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Abstract -- Most current software engineering is
deeply rooted in procedural abstractions. These say
little about concurrency, temporal properties, and
assumptions and guarantees in the face of dynamic
system structure. Actor-oriented design contrasts with
(and complements) object-oriented design by empha-
sizing concurrency and communication between com-
ponents. Components called actors execute and
communicate with other actors. While interfaces in
object-oriented design (methods, principally) mediate
transfer of the locus of control, interfaces in actor-ori-
ented design (which we call ports) mediate communi-
cation. But the communication is not assumed to
involve a transfer of control. This paper explores the
use of behavioral type systems in actor-oriented
design.

I. INTRODUCTION

Objects in object-oriented design present interfaces
consisting principally of methods with type signatures. A
method represents a transfer of the locus of control.
Much of the talk of “models” in software engineering is
about the static structure of object-oriented designs.
However, essential properties of real-time systems,
embedded systems, and distributed systems-of-systems
are poorly defined by such interfaces and by static struc-
ture.

A. Actor-Oriented Design

A significantly different direction for embedded soft-
ware has been to develop domain-specific languages and
synthesis tools for those languages. For example, Sim-
ulink, from The MathWorks, was originally created for
control system modeling and design, and has recently
come into significant use in embedded software develop-
ment (using Real-Time Workshop and related products).
Simulink is one of the most successful instances of
model-based design [16]. It provides an appropriate and
useful abstraction of control systems for control engi-
neers.

Simulink also represents an instance of what we call
actor-oriented design. Actors are concurrent components
that communicate through ports and interact according to

a common pattern of interaction. Primarily, actor-ori-
ented design allows designers to consider the interaction
between components distinctly from the specification of
component behavior. This contrasts with software com-
ponent technologies such as CORBA, where interaction
between objects is expressed through method invocation.
Higher-level patterns are codified only through the API
of services, and usage patterns for these APIs are
expressed only informally in documentation. As a conse-
quence, the communication mechanism becomes an inte-
gral part of a component design.

By focusing on the actor-oriented architecture of sys-
tems, we can leverage structure that is poorly described
and expressed in procedural abstractions. Managing con-
currency, for instance, is notoriously difficult using
threads, mutexes and semaphores, and yet even these
primitive mechanisms are extensions of procedural
abstractions. Conventions that ensure deadlock avoid-
ance, such as acquisition of locks in a fixed order (see for
example [7]), are not supported by the languages (noth-
ing about a method signature declares what locks it will
acquire, for instance). As a consequence, these conven-
tions are difficult to apply in practice, and seemingly
innocent changes to code can create disastrous failures
such as deadlock.

In actor-oriented abstractions, these low-level mecha-
nisms do not even rise to consciousness, forming instead
the “assembly-level” mechanisms used to deliver much
more sophisticated models of computation.

Our notion of actor-oriented modeling is related to the
work of Gul Agha and others. The term “actor” was
introduced in the 1970’s by Carl Hewitt of MIT to
describe the concept of autonomous reasoning agents [6].
The term evolved through the work of Agha and others to
describe a formalized model of concurrency [1]. Agha’s
actors each have an independent thread of control and
communicate via asynchronous message passing. We are
further developing the term to embrace a larger family of
models of concurrency that are often more constrained
than general message passing. Our actors are still concep-
tually concurrent, but unlike Agha’s actors, they need not
have their own thread of control. Moreover, although
communication is still through some form of message



passing, it need not be strictly asynchronous.

B. Platforms

Sangiovanni-Vincentelli has articulated clearly the ben-
efits of platform-based design [14]. We have defined
platforms to be a set of designs [9]. Examples of such
sets are:

* The set of all boolean functions.

* The set of all x86 binaries.

* The set of syntactically correct Java programs.

* The set of all Java byte-code programs.

* The set of all Wintel PCs.

* The set of all ANSI C programs.

Fig.1 illustrates some platforms and their interrelation-
ships. Each box is a platform. For example, the set of all
Java programs has a downward arrow labeled “javac”
which represents a function whose domain is the set of all
syntactically correct Java programs, and whose range is
the set of Java byte code programs. Similarly, the set of
x86 programs contains a single program, an implementa-
tion the Java virtual machine, that is related to the set of
all Java byte code programs by its ability to execute
members of the set. For more details about this view of
platforms, see [9].

Model-based design [16] is specification of designs in
platforms with useful modeling properties. For example,
Simulink block diagrams represent control systems as
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Figure 1: An illustration of some platforms (sets of
designs) and their interrelationships.

visual representations of systems of ordinary differential
equations. The set of Simulink designs, therefore, inherits
the formal properties and analytical properties of systems
of ODEs. These properties are useful to control systems
engineers for analyzing, for example, transient responses
and stability.

C. Object-Oriented Programs

The level in Fig.1 labeled “programs” represents con-
ventional object-oriented software design practice today.
Much of the action here is about attempting to give useful
modeling properties to designs at this level. For example,
UML (the unified modeling language) and the MDA
(model-driven architecture) from OMG (the object man-
agement group) are about giving modeling structure to
designs at this level. Much of the work in design patters
that was kicked off by Gamma et al. [3] is about identify-
ing modeling structure in programs at this level.

Actor-oriented design is illustrated in Fig.1 at a level
above programs. It is a relatively immature area, with
few well-structured programming languages and little
software support. But early successes in this domain such
as Simulink promise very effective modeling properties
combined with effective implementation technologies.
The implementation technologies will likely take the
form of generators (such as Real-Time Workshop) that
transform actor-oriented models into program-level mod-
els.

II. PROPERTIES OF ACTOR-ORIENTED MODELS

Fig.2 illustrates the difference between object orienta-
tion and actor orientation. In current practice, as defined
by languages such as C++ and Java, and as represented
by abstractions such as UML, object-orientated compo-
nents interact with one another principally by method
calls, which represent a transfer of control. In actor-ori-
ented models, components interact via some sort of mes-
saging scheme that is typically concurrent. The
messaging scheme and any constraints on flow of control
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Figure 2: An illustration of the relationship between
actor-oriented models and object-oriented components.



together define a model of computation that governs the
interaction of components.

In actor-oriented design, components called actors exe-
cute and communicate with other actors in a model.
Actors have a well-defined component interface. This
interface abstracts the internal state and behavior of an
actor, and restricts how an actor interacts with its envi-
ronment. The interface includes ports that represent
points of communication for an actor, and parameters
that are used to configure the operation of an actor. Often,
parameter values are part of the a priori configuration of
an actor and do not change when a model is executed.
The configuration of a model also contains explicit com-
munication channels that pass data from one port to
another. The use of channels to mediate communication
implies that actors interact only with the channels that
they are connected to and not directly with other actors.

Like actors, which have a well-defined external inter-
face, models (which are compositions of interconnected
actors) may also define an external interface. This is Aier-
archical abstraction, illustrated in Fig.3. This interface
consists of external ports and external parameters, which
are distinct from the ports and parameters of the individ-
ual actors in the model. The external ports of a model can
be connected by channels to other external ports of the
model or to the ports of actors that comprise the model.
External parameters of a model can be used to determine
the values of the parameters of actors inside the model.

Taken together, the concepts of models, actors, ports,
parameters and channels describe the abstract syntax of
actor-oriented design. This syntax can be represented
concretely in several ways, such as graphically, as in
Fig.3, in XML, or in a program designed to a specific
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Figure 3: Hierarchical abstraction in actor-oriented
design.

API. Ptolemy II [12] offers all three alternatives.

It is important to realize that the syntactic structure of
an actor-oriented design says little about the semantics.
The semantics is largely orthogonal to the syntax, and is
determined by a model of computation. The model of
computation might give operational rules for executing a
model. These rules determine when actors perform inter-
nal computation, update their internal state, and perform
external communication. The model of computation also
defines the nature of communication between compo-
nents.

There are many examples of actor-oriented languages,
frameworks, and software techniques, including Sim-
ulink (The MathWorks), Labview (National Instruments),
Modelica (Linkoping), GME: actor-oriented meta-mod-
eling (Vanderbilt) [8], Easy5 (Boeing), SPW, signal pro-
cessing  worksystem (Cadence), System studio
(Synopsys), ROOM, real-time object-oriented modeling
(Rational) [15], VHDL, Verilog, SystemC (Various),
Polis & Metropolis (UC Berkeley) [4], and Ptolemy &
Ptolemy II (UC Berkeley) [12].

Many of these, like Simulink, use a visual syntax to
represent actor-oriented designs. An example of a model
from Ptolemy II is shown in Fig.4. This model uses the
actor defined in Fig.3. Of course, many different syntaxes
are compatible with actor-oriented modeling, and for
some applications, visual syntaxes like that in Fig.4 are
entirely inappropriate.

In Ptolemy II, the model of computation is indicated by
a director, represented by the boxes at the upper left of
each of Fig.3 and Fig.4. Ptolemy II is unique among the
frameworks listed above in that it has no built-in pre-
ferred model of computation, but rather supports a vari-
ety of models of computation via components called
directors. This capability enables heterogeneous design,
where the modeling properties engendered by different
models of computation can be combined.

The ability to use multiple models of computation is a
key capability of Ptolemy II, but it creates an interesting
challenge. First, a hierarchical component like that in
Fig.3 must be able to operate within a foreign model of
computation. That is, the semantics of component inter-
action inside a hierarchical component must be able to
differ from the semantics of component interaction out-
side the hierarchical component. To achieve this,
Ptolemy II introduces the notion of behavioral polymor-
phism. A hierarchical component is behaviorally poly-
morphic in that its behavior will depend on the external
context in which it is placed.



III. BEHAVIORAL POLYMORPHISM

A. Motivating Example

Consider the AddSubtract actor in the center of Fig.4,
which adds or subtracts signals that are provided at the
input ports. It is well known how to make such a compo-
nent polymorphic in a data type sense (data polymor-
phic). It can be designed to be able to add numbers (int,
float, double, Complex), add strings (concatenation), add
composite types (arrays, records, matrices), and add user-
defined types.

Less well known is that it can also be made behavior-
ally polymorphic. For example, it can be used in a data-
flow framework, where it will add when all connected
inputs have data. Or it can be used in a time-triggered
framework, where it will add when the clock ticks. Or it
can be used in a discrete-event framework, where it will
add when any connected input has data, and add in zero
time. Or it can be used in a process network framework,
where it will execute an infinite loop in a thread that
blocks when reading empty inputs and adds when it has
read data from all connected inputs. Or it can be used in a
CSP-based framework, where it will execute an infinite
loop that performs rendezvous on input or output. Etc.

By not choosing among these when defining the com-
ponent, we get a huge increment in component reusabil-
ity. More importantly, when building hierarchically
heterogeneous models, it is essential that hierarchical
components be behaviorally polymorphic, or else they
would not be truly heterogeneous. Each component
would have to be designed for the combination of the
inside and outside models.

But how do we ensure that the component will work in
all these circumstances? In a data type system, a type
checker ensures that a component will work in a given
context. A corresponding behavioral type system is
needed to support behavioral polymorphism.

B. Object-Oriented Approach to Achieving Behavioral
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Polymorphism

In Ptolemy II, the director in a model defines the model
of computation, which includes the communication
mechanism between components. As illustrated in Fig.5,
the director instantiates an object that implements a Java
interface called Receiver, shown in UML form at the
upper right of Fig.5.

The six methods of Receiver shown in Fig.5 have dif-
ferent implementations depending on the model of com-
putation. These implementations can, for example, queue
messages, or implement rendezvous, or post events to an
event queue, for example. Since the receiver instance
used in communication is supplied by the director, not by
the component, the component becomes behaviorally
polymorphic. Whether a call to the get() method (which
reads an input) reads from a queue, blocks, or waits for a
rendezvous is not up to the component designer. It is up
to the director designer.

C. Behavioral Types

The object-oriented approach of the previous section
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Figure 5: The Receiver interface in Ptolemy II achieves
behavioral polymorphism in an object-oriented way.

L

Synchronous Dataflow Modeling

Spectrum

This example illustrates SDF modeling, which
is well-suited to signal processing. In SDF,
companents communicate using streams, but their
L Production and consumption rates are fixed.
Because of these fixed rates, extensive static
analysis of the model is possible, enabling
efficient code generation and optimization.
ctrum

SequencePlotler
5|

Component

Figure 4: Ptolemy II model using the “synchronous dataflow” (SDF) model of computation.



has its limitations. What if:

* The component requires data at all connected input
ports?

* The component can only perform meaningful opera-
tions on two successive inputs?

* The component can produce meaningful output
before the input is known (enabling it to break poten-
tial deadlocks)?

* The component has a mutex monitor with another
component (e.g. to access a common hardware
resource)?

None of these is expressed in the object-oriented inter-
face definition, yet each can interfere with behavioral
polymorphism.

The problem is that the Receiver interface is about
static structure. It defines abstract data types, but not
dynamic behavior, and yet, communication mechanisms
are very much about dynamic behavior. We need to cap-
ture the dynamic interaction of components in types. A
behavioral type system (which we previously called a
“system-level type system” [10]) can obtain benefits
analogous to data typing.

An example of a behavioral type signature is shown in
Fig.6. This captures patterns of component interaction in
a type system framework. It describes interaction and
component behavior using an extension of interface
automata [2][11]. Type checking is done through autom-
ata composition, which will detect component incompati-
bilities. Subtyping order is given by the alternating
simulation relation [2], supporting behavioral polymor-
phism. An alternative representation of behavioral types
would be pre/post conditions [13], which may be essen-
tially equivalent, but lacks the intuitive visualization of
Fig.6.

For details on how to specify behavioral types, see
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Figure 6: Behavioral type signature using interface
automata.

[10][11]. In this extended abstract we focus on the conse-
quences of having a behavioral type system.

D. Quality Benefits of using a Behavioral Type System

The use of a behavioral type system enables key qual-
ity control techniques.

1) Checking behavioral compatibility of components that
are composed.

Composition of components that cannot effectively
work together because of conflicts in their dynamics (e.g.
differing assumptions about communication protocols) is
identified as an error. This is analogous to type conflicts
in conventional type systems.

2) Checking behavioral compatibility of components and
their frameworks.

Use of a component in a framework that cannot effec-
tively meet the assumptions of the component is identi-
fied as an error.

3) Behavioral subclassing enables interface/implementa-
tion separation.

Behavioral type signatures define interfaces that can be
implemented by a number of components. For example,
components that are simple memoryless stream trans-
formers (which react to input data, transform it in some
way, and produce output results) all share the same
behavioral interface definition.

4) Helps with the definition of behaviorally-polymorphic
components.

Behavioral type signatures declare the minimal
assumptions that are required for the component to work.
This maximizes the number of contexts in which the
component can be used.

E. Modeling Methods Enabled by Behavioral Type
Systems

A number of modeling capabilities are enabled by a
behavioral type system.

1) Hierarchical Heterogeneity

Fig.7 shows a Ptolemy II model that uses a continuous
time (CT) director at the top level of the hierarchy and a
Giotto director at the next level down. The CT director
includes an ODE solver and has semantics somewhat
similar to Simulink. The Giotto director implements the
semantics of the Giotto language [5], which supports
periodic hard-real-time tasks and mode switching.

The key here is that the Giotto modeling framework
(the Giotto director) is not designed specifically to inter-



act with a continuous-time director. Instead, it is designed
to export a behaviorally polymorphic interface when it is
composed hierarchically with other models.

2) Modal Models

Fig.8 shows a further refinement of the model in Fig.7
where the Giotto model is revealed to have a component
that is defined hierarchically as a finite state machine
(FSM), where each state of the state machine further
refines to another model. This hierarchical composition
of FSMs with other models of computation yields a gen-
eral form of modal models, where a mode of operation is
represented by a state of the state machine.

Once again, the FSM infrastructure in Ptolemy II is not
designed specifically to work with Giotto. Instead, it is
designed to export a behaviorally polymorphic interface,
and it assumes that the refinements of each of its states
(which define the behavior in a mode of operation) are
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Figure 7: Hierarchical heterogeneity enables an actor
refinement to use a different model of computation than
that overall framework.
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yields a general modal model mechanism.

themselves behaviorally polymorphic components.

3) Mobile Models

Fig.9 shows a mobile model examplel, which is a
model that, like more conventional mobile code, can be
transported over the network and safely executed else-
where. Java, for example, relies heavily on the (data) type
system to ensure safety of mobile code. Behavioral type
systems provide comparable safety for actor-oriented
models.

CONCLUSION

We have outlined a class of design techniques that we
call actor-oriented design, and have related it to model-
based design, platform-based design, and object-oriented
design. We have suggested that a behavioral type system
can bring to actor-oriented design benefits similar to
what abstract data types and their corresponding type
systems have brought to object-oriented design.
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