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Abstract. The study presented in this paper concerns the safe design of high-performance embedded systems, specifically
dedicated to intensive data-parallel processing as found, for instance, in modern multimedia applications or radar/sonar signal
processing. Among the important requirements of such systems are the efficient execution, reliability and quality of service.
Unfortunately, the complexity of modern embedded systems makes it difficult to meet all these requirements.

As an answer to this issue, this paper proposes a combination of two models of computation (MoCs) within a framework, called
Gaspard, in order to deal with the design and validation of high-performance embedded systems. On the one hand, the repetitive
MoC offers a powerful expression of the parallelism available in both system functionality and architecture. On the other hand, the
synchronous MoC serves as a formal model on which a trustworthy verification can be applied. Here, the high-level models specified
with the repetitive MoC are translated into an equational model in the synchronous MoC so as to be able to formally analyze
different properties of the modeled systems. As an example, a clock synchronizability analysis is illustrated on a multimedia system
in order to guarantee a correct interaction between its components. For the implementation and validation of our proposition, a
Model-Driven Engineering (MDE) approach is adopted. MDE is well-suited to deal with design complexity and productivity issues.
In our case, the OMG standard MARTE profile is used to model embedded systems. Then, automatic transformations are applied
to these models to produce the corresponding synchronous programs for analysis.
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1. Introduction. High-performance computing is increasingly becoming important in embedded systems.
Very typical application domains are medical imaging or state-of-the-art multimedia devices. Nowadays, multi-
media mobile devices such as Personal Digital Assistant (PDA), multimedia cell phones and mobile multimedia
players are ubiquitous. These devices provide many functionalities, such as mp3 playback, camera, video and
mobile TV. These features, together with their small size and long power supply make them very attractive in
the market. However, they make the design of systems more challenging due to their ever increasing complexity
and the need of high quality products in terms of reliability and usability.

In high-performance computing, parallelism plays a central role in order to get efficiency as much as possible.
The multimedia application examples mentioned above are characterized by intensive data-parallel processing.
Unlike general parallel applications, which are often concerned by code parallelization, intensive data-parallel
applications concentrate on the regular data partitioning and access. The data manipulated in these applica-
tions are generally represented as multidimensional data structures, e.g. arrays. The highly desirable design
approaches for such applications are those providing designers with concepts to suitably represent data manip-
ulations, and techniques that trustworthily guarantee important implementation requirements.

The current study addresses this issue by combining technologies for an efficient design of high-performance
embedded systems and formal validation of designs.

1.1. Motivation example: video processing. Let us consider a video processing system as illustrated
in Fig. 1.1: images are captured via a CMOS sensor, then downscaled and displayed on a Thin Film Transistor
(TFT) screen. TFT refers to active matrix screens on laptop computers, which offers sharper screen displays
and broader viewing angles than does passive matrix. The best known application of TFT is in Liquid Crystal
Display (LCD) technology.

Fig. 1.1. A video processing system.

The downscaler transforms a VGA signal (640×480 pixels per frame) into a QVGA signal (320×240 pixels
per frame). The required downscaling ratio is therefore 4:1. This operation is interesting when visualizing high
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quality live video on TFT screen while using low power and real-time previews in recent generation cellular
phones. Such phones include several multimedia functionalities, provided by dedicated modules and processors
integrated in chips. A more detailed operational view of the whole video processing system is as follows: the
CMOS sensor gathers data and sends to the downscaler a flow of pixels, denoted by tki . After the receipt of a
sufficient number of pixels, the downscaler transforms these pixels. The resulting pixels denoted by the flow tko
are sent to the TFT screen, which waits for receiving enough data before displaying images. Each component
(sensor, downscaler and display) is assumed to hold a logical clock that defines its activation instants. These
clocks are related by affine relations, characterizing the frequencies at which images are received, transformed
and displayed. We want to model such a system and analyse how its components’ clocks must be synchronized
so that the video can be displayed w.r.t. quality of service requirements.

1.2. Rationale and contribution. In order to answer the above demand, we consider the Gaspard

framework (https://gforge.inria.fr/projects/gaspard2), which is dedicated to the design of high-per-
formance embedded systems [11]. Gaspard promotes a software/hardware co-design based on model-driven
engineering (MDE) [21]. Models are described by using the OMG MARTE (Modeling and Analysis of Real-
Time and Embedded systems) standard profile [19], combined with a few native UML concepts. The Hardware
Resource Model (HRM) concepts of MARTE enable to describe the hardware part of a system. The Repetitive
Structure Modeling (RSM) concepts allow one to describe repetitive structures. Finally, the Generic Component
Modeling concepts are used as the base for component modeling.

Fig. 1.2. Embedded system design within the Gaspard framework.

In the application functionality part of Fig. 1.2, the focus is put on the expression of data dependencies
between components in order to describe an algorithm. The manipulated data are mainly multidimensional
arrays. Furthermore, a form of reactive control can be modeled via the notion of execution modes. In the
hardware architecture part, similar mechanisms are used to describe regular architectures in a compact way.
Regular parallel execution units are more and more present in embedded systems, especially in System-on-
Chip (SoCs). HRM is fully used to model these concepts. The association part concerns the allocation of the
application functionality onto available execution resources, and the scheduling. The allocation model also takes
advantage of the repetitive and hierarchical representation offered by MARTE to express mappings at different
granularity levels and in a factorized way.

There are several models and languages for the programming of high-performance systems such as MPI
[18] or the DARPA high productivity languages: Chapel [5], Fortress [1] and X10 [6]. These languages consider
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specific architectures models. This does not facilitate SoC design in which one often needs to program various
specialized architectures. In Gaspard, the adopted MARTE profile is rich enough to enable the description of
several types of SoC architectures.

In addition to the previous design aspects, Gaspard proposes a notion of deployment specification in order
to generate compilable code from a SoC model. The corresponding concepts enable i) to describe a relation
between a MARTE representation of each elementary component and a text-based code, e.g. an intellectual
property (IP); and ii) to enrich the transformed high-level models with non functional information such as
the average execution time or the power consumption for design space exploration. The deployed models
are refined towards different technologies for various purposes: formal validation with synchronous languages
[2] as shown in this paper, hardware synthesis at the register transfer level (RTL) with VHDL, simulation
at transaction level modeling (TLM) in SystemC, high-performance execution in OpenMP Fortran and C.
The refinement distinguishes several abstract levels at which the manipulated concepts are characterized by a
dedicated metamodel. The transitions from one level to another are defined by automatic model transformations.

Among the similar existing co-design frameworks, we can mention those relying on platform-based de-
sign (PBD) [20]. Their main idea is to facilitate the design by enabling successive refinements of high level
specifications of system functionality and architecture with reusable components so as to rapidly meet the im-
plementation requirements of the system. However, the design flexibility may be significantly reduced since the
deployment choice is only limited to the available pre-defined components.

In this paper, we define a bridge between the modeling formalism of Gaspard and the synchronous lan-
guages so as to get access to formal validation tools. More precisely, we show how models defined with the
repetitive model of computation (MoC) of Gaspard are transformed into a set of dataflow equations in syn-
chronous languages. This transformation is implemented according to an MDE technique. As an example
of analysis that can be applied to the resulting synchronous code, we address the synchronizability between
the components of the video processing system shown in Fig. 1.1. For that, we use the affine clock notion
of the Signal language [22]. More generally, this paper gives a summary of [14, 13] and extends them with
the translation of inter-repetition dependencies during the transformation of Gaspard models into synchronous
programs. This extension is important for the modeling of control-oriented computations in the repetitive MoC.
The implementation of all these aspects is exposed using MDE. The metamodel corresponding to the generated
synchronous equational models is detailed as well as the transformation rules. These aspects, which are more
related to the implementation are not addressed in [14, 13].

1.3. Outline. In the following, Section 2 describes the basic notions of the repetitive MoC which is used
in Gaspard to express the parallelism inherent to systems. Section 3 deals with the translation of the models
described with the repetitive MoC into synchronous programs. The implementation of this translation using
MDE is addressed in Section 4. Section 5 presents how a clock synchronizability analysis can be carried out
on the video processing system example, introduced previously by using the synchronous approach. Finally,
Section 6 gives concluding remarks.

2. A repetitive model of computation. The repetitive MoC relies on the domain-specific language
Array-Ol [3, 8], which is a mixed graphical-textual functional language enabling to specify both task par-
allelism and data parallelism in data intensive applications. In Array-Ol, manipulated data are infinite
multidimensional arrays. These arrays are also toroidal because one may sometimes need to represent spatial
or frequential dimensions representing physical tori (e.g., hydrophones around a submarine) or some toroidal
frequency domains (e.g., obtained with Fast Fourier Transforms). The repetitive MoC is implemented by the
RSM package of MARTE.

2.1. Basic concepts. To illustrate the basic concepts of the repetitive MoC, let us consider the downscaler
component in Fig. 1.1. It is composed of two parts: a horizontal filter that reduces the number of pixels from
a 640-line to a 320-line by interpolating packets of 8 pixels; and a vertical filter that reduces the number of
pixels from a 480-line to a 240-line by interpolating packets of 8 pixels as well. The model of the downscaler
in the Gaspard environment is illustrated in Fig. 2.1. It is represented by an aggregate component consisting
of different levels: at the top-level, a repetitive task referred to as Downscaler; at the intermediate level, a
hierarchical task represented by a directed acyclic graph where the nodes are the repetitive tasks Horizontal
filter and Vertical filter; and at the low level, elementary tasks Hfilter and Vfilter that are repeated
within the associated repetitive tasks. The whole downscaler model receives an infinity of frames, denoted by
the input 3-D array (640, 480,∞), and produces an infinity of transformed frames, (320, 240,∞). In the model,
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Fig. 2.1. A model of downscaler in Gaspard.

∞ is represented by the symbol ⋆. The way pixels are extracted from (resp. inserted in) these infinite arrays is
described by tilers. The next paragraphs present each specific concept illustrated in the downscaler model.

Overview. The basic specification concepts of Gaspard are summarized by the grammar given below. The
notation x : X in this grammar means that X is the type of x, and {X} denotes a set of objects of type of X .

Task ::= Interface;Body (r1)
Interface ::= i, o : {Port} (r2)
Port ::= id; type; shape (r3)

Body ::= Bodyh | Bodyr | Bodye (r4)
Bodye ::= some function f (r5)
Bodyr ::= ti, to : {T iler}; (r; Task) |

ti, to : {T iler}; (sr; Task); {Connexion;
→

d ; cp} (r6)
Connexion ::= pi, po : Port (r7)
T iler ::= Connexion; (F ;o; P ) (r8)

Bodyh ::= {Task}; {Connexion} (r9)

Atomic computation: elementary tasks. An elementary task (rule (r5)) consists of functions that are exe-
cuted atomically, e.g. the Hfilter task in Fig. 2.1.

Data-parallelism: repetitive tasks. A repetitive task (rule (r6)) expresses the data-parallelism by replicating
a task into several instances that consume the elements of its input arrays and produce the elements of output
arrays. Each instance executes independently of the others. The sub-arrays consumed and produced by repeated
task instances have the same shape. They are referred to as patterns or tiles. For example, in Fig. 2.1 the
execution of the repetitive task Horizontal filter will lead to the replication of 8 instances of the elementary
task Hfilter.

The way the tiles are constructed is defined via tilers (rule (r8)), which are associated with each array (i.e.
each edge in the graphical representation). A tiler extracts (resp. stores) tiles from (resp. in) an array based
on some information: F is a fitting matrix (how array elements fill the tiles), o is the origin of the reference
tile (for the reference repetition), and P is a paving matrix (how the tiles cover arrays).

The repetition space indicating the number of task instances is itself defined as a multidimensional array
with a shape. Each dimension of the repetition space can be seen as a parallel loop and its shape space gives
the bounds of the nested parallel loops. In Fig. 2.1, the shape of repetition space in Horizontal filter

is (8).

Given a tile, let its reference element denote its origin point from which all its other elements can be
extracted. The fitting matrix is used to determine these elements. Their coordinates, represented by ei, are
built as the sum of the coordinates of the reference element and a linear combination of the fitting vectors, the
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whole modulo the size of the array (since arrays are toroidal) as follows:

∀ i,0 ≤ i < spattern, ei = ref + F × i mod sarray (2.1)

where spattern is the shape of the pattern, sarray is the shape of the array and F is the fitting matrix. Fig. 2.2
illustrates the fitting result for a (2, 3)-pattern with the tiling information indicated on the same figure. The
fitting index-vector i, indicated in each point-wise element of the pattern, varies between ( 0

0 ) and ( 1
2 ). The

reference element is characterized by index-vector ( 0
0 ).

Fig. 2.2. Example of paving and fitting scenarios.

Now, for each repetition instance, one needs to specify the reference elements of the input and output tiles.
The reference elements of the reference repetition are given by the origin vector, o, of each tiler. The reference
elements of the other repetitions are built relatively to this one. As above, their coordinates are built as a linear
combination of the vectors of the paving matrix as follows:

∀ r,0 ≤ r < srepetition, refr = o + P × r mod sarray (2.2)

where srepetition is the shape of the repetition space, P the paving matrix and sarray the shape of the array. The
paving illustrated by Fig. 2.2 shows how a (2, 3)-patterns tile a (6, 6)-array. Here, the paving index-vector r,
varies between ( 0

0 ) and ( 2
1 ).

Task instances may sometimes depend on other task instances in the same repetition space (second alterna-
tive of rule (r6)). For example, this happens when computing the sum of the elements of an array by considering
the partial sum previously calculated at each step. Such a constraint therefore induces a total execution order
on a repetitive task.

In the corresponding rule (r6) of the summary grammar, Connexion represents the pair of ports connected

by the inter-repetition dependency link: an input of Task and an output of Task. The vector
→

d specifies the
coordinates of the link in the repetition space. For each repetition instance, cp denotes a pattern to be used
as input by the next repetition instance. Initially, cp holds a default value, let us call it def . There could be
at the same time several inter-repetition dependencies within a task since an instance may require values from
more than one instances to compute its outputs. This is why rule (r6) specifies a set of dependency link vectors
{Ird}.

Fig. 2.3 illustrates a simplified notation for a repetitive task with an inter-repetition dependency. This
task encodes an automaton. TFC is a transition function that computes, given some input events pk

i from its
environment (used in the transition conditions) and a current state cp, the value of the next state pk

o (resulting
from the transition). Here, the dependency vector (−1) indicates that the result pk

o depends on the state cp

computed in the previous step. The initial state si is given as the default value def . This example is a very
classical encoding of an automaton as a sequential circuit.
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Fig. 2.3. An automaton as a repetitive task with inter-repetition dependency.

Task parallelism: hierarchical tasks. They are represented by hierarchical acyclic graphs in which each node
consists of a task, and edges are labelled by the arrays exchanged between these tasks (e.g. Horizontal filter

and Vertical filter in Fig. 2.1. This naturally leads to hierarchical description of tasks (rule (r9)).

3. Projection of Gaspard on the synchronous model.

3.1. The synchronous language Signal. The synchronous language Signal [16] belongs to the family
of dataflow languages. Signal handles unbounded series of typed values (xτ )τ∈N, called signals, denoted as x
and implicitly indexed by discrete time. At a given instant, a signal may be present, at which point it holds a
value; or absent and denoted ⊥. The set of instants where a signal x is present represents its clock, noted ^x.
Two signals x and y, which have the same clock are said to be synchronous, noted x ^= y. A process (or node)
is a system of equations over signals that specifies relations between values and clocks of the signals. A program
is a process. Signal relies on the following six primitive constructs:

Relations. y:= f(x1,...,xn)
def
≡ ∀τ ≥ 0 : yτ 6=⊥⇔ x1τ 6=⊥⇔ ... ⇔ xnτ 6=⊥, and yτ = f(x1τ , ..., xnτ ).

Here, y, x1,...,xn are signals and f is a point-wise n-ary relation extended canonically to signals. This
construct imposes y, x1,...,xn i) to be simultaneously present, and ii) to hold values satisfying the equation
y:= f(x1,...,xn) whenever they occur.

Delay. y:= x $ 1 init c
def
≡ ∀τ xτ 6=⊥⇔ yτ 6=⊥ and ∀τ > 0: yτ = xk, where k = max{τ ′ | τ ′ < τ and

xτ ′ 6=⊥}, y0 = c. Here, y, x are signals and c is an initialization constant. This construct imposes i) x and y

to be simultaneously present while ii) y must hold the value carried by x on its previous occurrence.

Undersampling. y:= x when b where b is Boolean
def
≡ ∀τ ≥ 0 : yτ = xτ if bτ = true, else yτ =⊥. Here, y, x, b

are signals and b is of Boolean type. This construct imposes i) y to be present only when x is present and
b holds the value true, while ii) y must hold the value carried by x at those logical instants. The expression
y:= when b is equivalent to y:= b when b.

Deterministic merging. z:= x default y
def
≡ ∀τ ≥ 0 : zτ = xτ if xτ 6=⊥, else zτ = yτ . Here, z, y, x are

signals. This construct imposes i) z to be present when either x or y are present while ii) z must always hold
the value of x uppermost, otherwise it takes the value of y.

Composition. (| P | Q |)
def
≡ union of the equations of P and Q, leading to the conjunction of the constraints

associated with processes P and Q. It is commutative and associative.

Hiding (or restriction). P where x
def
≡ x is local to the process P.

Signal offers a process frame that enables the definition of sub-processes. Sub-processes that are only
specified by an interface without internal behavior are considered as external, and may be separately compiled
processes.

A useful notion of Signal is the oversampling mechanism. It consists of a temporal refinement of a
given clock c1, which yields another clock c2, which is faster than c1, meaning that c2 contains more instants
than c1.

In the Signal process given in Fig. 3.1, called k_Overspl, k is a constant integer parameter (line 1). The
clock signals c1 and c2 respectively denote input represented by “?” and output represented by “!” (line 2).
Here, c2 is a 4-oversampling of c1. The event type is associated with clocks. It is equivalent to a Boolean type
where the only taken value is true. The local signals cnt and pre_cnt serve as counter to define 4 instants in
c2 per instant in c1 (lines 3 and 4).
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1: process k_Overspl = {integer k;}

2: (? event c1; ! event c2; )

3: (| cnt := (k-1 when c1) default (pre_cnt-1)

4: | pre_cnt := cnt $ 1 init 0

5: | c1 ^= when (pre_cnt <= 0)

6: | c2 := when (^cnt) |)

7: where integer cnt, pre_cnt;

8: end; %process k_Overspl%

c1 : tt ⊥ ⊥ ⊥ tt ⊥ ⊥ ...
cnt : 3 2 1 0 3 2 1 ...

pre_cnt : 0 3 2 1 0 3 2 ...
c2 : tt tt tt tt tt tt tt ...

Fig. 3.1. Specification of clock oversampling and an associated execution trace.

There is a graphical syntax of Signal that is very similar to block diagrams. In such a syntax, a box
represents a process and a connection between boxes represents the communication of signal values between
processes (e.g. see Fig. 3.3 and 3.5).

3.2. Translation of Gaspard in Signal. We present two interpretations of Gaspard models in Signal

according to the way the parallelism is considered.

3.2.1. Parallel interpretation. The translation of Gaspard models into synchronous models is struc-
tural. It is greatly facilitated by the similarity between Gaspard and Signal since both have a recursive
block-diagram structure.

Structural translation. The recursive algorithm following the grammatical structure is as follows, starting
with rule (r1) in the previous grammar:

(r1) Each Gaspard task is represented by a Signal process/node, with an interface according to (r2), and a
body translating the task body according to (r4).

(r2) Each input and output array of an interface is translated according to (r3).
(r3) Each port is translated as a Signal flow. The infinite dimension of an array can be suitably repre-

sented by an infinite flow of arrays of the remaining dimensions. Therefore, we concretely enforce this
representation by modeling Gaspard arrays into flows of sub-arrays (Fig. 3.2).

(r4) The body is translated according to the appropriate rule, being either an elementary task (r5), a repetitive
task (r6), or a hierarchical task (r9).

(r5) An elementary task E is represented by one equation, a Signal Relation construct, defining the outputs
by applying a function to the inputs.

(r6) Repetitive tasks are modeled by a compound Signal node, where: i) input tilers are transformed according
to (r8); ii) the repeated computation is represented by a node with a composition of |r| instances of the
node representing the repeated body, obtained by (r1); and iii) output tilers are transformed according
to (r8). Fig. 3.3 graphically illustrates the Signal model corresponding to a repetitive task R with one
input A1 and one output A2.
When a repetitive task contains a dependency between repetitions, its associated model includes data
dependencies between the repetition model instances (Fig. 3.4). The initial value is an input of the first
task instance.

(r7) Connexions are translated as assignments between the ports pi and po.
(r8) Each tiler is represented by a node: for input tilers, this node takes as input the array given by the

connexion in (r7), and where each pattern is produced as output, by an equation extracting it from the
input array. The indexes for each pattern are obtained by applying the paving and fitting equations
(Section 2). Output tilers are represented by a node, where each pattern, given by the connexion in
(r7), is inserted in the output array by an equation.

(r9) Hierarchical tasks are modeled by the synchronous composition of nodes representing each of the sub-tasks,
obtained by (r1), with the appropriate data dependencies defined by the connections in (r7).
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Fig. 3.2. Space-time mapping of a [5, 4,∞]-array w.r.t. different granularity levels.
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Fig. 3.3. Parallel model of a repetitive task.

The above parallel model is meant to be intuitive and simple, and may certainly be optimized. However,
the considered optimizations can be quite different according to the intended target operations (e.g. efficient
code generation or verification).

3.2.2. Serialized interpretation. While the parallel model fully preserves the data-parallelism of repeti-
tive tasks, the serialized model rather sequentializes the repetitions. It is more compact than the parallel model
because it only defines one instance of the repeated task in a repetitive task. It features a mono-processor
execution of repetitions. More generally, a system will be modeled by combining both parallel and serialized
models.

The main difference between the rules in the parallel and serialized interpretations concerns those describing
repetitive tasks (r6) and tilers (r8), as follows:

(r6’) Repetitive tasks are modeled by a compound Signal node (see Fig. 3.5), where: i) the input tilers are
encoded by Array to Flow according to (r8’); ii) the repeated task is represented by a single node
instance T obtained by (r1); and iii) the output tilers are encoded by Flow to Array according to (r8’).
The synchronous model of a repetitive task containing a dependency between repetitions is similar to
the above model. We just need to handle the value transmission between two dependent repetition
instances. Repetitions are performed sequentially, one at each logical instant. The value transmission
is realized via by using simply a delay or register (Fig. 3.6).

(r8’) Each tiler is represented by a node defined by the Array to Flow and Flow to Array components, which
play a central role in the serialized model. Their definition partially relies on the oversampling mecha-
nism introduced before.
Let us consider that the incoming array A1 is received at the instants {τi,i∈N} of a given clock c1.
Then, for each τi, the tile production algorithm is applied to the received array: the task instance T
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Fig. 3.4. Parallel model of a repetitive task with an inter-repetition dependency.
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Fig. 3.5. Serialized model of a repetitive task.

is provided with the flow of tiles t
j
1 and produces the tile flow t

j
2; the produced tile flow is therefore

associated with a clock c2 = k ↑ c1, where 0 ≤ j ≤ k. The constant integer k is the number of paving
iterations deduced from the repetition space of the task.

For more details about the correctness of the above parallel and serialized interpretations of Gaspard

models, the reader can refer to [14].

4. Implementation of the translation using MDE. Our translation is implemented by a prototype
transformation tool relying on MDE. This tool enables to automatically generate synchronous programs from
Gaspard models [23].

4.1. Metamodeling. We present the main concepts defined in the metamodels considered during the
implementation of our translation.

4.1.1. Repetitive structure modeling in MARTE. A subset of the MARTE profile, called RSM
package, is based on our repetitive MoC and is dedicated to the modeling of regular structures (either in
application or architecture). All the concepts we focus on are clearly identified in this package. Fig. 4.1
depicts the basic UML stereotypes associated with RSM. The Tiler stereotype, on the bottom right-hand side,
comprises the origin, paving and fitting attributes for tiling operations.

The package indicates further stereotypes such as the InterRepetition dependency link presented pre-
viously. The Reshape stereotype enables us to express complex link topologies in which the elements of a
multidimensional array are redistributed in another multidimensional array. It is a combination of two Tilers,
identified with the srcTiler and the targetTiler relations in Fig. 4.1. A complete description of all these
concepts is provided in [19].

4.1.2. A metamodel for synchronous equational systems. The proposed metamodel aims at the
different target synchronous data-flow languages (Lustre, Lucid Synchrone and Signal) at the same time.
These languages have considerable common aspects, which enable their code generation with the help of only
one metamodel. A metamodel for synchronous equational systems is therefore proposed. Note that contrarily
to the signalmeta metamodel [4] dedicated to Signal, our metamodel is not intended to have exactly the
same expressivity as the target languages. The next paragraphs give details about the relevant sub-parts of
this metamodel for synchronous equational systems. The defined generic concepts correspond to the notions
introduced in Section 3.1. The metamodel is presented in several parts: Signals, Equation, Node and Module.
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Fig. 3.6. Serialized model of a repetitive task with an inter-repetition dependency.

Fig. 4.1. The RSM package of MARTE.

Signal. The concept of Signals (Fig. 4.2) refers to variables. SignalDeclaration declares the name and
type of a Signal. A Signal can be a local or an interface variable, respectively captured by SignalLocalDec

and SignalInterDec. A declared Signal can be referenced. The SignalUsage represents an operation on a
Signal. If a Signal is an array, a SignalUsage can be an operation on its sub-parts. When such an array
is divided into several sub-parts (tiles), it will be associated with the same number of SignalUsage. Every
SignalUsage has an IndexValueSet. Signals are used in both sides of equations. Each side is part of the
equation arguments, and a SignalUsage is associated with at least one equation Argument.

Equation. Equations (Fig. 4.3) define relations between signals, considered as its Arguments. But Signals
and Arguments do not have a direct relation; SignalUsages play this intermediate role. An Equation has an
EquationRightPart and at most one EquationLeftPart. The latter has Arguments as Equation outputs.

EquationRightPart is either an ArrayAssignment or a node Invocation. ArrayAssignment has
Arguments, and indicates that the Equation is an array assignment. Invocation is a call to another Node, where
FunctionIdentifier indicates the called function. An Invocation may have an ordered list of Arguments,
which are used as the inputs of the function. Equations can be assembled in an EquationSystem.

Node. Functionalities are modeled as Nodes (see Fig. 4.4). Such a Node has an Interface,
a LocalDeclaration, some NodeVariables and an EquationSystem. NodeVariable is the container of Signals
and SignalUsages.

Module. All Nodes are grouped in a Module (Fig. 4.5), which represents the whole system model. A module
contains one Node as the main function of the system. Each Node is either completely defined or linked to
an external function through IP deployment (see Section 1.2). These IP concepts, such as CodeFile and
Implementation are also grouped in the Module.
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Fig. 4.3. Equation part of our synchronous metamodel.
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Fig. 4.4. Node part of our synchronous metamodel.
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4.2. Transformations towards synchronous programs. The transformation of Gaspard models into
synchronous programs consists of two steps (Fig. 4.6):

1. transformation of models specified with MARTE into synchronous models;
2. code generation from synchronous models obtained from the first step.

Fig. 4.6. From MARTE models to synchronous dataflow programs.

Our transformation rules are represented through a tree structure (Fig. 4.7). There are mainly twenty
transformation rules. The root rule is GModel2SModel. It transforms a Gaspard model into a synchronous
program by recursively calling its sub-rules: GTiler2SNode devoted to the transformation of tiler connectors,
GApplication2SNode devoted to the transformation of the different Task notions of Gaspard, etc. A more
complete presentation of all rules is given in [23].

Fig. 4.7. Hierarchy of the transformation rules

The above transformation rules as well as the code generation are achieved within the Eclipse Modeling
Framework (EMF) [9]. Gaspard models are exported as EMF models, which are then transformed into
EMF synchronous equational models, used finally to generate synchronous programs. This transformation
chain has been implemented by using some specific technologies.

The MoMoTE tool (MOdel to MOdel Transformation Engine), based on EMF, is a Java framework that
enables to perform model to model transformations. It is composed of an API and an engine. It takes input
models that conform to some metamodels and produces output models that conform to other metamodels. A
transformation by MoMoTE is composed of hierarchical rules. These rules are integrated into an Eclipse plu-
gin that is automatically invoked during model transformations.

The implemented code generation is based on templates. EMF JET [10] and MoCodE (MOdels to CODe
Engine) are used to build code generators for each of the target synchronous languages. JET is a template based
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code generation tool. These templates are used to generate Java implementation classes. MoCodE consists of
an API with an engine that performs model to text transformation. It takes a set of models as inputs. Then,
its engine recursively takes out elements from input models and executes a corresponding Java implementation
class on them. These Java classes finally generate the target code. The size of our implemented transformation
chain is about 5.103 lines of Java code.

5. Validation of design properties. We present a typical use of the analysis techniques and tools
associated with synchronous languages to analyze the video processing system introduced in Section 1, via a
corresponding generated code. The addressed issue specifically concerns clock synchronizability between the
system components in order to satisfy some non functional requirements.

5.1. Clock synchronizability analysis with the synchronous technology. Let us denote by cp, ca

and ci the respective logical clocks of the sensor, the downscaler and the display. They respectively represent
the pixel production rate in the sensor, the bloc computation frequency within the downscaler, and the image
production rate on the display. The whole model works as follows: the sensor produces its output data pixel by
pixel; the downscaler periodically performs an operation whenever it receives from the sensor a fixed number
of pixels; and the TFT screen periodically displays an image whenever it receives from the downscaler a fixed
number of blocs of transformed pixels. A step in cp, ca and ci corresponds to the production of respectively a
single pixel by the sensor, a transformed block of pixels by the downscaler, and an image by the TFT display.
From the point of view of Gaspard, the clock steps associated with a component correspond to its paving
iterations. We therefore derive the following constraints between above logical clocks:

• C1: ca is an affine undersampling of cp, i.e., cp
(1,φ1,d1)

→ ca;

• C2: ci is an affine undersampling of ca, i.e., ca
(1,φ2,d2)

→ ci;

Now, let us consider a specification requirement of the video display functionality, consisting of a constraint
on the actual production rate, noted c′i, of displayed images in the cell phone. This constraint, denoted by

C3, states a relation between the pixel production rate cp and c′i as follows: cp
(1,φ3,d3)

→ c′i. Then, we need to
guarantee the compatibility of this new constraint with the previous set of constraints {C1, C2}. I.e., we want
to establish a synchronizability relation between clocks c′i and ci w.r.t. {C1, C2, C3}. This will ensure that the
expected rate of the TFT display ci, which depends on the rate of the downscaling process ca, satisfies the
requirement.

This issue cannot be addressed by only using the usual definition of clock synchronization in synchronous
languages. Instead, we consider affine clock systems in order to define under which condition c′i and ci are
synchronizable. So, from C1, C2 and C3, this synchronizability property is checked by using the following
property, which has been proved and implemented in the Signal compiler:

c
′
i and ci are synchronizable ⇔

(

φ1 + d1φ2 = φ3

d1d2 = d3

(5.1)

This issue is solved quite easily with synchronous models while it is not possible with Gaspard only. The
result of this analysis can be used to adjust the paving iteration parameters of the downscaler model so as to
satisfy the non functional requirements imposed on the whole system.

In [22], Smarandache et al. combine the Alpha language and the synchronous language Signal to design
and validate embedded systems by defining affine clocks relations. Our approach differs from this work in
that we propose a synchronous model of a whole data-parallel application instead of describing only its clock
information as it is the case with [22]. As a result, our model allows us to address both functional and non
functional properties of the application using the synchronous technology. Another similar work concerns the
design of n-synchronous Kahn networks [7] in which authors consider the Lucid Synchrone language in order
to address the correct-by-construction development of high performance stream-processing applications. This
work also defines clock synchronizability properties that can be applicable to Gaspard models specified in
Lucid Synchrone. Note that in both [22] and [7], the analysis relies on clocks, which give a qualitative view
of time. This is not the case of [15], which is another interesting work where authors use linear relations to
analyze synchronous programs so as to verify quantitative time properties. Such an approach would be very
helpful when dealing with time durations.
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5.2. Other analyses. In addition to the above clock relation analysis, the synchronous technology also
enables to address further model design properties imposed by the Gaspard underlying specification formalism,
Array-Ol, as shown in [14]: single assignment, functional determinism, absence of cyclic data-dependencies.
The compilers of synchronous languages provide us with very efficient data-dependency analysis techniques to
address such properties.

Furthermore, in [24], we dealt with both functional and non functional properties of an application case
study, consisting of the multimedia processing module of a cellular phone. We applied the Sigali model-checker
(from the synchronous technology) [17] to synchronous programs generated from Gaspard models extended
with controlled computations specification [12].

6. Concluding remarks. In this paper, we presented an approach to deal with the reliable design of high-
performance embedded systems by combining the repetitive and synchronous models of computation. While
the former model suits for the adequate expression of data-parallelism and task parallelism in such systems, the
latter model allows one to reason about critical design properties of the systems. These models of computation
are respectively implemented in the Gaspard and synchronous design frameworks. We showed how Gaspard

models can be translated into synchronous models in order to formally check the correctness of the systems
initially designed with the MARTE standard profile in Gaspard. Here, we illustrated a synchronizability
analysis on a simple system example by using the synchronous technology. Further design correctness properties
can be also straightforwardly checked with the same technology as it has been exposed in [14, 24].
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