
Ann. Telecommun. (0000) 71:141–150

DOI 10.1007/s12243-015-0487-2

Model-driven interoperability: engineering heterogeneous

IoT systems

Paul Grace1
· Brian Pickering1

· Mike Surridge1

Received: 31 March 2015 / Accepted: 30 October 2015 / Published online: 25 November 2015

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Interoperability remains a significant burden to

the developers of Internet of Things systems. This is because

resources and APIs are dynamically composed; they are

highly heterogeneous in terms of their underlying com-

munication technologies, protocols and data formats, and

interoperability tools remain limited to enforcing standards-

based approaches. In this paper, we propose model-based

engineering methods to reduce the development effort

towards ensuring that complex software systems interoper-

ate with one another. Lightweight interoperability models

can be specified in order to monitor and test the execution

of running software so that interoperability problems can be

quickly identified, and solutions put in place. A graphical

model editor and testing tool are also presented to highlight

how a visual model improves upon textual specifications.

We show using case-studies from the FIWARE Future

Internet Service domain that the software framework can

support non-expert developers to address interoperability

challenges.

Keywords Model driven engineering · Interoperability ·

Cloud computing · Internet of things

� Paul Grace

pjg@it-innovation.soton.ac.uk

1 IT Innovation Centre, University of Southampton,

Southampton, UK

1 Introduction

The Internet of Things (IoT) and Cloud Computing nat-

urally go hand-in-hand for developing large-scale, data-

oriented distributed systems. There is a growing need

to collect and analyse data (in significant quantities)

from an IoT world. However, this requirement brings a

common problem to the fore, namely Interoperabil-

ity. Things are highly heterogeneous networked devices

employing different protocols (e.g. HTTP, MQTT, DDS

and CoA) and different data formats (e.g. binary, XML,

JSON and GIOP). These can then be composed with

cloud-based infrastructure services (e.g. OpenStack and

Amazon Web Services) or Cloud Platform services (e.g.

Hadoop offerings) for further processing, analysis and stor-

age. Where there are significant differences in technolo-

gies, how can systems be guaranteed to understand each

other and interact? This is particularly true where there

is the need to migrate IoT applications between Cloud

providers.

This growing heterogeneity means that established meth-

ods to achieve interoperability are no longer appropriate.

Complying with common standards and leveraging com-

mon middleware platforms reduces interoperability prob-

lems, but aiming for global consensus is unrealistic. Instead,

interoperability is managed in an ad hoc manor: (i) speci-

fication compliance tests (of protocols and APIs), e.g. plug

tests for MQTT (MQ Telemetry Transport) implementa-

tions,1 (ii) published API documentation for developers to

1http://iot.eclipse.org/documents/2014-04-08-MQTT-Interop-test-

day-report.html

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s12243-015-0487-2-x&domain=pdf
mailto:pjg@it-innovation.soton.ac.uk
http://iot.eclipse.org/documents/2014-04-08-MQTT-Interop-test-day-report.html
http://iot.eclipse.org/documents/2014-04-08-MQTT-Interop-test-day-report.html


142 Ann. Telecommun. (0000) 71:141–150

follow (e.g. the Hyper/Cat [14] catalogue of IoT services)

and (iii) development of mappings and adapters to broker

system differences on a case-by-case basis (e.g., mappings

between data [4] and mappings between middleware [20]).

These solutions help, but there remains a significant burden

on developers to understand and identify interoperability

problems and then implement and test solutions accord-

ingly. In this paper, we seek to reduce this burden using

model-driven development tools and techniques.

Model-driven software development offers a principled

approach to engineer interoperable solutions through: the

capture of shared domain knowledge between independent

developers and the automated generation and testing of

software. For example, model-driven testing [2] and model-

based interoperability testing [3] highlight the potential.

However, these solutions focus on Web Services and require

detailed models of the system’s interface syntax (using

WSDL) and behavior (using BPEL) in order to generate

automated tests. We propose that model-driven approaches

are equally well-suited to addressing interoperability prob-

lems in the composition of IoT software, but they must

consider the heterogeneity of technologies and the need for

simpler quick-to-develop and highly re-usable models.

We present a model-driven engineering tool to sim-

plify the engineering of interoperable systems. This paper

highlights three key contributions of this work:

– Interoperability models are reusable, visual software

artifacts that model the behavior of services in a

lightweight and technology independent manner. These

models are used to help developers create and test sys-

tems that correctly interoperate. These models are a

combination of architecture specification (i.e. services

and interface dependencies) and behaviour specifica-

tion (using state machines and rule-based transitions to

evaluate protocol events). These models are based upon

Finite State Machines (FSM); there are a number of

active testing solutions based upon FSM [9]. Impor-

tantly, our models focus only on what is required to

interoperate, simplifying the complexity of the model in

comparison to approaches that fully model a system’s

behavior.

– A Graphical development tool to allow the developer

to create and edit interoperability models and to also

execute tests to report interoperability issues. This tool

aims to further reduce the development process by mak-

ing it easier to understand and develop the models

themselves; this is in contrast to textual, heavyweight

and disjoint distributed systems models such as BPEL

and WSDL.

– The Interoperability monitoring and testing framework

captures systems events (REST operations, middleware

messages, data transfers, etc.) and transforms them into

a model specific format that can be used to evaluate and

reason against required interoperability behavior. The

framework tests monitored systems against interoper-

ability models to evaluate compliance, reporting where

interoperability issues occur, such that the developer

can pinpoint and resolve concerns.

Hence, the tool allows the developer to create, use and

re-use “models of interoperability” to reduce development

complexity in line with the following requirements to ensure

interoperability is correctly achieved:

– Specification compliance; to check that systems comply

with particular specifications, e.g. an IoT sensor pro-

duces event data according to the NSGI specification,2

or streamed data content complies with a data format

specification uploaded to the HyperCAT catalogue.

– Interoperability testing; monitors the interaction

between multiple systems to test whether they interop-

erate with one another, identifying the specific issues

to be resolved where there is failure.

To evaluate the tool, we utilize a case-study based

approach. FIWARE3 provides a marketplace of indepen-

dently developed Future Internet Services (approximately

30) that can be composed to build IoT and cloud appli-

cations; these are loosely coupled REST services without

formal interface or behavioral specifications, and hence

achieving interoperability remains a significant task for

developers. In the first case, we show how lightweight inter-

operability models can quickly be created for this domain,

and also how the interoperability framework lowers the bur-

den of performing interoperability tests and identifying the

causes of interoperability errors. In the second case, we

illustrate how multiple implementations of a specification

across a federation can be tested for compliance to support

application migration.

In Section 2, we present the model-driven engineering

methodology; then in Section 3, we introduce the developer

tool for model-driven engineering. Subsequently, we eval-

uate the framework in Section 4. In Section 5, we analyse

the work in comparison to the state of the art, and finally, in

Section 6, we draw conclusions and highlight future areas

of application for the solution.

2http://technical.openmobilealliance.org/Technical/

technical-information/release-program/current-releases/ngsi-v1-0
3http://www.fiware.org/

http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/ngsi-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/ngsi-v1-0
http://www.fiware.org/


Ann. Telecommun. (0000) 71:141–150 143

2 Model-driven interoperability

2.1 Interoperability engineering methodology

Figure 1 provides an overview of the engineering method-

ology; here different stakeholders use the interoperabil-

ity modeling and testing tools to achieve interoperability

between independently developed services and applications.

These developers utilise the tool described in Section 3 to

perform the model, compose, edit, reuse and test functions

seen in the figure.

– Interoperability testers create new IoT applications and

services to be composed with one another. Hence,

they wish to engineer interoperable solutions; test-

ing that their software interoperates with other ser-

vices, and pinpoint the reasons for any interoperability

errors that occur. Therefore, reducing the overall effort

required to deliver, test and maintain correctly func-

tioning distributed applications. The framework will

identify application behavior and data errors, e.g. data

is not received by system A because system B has not

correctly published information.

– Application developers (these may be the same as inter-

operability tester) model the interoperability require-

ments of service compositions; that is, they create

interoperability models to specify how IoT applications

should behave when composed: what the sequence of

messages exchanged between should be (in terms of

order and syntax), and what data types and content

should form the exchanged information. Importantly,

these models are re-usable abstractions that can be

edited, shared and composed.

– Service or API developers model the compliance

requirements of their new service API, that is, they cre-

ate compliance models to specify how applications must

interact with their services, such that tests can be gen-

erated to ensure that an implementation of this model is

compliant.

– Specification compliance testers test compliance of

their specification implementation against the model of

a service API in order to guarantee future interoperabil-

ity with other parties conforming with this standard.

2.2 Interoperability and compliance models

Distributed services are typically modeled using interface

description languages, e.g. WSDL, WADL and IDL, to both

describe the operations available and how to execute them

(e.g. using a SOAP or IIOP message). These can then be

complemented with workflow (e.g. BPEL) and choreogra-

phy languages to explain the correct sequence of events

to achieve particular behaviour. With these models it is

then possible to automate the interoperability testing pro-

cesses [3] and better support service composition. However,

these approaches are often tied to a specific technology

type, e.g. Web Services and CORBA being clear technology

silos, and hence the approach is not well suited to loosely-

coupled IoT and cloud services that employ a wide range

of technologies and communication protocols. Furthermore,

the models themselves are typically complex to write, use

and maintain which in turn means they are not widely

deployed; this can already be seen in the Internet Services

domain where RESTful APIs (e.g. Twitter, Facebook and

others) provide documentation and SDKs to help develop-

ers interoperate without the need for separately maintained

IDLs.

Our approach explores models that focus solely on

interoperability; that is, the specification of the exchanges

between IoT services with rules defining the required

behavior for interoperability to be guaranteed. There are

two types of model: (i) the interoperability model used by

application developers and interoperability testers and (ii)

specification models and compliance testers.

An interoperability model is specified as a finite state

machine; the general format is illustrated in Fig. 2. A

state represents a state of a distributed application (not an

Fig. 1 Model-driven

interoperability engineering



144 Ann. Telecommun. (0000) 71:141–150

Fig. 2 Simple interoperability

model

individual service) waiting to observe an event. A transi-

tion represents a change in state based upon an observed

event matching a set of rules regarding the required behav-

ior. Hence, the model represents the series of states that a

distributed application proceeds through in reaction to dis-

crete events (e.g. a message exchange, a user input, etc.).

If the state machine proceeds such that there is a complete

trace from a start state to an end state then we can conclude

that software within the distributed system interoperate

correctly.

If an event occurs and no transition can be made (because

the event does not fulfill the rules), then the interoperability

model identifies a failing condition. Aligned with knowl-

edge regarding why this rule failed, the tool can provide

preliminary information for either correcting the error or

deploying a broker solution to mediate. Discrete events are

captured messages (e.g. a HTTP message in Fig. 2), which

are evaluated against the model, i.e., transition rules can be

evaluated. Where all rules evaluate to true, the state machine

transitions to the corresponding labeled state (e.g. from state

A1 to A2 in the diagram).

In Fig. 2, we present a very simple example to illustrate

how a model is used in practice. Here, we have a client

requesting the temperature of a room sensor, and a context

service providing the sensor data. They interact with each

other to complete a single request-response type operation.

There are three states: (i) the start state, (ii) the state when

the first request message is received by the sensor service

and (iii) the final state where the client received a response

message from the service. The interaction is a REST HTTP

post operation which can contain either XML or JSON (two

alternative transition paths). A number of rules are pre-

sented to illustrate how rules are attached to transitions; each

transition can specify one or more rules concerning different

characteristics of events. These fall into protocol specific or

data specific rules:

– Protocol-specific rules. Evaluate events according to

the structure and content of an observed protocol mes-

sage (not the application/data content). For example,

check the IP address of sender of the message to verify

which services are interacting with each other. Fur-

ther, evaluating the protocol type (HTTP, IIOP, AMQP,

etc.) and the protocol message type (HTTP GET, HTTP

POST or an IIOP request) to ensure that the correct

protocol specification is followed. Finally, checking

protocol fields (e.g. a HTTP header field exists or

contains a required value) to ensure that the message

contains the valid protocol content required to inter-

operate. Currently, the tool evaluates HTTP protocol

rules.

– Application and data-specific rules. Evaluate the data

content of protocol messages to ensure that services

interoperate in terms of their application usage. For

example, the data content is of a particular type (e.g.

XML or JSON), corresponds to a particular format

or schema, contains a particular field unit (e.g. tem-

perature), etc. Furthermore, rules can make constraints

on the application message, e.g., ensuring the opera-

tions required are performed in order (e.g. A sends

a subscribe message to B, before C sends a publish

message to B). Data rules are evaluated using data-

specific expression languages, for example, we leverage

XPATH4 and JSONPATH5 tools to extract data fields

4http://www.w3.org/TR/xpath20/
5https://code.google.com/p/json-path/

http://www.w3.org/TR/xpath20/
https://code.google.com/p/json-path/


Ann. Telecommun. (0000) 71:141–150 145

Fig. 3 Simple compliance model

and evaluate whether a given expression is true (e.g. a

rule in the XPATH format: Data[name(/*)] = queryCon-

text).

A compliance model is specified as a finite state machine

using the same elements as the interoperability model

above. However, two extra elements are now added in order

to allow the framework executing the model to inject mes-

sages into the system in order to evaluate specification

compliance:

– Trigger state (B1 in Fig. 3). This is an active state as

opposed to an observing state, i.e., it does not monitor

for events, rather it triggers the sending of a new event

described in the out transition. A trigger state can only

have one outgoing transition.

– Trigger transition (Transition from B1 to B2 in Fig. 3).

This is a transition from one state of the distributed

system caused by the sending of a new message. This

message is a HTTP message that is described in the

attributes of the transition.

A simple compliance model is illustrated in Fig. 3.

Note, a trigger state has an arrow in the circle to dis-

tinguish it from a normal observing state. This is a sim-

ple model of part of the Cloud Data Management Inter-

face6 (CDMI api) specification for cloud storage. Here,

we are testing if the service correctly implements the

discoverCapabilities operations to view the tech-

nical capabilities and installed features of a CDMI deploy-

ment. The first state is a trigger state, this means that

the tool creates and sends a HTTP GET message to the

cdmi capabilities URL. The system being tested for

compliance should understand this message and send back a

response. Hence, the second state transition evaluates a rule

set against this received response to ensure that the data in

the HTTP response matches the required data format of the

api. Again, we see rules to test the structure of the HTTP

6http://www.snia.org/cdmi

message and that the data has fields equal to specific values

and contains required fields.

3 Interoperability modeling and testing tool

The Modeling tool illustrated by the screen-shot in Fig. 4

has two core elements. First, the graphical editor providing

drag and drop functionality to create the models described

in the previous section. Second, the monitoring and testing

framework that evaluates running distributed applications

against the model visualised in the editor and evaluates

them for correct interoperability. When the test command

is selected in the editor—the models are converted to XML

(this also allows them to be permanently stored) and they

are input to the Model Evaluation Engine.

Without going into implementation details beyond the

scope of the paper (more detailed information is found

in [12]), we can explain the operation of the model evalua-

tion engine in terms of two functions:

– Monitoring deployment; the framework takes an inter-

operability model as input and generates a set of proxy

elements that capture REST events (these relate to

all interface points in the application). Hence, if we

observe that a service receives events at a particular

URL; we generate a proxy to capture those events–the

proxy simply reads the information before redirecting

the request to the actual service. The implementation is

built upon the RESTLET framework.7

– Model evaluator receives events and evaluates them

against the rules specified in the transitions. The eval-

uator is protocol independent (per protocol plug-ins

map concrete messages to the format of the model

rules); hence, at present the framework parses HTTP

messages, but is extensible to other data protocols.

The evaluator creates a report to identify success or

7http://restlet.com

http://www.snia.org/cdmi
http://restlet.com


146 Ann. Telecommun. (0000) 71:141–150

Fig. 4 Interoperability modeling and testing tool

failure to the developer, and where a failure occurs, the

framework performs simple reasoning to pinpoint the

source of the error. In future work, we plan to explore

knowledge-based reasoners to provide richer feedback.

The framework is currently made available as software

usable within the XIFI project8 facilities. The source code

is available at.9 XIFI establishes a pan-European, open fed-

eration comprised of 17 data-center nodes to cope with

large trial deployments and can serve the various needs of a

broad set of FI users and experimenters. The interoperability

framework is one of a number of tools to support the devel-

opment of software using the FIWARE collection of open,

restful services. Developers within this software domain can

use the tool to view and edit models and then directly evalu-

ate their application by executing the framework against this

model.

4 Evaluation

We use a case-study approach to evaluate the usage of

the interoperability model and associated tool to achieve

8http://wiki.fi-xifi.eu/Public:Interoperability Tool
9https://github.com/pjgrace/connect-iot

its primary contribution, i.e. to reduce the effort required

to develop and test the interoperability of software com-

posed with independently developed IoT and cloud-based

services. We hypothesize that the framework can monitor

running services and identify where they do and do not

interoperate; we also propose that the lightweight models

offer an abstraction to capture interoperability information

that can be reused across multiple applications, e.g. a model

describing how to interoperate with a context broker being

utilised across multiple different applications.

We utilise FIWARE software as the domain of our case

study. FIWARE is a catalogue of approximately 30 REST-

Ful services implementing open specifications documented

using free text (there are no WADL, WSDL specifications

on which automated tool support can be based). These

services include: identity management, context brokering,

big data, complex event processing and media streaming

and have already been leveraged to build commercial IoT

applications.10

We hypothesize that the interoperability framework helps

the developers of IoT applications and services during soft-

ware development and testing phases; discovering problems

10http://www.fiware.org/2013/09/19/santander-smart-city-event/

http://wiki.fi-xifi.eu/Public:Interoperability_Tool
https://github.com/pjgrace/connect-iot
http://www.fiware.org/2013/09/19/santander-smart-city-event/


Ann. Telecommun. (0000) 71:141–150 147

earlier, reducing the costs and improving the overall devel-

opment of the application.

4.1 Case one: developing an application to interoperate

with cloud and IoT services

We developed an application to monitor and gather data

about traffic and transportation vehicles across multiple

countries to support logistic reporting and analysis. The

need to integrate new devices (e.g. vehicles) and services

(e.g. reporting applications) into this application domain

presents interoperability challenges. This is highlighted in

Table 1 which list a subset of the services and open

interfaces to interoperate with. For example, vehicles inter-

operating with the NGSI publish-subscribe interface; the

composition of complex event processing prior to event pub-

lications; and choreographing post-processing of data using

big data services. Here, there are a number of complex

specifications with different behavior (streaming, publish-

subscribe and request response) and data to understand and

develop towards.

A model of interoperability was created for this appli-

cation domain; a subset of the model is highlighted Fig. 5.

Example transitions are vehicle to broker: HTTP POST

message with JSON content to register new context, where

the data must have at least attributes speed and fuel lev-

els. Transport management application to broker: HTTP

POST message to subscribe with URL for notifications, and

then corresponding publication from broker to this endpoint.

Interaction between broker and big data services to persist

events, and then subsequent transport reporting application

to create big data jobs to analyse the data. The full model

consists of six interacting components, modeled by 38 states

and 45 transitions.

Analysis The software components of the application were

developed and tested in-line with the model (injecting typ-

ical interoperability errors into the software). In each case,

the tool identified the failure and which state and transition

in the application the fault occurred. Hence, with this initial

evaluation, we believe that the tool has significant value to

quickly identify interoperability errors in large-scale com-

plex environments and hence reduce development costs. As

the system grows in size, the visualisation ability allows the

system to be tested without having to understand 1000s of

lines of code. Additionally, the model itself contains a num-

ber of sub-elements that are highly reusable, i.e. common

composition model for utilising the FIWARE services (e.g.

context broker, big data and CEP). Hence, we also quickly

created simple environmental monitoring application types

(with different data and behavior) atop these sub-models.

We saw that the models could be quickly composed and

edited (with minimal effort), demonstrating the benefits of

modelling both IoT services and applications to transfer

knowledge between developers.

4.2 Case two: migrating between service providers

The XIFI federation consists of 17 geographically dis-

tributed nodes (where each node provides interfaces to

utilise cloud and IoT resources at that location). Hence,

the federation contains multiple deployments of service

functionality useful to the application in case 1, e.g. publish-

subscribe brokers (NGSI apis) and data storage services

(CDMI apis). We hypothesize that the interoperability tool

can model application compliance to evaluate if an applica-

tion can be migrated between service providers, i.e. we can

test that different service interfaces provide the functional-

ity required by an application, identifying where compliance

fails such that the application can then be edited to interop-

erate.

A compliance model was created for the NGSI publish-

subscribe interface and CDMI data storage interface (as

used in the transport application). This was then tested

against the API deployments across each of the 17 XIFI

nodes, reporting success in each case (as expected where

standard specifications are deployed). The application code

was then executed using the different nodes to verify that

compliance testing success was equivalent to interoperabil-

ity once the application was migrated. We finally created a

mismatching api by changing the implementation of a test

NGSI service; the compliance tool identified all points of

Table 1 Heterogeneous

interface specifications Service Interface Protocol

Context broker Open Mobile Alliance’s NGSI9a HTTP Rest/JSON

Complex Event Processor FIWARE CEP specification HTTP Rest/XML

Big Data Adaptor Apache Flume connectorb Binary

Big Data Service FIWARE Big Data specification Rest/XML

Object Storage CDMI API specification

aFIWARE open specifications
bflume.apache.org

flume.apache.org


148 Ann. Telecommun. (0000) 71:141–150

Fig. 5 Model of a transport application

mismatch correctly, and the application code was adapted to

work with this new version of the API.

Analysis The use of lightweight compliance models can be

used to establish how easy it is to migrate a given applica-

tion to a new service. This can reduce the migration effort,

reducing the need to analyse the new apis in detail, and then

reimplementing code or writing brokers or adaptors.

5 Related work

Middleware is typically put forward as an ideal solu-

tion to the interoperability problem. Where software is

developed on a common middleware, with communication

protocols that handle many of the complex heterogeneity

issues, e.g. Operating System, Hardware platform and data

types differences, certain interoperability guarantees can be

made. CORBA, Web Services, REST and others highlight

such ability. However, differences in the way developers

use middleware (e.g. data semantics, application behaviour

usage such a operation sequences) still result in interop-

erability issues to address; this is particularly true of the

IoT domain with lightweight middleware (to operate on

resource constrained devices), transporting highly heteroge-

neous data; there are a number of IoT middleware solutions,

e.g. UbiSOAP [8], Hydra [18], DDS middleware [17] and

MQTT [13]. Hence, our interoperability framework pro-

vides added value above middleware solutions, allowing

multiple technologies to be deployed and then support-

ing developers address further application and middleware

interoperability problems.

Testing languages are an alternative solution to the prob-

lem; most notably TTCN [19] used for testing of commu-

nication protocols and Web services, and RESTAssured11

for REST services. However, these offer programming solu-

tions rather than a higher-level abstraction; this makes it

difficult to quickly perform interoperability testing across a

composition of services.

The domain of model-driven engineering has also consid-

ered similar solutions albeit often targeting different prob-

lems. The Motorola case study [1] demonstrated the cost

reduction from model-driven practices, largely focusing on

code generation and automated testing; it also advocates the

need for decoupled models; for example, treating interoper-

ability as a distinct concern. Fleurey et al. [10] also presents

an approach to model adaptive software development for

code deployed on heterogeneous software (e.g. sensors),

leveraging the use of models to reduce effort and cost. Mod-

els have also been leveraged for the development of IoT

software [11]; here state machine models are used to support

the coding of web service composition, as opposed to the

testing of interoperability between independently developed

software; however, there is a clear indication of the benefits

of models in the domain of IoT and cloud computing.

11https://code.google.com/p/rest-assured/

https://code.google.com/p/rest-assured/


Ann. Telecommun. (0000) 71:141–150 149

Finally, model-driven approaches have been put forward

to broker between heterogeneous middleware solutions,

essentially automating their interoperability [6, 7]. The ben-

efits of modelling interoperability software shows how such

abstraction can hide many of the technical challenges from

software developers; Starlink’s [6] use of state transition

automata directly inspired the framework methodology in

this paper. However, these solutions focus on brokering

between heterogeneous software as opposed to supporting

the developers of new software requiring interoperability.

Beyond this, Emergent Middleware solutions [5, 15, 16]

have been proposed that dynamically broker interoperabil-

ity between systems using semantics; these solutions rely on

machine-readable software artefacts, e.g. interface descrip-

tions and ontologies, being available for run-time analysis.

Yet, the reality is that systems do not typically publish

such information and interoperability remains a significant

software development challenge put back in the hands of

software developers.

6 Conclusions and future work

In this paper, we have presented the challenges that are faced

by the developers of IoT applications and cloud services in

terms of achieving interoperable software solutions in the

face of highly heterogeneous communication protocols and

data exchanged between IoT elements. We have advocated

and described a lightweight, protocol independent, model-

driven development approach to ensure interoperability. Our

key contributions here are (i) interoperability-specific mod-

els that are lightweight to create and are re-usable and

composable to support a broad range of applications; (ii)

a graphical tool to support visual development and testing

and (iii) an evaluation framework to monitor application

behaviour (specifically RESTful interactions in this paper)

and evaluate how this software interoperates in accordance

with the models.

We utilised a case-study approach to perform a pre-

liminary evaluation of the value added to software devel-

opers in terms of helping them address the challenges

interoperability poses when integrating and migrating sys-

tems. The FIWARE and XIFI domain offers a number of

potential users composing open software elements, and we

have shown the potential benefits of the tool, i.e. reduc-

ing costs through simplifying interoperability, and captur-

ing and reusing expertise surrounding the interoperability

concern.

We see future work in two key areas. Firstly, the exten-

sion of the framework to move beyond REST and web

services and also include such technologies and MQTT and

XMPP (to increase the applicability of the tools to wider IoT

devices). Secondly, to investigate reasoning technologies

to infer in greater detail why interoperability has failed.

At present, the framework reports where a rule has failed,

and hence a developer can correct accordingly. However,

in larger-scale systems involving complex models, the fail-

ure may be much more subtle requiring domain expertise to

pinpoint exactly what has gone wrong.

Acknowledgments This work was carried out as part of the XIFI

project (https://fi-xifi.eu). This project received funding from the EU

under grant agreement No. 604590. We also acknowledge Justan

Barbosa’s contribution to the case study applications.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Baker P, Loh S, Weil F (2005) Model-driven engineering in a large

industrial context; motorola case study. In: Proceedings of the 8th

international conference on model driven engineering languages

and systems, MoDELS’05, pp 476–491

2. Bertolino A (2007) Software testing research: achievements,

challenges, dreams. In: Briand LC, Wolf AL (eds) FOSE,

pp 85–103

3. Bertolino A, Polini A (2005) The audition framework for test-

ing web services interoperability. In: EUROMICRO-SEAA. IEEE

Computer Society, pp 134–142

4. Bishr YA, Pundt H, Rüther C (1999) Proceeding on the road of

semantic interoperability—Design of a semantic mapper based on

a case study from transportation. In: Proceedings of the second

international conference on interoperating geographic information

systems, pp 203–215

5. Blair GS, Bennaceur A, Georgantas N, Grace P, Issarny V,

Nundloll V, Paolucci M (2011) The role of ontologies in emergent

middleware: supporting interoperability in complex distributed

systems. In: Kon F, Kermarrec A-M (eds) Middleware 2011 -

ACM/IFIP/USENIX 12th international middleware conference,

Lisbon, Portugal, December 12-16, 2011. Proceedings, volume

7049 of lecture notes in computer science. Springer, pp 410–430

6. Bromberg Y, Grace P, Réveillère L, Blair GS (2011) Bridg-

ing the interoperability gap: overcoming combined application

and middleware heterogeneity. In: Kon F, Kermarrec A-M (eds)

Middleware 2011 - ACM/IFIP/USENIX 12th international mid-

dleware conference, Lisbon, Portugal, December 12-16, 2011.

Pro- ceedings, volume 7049 of lecture notes in computer science.

Springer, pp 390–409

7. Bromberg Y, Réveillère L, Lawall JL, Muller G (2009) Automatic

generation of network protocol gateways. In: ACM/IFIP/USENIX

10th international middleware conference. Urbana, pp 21–41

8. Caporuscio M, Raverdy P, Issarny V (2012) ubisoap: a service-

oriented middleware for ubiquitous networking. IEEE T Serv

Comput 5(1):86–98

9. Cavalli A, Higashino T, Nez M (2015) A survey on formal

active and passive testing with applications to the cloud. Ann

Telecommun 70(3-4):85–93

https://fi-xifi.eu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


150 Ann. Telecommun. (0000) 71:141–150

10. Fleurey F, Morin B, Solberg A (2011) A model-driven approach to

develop adaptive firmwares. In: 6th intl. symposium on software

engineering for adaptive and self-managing systems. ACM, New

York, pp 168–177

11. Glombitza N, Pfisterer D, Fischer S (2010) Using state machines

for a model driven development of web service-based sensor net-

work applications. In: ICSE workshop on software engineering for

sensor network applications. ACM, New York, pp 2–7

12. Grace P, Barbosa J, Pickering B, Surridge M (2014) Taming

the interoperability challenges of complex iot systems. In: Pro-

ceedings of the 1st ACM workshop on middleware for context-

aware applications in the IoT, M4IOT ’14. ACM, New York, pp

1–6

13. Hunkeler U, Truong HL, Stanford-Clark A (2008) Mqtt-s; a

publish/subscribe protocol for wireless sensor networks. In: COM-

SWARE 2008, pp 791–798

14. Hyper/Cat (2013) Iot ecosystem demonstrator interoperability

action plan. Technical Report Version 1.1

15. Inverardi P, Spalazzese R, Tivoli M (2011) Application-layer con-

nector synthesis. in: 11th international school on formal methods

for the design of computer, communication and software systems,

pp 148–190
16. Issarny V, Bennaceur A (2012) Composing distributed systems:

overcoming the interoperability challenge. In: 11th international

symposium, FMCO 2012, pp 168–196
17. Pardo-Castellote G (2003) Omg data-distribution service: archi-

tectural overview. In: Proceedings of the 2003 IEEE conference

on military communications - volume I, MILCOM’03. IEEE

Computer Society, Washington, pp 242–247DC
18. Reiners R, Zimmermann A, Jentsch M, Zhang Y (2009)

Automizing home environments and supervising patients at

home with the hydra middleware: application scenarios using

the hydra middleware for embedded systems. In: 1st work-

shop on context-aware software technology and applications,

pp 9–12
19. Schieferdecker I (2010) Test automation with ttcn-3 - state of the

art and a future perspective. In: Proceedings of the 22Nd IFIP

WG 6.1 international conference on testing software and systems,

ICTSS’10. Springer-Verlag, Berlin, pp 1–14
20. Vinoski S (2003) It’s just a mapping problem. IEEE Int Comput

7(3):88–90


	Model-driven interoperability: engineering heterogeneous IoT systems
	Abstract
	Introduction
	Model-driven interoperability
	Interoperability engineering methodology
	Interoperability and compliance models

	Interoperability modeling and testing tool
	Evaluation
	Case one: developing an application to interoperate with cloud and IoT services
	Analysis

	Case two: migrating between service providers
	Analysis


	Related work
	Conclusions and future work
	Acknowledgments
	Open Access
	References


