant peak of the GW spectra (collision, sound wave, or turbulence). As described in the text,

for most models the sound wave contribution is dominant. The thermal parameters of the PT can

be calculated by solving the bounce EOM (4.1), and then related to the GW spectra using (4.7)

and (4.11). This paper finds general relations between the GW spectra and the Lagrangian.

the different models (2.5) and (2.7). This effort can be summarized by the LISA inverse

problem, in figure 2.

We should mention some previous work towards solving the LISA inverse problem.

The link between gravitational waves detection of collision and turbulence peaks and the

thermal parameters has previously been summarized in ref. [25], which highlighted visible

regions in the thermal parameter space. On the link between the Lagrangian and thermal

parameters some thorough work has been done in the case of the EWPT with extended

scalar sectors, [23, 55–57]. The aim of this paper is to compliment these previous works

by studying the general case of a (single) scalar, with couplings to different numbers of

fermions and gauge bosons, as well as other scalars separated in mass.

5 Spectra from models

We compute the thermal parameters for scenarios (2.5) and (2.7), for different dark sectors.

We are specifically interested in light scalar sectors, with masses around the EW scale. For

comparison, we also study the SMEFT case, in which the electroweak phase transition is

catalyzed by a non-renormalizable H6 effective operator. The SMEFT case is then well

approximated by a dark SU(2) with three dark fermions.

We find bounce solutions using two techniques to ensure accuracy: a numerical finite-

difference algorithm, where we discretized the radial direction r and the analytic technique

described in section 2. The thermal parameters are then found by substituting the bounce

solution into the Euclidean action SE as described in the previous paragraph.

In both the renormalizable and non-renormalizable models the thermal parameter set

(ξ,H/β) governs the peak amplitude. We find that these results are essentially independent

of the scale of the potential Λ. Specifically, ξ is independent, whereas β/H has a weak

Logrthmic dependence. The nucleation temperature by contrast scales linearly with Λ. In

the case where we have only renormalizable operators (2.5), we scan over (g, v/Λ), with

– 10 –
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Figure 3. Thermal parameters from the PT described by Eqs (2.5) (left) and (2.7) (right). The

dominant contribution to the spectrum comes from the sound-wave term. The plot points are

coloured by their effective zero temperature mass, found from m2 = d2V/dT 2 evaluated at v. The

dashed contours in the plots correspond to the GW amplitude Ωsw (4.7), where we have chosen

vw = 0.5 in the left plot, and vw = 1 in the right plot (with the corresponding efficiencies from [54]),

as motivated using the conditions in [58]. The upper thicker contour corresponds to the LISA 1-year

peak sensitivity [59]. The lower thicker dashed contour corresponds to LISA for a power-law spec-

trum (integrated over frequency), taken from [60]. The width of the contours is found from varying

the zero-temperature potential parameters. Left: unless otherwise indicated, the number of Yukawa

couplings is taken to be zero. If present, the Yukawa couplings are set to yχ = 1. Right: unless oth-

erwise indicated, g = 1. The light blue dashed line corresponds to the predictions from the EWPT.

scan ranges g ∈ (0.1, 1), and v/Λ ∈ (0.5, 4) In the non-renormalizable case (2.7), we fix

g = (0.5, 1) and scan over (α, v/Λ), where we fix Λ = 200GeV. The scan ranges are

v/Λ ∈ (0.5, 4) and α ∈ (0.55, 1.5). We assume that the fermions are massless before the

PT. The parameter that enters the scan is then Nf × yχ. For convenience, we have set

yχ = 1 in the figures.

We summarize the results for the peak amplitude and peak frequency in figures 3 and 4

respectively where in the spirit of reference [25] we include visibility curves for LISA and

plot the (ξ, β/H) and (β/H, Tn) planes. We check explicitly that the high temperature

expansion is valid for the results of our scan, by ensuring that 2m2
i < T 2 with i = h, GB

for the gauge boson and Higgs mass at the critical vev and temperature.5 The effect of

excluding points for which this check fails is to mildly trim the very tip of the peaks of the

thermal parameter space in figures 3. The fact that the trimming occurs for low dark Higgs

mass can be understood in direct analogy with early studies of the EWPT (before the Higgs

mass was known). In this model one finds that for fixed vev, the strength of the phase

5We do not perform a similar check of the dark fermion mass, as (up to a change in the number of degrees

of freedom g∗) the effect of dark fermions is a thermal mass controlled by Nf × y2

χ. That is, a reduction of

the coupling to comply with the high temperature expansion can be compensated by increasing Nf .
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Figure 4. Thermal parameters from the PT described by Eqs (2.5) and (2.7) respectively. The

dashed contours in the plots correspond to the sound wave peak fsw (4.11), where we have chosen

the wall velocities as in figure 3. The thicker dashed contour corresponds to the LISA frequency

peak [60]. Note that the EWPT results do not overlap with our scans, since the nucleation tem-

perature TN is sensitive to the scale Λ.

transition grows inversely with the Higgs mass. In the limit of small Higgs mass, the gauge

boson masses (which scale with v(Tn)) become large, invalidating the high temperature

expansion (mG/T < 1) to be valid.

The different shape of the results for the potential (2.5) with fermions can be under-

stood as the fermions contribute only to the mass term. Therefore the potential barrier is no

longer just a function of the gauge coupling, which we scan over, and the zero temperature

mass. The reader will also notice that the results for the different potentials (2.5) and (2.7)

have different zero temperature mass ranges. This can be understood by considering the

contribution of the dimension-6 term to the latter.

From the results for the non-renormalizable operators, it would naively seem that

gauge bosons and fermions change the zero temperature mass of the scalar. However, the

more accurate statement is that the presence of fermions and the rank of the gauge group

determines which zero temperature masses lead to a strong first order PT, and are not

disallowed by supercooling. Furthermore, for the case where g = 0.5 rather than g = 1,

the high temperature expansion is valid for lower dark Higgs masses, before it is rendered

invalid by large gauge boson masses.

In the right panels, we compare our result to the predictions from the EWPT up to

dimension-6 operators (2.11), with the dashed blue line. We find that the results in figure 3

overlap, demonstrating that these results are insensitive to the scale Λ (but sensitive to the

ratio v/Λ). As expected, the predictions for the peak frequency (figure 4) do not overlap,

as TN scales with Λ.
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Some qualitative features can lead to model discrimination, which we list below:

1. The thermal parameter space available for SU(N) is essentially the same as that of

SU(2) apart from a shift in log ξ by an amount

∆ log ξ ∼ A(yχ ×Nf )
√
N − 2 (5.1)

where the coefficient A(yχ×Nf ) depends on yχ×Nf and is around 2.4 for yχ×NF ∼ 0

and decreases to about 1.8 for y×Nf = 10. Note that in general increasing the rank

of the gauge group improves visibility although one has diminishing returns for large

N which we show in figure 3.

2. Adding fermions qualitatively changes the available thermal parameter space slightly.

Comparing Nf × yχ > 0 and NF × yχ = 0, we notice a shift and a slight change in

shape. For 1 < y ×Nf < 10 we find that the thermal parameter space merely shifts

according to

∆ log ξ = B(N)
√

yχ ×Nf − 1, ∆ logH/β = C(N)
√

yχ ×Nf − 1 (5.2)

where we find that C(2) ∼ −0.35 for SU(2) and C(10) ∼ −0.3 for SU(10)

B(2) ∼ 0.40, B(5) = 0.23, B(10) = 0.18 (5.3)

That is ξ is shifted in the direction of greater visibility whereas β/H is shifted in a

direction of weaker visibility. Since the amplitude is more sensitive to ξ this overall

means that adding fermions increases the visibility of the transition which we show

in both figure 5 and figure 3. The increase in β/H is due to Tc − Tn reducing

in magnitude as one adds strongly coupled fermions. For ξ there is a competition

between two effects: the reduction in Tc−Tn which tends to reduce ξ and an increase

in dV/dT which increases ξ. Its the latter that wins.

3. The presence of nonrenormalizable operators boosts H/β by orders of magnitude

compared to what is possible in the renormalizable case. This is a striking signal

suggesting that a large H/β indicates the presence of more than one new scale of

physics. In this case the effect of adding extra fermions is to shift and slightly rotate

the thermal paramater space (ξ,H/β), this time in the ∆ log ξ direction although the

relationship is less clean than the case of renormalizable operators. In contrast the

effect of increasing the rank of the group is to both shift and somewhat contract the

parameter space. The shift in both cases is in a direction of increased visibility.

6 Relic abundance example

The scenarios discussed in the previous sections constitute hidden sectors, which may

explain the present relic abundance of Dark Matter (DM). As an example, we discuss

the contribution to DM relic abundance from the coupling to a single Dirac fermion to the
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Figure 5. Thermal parameters from the PT described by Eqs (2.5) (left) and (2.7) (right).

For the non-renormalizable potentials we take α = 0.8. In the cases where we vary NF we set

N = 10(4), whereas in the cases where we vary N we set NF = 10(4) for the renormalizable and

non-renormalizable potentials respectively. The black dashed line shows LISA visibility for a power

spectrum integrated over frequency taken from [60].

scalar responsible for the PT. We will also assume the region mhD
< mχ, which corresponds

to the majority of the scenarios we covered in the last section.

The fermionic DM may not have tree-level couplings to the SM, just Yukawa inter-

actions with the Dark Higgs, and thermalize at a dark temperature, which in principle

could be different from the SM evolution, TD 6= TSM. But provided that there was thermal

equilibrium between the SM and hidden sector at some scale (above the weak scale), one

can assume that at freeze-out of the χ particles TD ∼ TSM. This scenario can explain the

observed DM relic abundance [61], which is mostly determined by the internal dynamics

of the hidden sector. In particular, the annihilation χ̄χ → hDhD sets the relic abundance

of χ particles.

To avoid over-closure, the hD scalar is expected to have a decay channel to the SM, such

as via Yukawa couplings to the SM fermions, via a mixing θ with the Higgs, of magnitude

gf = (mf/v) sin θ, where y2χ sin
2 θ & 2 × 10−13 [62]. This coupling is small enough such

that the SM fermions are not expected to play a significant role in the hD phase transition.

Under these assumptions, the dominant annihilation cross section is p-wave, and an

approximate expression for the relic abundance is then given by [63]

ΩDMh2 ≃ 2.1× 108GeV−1

MP

√

g⋆(xF )3b/x2F
≃ 0.1, (6.1)

where the fermion masses are mχ = yχv/
√
2, xF = mχ/TF ≃ 20 and b = (3/128π)y4χ/m

2
χ.
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Figure 6. Example computation of the relic density for model (1.1) with Λ = 200GeV. In the gray

region, mχ < mhD
. Here we have considered the relic density of Nf = 3/yχ fermions with Yukawa

coupling yχ, such that this result can be compared with the results of the scan in the previous section.

To illustrate the possible interplay between DM observations and the discovery of a

new source of gravitational waves, we explore the region of correct relic abundance in the

model (1.1) with Λ = 200GeV. The results are shown in figure 6.

These results are based on a toy model for DM, and many other scenarios could

be considered. In particular, one could explore non-thermal production of DM and its

relation with the scalar potential responsible for the PT. An alternative scenario has the

heavy gauge bosons of the broken symmetry as the most important component of the

dark matter relic abundance. Such a scenario was considered in [64] for the symmetry

breaking pattern SU(3)/SU(2), and is sensitive to additional cosmological constraints from

structure formation.

7 Discussion

In this work we have considered the relic gravitational wave spectra from phase transitions

in a hidden sector. These spectra can be related to the thermal parameters of the transi-

tion, which can be computed from first principles: β/H, the speed of the transition, Υ, the

latent heat, and TN , nucleation temperature. We have distinguished between two limiting

cases, with potentials (1.1) and (1.2), which effectively capture the main classes of models.

Furthermore, we have studied the effect of varying the quantum numbers of the scalar,

the gauge coupling, and the number of coupled fermions. The results of these studies are

summarized in figures 3 and 4, and some general conclusions are derived in section 5. We

find that although there is some degeneracy in the predictions, a level of model discrimi-

nation is possible. This is due to the fact that increasing the number of strongly coupled

fermions, the rank of the group, or the number of scales involved all increase the visibility

of a gravitational wave signal. Moreover the changes in thermal parameters due to each
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of these model changes are qualitatively different. In section 6, we comment on the relic

abundance of hidden sectors that could be constrained through their GW spectra.

A few caveats to our work. First, the renormalizable potential (2.5) does not have a

zero-temperature potential barrier, such as could be the case for a singlet scalar with a

cubic self-interaction. Phase transitions resulting from such a potential are qualitatively

different, and the thermal corrections may restore the vacuum to a unique field value in

such a way that no first order phase transition is expected. If a first order phase transition

does occur, it may exhibit runaway behaviour, such that the GW spectrum from bubble

shell collisions becomes relevant. This would lead to a different spectral shape, which in

principle may be distinguishable in future experiments, for TN around the weak scale. A

detailed analysis of such a scenario is beyond the scope of the present work.

Second, in the present work we have employed a high temperature expansion, eq. (2.6),

which has a limited range of validity. Phase transitions not captured by this approximation

may also give observable spectra; this is most noticeable in the results from the renormal-

izable potential (2.5). In future work, it will be interesting to explore the models using the

full thermal functions. Another possible extension is the inclusion of higher dimensional

potential corrections to the two limiting potential forms considered here. An analysis with

the inclusion of such operators will be presented in a future paper.

Finally, we have not calculated the wall velocities vw in the phase transitions, instead

making conservative assumptions to calculate the spectra. Calculating the bubble wall

velocity for a general model with general parameters is a highly non-trivial task which we

leave to future work. However, we can briefly comment on how measuring the bubble wall

velocity can lead to further model discrimination. The wall velocity can be estimated in

the limit that the departure from each particle in the plasma’s equilibrium distributions

are slowly varying near the bubble wall [65–67]. In this case the bubble wall velocity solves

h′′D − ∂V

∂hD
= ηvwγh

′

Dh
2
D (7.1)

for boundary conditions hD(−∞) = 0 and hD(∞) = v(Tn), that is, the value of the non

trivial minimum at the nucleation temperature. Only a particular value of the combined

friction term on the right hand side will satisfy the boundary conditions, and since η is

determined by particle physics, the problem reduces to choosing an appropriate value for

vwγ (where γ is the Lorentz factor). In the above η can be written as a matrix product

GTΓ−1F where G and F are vectors, whose components scale as g2 or y2χ. The matrix of

coefficients scale either as g2y2χ, g
4 or y4χ. Therefore the bubble wall velocity can give more

information on the size of both the gauge coupling and the fermion couplings, if present.

Future work may also include further analysis of the internal hidden sector dynamics,

including a thorough calculation of the thermal histories and relic abundances of hidden

sector degrees of freedom. In this work we have chosen to focus on a decoupled hidden

sector, but it is in principle straightforward to extend the results presented here to sectors

with significant portal couplings.

– 16 –



J
H
E
P
0
8
(
2
0
1
8
)
2
0
3

Acknowledgments

The authors thank Anupam Mazumdar for useful discussions. DC also thanks Jose Miguel

No and David Weir for useful discussions, and the Universidad Autónoma de Madrid for

hospitality during the completion of this paper. VS acknowledges support from the Science

and Technology Facilities Council (ST/P000819/1). TRIUMF receives federal funding via

a contribution agreement with the National Research Council of Canada and the Natural

Science and Engineering Research Council of Canada.

A Thermal corrections

A.1 Renormalizable potential

To calculate thermal corrections we need to calculate the field dependent masses. For a

dark Higgs sector the masses of the physical, goldstone, gauge boson and fermions are

respectively

m2
H = ∂2

hD
V = Λ4

(

3
h2D
v4

− 1

v2

)

(A.1)

mG =
1

hD
∂hD

V = Λ4

(

h2D
v4

− 1

v2

)

(A.2)

mGB =
ghD
2

(A.3)

mχ =
yχhD√

2
. (A.4)

We will work in the Landau gauge. The mass of the Goldstone mode is zero at the vev

but becomes important when describing the phase transition. In the high temperature

expansion the thermal corrections to the potential are

VT =
∑

i∈bosons

ni

(

m2

24
T 2 − m3

12π
T

)

+
∑

i∈fermions

ni
m2

48
T 2 (A.5)

The next order in the expansion is given by a logarithm, which is cancelled by the zero

temperature one-loop Coleman Weinberg potential. Note we have also ignored the constant

term. We find numerically that the high temperature expansion is valid almost exactly for

m2 < 2× T 2. Our values of ni are

nH = 1 nG = 2N − 1 nGB = 3× (2N − 1) nf = 2×N ×Nf (A.6)

where Nf is the number of fermions and N is the rank of the group. Note that we follow

the standard practice of ignoring the second term in the high temperature expansion for

Goldstones and Higgs ∼ m3T , such that the only cubic self-interaction comes from the

gauge bosons.
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A.2 Non-renormalizable potential

For the nonrenomalizable potential (2.7) we proceed as before, but here we assume the

cubic corrections due to gauge bosons are subdominant compared to the zero temperature

terms with alternating signs. This corresponds to only taking the first term in the high

temperature expansion for every species.

Open Access. This article is distributed under the terms of the Creative Commons
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