
Model-Driven Dependability Assessment
of Software Systems

Simona Bernardi • José Merseguer
Dorina Corina Petriu

Model-Driven
Dependability Assessment of
Software Systems

123

Simona Bernardi
Centro Universitario de la Defensa
Academia General Militar
Zaragoza, Spain

Dorina Corina Petriu
Department of Systems and Computer

Engineering
Carleton University
Ottawa
Ontario, Canada

José Merseguer
Departamento de Informática
Universidad de Zaragoza
Zaragoza, Spain

ISBN 978-3-642-39511-6 ISBN 978-3-642-39512-3 (eBook)
DOI 10.1007/978-3-642-39512-3
Springer Heidelberg New York Dordrecht London

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Preface

Goal of the Book

During the last two decades, a major challenge for the researchers working on

modeling and evaluation of computer-based systems has been the assessment

of system Non-functional Properties (NFP), such as performance, schedulability,

dependability, or security. We can say that this is still an open research challenge

today, although considerable progress has been made and different approaches have

been developed, which are of interest not only to researchers but also to practitioners

in the field.

A class of successful approaches found in the literature relies on building

traditional formal models for NFP analysis (such as fault trees, Markov chains,

Petri nets, or Bayesian networks) from system descriptions based on the Unified

Modeling Language (UML). UML is a widely used modeling language, adopted

by both industry and academia, which has become the “lingua franca” for software

modeling. Model transformations from UML to formal models are addressed either

by providing informal guidelines (implemented, e.g., using Java) or by defining

rigorous model transformations (e.g., using QVT 2011; Jouault and Kurtev 2006).

The former is included under the umbrella of model-based development (MBD) and

the second of model-driven development (MDD).

MDD is a software development paradigm characterized by the fact that the

primary focus and products of the development are models rather than computer

programs. A key premise behind MDD is that the programs are automatically

generated from the models. The advantage of MDD is that models are expressed

using concepts that are much closer to the problem domain than to the underlying

implementation technology, making the models easier to specify, understand, and

maintain (Selic 2003).

On the other hand, in model-based development (MBD) the software models do

not play the same key role of driving the development process as in MDD, although

they still play an important role. For instance, models may be used to guide the

v

vi Preface

writing of program code by programmers, rather than being used for automatic code

generation as in MDD.

Validation of the models is another important aspect, which is addressed using

assertions or constraints in MDD, while in MBD validation is usually carried out by

hard coded parsers.

Most of the existing approaches for NFP modeling and assessment that are using

UML as software modeling language do propose UML extensions for specifying

NFPs, which in turn lead to the definition of ad hoc UML profiles for NFP

specification and assessment. Such ad hoc profiles usually cover a limited subset of

concepts from the NFP domain they are addressing, without any coordination with

other similar profiles with respect to the coverage of the NFP domain, terminology

consistency, or profile structure.

The situation is better in the performance and schedulability analysis domain,

which is supported by two Object Management Group (OMG) standards, “The

UML Profile for Schedulability, Performance and Time” (SPT) defined for UML

1.X and “The UML Profile for MARTE: Modeling and Analysis of Real-Time and

Embedded Systems”, defined for UML 2.X. Many researchers have used SPT or

MARTE to add performance and/or schedulability annotations to UML models and

then to define model transformations for deriving a variety of performance and/or

schedulability models to be used for analysis. Unfortunately, there is no similar

standard profile for dependability analysis of UML-based models.

Another OMG standard specifying UML extensions for a variety of non-

functional properties, the Profile for Modeling Quality of Service and Fault

Tolerance Characteristics and Mechanisms (QoS&FT), provides a flexible but

heavyweight mechanism to define properties such as performance, security, or reli-

ability by means of specific QoS catalogs. The annotation mechanism is supported

by a two-step process, which implies catalog binding and either the creation of extra

objects just for annotation purposes or the specification of long Object Constraint

Language (OCL) expressions. However, this two-step process requires too much

effort from the users and may produce models that are hard to understand.

In this context, our book describes the state of the art in modeling and assessment

of dependability requirements throughout the software life cycle. Dependability is

a term that encompasses several non-functional properties of systems: availabil-

ity (readiness for correct service), reliability (continuity of correct service), safety

(absence of catastrophic consequences for the users and the environment), integrity

(absence of improper system alterations), and maintainability (ability to undergo

modification and repairs).

In this book we are using three kinds of models:

(a) software models used for software/architecture development and represented in

software modeling languages, for instance, UML or AADL;

(b) software models with dependability annotations obtained from (a) by adding

information related to dependability properties;

Preface vii

• in modeling language allowing for standard extension mechanisms, such as

UML, the extra dependability information is given by defining appropriate

extensions (i.e., defining a UML profile for dependability);

• in other modeling languages that are not provided with standard extension

mechanisms, the language definition must be extended with built-in features

for dependability information (such as AADL).

(c) formal models such as fault trees, Markov chains, Petri nets, or Bayesian net-

works, used for analysis; such models are too abstract for software development,

but have the advantage of being supported by existing analytic or simulation

analysis methods.

The following three research challenges are related to bridging the gap between

these three kinds of models. The first challenge, related to dependability modeling,

handles the transition from model (a) to (b). In the case of extensible languages (such

as UML) this amounts to defining a suitable dependability profile and then applying

the profile to model (a) in order to obtain the corresponding model (b). The second

challenge, related to dependability analysis, addresses the model transformation

from (b) to (c); the actual analysis of model (c) is performed with existing solvers for

the formal model used in each case. The last challenge, related to feedback from

analysis results to advise for developers on how to improve model (b), relies on

bridging the gap between models (c) and (b). The book addresses the first two

challenges; in regard to the third one, there are still open research issues that will be

discussed in the conclusion.

Emphasis of the Book

In this book, we consider cutting-edge model-driven techniques for modeling and

analysis of software dependability, proposed in the last two decades. Most of them

are based on the use of UML as software specification language. From the software

system specification point of view, such techniques exploit the standard extension

mechanisms of UML (i.e., UML profiling). UML profiles enable the software

engineers to add dependability non-functional properties to the software model,

besides the functional ones.

The book presents the state of the art on UML profile proposals for dependability

specification and rigorously describes the trade-off they accomplish. The focus is

mainly on the RAMS (reliability, availability, maintainability, and safety) properties.

Among the existing profiles, we emphasize the DAM (Dependability Analysis and

Modeling) profile, which attempts to unify, under a common umbrella, the previous

UML profiles from literature providing capabilities for dependability specification

and analysis. DAM is defined as an extension of the MARTE profile and reuses

some of its definitions.

Another concern addressed in the book is the assessment of system dependability,

which has been traditionally carried out using standard modeling techniques, some

viii Preface

based on the use of formal models (e.g., fault frees for reliability analysis, stochastic

Petri Nets for both reliability and availability analysis). We particularly address

the construction of such formal analysis models by model-to-model transforma-

tion techniques that, given a UML software model enriched with dependability

annotations, produce either automatically or systematically proper dependability

analysis models. These models can be analyzed with known solution techniques

specific to the formalism used by the respective models and supported by existing

software tools. The book describes two prominent model-to-model transformation

techniques, proposed in the literature, that support the generation of the analysis

model and allow for further assessment of different RAMS properties. Case studies

from different domains will also be presented, in order to provide examples for

practitioners about how to apply the aforementioned techniques.

Target Audience

The book is research oriented and it is mainly addressed to students taking Master

and PhD courses in software engineering. They will learn the basic dependability

concepts and how to model them, using the current de facto standard UML modeling

language and its extension by the profiling approach. In particular, the students

will be able to apply the UML extensions defined by the DAM profile and the

standard MARTE profile, on which DAM is based. They will also gain insight

into dependability analysis techniques, through the use of appropriate modeling

formalisms, as well as of model-to-model transformation techniques for deriving

dependability analysis models from UML specifications. The book provides proper

references for further readings on these topics and a discussion on open issues in

this research area.

Moreover, software practitioners interested in dependability analysis are also

a target audience for this book. They will find a unified framework for the

specification of dependability requirements and properties with UML that can be

used throughout the entire software life cycle. They will also learn, with the help of

the proposed case studies, rigorous techniques for deriving different dependability

analysis models, such as fault trees to Petri nets, from UML software models with

dependability annotations.

Road Map of the Book

Chapter 1

Establishes the scope, objectives, and point of view of the book with respect to

model-driven software dependability specification and assessment.

Preface ix

Chapter 2

Presents the main dependability concepts used throughout the book. The chapter

is mainly addressed to beginners in the dependability field, since it provides useful

references for creating a background in dependability. Readers already familiar with

dependability could skip the chapter.

Chapter 3

Model-driven software dependability assessment, the topic of the book, is neces-

sarily carried out using models, in particular software models. Therefore, readers

need to know what languages features support software modeling for dependability

specification and assessment. This chapter is devoted to both general purpose

modeling language, such as UML, and Domain-Specific Modeling Languages

(DSMLs) used in literature for dependability assessment. It describes first the use

of UML diagrams for software modeling, with emphasis on diagrams used for

dependability modeling and assessment, even though concrete proposals are not

described yet. An important characteristic of UML is discussed next: its profiling

mechanism as a technique to define DSMLs as lightweight extensions of UML.

Although the focus of the book is on UML, the chapter briefly presents another

DSML, concretely AADL, so that the reader can see an approach to dependability

modeling and analysis that is different from those based on UML.

Chapter 4

Irrespective of the approach taken for defining a DSML, the domain model is usually

the first step toward the DSML definition. A domain model, described as a UML

class diagram, specifies a set of core concepts related to a specific problem or field.

This chapter introduces a domain model for dependability characteristics, aimed

at both dependability modeling and analysis. The dependability concepts, given in

Chap. 2, constitute the basis for this domain model, which unifies the terminology

used in previous dependability profiles proposed in the literature and provides a

consistent vocabulary for software dependability modeling and analysis.

Chapter 5

Based on the domain model presented in Chap. 4, this chapter develops a UML

profile for dependability modeling and analysis of software systems. The profile,

called DAM, relies on the standard OMG MARTE (described in Appendix A). DAM

consists of a set of UML extensions (i.e., stereotypes, tag values, and constraints) to

annotate a UML model with dependability properties, requirements, and measures

for dependability analysis purposes. To exemplify the use of DAM, the chapter

x Preface

applies the profile to two case studies. The first one is in the field of secure

distributed systems and the second in the avionics field. Later, in Chap. 8, these

case studies will be used for the illustration of dependability analysis.

Chapter 6

Dependability modeling has been the topic developed in the book so far. This chap-

ter introduces dependability analysis concerns. Dependability analysis is carried out

using either formal models or systematic methods, and this chapter provides an

overview of the most common ones, which are compliant with current industrial

standards (i.e., the International Electrotechnical Commission standards). Special

attention is given to Fault Tree and Stochastic Petri Net formalisms, since they

will be used later in Chap. 8 for the dependability analysis of the case studies.

Chapter 7

During the last two decades, several proposals have been developed to create

dependability DSMLs (D-DSMLs). DAM, presented in Chap. 5, is an example of a

D-DSML developed as a UML profile. Most of these proposals also accomplish the

transformation of the D-DSML into proper dependability analysis models, as those

from Chap. 6. This chapter presents and evaluates 36 proposals from the literature,

most of them having in common that their D-DSML is based on UML.

Chapter 8

The objective of this chapter is to describe some proposals of interest for prac-

titioners, selected from those presented in Chap. 7. The focus of interest is on

how these proposals address the translation of a D-DSML into models for analysis.

Concretely, the chapter focuses on availability and reliability proposals. We selected

one from Bernardi et al., addressing availability, and the another from Pai and

Dugan, addressing reliability. These two approaches are applied to the case studies

developed in Chap. 5. Availability analysis is then applied to a secure distributed

system case study, while reliability models are obtained for a mission avionics case

study.

Chapter 9

Once the state of the art on dependability modeling and analysis of software systems

has been presented, the last chapter discusses research issues that are still open and

need additional effort.

Preface xi

Acknowledgments

Authors would like to thank Vittorio Cortellessa and Julio Medina, whose comments

helped to substantially improve the book. Special thanks are due to the editor,

Ralf Gerstner, for his advice in structuring the book and for his patience.

Zaragoza, Spain Simona Bernardi, José Merseguer

Ottawa, Canada Dorina Corina Petriu

2013

Contents

1 Dependability Assessment and Software Life Cycle . 1

2 Dependability Concepts . 9

3 Software Models . 19

4 Dependability Domain Model . 41

5 Dependability Modeling and Analysis Profile . 51

6 Dependability Analysis Techniques . 73

7 Proposals for Dependability Assessment . 91

8 From Software Models to Dependability Analysis Models 105

9 Conclusions and Advanced Open Issues . 133

A The MARTE Profile . 151

B Classes in the Dependability Domain Model . 163

References . 175

Index . 185

xiii

Acronyms

AADL Architecture Analysis and Design Language

BPEL Business Process Execution Language

BPMN Business Process Modeling Notation

CTMC Continuous Time Markov Chain

CGSPN Concurrent Generalized Stochastic Petri Net

DAM Dependability Modeling and Analysis

DFT Dynamic Fault Tree

DSL Domain-Specific Language

DSML Domain-Specific Modeling Language

D-DSML Dependability-DSML

DSPN Deterministic and Stochastic Petri Net

ESPN Extended Stochastic Petri Net

FFA Functional Failure Analysis

FMEA Failure Mode and Effect Analysis

FMECA Failure Mode, Effect, and Criticality Analysis

FT Fault Tree

GQAM General Quantitative Analysis Model

GSPN Generalized Stochastic Petri Net

HAZOP HAZard and OPerability studies

IEC International Electrotechnical Commission

MARTE Modelling and Analysis of Real-Time Embedded systems

M2M Model-to-Model

MCS Minimal Cut Set

MDD Model-Driven Development

MOF Meta-Object Facility

MRSPN Markov Regenerative Stochastic Petri Net

NFP Non-Functional Property

OCL Object Constraint Language

OMG Object Management Group

PHA Preliminary Hazard Analysis

PN Petri Net

xv

xvi Acronyms

QoS&FT UML profile for Modeling Quality of Service and Fault Tolerance

Characteristics and Mechanisms

RAMS Reliability, Availability, Maintainability, Safety

RBD Reliability Block Diagram

SAE Society for Automotive Engineers

SAN Stochastic Activity Network

SoaML Service oriented architecture Modeling Language

SPN Stochastic Petri Net

SPT UML profile for Schedulabibity, Performance and Time Specification

SRN Stochastic Reward Net

SWN Stochastic Well-formed Net

TPN Time Petri Net

UML Unified Modeling Language

SysML Systems Modeling Language

VSL Value Specification Language

	Preface
	Goal of the Book
	Emphasis of the Book
	Target Audience

	Road Map of the Book
	Acknowledgments

	Contents
	Acronyms

