
Model-Driven Design of Web Applications with
Client-Side Adaptation

Stefano Ceri1, Peter Dolog2, Maristella Matera1, and Wolfgang Nejdl2

1 Dipartimento di Elettronica e Informazione - Politecnico di Milano
Via Ponzio, 34/5, 20133 Milano, Italy
{ceri, matera}@elet.polimi.it

2 Learning Lab Lower Saxony - University of Hannover,
Expo Plaza 1, 30539 Hannover, Germany,

{dolog, nejdl}@learninglab.de

Abstract. In this paper, we integrate WebML, a high-level model and technology
for building server-side Web applications, with UML-Guide, a UML-based
system that generates client-side guides for the adaptation of Web applications.
The combination of the two systems is shown at work on an e-learning scenario:
WebML is the basis of the specification of a generic e-learning system, collecting
a large number of learning objects, while UML-Guide is used for building
company-specific e-learning curricula. The resulting system can be considered
an “adaptive hypermedia generator” in full strength, whose potential expressive
power goes beyond the experiments reported in this paper.

Keywords: Personalization, UML, WebML Modeling, Web Engineering.

1 Introduction

In recent years, the control of Web applications has moved from the client to the server
side, leading to more economical, structured, and well engineered solutions. In particular,
the model-driven approach, as advocated in [3,6,11,17] has proved very effective in
extending the classical methods and best practices of Software Engineering to the Web.
Design methods now concentrate on content, navigation, and presentation design, which
are orthogonally developed by means of specialized abstractions and techniques.

While server-side solutions are dominant, yet bringing some intelligence to the client
may be highly beneficial in some cases [16,18]. Client-side solutions can reveal as being
more dynamic, more adaptive, and protective for sensitive user data. They may be very
effective for “remembering" the local context or being aware of the local peculiarities
of the interaction. Also, a clear separation of concerns between the client and the server
may lead to interesting business opportunities and models.

This paper explores the combination of two existing approaches to the engineering
of Web applications. We use the WebML method [3] and its development support en-
vironment [4] for generating the application server-side “backbone”. We then integrate
such a backbone with UML-Guide [9], a client-side personalization engine that dynam-
ically generates additional interfaces and user guides for personalizing the application’s
fruition, by managing user profiles and context-sensitive data at client side.

N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 201–214, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

202 S. Ceri et al.

The proposed approach capitalizes on the use of two systems that both start from high-
level abstractions, and are both capable of automatic deployment of the implementations:

– The WebML method is based on the use of high-level concepts, such as the notions
of entity and relationship to denote content, and of page, unit, and link to denote
hypertexts. These abstractions are automatically turned into implementation artifacts
by means of WebRatio, a tool for the automatic deployment of Web applications [3].

– UML-Guide is based on the use of UML state diagrams, whose nodes and arcs—
representing states and transitions—are turned into XMI specifications.A client-side
translator, written in XSL, turns such specifications into a user interface facilitating
the adaptive use of the application [9].

Coupling WebML and UML-Guide yields the following advantages:

– The use of high-level WebML abstractions in the context of UML-Guide enables
the specification of a powerful client-side personalization engine. The resulting
application generator can be considered an “adaptive hypermedia generator” in
full strength, whose potential expressive power goes well beyond the experiment
reported in this paper.

– The tools prove to be highly complementary and easily integrated, as it is sufficient
to reuse concepts of WebML inside UML-Guide to provide concept interoperability,
and the URL generation technique of the WebML runtime inside the UML-Guide
XSL code to provide systems interoperability.

– The use of UML-driven methods in conjunction with WebML is by itself a very
interesting direction of research, aiming at the integration of UML, the most con-
solidated software engineering method (and related technology), with WebML as a
representative case of new, hypertext-specific models and techniques.

1.1 Driving Scenario

In order to exemplify the integration of the two methods, we refer to an e-learning
scenario, in which a courseware company develops and distributes a vertical applica-
tion for e-learning, running on the company’s server, specified and developed through
WebML1. The vertical incorporates learning objects in the format of lessons, exercises,
tests, definitions and examples for computer science, arranged according to the ACM
categories2, and learning paths with checkpoints for the learner. Thus, such a vertical has
learning objects as content, and navigation mechanisms, such as guided tours or indexed
accesses to pages based on broad categories, enabling a generic user to access such a
content though predefined navigation paths.

The vertical is used by Small-Medium Enterprises (SMEs) wishing to build person-
alized e-learning curricula, to be used by their employees for focused training activities.
We assume that each SME has a clear instruction goal (for example, teaching its employ-
ees how to integrate Java programming into Oracle 9i), and that it can use UML-Guide

1 This scenario is suggested by the ProLearn Network of Excellence, whose main focus is the
enhancement of professional e-learning methods and technology; see
http://www.prolearn-project.org.

2 See http://www.acm.org/class/1998/

http://www.prolearn-project.org
http://www.acm.org/class/1998/

Model-Driven Design of Web Applications with Client-Side Adaptation 203

to specify it in UML; we assume that UML state diagrams, together with a vocabulary
listing all the learning objects available in the vertical, may be an easy-to-use interface
for the SME designer. UML-Guide specifications select the concepts to be covered in the
learning paths, as well as the workflow driving the student in the learning process. We
also assume that each SME has a clear view of its employees’ competencies, and thus
is able to constrain possibilities in the learning paths by adaptation rules based on such
competencies. These rules enable adaptive content selection from the WebML vertical
and also enable to adaptively indicate, show, and hide links in the learning path, and
adaptively customize their targets.

1.2 Paper Organization

The paper is organized as follows. Section 2 introduces the WebML component, by
providing an overview of the WebML method and the WebML-based specification of
the vertical e-learning application. Section 3 introduces the UML-Guide method, and
the specification of the client-side personalization for the vertical e-learning. Section 4
illustrates the integration of the two methods by means of an architecture where the appli-
cation server-side code is generated through WebML, while personalization with respect
to specific learning goals is managed at client-side through UML-Guide. Section 5 then
describes the user interface generated for the integrated application. Sections 6 and 7
illustrate some related work and draw our conclusions and future work.

2 WebML Component

WebML is a visual language for specifying the content structure of a Web application and
the organization and presentation of contents in one or more hypertexts [3]. The design
process based on WebML starts with the specification of a data schema, expressing the
organization of contents by means of the Entity-Relationship primitives. The WebML
Hypertext Model allows then describing how contents, previously specified in the data
schema, are published into the application hypertext.

The overall structure of the hypertext is defined in terms of site views, areas, pages
and content units. A site view is a hypertext, designed to address a specific set of re-
quirements. It is composed of areas, which are the main sections of the hypertext, and
comprise recursively other sub-areas or pages. Pages are the actual containers of infor-
mation delivered to the user; they are made of content units that are elementary pieces of
information, extracted from the data sources by means of queries and published within
pages. In particular, as described in Table 1, content units denote alternative ways for
displaying one or more entity instances.

Their specification requires the definition of a source (the name of the entity from
which the unit’s content is extracted) and a selector (a condition, used for retrieving the
actual objects of the source entity that contribute to the unit’s content).

Within site views, links interconnect content units and pages in a variety of config-
urations yielding to composite navigation mechanisms. Besides representing user nav-
igation, links between units also specify the transportation of some information (called
context) that the destination unit uses for selecting the data instances to be displayed.

204 S. Ceri et al.

Table 1. Some basic WebML content units. The whole set of units is described in [3].

Unit name Visual Notation Description

Data unit
Entity

[Selector]

Data unit

It displays a set of attributes for a single entity in-
stance.

Multidata unit

Multidata unit

Entity
[Selector]

It displays a set of instances for a given entity.

Index unit

Index unit

Entity
[Selector]

It displays a list of properties, also called descriptive
keys, of a given set of entity instances.

Hierarchical Index unit

HierarchicalIndex

Entity1
[Selector1]

NEST Entity2
[Selector2]

A variant of the index unit, which displays list of
properties of instances selected from multiple enti-
ties, nested in multi-level three.

Scroller unit

Scroller unit

Entity
[Selector]

It represents a scrolling mechanism,
based on a block factor, for the elements
in a set of instances.

WebML-based development is supported by a CASE tool [4], which offers a vi-
sual environment for drawing the WebML conceptual schemas, and then supports the
automatic generation of server-side code. The generated applications run in a standard
runtime framework on top of Java 2 application servers, and have a flexible, service-based
architecture allowing components customization.

2.1 WebML Specification for the Vertical E-learning

The data schema of the vertical e-learning application is centered on the concept of
learning object. As reported in Figure 1, the LO entity represents descriptions of learning
objects, by means of attributes inspired by the LOM standard3.Among them, the attribute
type expresses the different types of LOs (e.g., lectures, lecture modules, definitions,
exercises, tests) published by the vertical application. Each LO has associations with
other LOs: for example, a lecture module can be associated with some related definitions,
exercises, examples, or tests. The entity Content then represents the contents (texts,
images, files) LOs consists of. In order to facilitate LO access, the schema also includes
the entity Category: it stores the ACM categories that classify the LOs published by
the e-learning application.

3 http://ltsc.ieee.org/

http://ltsc.ieee.org/

Model-Driven Design of Web Applications with Client-Side Adaptation 205

Concept

OID
name
description1:1 1:N

1:N

LO

OID
description
language
title
subject
type
author
source
points

1:N

Content

OID
language
title
subject
type
text
image

1:N

1:N

Fig. 1. WebML Data schema for the vertical e-learning application.

CourseLecturesCourses

Subject LO

LO
[Category2LO]

[Type=”Course”]

Lecture Modules

LO

Lecture Name

Categories

Category Index

Category Category

Category Details

L

LO

Course description Course Lectures

LO
[LO2LO]

[Tipe=”Lecture”]

Lecture Modules

LO
[LO2LO]

[Type=”LectureModule”]

LectureContent

Contents

Content
[LO2Content]

Module Scroller

LO
[LO2LO]

[Type=”LectureModule”]

LO

Module Title

Examples

LO
[LO2LO]

[Type=”Example”]

Tests

LO
[LO2LO]

[Type=”Test”]

To Example Page

To Test Page

Definitions

LO
[LO2LO]

[Type=”Definition”]
NEST Content
[LO2Content]

Excercises

LO
[LO2LO]

[Type=”Exercise"]

To Excercise Page

L

Fig. 2. The WebML specification of the hypertext interface for the vertical e-learning application.

Figure 2 reports a simplified excerpt of the WebML hypertext schema defined for
the vertical e-learning application; it refers to pages for selecting a lecture module, and
accessing its contents as well as associated definitions, exercises examples, and tests.
The lecture module selection is operated by means of a navigation chain, in which
users progressively select a subject category (Categories page), then a course that
refers to the selected category (Courses page), then a lecture (CourseLectures page),
and finally the lecture module they are interested in (LectureModules page). Pages
Categories and LectureModules are marked with an “L" label, which indicates that
they are landmark pages. This property represents that the two pages will be reachable
from any other page of the hypertext, by means of landmark links.

Contents of the selected lecture module are shown in page LectureContent.As rep-
resented by the Module Scroller unit, users can browse lecture modules in a Guided
Tour navigation that allows moving forward and backward in the (ordered) set of mod-
ules available for the currently selected lecture. For each module, the data unit Module
Title shows the title and a short description of the learning object, the Contents mul-
tidata unit shows texts and images that compose the module, while the Definitions
hierarchical index shows titles of the definitions associated with the module and, nested,
the corresponding contents. Three index units then show the lists of examples, tests and

206 S. Ceri et al.

exercises available for the current lecture module. The selection of one item from such
lists leads users in a different page where the corresponding contents are displayed.

The presentation of page LectureContent, as generated by the WebML code gen-
erator, can be seen in the right frame of the Web page depicted in Figure 7.

3 UML-Guide Component

3.1 UML-Guide Overview

UML State diagrams [12] are used in UML-Guide for modelling the user navigation in
a hypertext. Each state represents the production of a given information chunk on the
device observed by a user, and each state transition represents an event caused by user
interaction that leads to the production of a new chunk of information. State diagrams
therefore provide an abstraction of hypertext trails, where each trail can be adapted by
taking into account the user background, level of knowledge, preferences and so on [9].
In this way, UML state diagrams are a suitable interface for UML-Guide, whose primary
purpose is to build adaptive hypermedia systems.

Atomic states can be grouped into superstates. States usually refer to concepts of an
application domain; thus, they can correspond to the representation of WebML pages or
page units, which enable the viewing of the information entities within the WebML data
schema.

Parallel substates represent information chunks to be presented simultaneously. Fork
and join pseudostates are used respectively for splitting and joining computations and
enabling parallelism. The SyncState pseudostate is used for synchronizing substates of
parallel regions.

Transitions represent active interconnections between information chunks, and usu-
ally correspond to associations in the application domain model (thus, they can corre-
spond to WebML links, that interconnect pages and units, and in turn depend upon the
relationships of the WebML data model). Events raise transitions in a state machine; they
include user-generated or system-generated events, and the latter include time events.
Guards can be used to constrain transitions by adaptation rules. Usually, they consist of
a predicate over user profile attributes or context information.

Actions can be performed after a transition is raised and before entering a state. Also,
transitions can be associated with side effect actions, whose effect is, for example, the
modification of a user profile, or the choice of presentation styles for a given chunk
of information. Actions can also process parameters used in guards of outgoing part of
branches. Side effect actions, as well as adaptation rules, can be assigned to entry, exit,
and do actions of states.

Tagged values are domain-specific properties used to extend the semantics of ele-
ments in UML diagrams. These values can refer, for example, to concepts of the structural
model of the application domain, or to specific terminologies which might be useful to
identify additional navigation requirements. We will make extensive use of tagged values
for linking UML diagrams of UML-Guide to WebML concepts, as illustrated in Sec-
tion 4.

Model-Driven Design of Web Applications with Client-Side Adaptation 207

Overview
{CourseStructure=Tutorial,

LearningPresentation=Summary}

Object Oriented Programming Concepts

What Is an
Object

What Is a
Message

What Is a Class
{CourseStructure=Content,

LearningPresentation=Definition}

Relations To Code

next

next

next

Questions

next

next

Language Basics

Variables Operators

Control FlowExpressions

next

next

next

next

next [CurrentUser.CurrentLOK
 (”Object Oriented Programming Concepts”)>0]

Object Basics and Simple Data Objects

Object Life Cycle
Characters and

Strings

NumbersArrays

next

next

next

next

next [CurrentUser.CurentLOK
 (”Language Basics”)>0]

[CurrentUser.CurrentLOK
 (”Language Basics”)>0]

Classes and Inheritance

Creating
Classes

Managing
Inheritance

Implementing
Nested Classes

next

next

next

next [CurrentUser.CurrentLOK
 (”Object Basics and Simple Data Objects”)>0]

[CurrentUser.CurrentLOK
 (”Object Basics and Simple Data Objects”)>0]

Common
Problems

Interfaces and Packages

Creating
Interfaces

Creating and
Using Packages

nextnext
Problems

[CurrentUser.CurrentLOK
 (”Classes and Inheritance”)>0]

next [CurrentUser.CurrentLOK
 (”Classes and Inheritance”)>0]

next

Finish

Finish

entry/
if(CurrentUser.CurrentLOK
(procedures)<0.5)
show(”procedures“)

exit/ CurrentUser.SetLOK(“Classes and Inheritance“, 0.2,
Content)

Fig. 3. A navigation model for a Java tutorial in the UML state diagram notation.

3.2 UML-Guide State Diagram for E-learning

The UML-Guide state diagram of Figure 3 illustrates a personalized learning environ-
ment for teaching object-oriented programming in JAVA, borrowed from a well-known
Sun tutorial 4. The chosen personalization example focuses on link adaptation; other
adaptation aspects are covered in [9].

The tutorial starts with an overview of available lectures, as represented by the
Overview state, which summarizes the available lectures in the tutorial, as specified by
the Summary value in the LearningPresentation tagged value. It also presents the
high level tutorial steps (Tutorial value in the CourseStructure tagged value). Links
from the overview point not only to the first section of the tutorial, but also to the other
main sections; all these links, except the first one, are associated with guard conditions
that check that the user has enough knowledge to jump directly to the respective lectures.

The next step from the Overview is a lecture on the Object Oriented Pro-
gramming Concepts. This state is accessible without any prerequisite on background
knowledge; it is a composite state, containing five steps, represented by four sub-
states: What is an Object, What is a Message, What is a Class, Relations
to Code, and Questions. The Relations to Code state also shows an entry
procedure addressing content level adaptation. The procedure applies to a learning
step about building programs; it states that if the current user does not have sufficient

4 See http://java.sun.com/docs/books/tutorial/java/index.html.

http://java.sun.com/docs/books/tutorial/java/index.html

208 S. Ceri et al.

+Competence : String
+LearningExperience : String
+RecordedDate : Date
-PerformanceValue : double
+PerformanceMetric : String

Performance

+SetLOK(in competence, in LOK, in learningExperience)
+CurrentLOK(in competence) : double

+Name : String
+Id : String

User

+Has

*

Fig. 4. A user model for the Java tutorial.

knowledge on basic concepts about object-oriented programming procedures, then learn-
ing content on procedures will be added.

The next step from the Object Oriented Programming Concepts is the com-
posite state Language Basics. The transition between the two states features a next
event and a guard. The guard specifies a link level adaptation rule, saying that the link
is recommended when current user level of knowledge is greater then zero. The other
learning steps modelled in the state diagram can be interpreted similarly.

The personalization specification within state diagrams is based on the user model
depicted in Figure 4. It is inspired by the LTSC IEEE 1484.2 Learner ModelWG Standard
proposal for public and private information (PAPI) for learner5,6. The user model is com-
posed of the classesUser andPerformance, plus an association expressing that a learner
can have several performance records based on the acquired LearningExperience and
Competence.

The Performance class stores the user’s level of knowledge about the concepts
described by the tutorial. This value is the one used for determining if a transition into
a new state is appropriate and must be suggested to a given user. For example, the
following condition:

[CurrentUser.CurrentLOK(‘‘Classes and Inheritance’’)>0]

is a guard that in the state diagram determines wether a link can be followed between the
Classes and Inheritance state and the Interfaces and Packages state, based
on current user level of knowledge. The Performance class maintains as well the value
of competence, recorded date, and metrics used to measure level of competence.

The User class provides operations to set and get the acquired level of knowledge
or level of competence. These operations are used in guards and actions for adaptivity
rules, and for updating learner profile. For example, in the state diagram of Figure 3,
the user level of knowledge about “Classes and Inheritance" can be acquired either
in the Object Oriented Programming Concepts lecture or in the Classes and
Inheritance lecture. Exit procedures of these states indeed contain similar update
operations, as the one which follows:

CurrentUser.SetLOK(‘‘Classes and Inheritance’’,0.2,Content).

5 http://ltsc.ieee.org/archive/harvested-2003-10/working_groups/wg2.zip
6 For a more detailed learner profile, used e.g. in EU/IST Elena

(http://www.elena-project.org), the reader is referred to the learner RDF bindings web
site at http://www.learninglab.de/˜dolog/learnerrdfbindings/.

http://ltsc.ieee.org/archive/harvested-2003-10/working_groups/wg2.zip
http://www.elena-project.org
http://www.learninglab.de/~dolog/learnerrdfbindings/

Model-Driven Design of Web Applications with Client-Side Adaptation 209

In UML-Guide, state diagrams are used as input for visualizing navigation maps,
whose structure is made of documents (nodes), composite nodes (folders), links (ar-
rows), and parallel regions (dashed boxes). State diagrams are edited by means of the
commercial tool Poseidon7). The navigation map is then generated through a transfor-
mation method [9], whose input is the state diagram encoded in XMI (as produced by
Poseidon), and whose output is the map.

4 Integration of WebML and UML-Guide

The integration of WebML with UML-Guide proposed in this paper aims at composing
a generic “vertical e-learning” WebML application with a UML-Guide that is focused
on a specific learning goal. We offer to the users of the composite system the standard,
WebML-generated interface of the vertical, populated by content spawning a large body
of knowledge; but we also offer to the focused learners a guide, available on an interface
that can be opened “aside” the main one, and that points to pages and contents published
by the WebML-generated interface, according to a specific learning objective and user
experience.

The integration is loose and preserves the distinctive features of the two systems. In
particular, some nodes and links in a UML-Guide state diagram point to content which
is managed in the WebML e-learning vertical; therefore, the integration of UML-Guide
with WebML requires UML-Guide adopting WebML concepts, such as page identifiers
and content identifiers. In this way, concepts used as state names or as tagged values
within UML-Guide are mapped to learning resources stored in the database generated
from the WebML data model.

In the resulting application, the user-specific adaptation occurs in UML-Guide. This
separation of concerns represents an extreme solution, as it is possible to support person-
alization [5] and adaptation [2] directly in WebML. However, the proposed solution is an
example of how client-side computations, specified at high-level in UML, can integrate
WebML-designed solutions. As such, this experiment can be replicated for many other
applications and the focus on UML-Guide can pursue different objectives.

Figure 5 describes the system architecture. The high-level WebML and UML-Guide
specifications are mapped into XML-based internal representations, respectively built
by the Code Generator component of WebRatio [4] and by the XMI [13] Generator of
Poseidon.

The WebML run-time component runs JSP templates (also embedding SQL), and
uses XSL style sheets for building the application’s presentation. The XMI represen-
tation of a UML-Guide drives a run-time adaptation engine, written in XSLT, which
dynamically changes the content of the profile variables and produces the UML-Guide
user interface. The WebML and UML-Guide interfaces are then composed and presented
to the user.

In this architecture, the main integration issue is concerned with the generation of
WebML links “pointing” to the WebML-controlled portion of the application, to be
addressed while building the UML-Guide interface. WebML links take the format:

7 http://www.gentleware.com/

http://www.gentleware.com/

210 S. Ceri et al.

UMLGuide
User

Interface

TreeView
Manipulation

UML Case
Tool

UMLGuide
Design Models

in XMI

WebML Case
Tool

WebML Run
Time Support

WebML Link

WebML
Formatted
Content

WebML
Executable

Code

WebML Link
Generator

UMLGuide
Code

Generator

WebML
User

Interface

UML Guide XMI
Extended with

WebML Concepts
and Links

WebML Concepts

WebML Code
Generator

WebML Design
Models
in XML

WebML Page and Unit IDs,
Content OIDs

WebML
Specifications

UMLGuide
Specifications

WebML
Content

UML Guide
XSLT

User
Profile Changes

User
Profile

Fig. 5. Architecture of the composed system.

ApplicationURL/page identifier.do?ParameterList

where page identifier denotes a WebML page and ParameterList is a list of
tag-value pairs, in the form entity id.attribute=parameter. Thus, UML-Guide state
diagrams must be extended with tagged values to be used as pointers to WebML concepts.

Figure 6 depicts an excerpt of state diagram extended with tagged values for WebML
concepts, needed for computing WebML links. This work must be performed by UML-
Guide designers, typically in the course of the transformations required for “implement-
ing” UML-Guides starting from their high-level descriptions (as illustrated in Figure 3).

For instance, Object Oriented Programming Concepts is a lecture. The cor-
responding page name is LectureModules from WebML hypertext model. The entity
used to store lectures in the WebML data model is LO. The title used as an attribute to
identify the lecture is the same as the state name. Entry and exit actions are transformed
if they send parameters in WebML links, as it is in the case of Relations To Code
(where the parameter of the show method is replaced by specific WebML parameter
&LO.Title=Procedures). It is worth noting that, although in our example tagged val-
ues for page and entity names are constant values, in more complex cases they can be
specified as well as parametric selectors, so as to automatically retrieve their values from
the WebML XML specification based on specific conditions. Also, more tagged values
can be needed, for example for identifying content units IDs, in situations where the
selection of pages is based upon the content units they include.

Queries for retrieving OID’s of the WebML concepts and content are submitted
through a specifically designed interface to the WebML run-time components. The in-
terface consists of the two functions GetWebMLConcept(Type, Name) and
GetWebMLRecordOID(Entity, Attribute, Value).

5 Generation of the Integrated E-learning Application

Figure 7 presents the user interface of the integrated application. The UML-Guide gen-
erated map, obtained as a transformation of the UML state diagram depicted in Figure 3,

Model-Driven Design of Web Applications with Client-Side Adaptation 211

Object Oriented Programming Concepts
{PageIName=LectureModules, EntityID=LO, Parameter=LO.OID,

LO.Title=“Object Oriented Programming Concepts“}

What Is an Object
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“What Is an Object“}

What Is a Message
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,
LO.Title=“What Is a

Message“}

What Is a Class
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“AboutClasses“}

Relations To Code
{PageName=LectureContent, EntityName=LO,

Parameter=LO.OID, LO.Title=“Relations To Code“}

next next

next

Questions
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“Questions“}

next

next

Language Basics
{PageName=LectureModules, EntityName=LO, Parameter=LO.OID,

LO.Title=“Language Basics“}

Variables
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,
LO.Title=“Variables“}

Operators
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“Operators“}

Control Flow
{PageName=LectureContent

, EntityName=LO,
Parameter=LO.OID,

LO.Name=“Control Flow“}

Expressions
{PageName=LectureContent,

EntityName=LO,
Parameter=LO.OID,

LO.Title=“Expressions“}

next

next

next

next

next [CurrentUser.CurrentLOK
 (”Object Oriented Programming Concepts”)>0]

entry/ if(CurrentUser.CurrentLOK
(procedures)<0.5) show(”&LO.Title=Procedures“)

exit/ CurrentUser.SetLOK(“Classes and Inheritance“, 0.2, Content)

Fig. 6. Excerpt of the UML-Guide state diagram extended with tagged values representing WebML
concepts.

is on the left; the WebML application, generated from the specification of Figure 2, is
on the right. While the WebML application has an arbitrary interface, which depends on
content composition within pages and on the adopted presentation style, the UML-Guide
interface has a given structure that includes the following elements:

– Folder symbol—represents a composite information fragment composed by other
(simple or composite) information fragments and links. The composition is visually
represented by the plus/minus symbol, for showing/hiding enclosed items, and by
the left hand indent of enclosed items. A content can be associated to each symbol.

– Dashed box symbol—represents a composite information fragment, which has to
be presented concurrently with other composite information fragments (the dashed
boxes) depicted on the same level.

– Document symbol—represents a simple information fragment; only links can be
nested under it.

– Arrow symbol—represents a link to another composite or simple information frag-
ment; the arrow symbols can be nested under the folder when they represent different
alternatives of suggested links starting from a particular document. Each arrow is
associated with a content and a name of the corresponding target node. Also, the
“/next” string is added to names of arrows representing guidance to the next fragment
according to the course sequence.

– Grayed background of nodes—represents the currently presented node, i.e., the
position reached by a user in the navigation map.

Presentation for the adaptive navigation support depends on the generator settings.
For example, according to the traffic light metaphor, adaptive recommendations may
be represented through different colors (green for nodes appropriate with respect to
the current state of the user profile, red for not appropriate nodes, yellow for other
situations—e.g. a node that has been already visited). Also, other metaphors might show,
hide, or sort the nodes.

Profile records are maintained at the client side. When users begin a new session,
their profile is initialized from a client-side XML-based database. The navigation map is

212 S. Ceri et al.

Fig. 7. Visualization of the navigation graph for the Java e-lecture.

manipulated at the client side as well. Javascript is used to implement the user interface
control and user profile manipulation. The events generated by user actions on the user
interface invoke profile adaptation actions, which possibly process and add new values
to the user profile. They also trigger regeneration of the navigation map, according to
the newly computed values.

The navigation map responds to changes in user profile by changing recommendation
annotations (e.g., changing colors of nodes or showing/hiding nodes). When specific
requirements, for example those set by conditions in entry actions of states, are met,
the WebML vertical adapts delivered content based on additional parameters that UML-
Guide is able to send to the server-side application.

6 Related Work

Model-driven development of Web applications has been intensely investigated during
last years [6,10,11,17]. WebML has been proposed for the model-driven design of “data-
intensive" Web applications. Its distinguishing feature is that the proposed design method
is also supported by XML- and Java-based technologies, which enable the automatic
generation of the application code [4].

During last years, some approaches have been proposed for extending traditional
development methods by means of features enabling one-to-one personalization [1,15,
17]. The aim is to customize the applications contents and the hypertext topology and
presentation with respect to user preferences and needs, so as to offer an alternative to
the traditional “one-size-fits-all” static approach in the development of Web systems [1].
Some proposals cover the adaptivity of Web applications with respect to some other di-
mensions characterizing the context of use (see [14] for a complete survey). WebML also
offers some constructs for personalization. In particular, the application data schema can
be extended through some entities representing user profiles and user access rights over
the application content [5]. Recently, WebML has also been extended with some prim-
itives for modelling context-aware applications, i.e., mobile, personalized applications
that are also able to adapt to the current situation of use [2]. However, WebML, as well as
the majority of Web personalization and adaptivity approaches so far proposed, manages
personalization at server-side, and does not offer the alternative of managing user profiles

Model-Driven Design of Web Applications with Client-Side Adaptation 213

and personalization policies at client side. Conversely, the UML-Guide approach estab-
lishes model-driven design for adaptive applications, by considering link level adaptation
and content level adaptation at the client side, where adaptation is computed according
to the UML design specifications. First, requirements are modelled as variation points
with mandatory and optional features in application domain models [7]. Guard logical
expressions and adaptivity actions are used in navigation specifications [9]. A rule based
approach has been also employed in more open environment based on semantic web
models [8].

7 Conclusions and Further Work

This paper has shown the integration between WebML and UML-Guide; the proposed
approach demonstrates that server-side and client-side technologies can coexist and that
it is possible, for both of them, to use model-driven code generation techniques starting
from high-level requirements, expressed in graphical form. The proposed application
scenario augments an ‘e-learning” vertical so as to make it adaptable and personalisable.

In our experiments, we moved especially user dependent functionality to the client
side which allowed us to leave control over sensitive user data to the user. Users can decide
on their own which information will be disclosed and which they will deny access to.
On the other hand, this increases requirements for client-side tools to be able to interpret
a database with information about a user and process it for purpose of adaptation and
personalization. As client machines are usually less powerful, this might result in some
lacks of performance. We will further investigate and experiment with the approach
proposed to find a good balance between client-side and server-side processing.

We regard this work as the first step of a deeper methodological inspection of the
interactions between UML and WebML, and more specifically of the possibility of using
state diagrams, which best represent the modeling of dynamic interfaces, for collecting
the requirements that can naturally evolve into WebML specifications. The experiments
described in this paper, and specifically the mechanisms for rendering state transitions
as WebML links, will be extended and reused. In this paper we showed an integration of
the two methods on an application where the state diagram is used to model interaction
over information from one class. As a part of the deeper investigation, more complex
applications will be studied where interaction between objects of several classes implies
a need to use other behavioral techniques (collaboration and sequence diagrams) together
with state diagrams.

We are also planning an extension of the WebML CASE tool and of UML-Guide for
providing automatic support to the integration of the two methods.

References

1. P. Brusilovsky. Adaptive Hypermedia. User Modeling and User-Adapted Interaction, 11(1-
2):87–100, 2001.

2. S. Ceri, F. Daniel, and M. Matera. Extending WebML for Modeling Multi-Channel Context-
Aware Web Applications. In Proceedings of WISE—MMIS’03 Workshop, Rome, Italy, De-
cember 2003, pages 615–626. IEEE Computer Society, 2003.

214 S. Ceri et al.

3. S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Designing Data-
Intensive Web Applications. Morgan Kauffmann, 2002.

4. S. Ceri, P. Fraternali, et Al. Architectural Issues and Solutions in the Development of Data-
Intensive Web Applications. In Proc. of CIDR’03, Asilomar, CA, USA, 2003.

5. S. Ceri, P. Fraternali, and S. Paraboschi. Data-Driven One-To-One Web Site Generation for
Data-Intensive Web Applications. In Proceedings of VLDB’99, September 1999, Edinburgh,
UK, pages 615–626. IEEE Computer Society, 1999.

6. J. Conallen. Building Web Applications with UML. Object Technology Series. Addison
Wesley, 2000.

7. P. Dolog and M. Bieliková. Towards Variability Modelling for Reuse in Hypermedia Engi-
neering. In Y. Manolopoulos and P. Návrat, eds., Proc. of ADBIS 2002, LNCS, vol. 2435,
pages 388–400. Springer, 2002.

8. P. Dolog, N. Henze, W. Nejdl, and M. Sintek. Personalization in Distributed e-Learning
Environments. In Proc. of WWW2004, May 2004. To appear.

9. P. Dolog and W. Nejdl. Using UML and XMI for Generating Adaptive Navigation Sequences
in Web-Based Systems. In P. Stevens, J. Whittle, and G. Booch, eds., Proc. of UML 2003—The
Unified Modeling Language, LNCS, vol. 2863, pages 205–219. Springer, 2003.

10. P. Fraternali. Tools and Approaches for Developing Data-Intensive Web applications: A
survey. ACM Computing Surveys, 31(3):227–263, September 1999.

11. F. Garzotto, P. Paolini, and D. Schwabe. HDM—a Model-Based Approach to Hypertext
Application Design. ACM Transactions on Information Systems, 11(1):1–26, January 1993.

12. O. M. Group. OMG Unified Modelling Language Specification, version 1.3, Mar. 2000.
Available at http://www.omg.org/. Accessed on June 1, 2001.

13. O. M. Group. OMG XML Metadata Interchange (XMI) Specification, ersion 1.1, Nov. 2000.
Available at http://www.omg.org/. Accessed on June 1, 2002.

14. G. Kappel, B. Proll, W. Retschitzegger, and W. Schwinger. Customization for Ubiquitous
Web Applications: a Comparison of Approaches. International Journal of Web Engineering
and Technology, 11, January 2003.

15. N. Koch and M. Wirsing. The Munich Reference Model for Adaptive Hypermedia Ap-
plications. In P. D. Bra, P. Brusilovsky, and R. Conejo, eds., Proc. of AH2002—Adaptive
Hypermedia and Adaptive Web-Based Systems, LNCS, vol. 2347. Springer, 2002.

16. K. Marriott, B. Meyer, and L. Tardif. Fast and Efficient Client-Side Adaptivity for SVG. In
Proc. of WWW 2002, May 2002, Honolulu, Hawaii, USA, pages 496–507. ACM Press, 2002.

17. D. Schwabe, R. Guimaraes, and G. Rossi. Cohesive Design of Personalized WebApplications.
IEEE Internet Computing, 6(2):34–43, March-April 2002.

18. G. South, A. Lenaghan, and R. Malyan. Using Reflection for Service Adaptation in Mobile
Clients. Technical report, Kingston University-UK, 2000.

	Introduction
	Driving Scenario
	Paper Organization

	WebML Component
	WebML Specification for the Vertical E-learning

	UML-Guide Component
	UML-Guide Overview
	UML-Guide State Diagram for E-learning

	Integration of WebML and UML-Guide
	Generation of the Integrated E-learning Application
	Related Work
	Conclusions and Further Work

