
C. Baranauskas et al. (Eds.): INTERACT 2007, LNCS 4662, Part I, pp. 397–410, 2007.

© IFIP International Federation for Information Processing 2007

Model-Driven Adaptation for Plastic User Interfaces

Jean-Sébastien Sottet
1
, Vincent Ganneau

1, 2
, Gaëlle Calvary

1
,

Joëlle Coutaz
1
, Alexandre Demeure

1
, Jean-Marie Favre

1
, and Rachel Demumieux

2

1 Université Joseph Fourier, Laboratoire LIG, BP 53, 38041 Grenoble Cedex 9, France

{Jean-Sebastien.Sottet, Vincent.Ganneau, Gaelle.Calvary,

Joelle.Coutaz, Alexandre.Demeure, Jean-Marie.Favre}@imag.fr
2 France Télécom R&D, 2 avenue Pierre Marzin, 22307 Lannion Cedex France

{Vincent.Ganneau, Rachel.Demumieux}@orange-ftgroup.com

Abstract. User Interface (UI) plasticity denotes UI adaptation to the context of

use (user, platform, physical and social environments) while preserving usabil-

ity. In this article, we focus on the use of Model-Driven Engineering and dem-

onstrate how the intrinsic flexibility of this approach can be exploited by

designers for UI prototyping as well as by end-users in real settings. For doing

so, the models developed at design-time, which convey high-level design deci-

sions, are still available at run-time. As a result, an interactive system is not lim-

ited to a set of linked pieces of code, but is a graph of models that evolves,

expresses and maintains multiple perspectives on the system from top-level

tasks to the final UI. A simplified version of a Home Heating Control System is

used to illustrate our approach and technical implementation.

Keywords: User interface plasticity, user interface adaptation, context aware

systems, Model-Driven Engineering.

1 Introduction

User Interface (UI) plasticity denotes the capacity for user interfaces to adapt to the

context of use while preserving usability [34]. The context of use is a structured in-

formation space whose finality is to inform the adaptation process. It includes a model

of the user who is intended to use (or is actually using) the system, the social and

physical environments where the interaction is supposed to take place (or is actually

taking place), and the platform to be used (or is being used). The latter covers the set

of computing, sensing, communication, and interaction resources that bind together

the physical environment with the digital world. Usability expresses the useworthi-

ness of the system: the value that this system has in the real world [6].

From the software perspective, UI plasticity goes far beyond UI portability and UI

translation. Software adaptation has been addressed using many approaches over the

years, including Machine Learning [22], Model-Driven Engineering (MDE) [5, 11,

18, 20, 23, 25, 31, 32], and Component-oriented services [29]. Our approach to the

problem of UI plasticity is based on the following observations. First, every paradigm

398 J.-S. Sottet et al.

has its own merits targeted at specific requirements. Thus, in an ever-changing world,

one single approach is doomed to failure. Second, software tools and mechanisms

tend to make a dichotomy between the development stage and the run-time phase

making it difficult to articulate run-time adaptation based on semantically rich design-

time descriptions.

Our approach to UI plasticity is to bring together Model-Driven Engineering

(MDE) and Service Oriented Approach (SOA) within a unified framework that covers

the development stage of interactive systems as well as the run-time phase. Our inten-

tion is to demonstrate how the intrinsic flexibility of this approach can be usefully ex-

ploited for UI prototyping by designers as well as by end-users (if appropriately

encapsulated). In this article, we focus on the MDE aspects of our solution space. The

principles are presented in Section 3, followed in Section 4 by the description of an

early implementation, that combines MDE and SOA. To illustrate the discussion, we

use a simplified version of a Home Heating Control System (HHCS). This running

case study is depicted in Section 2.

2 HHCS: A Simplified Home Heating Control System

HHCS (Home Heating Control System) enables users to control the temperature of

the home using different interaction resources. A typical task consists in checking and

setting room temperature. As illustrated in Fig. 1, the graphical rendering of the user

interface for this task depends on the screen size (as in 1-b and 1-d), on the set of

screens that can be used simultaneously (e.g., 1-a versus 1-e), as well as on the set of

usability properties that the designers have considered as central. Switching between

these UIs is performed at run-time under human control (i.e. by the end-user in the

real setting and/or the designer while prototyping the UI).

The five UIs of Fig. 1 are functionally equivalent: they support the same set of

tasks (i.e. to access a set of rooms and, if needed, to set the room temperature between

15°C and 18°C). Some UIs are centralized on a single screen but simultaneously

mapped onto different displays whose size differs (Fig. 1 a-b-c-d). Conversely, in

Fig. 1-e, the UI is distributed over two displays: the UI that corresponds to the task

“Select room” is mapped onto the PDA, whereas the PC is used to set the tempera-

ture.

In addition, these UIs do not satisfy the same set of usability properties. In par-

ticular, prompting (cf. Bastien-Scapin’s framework [3]), prevention against errors,

and minimal actions, are not equally supported. In Fig. 1-a, the range of values of

the room temperature is not observable. As a result, prompting is not fully sup-

ported. Prevention against errors is improved in Fig. 1-c by using a menu list while

Fig. 1-b improves minimal actions by eliminating the articulatory task for selecting

a room.

In the rest of the article, we present the underlying technology and its principles

that enable end-users and/or designers to control the final UI (FUI).

 Model-Driven Adaptation for Plastic User Interfaces 399

Fig. 1. Five final UIs for HHCS resulting from different mappings (depicted as black lines) be-

tween the platforms available (PC and PDA) and high-level models (e.g., task and concepts).

3 Principles

Early work in the automatic generation of UIs as well as more recent work in UI ad-

aptation [5, 11, 18, 20, 23, 25, 31, 32] adheres only partially to the MDE principles.

Our approach differs from previous work according to the following five principles.

400 J.-S. Sottet et al.

3.1 Principle #1: An Interactive System Is a Graph of Models

An interactive system is a graph of models that are compliant to meta-models [32].
This graph, which expresses and maintains multiple perspectives on the system, is
available at design-time as well as at run-time (see Fig. 2). Thus, an interactive system
is not limited to executable code: it also includes models that convey high-level de-
sign decisions. As shown in Fig. 2, a UI may include a task model, a concept model, a
workspace model (also called AUI for Abstract UI), and an interactor model (i.e., CUI
for Concrete UI) linked by mappings

1
. In turn, the UI components are mapped onto

items of the Functional Core of the interactive system, whereas the CUI elements (the
interactors) are mapped onto the input and output (I/O) devices of the platform. Map-
ping between interactors and I/O devices supports the explicit expression of central-
ized versus distributed user interfaces.

Functional core User Interface

Context of use

Fig. 2. An interactive system is a graph of models related by mappings. White boxes denote the

models whereas lines and grey boxes denote mappings.

Traditional model-based approaches to UI generation focus on the final UI, tar-
geted at specific technological spaces [13] (e.g., XUL, Swing, etc.). Forward engi-
neering is applied, starting from the task and concept models, loosing the intermediate
models as well as the transformations used in the generation process. Consequently,
“the connection between specification and final result can be quite difficult to control
and to understand” [19]. In our approach, transformations are key.

3.2 Principle #2: Transformations Are Models

In the context of MDE, a transformation is the production of a set of target models

from a set of source models, according to a transformation definition. In turn, a trans-

formation definition is a set of transformation rules that together describe how source

1 In mathematics, a mapping is “a rule of correspondence established between tow sets that as-

sociates each member of the first set with a single member of the second” [The American

Heritage Dictionary of the English Language, 1970, p. 797].

 Model-Driven Adaptation for Plastic User Interfaces 401

models are transformed into target models. In particular, our transformation rules

make explicit the usability properties they satisfy (cf. Principle #3).

By promoting transformations as models, transformations can also be transformed,

and frequent transformations (such as transforming sub-tasks into pull-down menus) can

serve as patterns in a library. As a result, we alleviate the development and maintenance

cost (by the way of a library of re-usable transformations), we support rapid prototyping

based on the comparative evaluation
2
 of UIs produced with different transformations,

we improve run-time flexibility (since transformations, which are available at run-time,

can be transformed). For example, the UIs of HHCS differ from the application of dif-

ferent transformations. Examples will be presented in more detail in Section 4.1.

3.3 Principle #3: The Choice of Usability Frameworks Is Left Opened

A large number of usability frameworks have been proposed to better understand and

measure the usability of interactive systems. These include: Shackel [28], Dix et al.

[10], Nielsen [21], Preece [26], Schneiderman [30], Constantine and Lockwood [7],

Van Welie et al. [35], as well as Seffah et al. [27] who propose QUIM, a unifying

roadmap to reconcile existing frameworks. More specific frameworks are proposed

for web engineering (Montero et al. [17]), or for specific domains (for instance, mili-

tary applications). Closely related to UI plasticity, Lopez-Jacquero et al. propose a re-

finement of Bastien-Scapin’s framework, as a usability guide for UI adaptation [15].

Because moving to an unfamiliar set of tools would impose a high threshold on

HCI and software designers, we promote an open approach that consists in choosing

the appropriate usability framework for eliciting the properties that must, should or

may be satisfied by transformations [33]. For HHCS, we have used Bastien-Scapin’s

framework. The transformation of a usability framework into a digital model is per-

formed according to Principle #4.

3.4 Principle #4: Humans Are Kept in the Loop

HCI design methods produce a large body of contemplative models (i.e. models that

cannot be processed by a machine) such as storyboards, and mock-ups. These models

are useful reference material during the design process. On the other hand, because

they are contemplative, they can only be transformed manually into productive mod-

els (i.e. models that can be processed by a machine). Manual transformation supports

creative inspiration, but is prone to wrong interpretation and to loss of key informa-

tion. To address this problem, we accept to support a mix of automated, semi-

automated, and manually performed transformations. Semi-automated and manual

transformations may be performed by designers and/or end-users. For example, given

our current level of knowledge, the transformation of a “value-centered model” [6]

into a “usability model” such as that of [3], can only be performed manually by de-

signers. Semi-automation allows designers (or end-users) to adjust the models that re-

sult from transformations. For example, a designer may decide to map a subset of an

AUI onto UI services developed with the latest post-WIMP toolkit. By doing so, we

avoid the “low-cost, fast food” UIs as produced with automatic generation.

2 As discussed in [16], comparative evaluations are more productive than absolute evaluations.

402 J.-S. Sottet et al.

3.5 Principle #5: Close and Open Adaptiveness Are Complementary

Designers cannot envision all of the contexts of use in which the future interactive

system will be executed. To alleviate this problem, we suggest a mix of open and

close adaptiveness. A system is close-adaptive when adaptation is self-contained. It

supports the “innate” adjustments planned at the design stage as well as new adjust-

ments produced by its own internal learning mechanisms. The system is open-

adaptive “if new adaptation plans can be introduced during run-time” [24].

By analogy, an interactive system is close-adaptive for the contexts of use that fall

within its domain of plasticity [4], that is, for the contexts of use for which this system

can adapt on its own. By design, an interactive system has an innate domain of plas-

ticity. If it is able to learn adjustments for additional contexts of use, then the domain

of plasticity extends dynamically, but this extension relies only on the internal com-

puting capabilities of the system. An external infrastructure must be provided to sup-

port open-adaptiveness [2]. Fig. 3 shows the functional decomposition of the run-time

infrastructure that we propose for open model-driven adaptation.

Fig. 3. Run-time infrastructure for open model-driven adaptation

Our run-time infrastructure for open model-driven adaptation includes five core
functions: the Models manager, the Evolution engine, the Transformation engine, the
Redesign engine and the CUI/FUI Model interpreter. For each running interactive
system, the Models manager maintains the graph of models shown in Fig. 2. Observ-
ers monitor state changes in which they are interested and update the graph
accordingly. Typically, a platform observer is interested in the arrival/departure of in-
teraction resources; an FUI observer monitors the actions performed by the end-user
on the FUI, etc. When some change occurs, the Models manager sends the appropri-
ate notification to the Evolution engine or to the Redesign engine (if the change
comes from the user model). The Evolution engine identifies the appropriate trans-
formations to adapt the UI to the current change according to the current adaptation

 Model-Driven Adaptation for Plastic User Interfaces 403

policy. These transformations are specified in the action part of adaptation rules.
Typically, an adaptation rule obeys the Event-Condition-Action paradigm where the
Event part denotes the trigger, and where the Action part makes reference to trans-
formations or to other adaptation rules. Examples of adaptation rules will be discussed
in Section 4.3. Policies serve at favoring such and such adaptation rules based on such
and such (usability) criteria. The transformations selected by the evolution engine are
then transmitted to the Transformation engine whose role is to apply the transforma-
tions to the graph of models. The graph of models is updated accordingly while the
CUI/FUI interpreter (e.g., a Web browser) uses the new CUI to produce the new
adapted final UI (FUI).

The role of the Redesign engine is to dynamically modify the adaptation rules and
to set the current policy based on the information gathered from, or inferred by, the
User model. Typical attributes maintained in the User model include user preferences,
interests and goals, as well as interaction history (i.e. tasks in progress, completed
tasks, errors, etc.) [12]. For example, the end-user using the UI shown in Fig. 1-a may
keep entering wrong values when specifying a room temperature. From the informa-
tion provided by the CUI/FUI observers, the User model may infer the need for error
management so that the new resulting FUI be that of Fig. 1-c. The Redesign engine
then searches for the transformations in the Transformations Data Base that promote
the error management property. If a transformation is found, the Redesign engine may
create new adaptation rules, and/or suppress adaptation rules from the current set,
and/or modifies existing ones. Note that, according to Principle #2, these modifica-
tions are performed by the way of transformations.

Having presented the principles of our approach to UI plasticity, we now show
how they have been implemented and applied to HHCS.

4 From Principles to HHCS in Action

Our hypothesis is that designers produce all or a subset of the models mentioned in

Fig. 2. For HHCS, we have adopted a top-down approach starting from the task model

and the domain-dependent concepts using well-defined meta-models
3
. These models

are represented in a simplified manner in Fig. 2. The AUI, CUI and FUI of HHCS

have been produced with transformations. Examples of transformation are presented

in Section 4.1. At run-time, changes in the context of use may require the user inter-

face of HHCS to adapt. The context of use for HHCS is discussed in Section 4.2, and

examples of adaptation rules are provided in Section 4.3. In Section 4.4 we show how

Principle #4 (humans are kept in the loop) is implemented with a meta-UI.

The run-time infrastructure for open model-driven adaptation is implemented as a

set of OSGi services where a service encapsulates one of the core functions shown in

Fig. 3. More specifically, the Models manager is implemented in Java. We draw upon

the Eclipse Modeling Framework (EMF), which automatically generates the methods

(the API) that make it possible for the observers and the Transformation engine to

modify the graph of models. The Evolution Engine and the Redesign engine are im-

plemented in Java as well. The Transformation engine is an ATL interpreter [1].

3 Describing these meta-models would require more space than available in this paper. See [33]

for more details.

404 J.-S. Sottet et al.

4.1 Transformations Illustrated with HHCS

Transformations, which are interpreted by the Transformation engine, are expressed

in ATL [1]. QVT and XSLT are other options. The following rule (called rule

TaskChoiceToGroupBox) shows how a task of type “Choose 1 item among n”

(tsk.taskType.name='Choice 1/n') is transformed into a group box using XUL as the

meta-model for the expression of AUIs (XULMetaModel!GroupBox). This rule ap-

plies to a task (tsk : MMEcosystem!Task) provided that the task type is 'Choice 1/n'

and that there is at least one platform mapped onto the task (see the constraint

tsk.taskPlatforms->select(e|e.active=true)->size() >= 1).

If the conditions are satisfied, then the transformation generates the corresponding

XUL group (XULMetaModel!GroupBox) whose label is derived from the task name

(capt : XULMetaModel!Caption(label <- tsk.name)) and whose content is derived

from the concepts manipulated by the task. For each concept instance (e in

tsk.manipulatedConcepts), the do block generates a radio button (see

vbx.radiobuttons <- thisModule.radioBuild(z)) with the appropriate label (i.e., the

name of the task – see XULMetaModel!RadioGroup(id <- 'radio_'+ tsk.name)). By

doing so, the rule satisfies the guidance – prompting criterion defined in Bastien-

Scapin’s framework.

In ATL, transformations are grouped into modules. We use the header of ATL

modules to map each usability criteria with the names of the transformations that sat-

isfy that criteria.

rule TaskChoiceToGroupBox {

from tsk : MMEcosystem!Task (tsk.taskType.name='Choice 1/n' and
tsk.taskPlatforms->select(e | e.active=true)->size() >= 1)

to gp_box : XULMetaModel!GroupBox (id <- 'group'+ tsk.name,flex <- 1,
xulInteractors <- Sequence {capt,vbx}),

capt : XULMetaModel!Caption(label <- tsk.name),

vbx : XULMetaModel!RadioGroup(id <- 'radio_'+ tsk.name)

do {
for (e in tsk.manipulatedConcepts)
for (z in e.conceptInstances)

vbx.radiobuttons <- thisModule.radioBuild(z);
}}

We have developed a library of transformations that can transform tasks and con-

cept models into CUIs expressed in HTML or in XUL. As mentioned in the Principles

section, transformations have also been defined to create and modify adaptation rules,

which, in turn, are triggered on the occurrence of context changes.

4.2 Context of Use in HHCS

We model the context of use using the ontology proposed in [8]. In short, a contextual

information space is modeled as a directed graph where a node denotes a context and

 Model-Driven Adaptation for Plastic User Interfaces 405

an edge a condition to move between two contexts. A context is defined over a set E

of entities, a set Ro of roles (i.e. functions) that these entities may satisfy, and a set

Rel of relations between the entities. Entities, roles and relations are modeled as ex-

pressions of observables that are captured and inferred by the system. The condition

to move between two contexts is one of the following: E is replaced with a different

set, Ro has changed, or Rel has changed.

Fig. 4. Context switching in HHCS. Nodes denote the Roles and Entities that define a context.

Arrows denote transitions between contexts decorated with the corresponding adaptation rules.

Fig. 4 shows the three contexts of use considered to be relevant for HHCS: E is the

set of platforms available to the end-user, Ro the set of roles that these platforms can

play (i.e. “Large screen provider” and “Small screen provider”), and where Rel is

empty. C1 refers to the case where the user can access HHCS through a large screen

whereas C2 enables the user to control room temperature with the small display of a

PDA. In C3, a PDA and a large screen are simultaneously available. As discussed

above, the arrival/departure of a platform is detected by the platform observer: the

platform model is modified accordingly in the Models manager, and a “platform

modification” event is sent to the Evolution engine. Events serve as triggers for the

adaptation rules interpreted by the Evolution Engine.

4.3 Adaptation Rules

Adaptation Rules (AR) comply with the meta-model shown in Fig. 5. This meta-

model re-uses the classical Event-Condition-Action structure, with additional Pre- and

Post-conditions:

• The Event and conditions (Condition, Pre- and Post-conditions) make reference to

the models maintained in the Models manager; they are possibly empty.

• The Action references either the model transformation or the adaptation rule (AR)

to be applied. The action may satisfy (or may not satisfy) a set of properties (for in-

stance, the Bastien-Scapin’s criteria).

406 J.-S. Sottet et al.

Fig. 5. Our meta-model for adaptation rules

The following adaptation rules have been defined to support the changes in the

context of use depicted in Fig. 4:

AR1 { under left task is “Select 1 among n”
and right task is “Specify a value”
on platform connection
if largeScreen do AR2
else do 3}

AR2 { if numberOfConcepts n 4 do 1
else do 2}

AR3 { under left task is “Select 1 among n”
and right task is “Specify a value”
and largeScreen
on numberOfConcepts n change
do AR2}

AR1 is triggered on the connection of a new platform and applies to tasks, like task

“Set home temperature” of Fig. 1, whose first sibling consists in choosing 1 item

among n, and the second sibling consists in specifying a value. AR1 invokes Trans-

formation τ3 when the role “Large screen provider” is not satisfied. It invokes AR2

otherwise. AR2 calls for Transformation τ2 when the number of concepts referenced

in the task is four, leading to the generation of the final UI shown in Fig. 1-b. This

transformation, which avoids articulatory tasks, supports the “minimal action” criteria.

AR3 is triggered by the event “numberOfConcepts n change”. In HHCS, this cor-

responds to the case where a new thermostat is installed/removed from the home. In

 Model-Driven Adaptation for Plastic User Interfaces 407

Fig. 6. Examples of meta-UIs when controlling the FUI of HHCS

HHCS, this phenomenon is detected by the concept observer. The concept model is

modified accordingly, and the corresponding event is sent to the Evolution engine.

AR3 is applied when the role “Large screen provider” is filled.

When several adaptation rules apply, the Policy Manager makes the final decision

based on the current active policy and provides the Transformation Engine with the

appropriate transformations. Interoperability between the Evolution Engine and the

ATL-based Transformation Engine is ensured in the following way: Adaptation rules

are produced using an EMF (Eclipse Modeling Framework) basic editor. The output

of this editor is an XMI file (.ecore) that can be manipulated by EMF-based tools such

as our ATL Transformation Engine.

408 J.-S. Sottet et al.

So far, we have shown how the run-time infrastructure supports run-time adapta-

tion based on the specifications provided by the designers. In the next section, we

show how the end-user (and the designer) can be kept in the loop at run-time (Princi-

ple #4) when served by a meta-UI.

4.4 Meta-UIs to Keep Humans in the Loop at Run-Time

A meta-UI is an interactive system whose set of functions is necessary and sufficient
to control and evaluate the state of an interactive ambient space [9]. This set is meta-

because it serves as an umbrella beyond the domain-dependent services that support
human activities in this space. It is UI-oriented because its role is to allow users to

control and evaluate the state of the ambient interactive space. It is to ambient com-
puting what desktops and shells are to conventional workstations.

Fig. 6 shows early versions of meta-UIs illustrated on HHCS. In the top example,
the CUI model of HHCS as well as that of the meta-UI is a scene graph rendered as
the display background. A subtree of the CUI is suppressed by bringing the tool-glass
on the root of the subtree followed by a click through. The FUI is updated accord-
ingly. Conversely, the user modifies the FUI with the tool-glass and the CUI is up-
dated accordingly. In the bottom example, end-users can map the tasks “Select room”
and “Set room temperature” respectively, to the PDA-HTML platform and to the PC-
XUL platform, resulting in the FUI shown in Fig. 1-e. These toy examples are being
redesigned to fully exploit the flexibility provided by our approach (as well as to im-
prove their usability!).

5 Conclusion

Our approach addresses the complexity of UI plasticity with a combination of MDE

and SOA. In this paper, the focus is set on MDE, but the running example combines

both of them. Model-based generation has received little acceptance due to the high

threshold of learning new languages for a low pay-off (obtaining simplistic UIs). In

response to this limitation, we propose the use of transformations as models that can

be capitalized in re-usable libraries. Furthermore, we allow hand-coded fine-tuned

portions of a UI (such as the toolglass of our meta-UI) to be dynamically mapped onto

high-level models provided that they comply with a component-oriented service pro-

tocol (this aspect has not been discussed in the paper). Transformations are key

because they can be dynamically transformed, either automatically by a run-time in-

frastructure and/or by the end-users and designers through a meta-UI. Transforma-

tions can also be used to improve interoperability. In particular, we have defined

transformations that translate our own meta-models into UsiXML [14] meta-models,

so as to take benefit from the UsiXML arsenal of tools.

A subset of our principles has been applied to a simplified version of a Home Heat-

ing Control System. Other applications are under way for SMS and ambient computing

to support conference participants in large conferences. Although this serves as our

validation for this work, it also leaves several opportunities for improvements includ-

ing the study of end-user development environments such as the concept of meta-UI.

 Model-Driven Adaptation for Plastic User Interfaces 409

Acknowledgments. This work has been partly supported by Project EMODE (ITEA-

if4046), the NoE SIMILAR- FP6-507609, and France-Télécom R&D.

References

1. ATL : Atlas Transformation Language, http://www.eclipse.org/m2m/atl/

2. Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G.: CAMELEON-RT: a Soft-

ware Architecture Reference Model for Distributed, Migratable, and Plastic User Inter-

faces. In: Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS,

vol. 3295, pp. 291–302. Springer, Heidelberg (2004)

3. Bastien, J.M.C., Scapin, D.: Ergonomic Criteria for the Evaluation of Human-Computer.

Technical report INRIA, No 156 (June 1993)

4. Calvary, G., Coutaz, J., Thevenin, D.: A Unifying Reference Framework for the Develop-

ment of Plastic User Interfaces. In: Nigay, L., Little, M.R. (eds.) EHCI 2001. LNCS,

vol. 2254, pp. 173–192. Springer, Heidelberg (2001)

5. Clerckx, T., Luyten, K., Coninx, K.: Generating Context-Sensitive Multiple Device Inter-

faces from Design. In: Proceedings of CADUI’2004, Isle of Madeira, pp. 288–301 (2004)

6. Cockton, G.: A Development Framework for Value-Centred Design. In: Extended Ab-

stracts Proc. of CHI 2005, Portland, Oregon, USA, April 2-7, 2005, pp. 1292–1295 (2005)

7. Constantine, L.L., Lockwood, L.A.D.: Software for Use: A Practical Guide to the Models

and Methods of Usage-Centred Design. Addison-Wesley, New-York (1999)

8. Coutaz, J., Crowley, J.L., Dobson, S., Garlan, D.: Context is Key. Communication of the

ACM (CACM) 48(3), 49–53 (2005)

9. Coutaz, J.: Meta-User Interfaces for Ambient Spaces. In: Coninx, K., Luyten, K., Schnei-

der, K.A. (eds.) TAMODIA 2006. LNCS, vol. 4385, pp. 1–15. Springer, Heidelberg

(2007)

10. Dix, A., Finlay, J., Abowd, G., Beale, R.: Human-Computer Interaction. Prentice-Hall,

New-Jersey (1993)

11. Gajos, K., Weld, D.: SUPPLE: Automatically Generating User Interfaces. In: Proceedings

of the 9th international conference on Intelligent User Interfaces, pp. 93–100. ACM Press,

New York (2004)

12. Johansson, P.: User Modeling in Dialog Systems. Santa Anna IT Research Institute Report

SAR (2002)

13. Kurtev, I., Bézivin, J., Aksit, M.: Technological Spaces: An Initial Appraisal. In: Meers-

man, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS,

vol. 2519, Springer, Heidelberg (2002)

14. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V.: USIXML: a Lan-

guage Supporting Multi-Path Development of User Interfaces. In: Bastide, R., Palanque,

P., Roth, J. (eds.) Engineering Human Computer Interaction and Interactive Systems.

LNCS, vol. 3425, pp. 200–220. Springer, Heidelberg (2005)

15. Lopez-Jaquero, V., Montero, F., Molina, J.P., Gonzalez, P.: A Seamless Development

Process of Adaptive User Interfaces Explicitly Based on Usability Properties. In: Bastide,

R., Palanque, P., Roth, J. (eds.) Engineering Human Computer Interaction and Interactive

Systems. LNCS, vol. 3425, pp. 289–291. Springer, Heidelberg (2005)

16. Molich, R., Ede, M., Kaasgaard, K., Karyukin, B.: Comparative usability evaluation. Be-

haviour & Information Technology 23(1), 65–74 (2004)

17. Montero, F., Vanderdonckt, J., Lozano, M.: Quality Models for Automated Evaluation of

Web Sites Usability and Accessibility. In: Koch, N., Fraternali, P., Wirsing, M. (eds.)

ICWE 2004. LNCS, vol. 3140, pp. 28–30. Springer, Heidelberg (2004)

410 J.-S. Sottet et al.

18. Mori, G., Paternò, F., Santoro, C.: Design and Development of Multidevice User Inter-

faces through Multiple Logical Descriptions. IEEE Transactions on Software Engineer-

ing 30(8), 507–520 (2004)

19. Myers, B., Hudson, S.E., Pausch, R.: Past, Present and Future of User Interface Software

Tools. Transactions on Computer-Human Interaction (TOCHI) 7(1), 3–28 (2000)

20. Nichols, J., Rothrock, B., Chau, D., Myers, B.: Huddle: Automatically Generating Inter-

faces for Systems of Multiple Connected Appliances. In: Proc. of UIST’2006, pp. 279–288

(2006)

21. Nielsen, J.: Heuristic evaluation. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection

Methods, John Wiley & Sons, New York (1994)

22. Njike, H., Artières, T., Gallinari, P., Blanchard, J., Letellier, G.: Automatic learning of

domain model for personalized hypermedia applications. In: IJCAI. International Joint

Conference on Artificial Intelligence, Edinburg, Scotland, pp. 1624–1625 (2005)

23. Nóbrega, L., Nunes, J.N., Coelho, H.: Mapping ConcurTaskTrees into UML 2.0. In:

Gilroy, S.W., Harrison, M.D. (eds.) Interactive Systems. LNCS, vol. 3941, pp. 237–248.

Springer, Heidelberg (2006)

24. Oreizy, P., Gorlick, M., Taylor, R., Heimbigner, D., Johnson, G., Medvidovic, N., Quilici,

A., Rosenblum, D., Wolf, A.: An Architecture-Based Approach to Self-Adaptive Software.

IEEE Intelligent Systems 14(3), 54–62 (1999)

25. Paternò, F.: Model-Based Design and Evaluation of Interactive Applications. Springer,

Heidelberg (2000)

26. Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., Carey, T.: Human-Computer In-

teraction. Addison Wesley Publ., Wokingham, UK (1994)

27. Seffah, A., Donyaee, M., Kline, R.B.: Usability and quality in use measurement and met-

rics: An integrative model. Software Quality Journal (2004)

28. Shackel, B.: Usability - Context, Framework, Definition, Design and Evaluation. In: Hu-

man Factors for Informatics Usability, pp. 21–38. Cambridge University Press, Cambridge

(1991)

29. Sheshagiri, M., Sadeh, N., Gandon, F.: Using Semantic Web Services for Context-Aware

Mobile Applications. In: Proc. of ACM MobiSys2004 Workshop on Context Awareness,

Boston, Massachusetts, USA, ACM Press, New York (2004)

30. Shneiderman, B.: Designing User Interface Strategies for effective Human-Computer In-

teraction, 3rd edn., p. 600. Addison-Wesley Publ, Reading (1997)

31. da Silva, P.: User Interface Declarative Models and Development Environments: A Sur-

vey. In: Proc. of DSV-IS2000, June 5-6, 2000, pp. 207–226. Springer, Limerick, Ireland

(2000)

32. Schmidt, D.C.: Guest editor’s introduction: Model-Driven Engineering. IEEE Com-

puter 39(2), 25–31 (2006)

33. Sottet, J.S., Calvary, G., Coutaz, J., Favre, J.M.: A Model-Driven Engineering Approach

for the Usability of Plastic User Interfaces. In: EIS’07. the proceedings of Engineering In-

teractive Systems 2007, March 22-24, 2007, pp. 22–24. University of Salamanca, Spain

(2007)

34. Thevenin, D., Coutaz, J.: Plasticity of User Interfaces: Framework and Research Agenda.

In: Proc. Interact99, Edinburgh, pp. 110–117. IFIP IOS Press Publ. (1999)

35. Van Welie, M., van der Veer, G.C., Eliëns, A.: Usability Properties in Dialog Models. In:

DSV-IS’99. 6th International Eurographics Workshop on Design Specification and Verifi-

cation of Interactive Systems, Braga, Portugal, 2-4 June 1999, pp. 238–253 (1999)

	Model-Driven Adaptation for Plastic User Interfaces
	Introduction
	HHCS: A Simplified Home Heating Control System
	Principles
	Principle #1: An Interactive System Is a Graph of Models
	Principle #2: Transformations Are Models
	Principle #3: The Choice of Usability Frameworks Is Left Opened
	Principle #4: Humans Are Kept in the Loop
	Principle #5: Close and Open Adaptiveness Are Complementary

	From Principles to HHCS in Action
	Transformations Illustrated with HHCS
	Context of Use in HHCS
	Adaptation Rules
	Meta-UIs to Keep Humans in the Loop at Run-Time

	Conclusion
	References

