
 Model Driven Development of
Context Aware Software Systems

Andrea Sindico
University of Rome “Tor Vergata”

Elettronica S.p.A.
andrea.sindico@gmail.com

Vincenzo Grassi
University of Rome “Tor Vergata”

vgrassi@info.uniroma2.it

ABSTRACT
This paper presents the first results of an ongoing work towards
the realization of a model driven development framework for
context awareness. Its core element consists of a domain specific
modeling language called CAMEL (Context Awareness
ModEling Language), and defined as a UML extension. CAMEL
can be used to enrich a UML model of an application with
elements related to contexts and context dependent behaviors. The
resulting UML+CAMEL model is the starting point for model
transformation aimed at generating executable code or other
artifacts. CAMEL is implemented by an Eclipse plugin.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques: -
Computer-aided software engineering (CASE).

General Terms
Design, Languages, Documentation.

Keywords
Context Awareness, Modeling, UML, MDA, Context Oriented
Modeling, Context Oriented Programming.

1. INTRODUCTION
Context Oriented Programming [1], [2] is an emerging approach
aimed at providing explicit supports for context awareness (CA)
[3] in programming languages and runtime environments. Several
context oriented programming approaches have been proposed in
literature aimed at addressing both the issues of context sensing
and context driven adaptation [4], [5]. Close to them approaches
aimed at rising the level of abstraction are required that should
enable the designer to take into account context awareness
concerns also in the design phase. Moreover, due to technological
constraints related to the languages adopted in the development of
a target system (TS), existing COP approaches can lack a good
separation of concerns with respect to the TS where context

awareness behaviors have to be introduced. As a consequence the
developer has to modify the target system code with constructs
related to CA characteristics by strongly coupling the CA concern
with other TS concerns. Motivated by the objective of both
raising the level of abstraction where context awareness
capabilities can be defined and reducing the coupling between CA
and TS models, in this paper we present an ongoing work towards
the realization of a model driven development framework [11],
[12], enabling a designer to handle context awareness concerns at
the design phase of a system. The core element of this framework
consists of a domain specific modeling language (DSML)[8]
called CAMEL (Context Awareness ModEling Language) which
enables enriching independently defined UML models with the
model of context aware behaviors. Model transformations can be
then applied to the defined CAMEL+UML models, aimed at
generating executable code for a specific platform (e.g., ContextJ
[5], ContextToolkit [4], ContextL), or other artifacts such as
metrics or documentation.

2. CAMEL (Context Awareness ModEling
Language)
In this section we introduce the CAMEL language through an
informal description of its meta-model. Consequently a simple
example of the language expressiveness is presented. CAMEL
can be considered as an heavy-weight extension of UML, that
instantiates the conceptual domain model for context awareness
introduced in [6]. An editor for the CAMEL language has been
implemented exploiting the Eclipse Modeling Framework (EMF)
[7], the Eclipse plugin defining a modeling environment and code
generation facility for building tools and other applications based
on a structured data model.

Figure 1: The CAMEL meta-model – context sensing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
COP’09, July 7, 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-538-3/09/07…$10.00.

Figure 2: The CAMEL meta-model – adaptation triggering

From a meta-model specification formally described in a
proprietary language (called ECore), EMF provides tools and
runtime support to produce a set of Java classes enabling viewing
and command-based editing of the related models.

Figure 1 and Figure 2 depict the CAMEL meta-model. Being a
heavyweight extension of the UML, the CAMEL meta-model
relates to some elements of the UML we have colored in blue. In
CAMEL the context awareness concern is handled by means of
three separated parts: context sensing, context adaptation
triggering and context adaptation. Context Sensing encompasses
the set of activities aimed at retrieving contextual information
from physical or logical sensors. Context adaptation triggering is
defined by the set of those activities that continuously evaluate
sensed contextual information and, depending on certain
conditions, trigger the activation of adaptation mechanisms.
Context adaptation is finally defined by the set of adaptation
mechanisms that can be triggered and then activated in response
to context adaptation triggers.

Figure 1 depicts the constructs of the CAMEL meta-model
realizing the context sensing and context adaptation triggering
concerns. CAMEL provides two constructs to model contextual
information, namely StateBasedContext and EventBasedContext.
The former is a container for static contextual information. It
consists of a set of attributes represented by the ContextAttribute
construct that are supposed to be relevant for a given context
definition. A ContextAttribute is characterized by a name and a
source relation with a UML::TypedElement representing the target
system structural feature (i.e. an attribute, an association, an
operation parameter, a reference, etc.) from which it takes the
value. The latter instead is a container for dynamic contextual
information such as interesting events in the execution flow of the
target system. It consists of a set of events, represented by the
ContextEvent construct, that are supposed to be relevant for a
given context definition. A ContextEvent is characterized by a
name and a reference with a UML::Operation representing the
method of the target system to which the event is related. A
composite context can finally be built as an aggregate of other
contexts, both state-based and event-based.

The Monitor construct represents the container for logically
related adaptation triggers. A trigger can be considered an
interesting state condition derived by the contextual information
retrieved from state- and event-based contexts observed by the
monitor . It is represented by the ContextState construct, which is
a concrete realization of the AdaptationTrigger abstract construct.

Each context state is related to a ContextConstraint representing
the condition that has to be verified by the involved contextual
information in order to consider the system in the related context
state. CAMEL provides three kinds of ContextConstraint, namely
StateConstraint, EventConstraint and Operator. State constraints
refer to context attributes; event constraints refer to context
events; the operator finally enables to compose state and event
constraints by defining logical or temporal condition over them.

Figure 2 depicts the concepts of the CAMEL meta-model
realizing the context adaptation concern. Context aware
adaptation can be defined as the set of adaptation mechanisms that
can be triggered and then activated during context monitoring
activities in order to properly react to context changes. In the
CAMEL modeling language contextual adaptation can be realized
by means of two mechanisms: context aware bindings and context
aware inserts. A binding associates values to target system’s
entities depending on the retrieved contextual information. Inserts
are special construct which introduce additional structural or
behavioral elements (structural vs behavioral inserts) depending
on the perceived context. As in the work of Costanza et al. [5] we
call Adaptation Layer the construct acting as a container for
logically related adaptation mechanisms (i.e. binding or inserts).
When an adaptation layer is activated all the adaptation
mechanisms it contains are activated too and the desired
adaptation is introduced. In the CAMEL language the adapters are
those entities which act as container for logically related
adaptation layers. Adapters receive signals by the monitors and
activate/deactivate their adaptation layers depending on the
context states which are currently active.

Exploiting the Eclipse Modeling Framework we have defined an
ECore description of the CAMEL meta-model. Starting from the
developed ECore based meta-model we have generated an editor
for the CAMEL language which is seamlessly integrated with the
Eclipse UML editor as it enables to introduce models of context
awareness capabilities into TS models defined by means of the
UML without having to modify them. To give an example of how
this can be done we take as reference the ContextJ code example
introduced in [5] by Costanza et al. and depicted in Figure 3. Two
classes are defined, Person and Employer, with field names
address and employer, together with the necessary constructors
and a default toString method.

Figure 3: ContextJ Example [5]

 Class Person{
 private String name, address;
 private Employer employer;

 Person(String newName,
 String newAddress,
 Employer newEmployer){
 this.name = newName;
 this.employer = newEmployer;
 this.address = newAddress;
 }

 String toString(){
 return “Name:“+ name;
 }

 layer Address{
 String toString(){
 return proceed()+” Address: “+
 address;
 }
 }

 layer Employment {
 String toString(){
 return proceed()+”[Employer] “
 + exmployer;
 address;
 }
 }
}

Class Employer{
 private String name, address;

 Person(String newName,
 String newAddress,
 Employer newEmployer){
 this.name = newName;
 this.address = newAddress;
 }

 String toString(){
 return “Name:“+ name;
 }

 layer Address{
 String toString(){
 return proceed()+” Address: “+
 address;
 }
 }

}

 Class Tester{
 Tester(){
 Employer vub = new Employer(“VUB”, “1050 Brussel ”);
 Person somePerson = new Person(“Pascal Costanza” , “1000
Brussel”, vub);
 this.test1(somePerson);
 this.test2(somePerson);
 }
 public void test1(Person p){
 with (Address){
 System.out.println(somePerson);
 }
 }
}
public void test2(Person p){
 with (Address){
 with (Employment){
 System.out.println(somePerson);
 }
 }
 }
}

Output: Name: Pascal Costanza; Address: 1000 Brussel;
 Name: Pascal Costanza; Address: 1000 Brusse l;
 [Employer] Name: VUB; Address: 1050 Brussel;

Within the classes code two layers of context driven adaptation
behaviors are also introduced named Address and Employment.
These layers define behavioral variations on the toString method.
In the Address layer, address information is returned for instances
of Person and Employer in addition to the default behavior of
toString. The call to the special method proceed ensures that the
original definition of toString is called. The toString method in
layer Employment returns additional information about the
employer of a person in the Person class. None of the defined
layers is activated by default. Instead a client program must
explicitly choose to activate them when desired. To this end
ContextJ provides with and without constructs for activation and
deactivation of layers with dynamic scope. The purpose of this
example is to present different views of the same program where
each client can decide to have access to just the name of persons,
their employment status, or the addresses of persons, or
employers, or both. For example, when a client chooses to
activate the Address layer but not the Employment layer, address
information of persons will be printed in addition to their names.
When the Employment layer is activated on top, a request for
displaying a person object will result in printing that person's
name, its address, its employer, and its employer's address, in that
particular order. A code fragment showing the activation of these
two layers is given in Figure 4. ContextJ does not modularize the
source code along the layers but keeps the object-oriented
modularization along classes. That is to say that: instead of
grouping partial classes definitions inside layers the layer
definitions are grouped inside classes. A possible advantage of
this approach is the possibility for a layer to refer private fields of
the core class definition.

However it has the drawback of requiring the developers to
modify the code of possibly already developed components.
Moreover it leads to a coupling between the target system
components and the ContextJ code implementing CA concerns
possibly reducing the reusability of the involved components.

A possible solution to these issues is to model both the system and
the desired context aware behavior using UML and CAMEL. In
this way we raise the level of abstraction, and preserve the
separation of concerns at the modeling level. Model driven

transformation can then be applied to the obtained platform
independent models (e.g., based on Open Architecture Ware
workflows [9]) to produce the ContextJ code already woven with
the target system code (or other alternative implementations,e.g.,
AspectJ [10], ContextToolkit, etc.).

A class diagram representing the classes involved in this example
can be modeled through the UML Eclipse editor as depicted in
Figure 5. We have modified the example making the Employer
class inheriting from Person and introducing a type attribute in
the Person class which is a String representing the related
instance’s type, namely Person or Employer.

Figure 6 depicts the CAMEL editor where a new model called
CamelTest has been instantiated and the defined class diagram
(the targetSystem.umlClass file) has been loaded as an external
resource.

First of all we start modeling those constructs representing the
contextual information we are interested in. In this example we
are interested in changing the way a Tester instance perceives a
Person instance depending on the testing method which has been
invoked (test1 or test2). When the test1 is called the toString
method of the Person object passed as parameter has to be
invoked with the Address layer active. When the test2 is called
also the Employment layer has to be activated. To this end we
have defined an event based context called TestingContext
consisting of two context events, Testing1 and Testing2, which
respectively refer to the test1 and test2 methods. These two
elements also pick up the reference to the Tester object having
invoked the related method by means of the testerInstance alias
(Figure 7).

Once the desired contextual information has been properly
modeled in well defined constructs (state- and event-based
context) isolated from the target system, it is necessary to model
those conditions that, if verified, trigger the activation of
adaptation mechanisms. Figure 8 depicts an example of monitor
called TesterMonitor which is aimed at detecting when the test1
and test2 methods are invoked. It consists of two context states
named addressNeeded and addressAndEmployersNeeded. The
former goes active as soon as the Testing1 event occurs, that is to
say as soon as the test1 method is invoked. On the contrary the
latter context state is activated as soon as the Testing2 context
event occurs that is to say the test2 method is invoked.

Figure 5: The target system class diagram

Figure 4: Example of Tester code

Figure 6: Instantiation of a CAMEL model

Figure 7: Contextual Information Modeling

Figure 8: Context Adaptation Triggering

Figure 9 depicts an example of CAMEL adapter named
TesterAdapter consisting of two adaptation layers named Address
and AddressAndEmployment. The former is triggered by the
activation of the addressNeeded context state while the latter by
the activation of the addressAndEmploymentNeeded context state.

Both the layers contain a binding aimed at substituting the default
implementation of the toString method of a Tester object. Figure
10 and Figure 11 depict how the binding can be modeled by
means of the CAMEL editor. First of all an activity diagram of the
new desired behavior has to be defined by means of the Eclipse
UML editor (Figure 10). The defined model can then be loaded
into the camel editor and referenced by the binding (Figure 11
value parameter) in order to substitute it as the new
implementation of a method specified by means of the pointcut
parameter. As any adaptation mechanisms the binding remains
until the related layer is active. Once the binding is removed the
affected method returns to its original implementation.

Figure 9: Adaptation layers modeling

Figure 10: New behavior modeling

Figure 11: Context Aware Binding definition

3. CONCLUSIONS AND FUTURE WORKS
In this paper we have presented CAMEL, a domain specific
modeling language enabling software engineers to handle context
awareness concerns at the design phase of a system. We have first
introduced the CAMEL meta-model as a possible instantiation of
the conceptual model for context awareness described in [6].
Then, exploiting an appositely realized Eclipse based editor for
the CAMEL language, we have tried to demonstrate how CAMEL
can be used to introduce context awareness capabilities within
already existing and independently modeled applications. Because
of the platform independency of CAMEL models, transformation

workflows can be defined aimed at automatically generating
executable code or other artifacts (i.e. metrics, documentation,
etc.).

What presented is a first step of an ongoing work aimed at
realizing a complete MDD framework for context awareness.
Further steps will consist of the realization of an enriched
graphical representation for the CAMEL models; the modeling of
inference rules exploitable to derive complex contextual
information. CAMEL is actually tailored for the modeling of
context dependent behaviors in component based system; we
would also investigate about the possibility to extend it to the
needs of web services or real time systems which are both
typically affected by context aware requirements. To this end we
are evaluating the possibility to define a CAMEL refinement
integrated with the SysML [13] by the introduction of the
CAMEL meta-model’s ECore implementation in the Topcased
environment [14], an Eclipse based editor for SysML.

4. REFERENCES
[1] P. Costanza, R. Hirchfeld, “Language Constructs for

Context-Oriented Programming: An Overview of Context
L.” In: Proceedings of the Dynamic Languages Symposium
(DLS)’05, co-organized with OOPSLA’05, New York, NY,
USA, ACM Press (October 2005);

[2] A. Rakotonirainy, “Context-Oriented Programming for
Pervasive Systems,” Technical Report, University of
Queensland, September 2002;

[3] A. K. Dey, G. D. Abbowd, “Towards a Better
Understanding of Context-Awareness,” Proceedings of the
Workshop on the What, Who, Where and How of Context
Awareness, affiliated with the CHI2000 Conference on
Human Factors in Computer System, New York, NY: ACM
Press;

[4] D. Salber, A. K. Dey, G. D. Abowd, “The Context Toolkit:
Aiding the Development of Context-Enabled Applications,”
In the Proceedings of CHI’99, May 1999;

[5] R. Hirschfeld, P. Costanza, O. Nierstasz, “Context-oriented
Programming,” in Journal of Object Technology (JOT), vol
7, no. 3, pages 125-151, March-April 2008, http://ww.jot.fm;

[6] V. Grassi, A. Sindico, “Towards Model Driven Design of
Service Based Context Aware Applications,” In the
Proceedings of the International Workshop on Engineering
of software services for pervasive environments
(ESEC/FSE’07), Dubrovnik, Croatia, 2007;

[7] Eclipse Modeling Framework (EMF) –
http://www.eclipse.org/modeling/emf/;

[8] B. Selic, “A Sistematic Approach to Domain-Specific
Language Design Using UML,” 10th IEEE ISORC ’07, 2007;

[9] OpenArchitectureWare (OAW) –
http://www.openarchitectureware.org;

[10] G. Kiczales, J. Lamping, A. Mendhekar et al., ”Aspect
Oriented Programming,” in proc. European Conference on
Object Oriented Programming. Finland 1997;

[11] J. Mukerji, J. Miller, “Model Driven Architecture,”
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01,
July 2001;

[12] C. Atkinson, T. Kühne, “Model-Driven Development: A
Metamodeling Foundation,” IEEE Software, vol. 20, no. 5,
pp. 36-41,2003;

[13] SysML: http://www.sysml.org

[14] Topcased: http://www.topcased.org/

