Model Driven Development of
Context Aware Software Systems

Andrea Sindico
University of Rome “Tor Vergata”
Elettronica S.p.A.
andrea.sindico@gmail.com

ABSTRACT

This paper presents the first results of an ongeingk towards
the realization of a model driven development frawom for
context awareness. Its core element consists of@anh specific
modeling language called CAMEL (Context
ModEling Language), and defined as a UML extens@AMEL

can be used to enrich a UML model of an applicatiaith

elements related to contexts and context depetgdraviors. The
resulting UML+CAMEL model is the starting point fanodel

transformation aimed at generating executable codeother
artifacts. CAMEL is implemented by an Eclipse phugi

Categories and Subject Descriptors
D.2.2 [Software Engineering: Design Tools and Techniques: -
Computer-aided software engineering (CASE).

General Terms
Design, Languages, Documentation.

Keywords
Context Awareness, Modeling, UML, MDA, Context Qried
Modeling, Context Oriented Programming.

1. INTRODUCTION

Context Oriented Programming [1], [2] is an emeggapproach
aimed at providing explicit supports for contextaaeness (CA)
[3] in programming languages and runtime envirorisieBeveral
context oriented programming approaches have besgoged in
literature aimed at addressing both the issuesonfext sensing
andcontext driven adaptatiofd], [5]. Close to them approaches
aimed at rising the level of abstraction are resplithat should
enable the designer to take into account contexarewess
concerns also in the design phase. Moreover, dtectmological
constraints related to the languages adopted idékielopment of

a target systen(TS), existing COP approaches can lack a good

separation of concerns with respect to the TS wienatext

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa finst page. To copy
otherwise, or republish, to post on servers oremistribute to lists,
requires prior specific permission and/or a fee.

COP’09 July 7, 2009, Genova, ltaly

Copyright 2009 ACM 978-1-60558-538-3/09/07....$10.00.

Awareness

Vincenzo Grassi
University of Rome “Tor Vergata”
vgrassi@info.uniromaz2.it

awareness behaviors have to be introduced. As seqoence the
developer has to modify the target system code waadthstructs
related to CA characteristics by strongly coupling CA concern
with other TS concerns. Motivated by the objective both
raising the level of abstraction where context a@mess
capabilities can be defined and reducing the cagdietween CA
and TS models, in this paper we present an ongearl towards
the realization of a model driven development framm [11],
[12], enabling a designer to handle context awa®encerns at
the design phase of a system. The core elemehisoframework
consists of a domain specific modeling language MD3]
called CAMEL (Context Awareness ModEling Languagdlich
enables enriching independently defined UML modeith the
model of context aware behaviors. Model transfoiomat can be
then applied to the defined CAMEL+UML models, aimat
generating executable code for a specific platfgrg., ContextJ
[5], ContextToolkit [4], ContextL), or other artifts such as
metrics or documentation.

2. CAMEL (Context Awareness ModEling

Language)

In this section we introduce the CAMEL languageotlyh an
informal description of its meta-model. Consequeratl simple
example of the language expressiveness is preser@@MEL

can be considered as &eavy-weightextension of UML, that
instantiates the conceptual domain model for cdnésareness
introduced in [6]. An editor for the CAMEL languag@s been
implemented exploiting the Eclipse Modeling Framew(EMF)

[7], the Eclipse plugin defining a modeling envineent and code
generation facility for building tools and othemdéipations based
on a structured data model.

Operation
<<from UML>>

Context
Event
yay 1

1..” contains

TypedElement
<<from UML>>

source
I~
0..* composedBy

Event
nstraint
Context
Constraint

’

Context

Composite
Context

1. dapendsBy "
1.7 contains

Figure 1: The CAMEL meta-model — context sensing

Structural
Feature
<<from UML>>

Class
<<from UML>>

al

where 1.1

Class

i ‘ <<from UML>>

Behavioral
<<from UNL>>

what 1.*

Structural
Insert

what 1.7

Behavioural
Insert

where 1.1

NamedElement
<<from UML>>

‘ Insert ‘ ‘ Binding

Adaptation
Mechanism

1.7 containg

Figure 2: The CAMEL meta-model — adaptation triggeing

From a meta-model specification formally described a
proprietary language (called ECore), EMF providesls and
runtime support to produce a set of Java classasliag viewing
and command-based editing of the related models.

Figure 1 and Figure 2 depict the CAMEL meta-modBsing a
heavyweight extension of the UML, the CAMEL metadab
relates to some elements of the UML we have colarddue. In
CAMEL the context awareness concern is handled bgn® of
three separated partscontext sensing context adaptation
triggering and context adaptationContext Sensingncompasses
the set of activities aimed at retrieving contektirdormation
from physical or logical sensor€ontext adaptation triggering
defined by the set of those activities that cordimly evaluate
sensed contextual information and, depending ontaicer
conditions, trigger the activation of adaptation chrnisms.
Context adaptationis finally defined by the set of adaptation
mechanisms that can be triggered and then activategsponse
to context adaptation triggers.

Figure 1 depicts the constructs of the CAMEL metadet
realizing the context sensing and context adaptati@gering
concerns. CAMEL provides two constructs to modettegtual
information, namelyStateBasedContexind EventBasedContext
The former is a container for static contextualoinfation. It
consists of a set of attributes represented byCihretextAttribute
construct that are supposed to be relevant forvangcontext
definition. A ContextAttributeis characterized by a name and a
sourcerelation with dUML::TypedElementepresenting the target
system structural feature (i.e. an attribute, asoaation, an
operation parameter, a reference, etc.) from wiiictakes the
value. The latter instead is a container for dymaoontextual
information such as interesting events in the etxeculow of the
target system. It consists of a set of events,esspited by the

ContextEventconstruct, that are supposed to be relevant for a

given context definition. AContextEventis characterized by a
name and a reference withWML::Operation representing the
method of the target system to which the eventelated. A

composite context can finally be built as an aggregf other

contexts, both state-based and event-based.

The Monitor construct represents the container for logically
related adaptation triggers. A trigger can be aered an
interesting state condition derived by the contakinformation
retrieved from state- and event-based contextsrebdeby the
monitor . It is represented by tBontextStateonstruct, which is

a concrete realization of thedaptationTriggerabstract construct.

Each context state is related t&CantextConstraintepresenting
the condition that has to be verified by the inealvcontextual
information in order to consider the system in thkated context
state. CAMEL provides three kinds G@bntextConstraintnamely
StateConstraintEventConstrainend Operator. State constraints
refer to context attributes; event constraints rrefe context
events; the operator finally enables to composte stad event
constraints by defining logical or temporal cormtitiover them.

Figure 2 depicts the concepts of the CAMEL metaehod
realizing the context adaptation concern. Contextara
adaptation can be defined as the set of adaptatémimanisms that
can be triggered and then activated during conteshitoring
activities in order to properly react to contextacbes. In the
CAMEL modeling language contextual adaptation camealized
by means of two mechanisntntext aware bindingandcontext
aware inserts A binding associates values to target system’s
entities depending on the retrieved contextualrmédion. Inserts
are special construct which introduce additionalicttral or
behavioral elements (structural vs behavioral is$}edepending
on the perceived context. As in the work of Costaetzal. [5] we
call Adaptation Layerthe construct acting as a container for
logically related adaptation mechanisms (i.e. bigdor inserts).
When an adaptation layer is activated all the et
mechanisms it contains are activated too and thsiretk
adaptation is introduced. In the CAMEL languagedtapters are
those entities which act as container for logicatiglated
adaptation layers. Adapters receive signals byntbaitors and
activate/deactivate their adaptation layers depmndon the
context states which are currently active.

Exploiting the Eclipse Modeling Framework we hawadined an
ECore description of the CAMEL meta-model. Startfrgm the
developed ECore based meta-model we have generateditor
for the CAMEL language which is seamlessly integlatith the
Eclipse UML editor as it enables to introduce med#i context
awareness capabilities into TS models defined banmeof the
UML without having to modify them. To give an exampf how
this can be done we take as reference the Cortes) example
introduced in [5] by Costanza et al. and depicteBigure 3. Two
classes are definedRerson and Employer with field names
addressand employey together with the necessary constructors
and a defaultoStringmethod.

Class Person{
private String name, address;
private Employer employer;

Class Employer{
private String name, address;

Person(String newName,
String newAddress,
Employer newEmployer){

this.name = newName;
this.address = newAddress;

Person(String newName,
String newAddress,
Employer newEmployer){
this.name = newName;
this.employer = newEmployer; }
this.address = newAddress;

} String toString(){
return “Name:"+ name;
String toString(){ }
return “Name:“+ name;

layer Address{

String toString(){
layer Address{ return proceed()+" Address: “+
String toString(){ address;

return proceed()+" Address: “+
address; }
}
}

layer Employment {
String toString(){
return proceed()+"[Employer] “

+ exmployer;
address;

}

}

}

Figure 3: ContextJ Example [5]

Within the classes code two layers of context drieglaptation
behaviors are also introduced namkddressand Employment
These layers define behavioral variations onttt&ring method.
In the Addresdayer, address information is returned for inséanc
of Personand Employerin addition to the default behavior of
toString The call to the special methguoceedensures that the
original definition oftoString is called. ThetoString method in
layer Employment returns additional information about the
employerof a person in thé&ersonclass. None of the defined
layers is activated by default. Instead a clienbgpam must
explicitly choose to activate them when desired. ths end
ContextJ providesvith andwithout constructs for activation and
deactivation of layers with dynamic scope. The psgof this
example is to present different views of the samugmm where
each client can decide to have access to justahesrof persons,
their employment status, or the addresses of pgrsan
employers, or both. For example, when a client sheoto
activate theédddresdayer but not th&mploymentayer, address
information of persons will be printed in addititm their names.
When theEmploymentayer is activated on top, a request for
displaying a person object will result in printingat person's
name, its address, its employer, and its emplogeldsess, in that
particular order. A code fragment showing the adion of these
two layers is given in Figure 4. ContextJ doesmotlularize the
source code along the layers but keeps the objestted
modularization along classes. That is to say tladtead of
grouping partial classes definitions inside layele layer
definitions are grouped inside classes. A possidleantage of
this approach is the possibility for a layer toergfrivate fields of
the core class definition.

Class Tester{
Tester(){
Employer vub = new Employer(“VUB", “1050 Brussel ;
Person somePerson = new Person(“Pascal Costanza” , “1000
Brussel”, vub);
this.test1(somePerson);
this.test2(somePerson);

}

public void test1(Person p){

with (Address){
System.out.printin(somePerson);

}

}
public void test2(Person p){
with (Address){
with (Employment){
System.out.printin(somePerson);

}
}
}

Qut put : Name: Pascal Costanza; Address: 1000 Brussel;
Name: Pascal Costanza; Address: 1000 Brusse I;
[Employer] Name: VUB; Address: 1050 Brussel;

Figure 4: Example of Tester code

However it has the drawback of requiring the depete to
modify the code of possibly already developed comembs.
Moreover it leads to a coupling between the targgstem
components and the Context] code implementing Qfcarmis
possibly reducing the reusability of the invoh@anponents.

A possible solution to these issues is to modét o system and
the desired context aware behavior using UML andviEA. In
this way we raise the level of abstraction, andsgnee the
separation of concerns at the modeling level. ModgVven

transformation can then be applied to the obtaipktform

independent models (e.g., based on Open ArchiectMare
workflows [9]) to produce the ContextJ code alreadyen with

the target system code (or other alternative implgations,e.g.,
AspectJ [10], ContextToolkit, etc.).

A class diagram representing the classes involvetis example
can be modeled through the UML Eclipse editor gsiaied in
Figure 5. We have modified the example making Eneployer
class inheriting fronPersonand introducing dype attribute in
the Person class which is aString representing the related
instance’s type, nameRersonor Employer

Figure 6 depicts the CAMEL editor where a new mockdled
CamelTesthas been instantiated and the defined class dmgra
(the targetSystem.umiCladile) has been loaded as an external
resource.

First of all we start modeling those constructsrespnting the
contextual information we are interested in. Instekample we
are interested in changing the way a Tester inst@@rceives a
Personinstance depending on the testing method whichbkas
invoked (testl or test2). When thestlis called thetoString
method of thePerson object passed as parameter has to be
invoked with theAddresslayer active. When theest2is called
also theEmploymentayer has to be activated. To this end we
have defined an event based context callebktingContext
consisting of two context event¥estingland Testing2,which
respectively refer to theestl and test2 methods. These two
elements also pick up the reference to Tlesterobject having
invoked the related method by means of tisterinstancealias
(Figure 7).

Once the desired contextual information has beeopegsty
modeled in well defined constructs (state- and ebesed
context) isolated from the target system, it isassary to model
those conditions that, if verified, trigger the ieation of
adaptation mechanisms. Figure 8 depicts an exaafpigonitor
called TesterMonitorwhich is aimed at detecting when ttestl
and test2 methods are invoked. It consists of two conteatest
named addressNeededind addressAndEmployersNeededihe
former goes active as soon as Thestinglevent occurs, that is to
say as soon as thestl method is invoked. On the contrary the
latter context state is activated as soon asTémting2context
event occurs that is to say ttest2method is invoked.

Q Tester
attributes
operations
test(Personp)
test2(Person p)
classes

Person

= - = Employer
attributes over i

name . employer | attributes

address operations

type classes
operations

toString()

classes

Figure 5: The target system class diagram

[# Package Explorer 22 78 Hierarchy = 5 |[[d] targetsystem.umiclass &) CAMELTest contextmodel 2] addressTostring. umlact ! *CAMELTest.contextmodel £
S= || [Resouree Set [Resource Set

55 copng = g platform:/resource/COPDICAMEL Test. contextmodel =@l platform fresourcelCOPOSCAMEL Test contextmode|

(8 CAMELTest contextmadel < Context Model CamelTest | =i 4 Context Model CamelTest

&) targetsystem.uml &[] platform: fresource/COPDY targetsystem umlclass #- 4 Contexts

Ko
|4 targetsystem.umiclass i Manitors
= 4 Adapters

=4 Adapter Testeradapter
- ndaptation Layer Address
< Binding toStringBinding
. Lo =4 Adaptation Laysr AddressAndErmployment
Figure 6: Instantiation of a CAMEL model 4 finding

+ platform: jresourcefCOPOS targetSystemn. um|
#-] platform: jresourceCOPOS)CAModels/addressToString umlact
Selection | Parent | List | Tree | Table | Tree with Columns

L) o =
\d] targetSystem.umiclass) *CAMELTest, contextmods! 25 &0 Probkems | @ Javace [Declaration | = propsitiss 52
T Resource Set Fraperty Yalue
= & platform: fresource/COPOCAMEL Test, contextmadel Incoming Action
=4 Context Model CamelTest Instance Reference ‘= testerlnstance
-4 Contexts :artne = 'Z Address
ubgoing Action
=l < Event Based Context TestingContext
VENE Haser pontext estngtontex Triggered By 4 Context State addressMeeded
+ =
<+ Conkext Event Testing2
=3 platform: fresource/ COPO9/target System, uml . . .
Selection | Parent | List | Tree | Table | Tree with Columns Flgure 9 Adaptatlon |ayer5 mOde"ng
[£¢ Problems | @ Javadoc | [, Dedaration | = Properties 22 [2 Package Explorer 22 . 8 Hierarchy = O | [d) addressTostring.umlact £3
= . R
Froperty Value =5 bh@e Bl - obhh®a@®» =
Event 4 <Operation test (Person p) = coros -
Exposed Parameters & Cartodels
= #] addressAndEmploymentToString, uml ®
Instance Type: Hame: = testerinstance 9] addressandEmploymentTostring uilact
Interface i False: &) addressTostring.uml
MName 1= Testingl 4] addressTasString. umlack
[camELTest contextmodel retum proceed) + "Address: " + address;
#] targetSystem,uml
14 targetsystem uriclass
Figure 7: Contextual Information Modeling
|d] kargetSystem.umldass L&l *CAMELTest.contextmodel 3

L Resource Set
4 Contexts
=h- 4 Monitors
=4 Context Monitor TesterManitor
=4 Context State addressNeeded

+) Figure 10: New behavior modeling
Sk 4 Conb ploversheeded
< Event Constraint test2Invoked |d] addressTaString. urmlact 4 "CAMEL Test.contextmodel £

Selection | Parent | List | Tree | Table Tree with Columns [T Resource Set

[21 Problems | @ Javadoc | [, Declaration | = Properties 53 =g platform:fresource/COPO9/CAMEL Test, contextmode!
=4 Context Modsl CamelTest

Property alug -4 Contexts
Event < Context Event Testingl &4 Monitors
Instance Reference 1= besterInstance =4 Adapters
Name 1= testiInvoked =14 Adapter TesterAdapter

=h 4 Adaptation Layer Address
<% Binding tostringBinding
=4 fdaptation Layer AddressAndEmployment
<4 Binding tostringBinding
® platform: fresourcefCOPO9 target System, uml
- [d] platform: fresource/COPO9/CAModels{address ToString, umlact

Figure 8: Context Adaptation Triggering

Selection | Parent | List | Tree | Table | Tree with Columns

|21 Problems | @ Javadoc | |2, Declaration | = Properties ©2

Froperty Valus

Figure 9 depicts an example of CAMEL adapter named — mstanereferene I= testerlnstance
TesterAdapteconsisting of two adaptation layers nandettiress oo R

and AddressAndEmploymenfhe former is triggered by the £ ek <hctvity> addhessTostring
activation of theaddressNeededontext state while the latter by

the activation of thaddressAndEmploymentNeedmuhtext state. . o .
. - . - Figure 11: Context Aware Binding definition
Both the layers contain a binding aimed at suligtiguthe default

implementation of théoString method of aresterobject. Figure
10 and Figure 11 depict how the binding can be headéy 3. CONCLUSlONS AND FUTURE WORKS..
In this paper we have presented CAMEL, a domaircipe

means of the CAMEL editor. First of all an activitiagram of the > ! X
new desired behavior has to be defined by meanseoEclipse ~ Mdeling language enabling software engineers muolleecontext
UML editor (Figure 10). The defined model can tHenloaded ~ 2Wareness concems at the design phase of a sysermave first

into the camel editor and referenced by the bindiffiggure 11 introduced the CAMEL meta-model as a possible itition of
value parameter) in order to substitute it as the new the concept_u_al model for_context_awaren(_ess destn_be[G].
implementation of a method specified by means efgibintcut Then, exploiting an appositely r(_eallzed Eclipseedasditor for
parameter. As any adaptation mechanisms the bindimgins the CAMEL language, we have tried to demonstraie GAMEL
until the related layer is active. Once the bindimgemoved the ~ ¢an be used to introduce context awareness capebiithin

affected method returns to its original implemeintat already existing and independently modeled apjitinat Because
of the platform independency of CAMEL models, tfansation

workflows can be defined aimed at automatically egating
executable code or other artifacts (i.e. metrias;udnentation,
etc.).

What presented is a first step of an ongoing warked at
realizing a complete MDD framework for context aerass.
Further steps will consist of the realization of anriched
graphical representation for the CAMEL models; t@deling of
inference rules exploitable to derive complex -criual
information. CAMEL is actually tailored for the melhg of
context dependent behaviors in component basecknsysive
would also investigate about the possibility toeext it to the
needs of web services or real time systems whigh kath
typically affected by context aware requirements.tflis end we
are evaluating the possibility to define a CAMELfimement
integrated with the SysML [13] by the introductiarf the
CAMEL meta-model's ECore implementation in the Tagped
environment [14], an Eclipse based editor for SysML

4. REFERENCES

[1] P. Costanza, R. Hirchfeld, “Language Constructs for
Context-Oriented Programming: An Overview of Contex
L.” In: Proceedings of the Dynamic Languages Syrmpus
(DLS)'05, co-organized with OOPSLA’05, New York, NY
USA, ACM Press (October 2005);

[2] A. Rakotonirainy, “Context-Oriented Programming for
Pervasive Systems,” Technical Report, University of
Queensland, September 2002;

[3] A. K. Dey, G. D. Abbowd, “Towards a Better
Understanding of Context-Awareness,” Proceedingbef
Workshop on the What, Who, Where and How of Context
Awareness, affiliated with the CHI2000 Conferenoe o
Human Factors in Computer System, New York, NY: ACM
Press;

[4] D. Salber, A. K. Dey, G. D. Abowd, “The Context Tkit
Aiding the Development of Context-Enabled Applioas,”
In the Proceedings of CHI'99, May 1999;

[5] R. Hirschfeld, P. Costanza, O. Nierstasz, “Contiented
Programming,” in Journal of Object Technology (JOMI
7, no. 3, pages 125-151, March-April 2008, httpijet.fm;

[6] V. Grassi, A. Sindico, “Towards Model Driven Desigh
Service Based Context Aware Applications,” In the
Proceedings of the International Workshop on Eegjiimg
of software services for pervasive environments
(ESEC/FSE’07), Dubrovnik, Croatia, 2007;

[7]1 Eclipse Modeling Framework (EMF) —
http://www.eclipse.org/modeling/emf/;

[8] B. Selic, “A Sistematic Approach to Domain-Specific
Language Design Using UML,” {0EEE ISORC '07, 2007;

[9] OpenArchitectureWare (OAW) —
http://www.openarchitectureware.org

[10] G. Kiczales, J. Lamping, A. Mendhekar et al., "Adpe
Oriented Programming,” in proc. European Conference
Object Oriented Programming. Finland 1997;

[11] J. Mukeriji, J. Miller, “Model Driven Architecture,”
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01,
July 2001;

[12] C. Atkinson, T. Kiihne, “Model-Driven Developmenk:
Metamodeling Foundation,” IEEE Software, vol. 26, B,
pp. 36-41,2003;

[13] SysML: http://www.sysml.org

[14] Topcasedhttp://www.topcased.org/

