
Model-Driven Online
Capacity Management
for Component-Based

Software Systems

Dissertation

Dipl.-Inform. André van Hoorn

Dissertation
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
(Dr.-Ing.)

der Technischen Fakultät
der Christian-Albrechts-Universität zu Kiel

eingereicht im Jahr 2014

Kiel Computer Science Series (KCSS) 2014/6 v1.0 dated 2014-10-10

ISSN 2193-6781 (print version)
ISSN 2194-6639 (electronic version)

Electronic version, updates, errata available via http://www.informatik.uni-kiel.de/kcss

Published by the Department of Computer Science, Kiel University

Software Engineering Group

Please cite as:

➍ André van Hoorn. Model-Driven Online Capacity Management for Component-Based Software
Systems. Number 2014/6 in Kiel Computer Science Series. Department of Computer
Science, 2014. Dissertation, Faculty of Engineering, Kiel University.

@book{vanHoorn2014Dissertation,

author = {Andr\’e van Hoorn},

title = {Model-Driven Online Capacity Management

for Component-Based Software Systems},

publisher = {Department of Computer Science, Kiel University},

address = {Kiel, Germany}

year = {2014},

number = {2014/6},

isbn = {978-3-7357-5118-8},

series = {Kiel Computer Science Series},

note = {Dissertation, Faculty of Engineering, Kiel University}

}

© 2014 by André van Hoorn

Herstellung und Verlag: BoD — Books on Demand, Norderstedt

ii

http://www.informatik.uni-kiel.de/kcss

About this Series

The Kiel Computer Science Series (KCSS) covers dissertations, habilitation
theses, lecture notes, textbooks, surveys, collections, handbooks, etc. written
at the Department of Computer Science at Kiel University. It was initiated
in 2011 to support authors in the dissemination of their work in electronic
and printed form, without restricting their rights to their work. The series
provides a unified appearance and aims at high-quality typography. The
KCSS is an open access series; all series titles are electronically available free
of charge at the department’s website. In addition, authors are encouraged
to make printed copies available at a reasonable price, typically with a
print-on-demand service.

Please visit http://www.informatik.uni-kiel.de/kcss for more information, for
instructions how to publish in the KCSS, and for access to all existing
publications.

iii

http://www.informatik.uni-kiel.de/kcss

1. Examiner: Prof. Dr. Wilhelm Hasselbring
Kiel University

2. Examiner: Prof. Dr. Ralf Reussner
Karlsruhe Institute of Technology

3. Examiner: Prof. Dr. Samuel Kounev
University of Würzburg

Date of the oral examination (disputation): September 18, 2014

iv

Abstract

Capacity management is a core activity when designing and operating
distributed software systems. It comprises the provisioning of data cen-
ter resources and the deployment of software components to these re-
sources. The goal is to continuously provide adequate capacity, i. e., service
level agreements should be satisfied while keeping investment and oper-
ating costs reasonably low. Traditional capacity management strategies
are rather static and pessimistic: resources are provisioned for anticipated
peak workload levels. Particularly, enterprise application systems are ex-
posed to highly varying workloads, leading to unnecessarily high total
cost of ownership due to poor resource usage efficiency caused by the
aforementioned static capacity management approach.

During the past years, technologies emerged that enable dynamic data
center infrastructures—e. g., leveraged by cloud computing products. These
technologies build the foundation for elastic online capacity management,
i. e., adapting the provided capacity to workload demands based on a short-
term horizon. Because manual online capacity management is not an option,
automatic control approaches have been proposed. However, most of these
approaches focus on coarse-grained adaptation actions and adaptation
decisions are based on aggregated system-level measures. Architectural
information about the controlled software system is rarely considered.

This thesis introduces a model-driven online capacity management ap-
proach for distributed component-based software systems, called SLAstic.
The core contributions of this approach are a) modeling languages to cap-
ture relevant architectural information about a controlled software system,
b) an architecture-based online capacity management framework based
on the common MAPE-K control loop architecture, c) model-driven tech-
niques supporting the automation of the approach, d) architectural runtime
reconfiguration operations for controlling a system’s capacity, e) as well
as an integration of the Palladio Component Model. A qualitative and
quantitative evaluation of the approach is performed by case studies, lab
experiments, and simulation.

v

Preface
by Prof. Dr. Wilhelm Hasselbring

Typical web-based information systems face workloads that highly vary
over time. The full capacity for meeting SLAs (Service Level Agreements)
at peek workloads is not required during times with low workload. To
reduce operation costs, resources may be allocated dynamically at run-
time. Such elastic cloud-based systems face the great challenge of meeting
SLAs while allocating resources dynamically. Appropriate monitoring and
forecasting/prediction techniques are required.

In this thesis, André van Hoorn designs, implements and evaluates
the innovative, architecture-based approach SLAstic to meet defined SLAs
in elastic, cloud-based systems. Besides the conceptual work, this work
contains a significant experimental part with an implementation and a
multifaceted evaluation. This engineering dissertation has been extensively
evaluated with simulations and lab experiments, including data from in-
dustrial systems.

Specific contributions are the SLAstic meta-model for architecture mod-
eling and the SLAstic control component consisting of a model updater, a
performance evaluator, a workload forecaster, a performance predictor and
an adaptation planner. The design and implementation includes the Kieker
monitoring framework as a major contribution.

From a software engineering perspective, it is remarkable that model-
driven software engineering techniques are realized for model-driven instru-
mentation of the system under control, for updating the observed system
model, and for generating simulations, including a transformation to the
Palladio Component Model.

If you are interested in operating cloud-based systems, this is a recom-
mended reading for you.

Wilhelm Hasselbring
Kiel, September 2014

vii

Contents

Abstract v

Preface vii

1 Introduction 1

I Foundations 9

2 Model-Driven Software Engineering 11

3 Software System Architecture: Description and Reconfiguration 21

4 Quality of Service Evaluation and Capacity Management 39

II SLAstic Approach 73

5 Research Design 75

6 Architectural Modeling 91

7 Kieker Framework 107

8 SLAstic Framework 125

9 Model-Driven Online Capacity Management 143

10 Runtime Reconfiguration for Controlling Capacity 161

11 Utilizing the Palladio Component Model in SLAstic 173

ix

Contents

III Evaluation 199

12 Industrial Case Study 201

13 Lab Experiments 225

14 Simulation-Based Evaluation 247

15 Reviewing Kieker’s History, Development, and Impact 259

16 Related Work 279

IV Conclusions & Future Work 293

17 Conclusions 295

18 Future Work 299

List of Acronyms 305

List of Figures 311

List of Tables 315

Bibliography 317

x

Chapter 1

Introduction

This chapter provides an introduction to this thesis by stating the motivation
for this research (Section 1.1), summarizing the approach and its contribu-
tions (Section 1.2), and outlining the document structure (Section 1.3).

1.1 Motivation and Problem Statement

Quality of service (QoS) measures quantify the degree to which a soft-
ware system’s runtime quality properties—with respect to characteristics
like performance, reliability, and availability—satisfy respective require-
ments or user expectations [Becker et al., 2006b; ISO/IEC, 2005a]. Poor
QoS causes considerable costs, e. g., by losing customers that switch to
alternative system, or by penalties being due for payment to third parties.
With respect to the latter, such penalties are typically specified as part of so-
called service level agreements (SLAs) [IBM, 2003; Tosic, 2004]—particularly
among partners providing and consuming business-critical services. For
example, an SLA may define the penalty that is due if a specified soft-
ware service violates its QoS measures in terms of maximum response
times or service availability over a certain period of time. Hence, capacity
management—also referred to as capacity planning—is an important activ-
ity when designing and operating a software system [ISO/IEC, 2005a]. The
goal is that a system provides adequate capacity, i. e., that it continuously
satisfies its SLAs.

Traditional capacity planning strategies follow a rather static approach
[Jain, 1991; Menascé and Almeida, 2002]: data center resources are pro-
visioned for peak workload levels, based on long-term workload charac-
terization and forecasting. However, particularly in enterprise application
systems (EASs), workload is highly varying [Arlitt et al., 2001; Gmach
et al., 2007; Goševa-Popstojanova et al., 2006]. This includes time-dependent

1

1. Introduction

variations in workload intensity, e. g., based on the time of day and day of
week, as well as changes in request patterns contained in a system’s opera-
tional profile [Musa, 1993]. As a consequence of static capacity planning
and varying workloads, data center resources are poorly utilized [Barroso
and Hölzle, 2007]. This underutilization of resources leads to an unneces-
sarily high total cost of ownership, particularly caused by increasing energy
costs—e. g., needed for running the technical data center infrastructure
comprising servers, network components, cooling, etc. As a measure of
a system’s resource usage economy, resource efficiency is becoming an
increasingly important quality characteristic of software systems.

During the past years, virtualization technologies emerged and be-
came commodity—e. g., in form of cloud computing services [Mell and
Grance, 2011; Armbrust et al., 2009]. Infrastructure as a service (IaaS)
products enable dynamic changes to virtual data center infrastructures by
allocating and releasing resources—including virtual machines, storage, and
database management systems—at runtime on a pay-per-use basis. Promi-
nent examples are the commercial products Amazon Web Services [Amazon
Web Services, Inc., 2014] and Windows Azure [Microsoft, Inc., 2014], as well
as the open source products Eucalyptus [Nurmi et al., 2009; Eucalyptus Sys-
tems, Inc., 2014] and OpenStack [OpenStack Foundation, 2014]. Dynamic
infrastructures build the technical foundation for online capacity manage-
ment aiming for increased resource efficiency by adapting the provisioned
infrastructure to current demands in a short-term manner. Of course, man-
ual approaches to online capacity management are not an option. Automatic
approaches for online capacity management have been proposed. However,
most of these approaches are limited to coarse-grained adaptation actions,
e. g., live-migration of virtual machine images. Architectural information
about the controlled software is rarely considered. Moreover, decision mak-
ing is based on aggregated system-level performance metrics, such as CPU
utilization, considering application-level QoS measures, such as response
times, only implicitly. In most cases, explicit architectural information about
the controlled software system, including software components and their
interactions, is missing. On the other hand, approaches for predicting a
software system’s QoS based on architectural models have been proposed,
e. g., focusing on performance of component-based software systems [Kozi-
olek, 2010; Bertolino and Mirandola, 2004; Becker et al., 2009]. However,
these approaches mainly focus on design-time prediction.

2

1.2. Overview of Approach and Contributions

1.2 Overview of Approach and Contributions

This thesis describes a model-driven online capacity management approach
for distributed component-based software systems, called SLAstic. Relevant
information about the controlled software system—including QoS-relevant
structural and behavior aspects, as well as QoS requirements (SLAs)—
are captured in architectural models. These models are used to initialize
and execute an online capacity management infrastructure for continuous
monitoring, analysis, and adaptation of the controlled system. The system
is adapted by architectural runtime reconfiguration on system level and
application level. This work draws from the areas of model-driven software
engineering (MDSE) [Stahl and Völter, 2006; Brambilla et al., 2012], software
performance engineering [Woodside et al., 2007; Cortellessa et al., 2011],
software architecture [Taylor et al., 2009], and self-adaptive software systems
[Salehie and Tahvildari, 2009].

In addition to the overall approach, the core contributions of this thesis
can be grouped into six categories, according to the following Sections 1.2.1
to 1.2.6. Note that a more detailed summary of results—including those
results achieved in the context of this thesis but not detailed here—is also
provided in Section 5.2 as part of the description of the research design.
Supplementary material for this thesis is publicly available online [van
Hoorn, 2014].

1.2.1 Architectural Modeling

We selected and developed a set of complementary modeling languages sup-
porting the SLAstic approach. The SLAstic meta-model allows to represent
structural and behavioral aspects on a component-based software system’s
architecture, using an abstraction level close to the Palladio Component
Model (PCM) [Becker et al., 2009]. As a result of joint work, we devel-
oped the meta-model agnostic modeling approaches MAMBA and S/T/A.
Building on the OMG’s SMM meta-model [Object Management Group,
Inc., 2012b], MAMBA serves to attach performance measures to SLAstic
models. S/T/A is employed to express reconfiguration plans. Instances of
these modeling languages serve as a basis for monitoring instrumentation,
framework initialization, and for the online analysis at runtime. For each of
the modeling languages, an implementation is provided.

3

1. Introduction

1.2.2 Online Capacity Management Framework

We developed two complementary frameworks, called Kieker and SLAstic,
which support the online capacity management approach by implementing
a closed MAPE-K control loop.

➍ Kieker is an extensible framework for application performance mon-
itoring and dynamic software analysis. Kieker enables the technical
instrumentation, continuous monitoring, and analysis of software sys-
tems.

➍ SLAstic is an extensible framework for self-adaptive architecture-based
online capacity management through architectural runtime reconfigu-
ration. The SLAstic framework provides a separation of architecture
and technology: the online analysis is based on architectural runtime
models—conforming to the aforementioned modeling languages—and
continuous QoS measures; it is possible to connect the framework to
systems implemented with different technologies.

For both frameworks, a conceptual architecture is described and a publicly
available implementation has been developed.

1.2.3 Model-Driven Online Capacity Management

We developed techniques to improve the automation of reoccurring, schematic
tasks within the SLAstic approach employing model-driven techniques. Par-
ticularly, this includes a) the generation of a Kieker-based instrumentation,
b) the transformation of low-level monitoring data obtained from Kieker
into architecture-level monitoring events, and c) the extraction of SLAstic
models from monitoring data.

1.2.4 Runtime Reconfiguration for Controlling Capacity

We defined a set of five architectural reconfiguration operations which can
be used to control the capacity of a software system and integrated these
operations into the SLAstic approach. The set of operations comprises
two system-level operations—allocation and deallocation of execution con-
tainers (e. g., servers)—and three application-level operations—replication,
dereplication, and migration of software components.

4

1.3. Document Structure

1.2.5 Integration of PCM

An orthogonal category of contributions comprises results of using and
integrating the Palladio Component Model (PCM) [Becker et al., 2009] into
our approach. By providing a transformation from SLAstic instances to
PCM instances, it is possible to extract PCM instances by dynamic analysis
using the model-driven techniques listed in Section 1.2.3. In order to
allow manual refinement/completion of PCM instances and their use at
runtime, we developed a decorator concept. We developed the SLAstic.SIM
discrete-event simulator for runtime reconfigurable PCM instances, which is
integrated with the Kieker and SLAstic frameworks. The simulator includes
a PCM-specific implementation of the five proposed runtime reconfiguration
operations (Section 1.2.4).

1.2.6 Evaluation

We evaluated our SLAstic approach in a combination of case study, lab
experiments, and simulation. In the case study described in this thesis, we
deployed our Kieker framework in an industrial case study system and
extracted real usage profiles and system models from this data. In lab exper-
iments, we integrated our SLAstic framework with an IaaS cloud infrastruc-
ture. A sample Java EE application was deployed to this infrastructure and
its capacity was managed by the SLAstic framework. In a simulation-based
evaluation, we integrated the framework with the aforementioned simulator
and investigated the impact of the approach on system capacity. Moreover,
we provide a retrospective view on the history of Kieker’s evolution during
the past years, including an overview of impact in research and industry.

1.3 Document Structure

The remainder of this document is structured as follows:

➍ Part I comprises the foundations of this work.

➍ Chapter 2 introduces core concepts of model-driven software engineer-
ing (MDSE), including modeling languages, model transformations,
and MDSE technologies.

5

1. Introduction

➍ Chapter 3 introduces the topic of software architectures, focusing on
software architecture description, component-based software architec-
tures, technologies for enterprise application systems, as well as core
concepts of self-adaptive software systems, including architectural
runtime reconfiguration.

➍ Chapter 4 introduces the topic of QoS evaluation and capacity man-
agement, focusing on QoS measures, SLA languages, as well as per-
formance and workload measurement, modeling, and prediction. The
supporting modeling languages, MAMBA and S/T/A, are described
in this chapter.

➍ Part II comprises the description of our model-driven online capacity
management approach for component-based software systems.

➍ Chapter 5 describes our research methodology, including work pack-
ages, research questions, and a summary of results.

➍ Chapter 6 describes the SLAstic meta-model, including the integration
of MAMBA and S/T/A.

➍ Chapter 7 gives an overall overview about the Kieker framework,
including a brief description of the implementation.

➍ Chapter 8 presents the SLAstic framework, including its conceptual
architecture and a brief description of its implementation.

➍ Chapter 9 describes the model-driven techniques for instrumentation,
transformation of monitoring events, as well as model extraction
based on dynamic analysis.

➍ Chapter 10 focuses on runtime reconfiguration for increasing resource
efficiency. It describes the five reconfiguration operations and their
integration into the SLAstic modeling languages and framework.

➍ Chapter 11 covers the integration of the Palladio Component Model
(PCM) into our approach, including the transformation of SLAstic
models into PCM instances, the decoration of PCM instances, as well
as the simulation of runtime reconfigurable PCM instances supporting
the reconfiguration operations described in Chapter 10.

6

1.3. Document Structure

➍ Part III comprises the evaluation of the approach.

➍ Chapter 12 describes the results from the industrial case study.

➍ Chapter 14 describes the results using the developed simulation in-
frastructure.

➍ Chapter 13 describes the results from the lab experiments conducted
in a private cloud infrastructure.

➍ Chapter 15 gives a retrospective overview about the history, develop-
ment, and impact of the Kieker framework.

➍ Chapter 16 discusses related work.

➍ Part IV draws the conclusions (Chapter 17) and outlines future work
(Chapter 18).

The end matter includes lists of acronyms, figures, and tables, as well as the
bibliography. Supplementary material for this thesis—comprising software,
models, data, etc.—is publicly available online [van Hoorn, 2014].

7

Part I

Foundations

Chapter 2

Model-Driven Software
Engineering

Since decades, models play a core role in various disciplines, including
software engineering [Ludewig, 2003; Ludewig and Lichter, 2010]. A com-
monly used reference for the notion and semantics of a model is Stachowiak
[1973] who states that a model must meet the three criteria of a) mapping,
b) reduction (abstraction), and c) pragmatics; i. e., a model represents a
relevant subset (reduction) of a real-world object’s (mapping) properties
for a specific purpose (pragmatics). Models are typically used to reduce
complexity by abstraction and by omitting irrelevant details. Note that the
general notion of a model is not limited to graphs or diagrams. The same
model may serve for descriptive and prescriptive purposes.

This chapter introduces core concepts and technologies for model-driven
software engineering (MDSE) [Stahl and Völter, 2006; Brambilla et al., 2012],
which is an engineering paradigm that handles models and their transforma-
tions as primary artifacts to develop, analyze, and evolve software systems.
Note that various acronyms with the same or a similar meaning exist, e. g.,
model-driven development (MDD), model-driven engineering (MDE), and
model-driven software development (MDSD). Also, the notion of model-
based is often used. For this thesis, we chose to select MDSE to include
other software engineering activities in addition to development as well as to
emphasize the focus on software systems and that models serve as primary
artifacts—as opposed to model-based.

During the past years, MDSE techniques and technologies gained
widespread use in academia and industrial practice for different purposes,
including generative software development ([Stahl and Völter, 2006]), model-
based software performance engineering ([Cortellessa et al., 2011]), as well
as reverse and reengineering.

11

2. Model-Driven Software Engineering

Core concepts of MDSE are modeling languages and model transforma-
tions, which are introduced in the following Sections 2.1 and 2.2. Section 2.3
provides an overview of widely used MDSE specifications and technologies
contributed by the Object Management Group and the Eclipse Modeling
Project. Note that we do not aim to provide a comprehensive introduction
to MDSE in this thesis. In order to get deeper into this topic, we recommend
the textbooks by Stahl and Völter [2006] as well as by Brambilla et al. [2012].

2.1 Modeling Languages

A modeling language is a formalism to express models. It comprises defini-
tions of abstract syntax, concrete syntax, and semantics [Brambilla et al., 2012].
The abstract syntax specifies the set of modeling primitives along with
rules on how to combine them—independent of any representation. Such
representations are specified in the concrete syntax, which may be a textual
concrete syntax (TCS), a graphical concrete syntax (GCS), or a hybrid combina-
tion of both. The meaning of models expressed in the language is provided
by the semantics.

In the MDSE context, the abstract syntax of a modeling language is
defined by a so-called meta-model, which describes relevant concepts of
the problem domain in terms of its entities and their relationships. The
formalisms used to express entities and relationships in a meta-model are

Meta-Meta-Model

Meta-Model

Model

Real World
Object

«conformsTo»

«conformsTo»

«describes»

defines

defines

M3

M2

M1

M0

«conformsTo»

D
om

ai
n

En
gi

ne
er

in
g

La
ng

ua
ge

En
gi

ne
er

in
g

MOF, Ecore, ...

UML, ...

UML Model
for System A

Java
System A

Meta-
Language

Modeling
Language

Figure 2.1. Four-layered meta-modeling stack (based on Brambilla et al. [2012])

12

2.2. Model Transformations

again specified in a model called meta-meta-model. Similar to concepts
found in UML class diagrams [Object Management Group, Inc., 2013b], a
meta-meta-model typically provides concepts like (abstract and concrete)
classes with typed attributes, class hierarchies through generalization, as
well as (un)directed associations among classes, including the containment
property.

Figure 2.1 depicts the four-layered stack most MDSE approaches and
technologies are based on. Meta-meta-models like MOF or Ecore (see
Sections 2.3.1 and 2.3.2)—typically along with additional constraints ex-
pressed in Object Constraint Language (OCL) [Object Management Group,
Inc., 2012a]—provide the meta-language to express modeling languages
defined by a meta-model. These meta-models are used to express models
of real-world objects. A common notion is that a model on meta-modeling
layer Mi conforms to its meta-model on layer Mi+1 [Kühne, 2006]. The meta-
meta-models on layer M3 are usually self-describing, i. e., they provide their
own meta-model.

Modeling languages can be divided into domain-specific languages
(DSLs) and general purpose languages (GPLs), depending on whether or
not the concepts provided by the language are tailored to a specific problem
domain. In many cases, the design and implementation of a DSL is part of
an MDSE-based development process.

Distributed and collaborative access to models—on each of the men-
tioned layers—is supported by so-called model repositories. Model reposito-
ries can be considered to provide services known from database manage-
ment systems and version control systems, including persistence, version-
ing, querying, partial loading, consistence, and transaction management
[Kiel, 2013].

2.2 Model Transformations

A model transformation is a program that takes a set of source models as
input and maps these to a set of target models produced as output. Each
source and target model conforms to a meta-model. Figure 2.2 depicts
the general schema of model transformations. An established model trans-
formation taxonomy exists [Mens and Van Gorp, 2006], which classifies
transformations based on orthogonal dimensions, such as a) the number

13

2. Model-Driven Software Engineering

of involved source and target models—one-to-one, one-to-many, many-to-one,
b) whether source and target models conform to the same or different meta-
models—endogenous vs. exogenous, c) whether source and target models
are on the same or different levels of abstraction—horizontal (refactoring,
migration) vs. vertical (abstraction vs. refinement), d) and whether the source
and target models are the same or different models—in-place vs. out-place.
Transformations whose source or target models are expressed in a TCS (e. g.,
source code)—typically without an explicit meta-model—are referred to as
model-to-text (M2T) and text-to-model (T2M) transformations. Otherwise,
transformation are called model-to-model (M2M). M2T transformations are
also called generators.

Transformations are expressed using formalisms called transformation
languages. Typically, the exact four-layered meta-model stack described in
Section 2.1 is the basis for transformations (M1) and transformation lan-
guages (M2), i. e., a transformation is a model that conforms to a meta-model
defining the transformation language (Figure 2.2). This allows transforma-
tions to be used as input and/or output for transformations, which are then
called higher order transformations (HOTs). A number of transformation
languages with corresponding tool support exist, which differ quite con-
siderably, e. g., in terms of the supported transformation dimensions (see
above) and meta-meta-models, as well as language characteristics and un-
derlying transformation approaches. With respect to the latter aspects, M2M
transformations may, for instance, be based on direct manipulation, rela-
tional (declarative) or operational (imperative) constructs, graph grammars,
as well as combinations of these [Czarnecki and Helsen, 2006].

Meta-Model IA

Model IA

«conformsTo»

Meta-Model OA

Model OA

«conformsTo»

Transformation

Meta-Model T
«conformsTo»

input
(source models)

output
(target models)

defines

Transformation
Language

Figure 2.2. Model transformation schema

14

2.3. Technologies

2.3 Technologies

Sections 2.3.1 and 2.3.2 describe MDSE specifications by the Object Manage-
ment Group and the Eclipse Modeling Project, focusing on those parts that
are relevant to this thesis.

2.3.1 Specifications by the Object Management Group

Under the umbrella of the Model-Driven Architecture (MDA) [Object Man-
agement Group, Inc., 2003, 2013d] framework, the Object Management
Group (OMG) is maintaining a number of specifications that emerged as
de-facto standards for MDSE approaches and tools today. In this section, we
will briefly mention the purpose of the most important MDA specifications
that are relevant to this thesis. We also include a modeling specifica-
tion that is being developed as part of the OMG’s Architecture-Driven
Modernization (ADM) initiative [Object Management Group, Inc., 2013c].
We chose not to list the long names, latest version numbers and references
for the specification in the text. This information is provided in Table 2.1.

MOF (including CMOF and EMOF) is the self-describing meta-meta-
model used by all other OMG modeling specifications. OCL is a side-
effect-free declarative language that allows to refine MOF-based models
by constraints, invariants, queries, etc. XMI and HUTN specify an XML-
based interchange format and a standard TCS for MOF-based models. QVT
specifies one imperative and two declarative model transformation lan-
guages. UML, which is probably the most famous OMG specification, is
an architecture description language (ADL) (Section 3.1.4) that allows to
describe structural and behavioral aspects of software-intensive systems.
The UML can also be used to define DSLs, by creating so-called UML
Profiles. Relevant to this thesis are the UML Profiles SPT and its successor
MARTE (covered in Section 4.5), which allow to enrich UML diagrams by
performance-relevant information. SMM, which will be detailed in Sec-
tion 4.1.4, provides a meta-model to formulate measures and measurements
relating to MOF-based models.

15

2. Model-Driven Software Engineering

Table 2.1. Important OMG modeling specifications, divided into generic meta-
modeling and transformation specifications, modeling languages, and UML Profiles.

Acronym Specification name

[Reference incl. year]

Version

HUTN Human-Usable Textual Notation 1.0

[Object Management Group, Inc., 2004]

MOF Meta Object Facility 2.4.1

[Object Management Group, Inc., 2011a]

OCL Object Constraint Language 2.3.1

[Object Management Group, Inc., 2012a]

QVT Query/View/Transformation 1.1

[Object Management Group, Inc., 2011b]

XMI XML Metadata Interchange 2.4.1

[Object Management Group, Inc., 2013a]

SMM Structured Metrics Meta-Model 1.0

[Object Management Group, Inc., 2012b]

UML Unified Modeling Language 2.5

[Object Management Group, Inc., 2013b]

MARTE UML Profile for MARTE: Modeling and Analysis of Real-Time

Embedded Systems

1.1

[Object Management Group, Inc., 2011c]

SPT UML Profile for Schedulability, Performance, and Time 1.1

[Object Management Group, Inc., 2005]

2.3.2 Eclipse Modeling Project

The Eclipse Modeling Project (EMP) [Eclipse Foundation, 2014] provides
MDSE technologies that are widely used in research and practice. The EMP
technologies, organized in EMP subprojects, can be grouped into support
for abstract and concrete syntax development, model transformation, and
implementations of industry-standard meta-models. In this section, we will
briefly mention EMP subprojects relevant to this thesis. We decided not to
include URLs for the web sites of the every EMP subproject, as they are
reachable via the main EMP web site [Eclipse Foundation, 2014].

16

2.3. Technologies

➍ Abstract and concrete syntax development.

The most prominent part of EMP is the (meta-)modeling and code
generation framework EMF (Eclipse Modeling Framework) [Steinberg
et al., 2009], which provides the basis for all other EMP technologies. It in-
cludes the self-describing meta-meta-model Ecore, which is almost equiv-
alent to the OMG’s EMOF. Other EMP projects contribute additional
functionality for EMF, e. g., for querying, validation, and transaction
management. The Connected Data Objects (CDO) subproject provides a
repository for distributed shared EMF (meta-)models, with properties
like persistence, concurrent and transactional access, collaboration, and
fail over.

With respect to concrete syntax development, EMP subprojects support
the development of graphical editors, as well as textual syntaxes and
editors. With respect to the latter, Xtext is a popular framework for
developing TCSs and programming languages [Efftinge et al., 2012].

➍ Transformation.

M2M and M2T transformation languages and tools provided by EMP
subprojects include ATL, Henshin, and Xtend. The latter builds on the
afore-mentioned Xtext technology.

➍ Support for industry-standard meta-models.

Ecore-based implementations of industry-standard meta-models are pro-
vided, e. g., the OMG’s OCL, UML 2 (both mentioned in Section 2.3.1),
and BPMN2 [Object Management Group, Inc., 2011d] specifications. In
addition to this, EMP subprojects in this group provide tool support. Ex-
amples include Papyrus, which is a graphical UML 2 editor, and MoDisco,
which provides tool support for the OMG’s MDA initiative (Section 2.3.1),
including model extractors and transformations.

Additional details about EMF and ATL will be provided in the following
two sections, as they are used as (meta-)modeling and M2M transformation
technologies in this thesis.

17

2. Model-Driven Software Engineering

EMF
Model

XML UML

Java

Figure 2.3. Equivalent representations for EMF models [Steinberg et al., 2009]

Eclipse Modeling Framework

As mentioned before, EMF includes the self-describing meta-meta-model
(M3 layer, Section 2.1) called Ecore, which—similar to MOF (Section 2.3.1)—
can be seen as the class diagram subset of UML. Meta-models (M2) that
conform to Ecore are referred to as EMF models. Three equivalent represen-
tations for EMF models (M2) exist: a) XML schemas, b) UML class diagrams,
and c) Java programs. As depicted in Figure 2.3, EMF supports to trans-
form each representation into any of the other representations. The XML
schema conforms to an Ecore-compatible variant of XMI, called Ecore XMI,
with the file extension .ecore. Model instances (M1) can be serialized to XMI,
conforming to the XML schema representing the EMF model. Many UML
tools provide an export option to Ecore XMI. EMF includes a configurable
code generator that transforms EMF models into Java programs, including
special annotations enabling manual refinements in the code.

Ecore’s core meta-classes are EClass, EDataType, EAttribute, and EReference.
An EClass, which is the meta-class for classes in conforming EMF models,
has a name, refers to zero or more supertypes (EClass), may be marked as an
abstract class or an interface, and contains two types of so-called structural
features—EAttributes, EDataType, and EReferences, which are associations to
other EClasses. Concrete EDataTypes are included for common plain types like
integers (EInt) and boolean (EBoolean). Note that Ecore contains considerably
more meta-classes and associations. Please refer to Steinberg et al. [2009]
for a detailed Ecore description.

Usually, the UML class diagram notation is used to visualize the abstract
syntax of EMF models. Steinberg et al. [2009] elaborate this mapping
in detail. Likewise, UML Object Diagrams are used to visualize model
instances (M1).

18

2.3. Technologies

EMF provides various additional features not relevant to this thesis, e. g.,
validation, persistence, reflective API, runtime framework, editing in a UI,
etc. Please refer to Steinberg et al. [2009] for a comprehensive introduction
to EMF.

ATLAS Transformation Language

The ATLAS Transformation Language (ATL) [Jouault et al., 2008] is a M2M
transformation language and a corresponding tool set, developed as part
of the EMP. An ATL transformation program produces a set of target
models from a set of source models. An ATL program is composed of
rules that define how to create target model elements from source model
elements. ATL is a hybrid transformation language, i. e., it supports the
use of both declarative and imperative styles in defining the transformation
rules. The ATL tool set allows to edit, compile, launch, and debug ATL
transformation programs. To this date, the ATL transformation engine
supports three meta-meta-model technologies:1 a) MOF (see Section 2.3.1),
b) Ecore, and c) KM3 [Jouault and Bézivin, 2006]. Details on ATL are
described by Jouault et al. [2008] and have also been elaborated by Günther
[2011] in the context of this thesis.

1
http://wiki.eclipse.org/ATL/Concepts

19

http://wiki.eclipse.org/ATL/Concepts

Chapter 3

Software System Architecture:
Description and Reconfiguration

Each software system exhibits a so-called architecture, informally comprising
its fundamental properties and design decisions, e. g., with respect to
structure and behavior [Taylor et al., 2009]. Architectural descriptions
[ISO/IEC/IEEE, 2011] serve to make certain aspects of an architecture
explicit for specific purposes, e. g., for documenting the set of system
components and their interactions. Common and reusable concepts for
the description of software system architectures emerged and provide the
foundation for architecture-based approaches for system evaluation and
reconfiguration.

This chapter introduces relevant concepts for architecture description
and reconfiguration, with a focus on component-based software systems. It
is organized as follows. Section 3.1 introduces common terminology and
concepts used to describe software system architectures. Section 3.2 focuses
on architectures of component-based software systems. Technologies for en-
terprise application systems are introduced in Section 3.3, focusing on Java
and IaaS-based cloud computing. Foundations on self-adaptive software
systems, including architectural runtime reconfiguration, are provided in
Section 3.4.

3.1 Describing Software System Architectures

A whole body of work on architectures of software(-intensive) systems has
been published since the early 1990s, when this became a hot research topic
[Kruchten et al., 2006]. Numerous definitions for the term architecture have
been proposed—see, for example, the collection of definitions maintained

21

3. Software System Architecture: Description and Reconfiguration

by the Carnegie Mellon Software Engineering Institute (SEI) in its online
software architecture glossary.1 In this thesis, we use Definition 3.1 from the
ISO/IEC/IEEE International Standard 42010:2011(E) [ISO/IEC/IEEE, 2011].
The standard makes no specific assumptions about the kind of system
whose architecture is to be described. However, it explicitly includes the
domain of software-intensive systems, as defined in the IEEE Standard 1471-
2000 [IEEE, 2000].

Definition 3.1 ((System) architecture [ISO/IEC/IEEE, 2011]). “Fundamental
concepts or properties of a system in its environment embodied in its elements,
relationships, and in the principles of its design and evolution.”

The following sections introduce terms, definitions, and concepts from soft-
ware architecture research, which are relevant to this thesis: a) architecture
description in the afore-mentioned ISO/IEC/IEEE standard (Section 3.1.1),
b) component, connector, and configuration (Section 3.1.2), c) architectural
style (Section 3.1.3), d) and architecture description languages (Section 3.1.4).
For further details, comprehensive textbooks by researchers having signifi-
cant impact on advances in this area exist—for example, by Clements et al.
[2002] and Taylor et al. [2009].

3.1.1 Architecture Description in ISO/IEC/IEEE Std. 42010

The ISO/IEC/IEEE International Standard 42010:2011(E) (Systems and Soft-
ware Engineering — Architecture Description) [ISO/IEC/IEEE, 2011], which is
the most recent successor of the widely known IEEE Standard 1471-2000
(IEEE Recommended Practice for Architectural Description of Software-Intensive
Systems) [IEEE, 2000], suggests a conceptual model of architecture description
for systems of interest. Architecture description, which is the central notion in
the standard, is defined as follows (Definition 3.2):

Definition 3.2 (Architecture description [ISO/IEC/IEEE, 2011]). “Work
product used to express an architecture.”

Limited to those parts relevant to this thesis, Figure 3.1 depicts the context
and the conceptual model of an architecture description as defined by the
standard. The important drivers for creating an architecture description are

1
http://www.sei.cmu.edu/architecture/start/glossary

22

http://www.sei.cmu.edu/architecture/start/glossary

3.1. Describing Software System Architectures

(a) Context of architecture description

(b) Conceptual model of an architecture description (excerpt)

Figure 3.1. Context (a) and conceptual model (b) of an architecture description
according to the ISO/IEC/IEEE Standard 42010:2011(E) [ISO/IEC/IEEE, 2011]

concerns relevant to one or more stakeholders having interests in the system
(see also Figure 3.1a). Note that those concerns—just like the environment
the system is situated in—includes but is not limited to technical aspects
like functional or non-functional requirements. The concerns are addressed
by architecture views, contained in the architecture description, which are
expressed by one or more architecture models. As depicted in Figure 3.1b, an
architecture view (view) and an architecture model are governed by an archi-
tecture viewpoint (viewpoint) and a model kind respectively. Definitions 3.3
to 3.5 list definitions for the previously mentioned terms as included in the
standard.

Definition 3.3 ((Architecture) view [ISO/IEC/IEEE, 2011]). “Work product
expressing the architecture of a system from the perspective of specific system
concerns.”

23

3. Software System Architecture: Description and Reconfiguration

Definition 3.4 ((Architecture) viewpoint [ISO/IEC/IEEE, 2011]). “Work
product establishing the conventions for the construction, interpretation and use of
architecture views to frame specific system concerns.”

Definition 3.5 (Model kind [ISO/IEC/IEEE, 2011]). “Conventions for a type
of modelling.”

For example, let’s assume that a customer (stakeholder) requests a response
time guarantee for a system-provided service (concern). As will be de-
scribed in Section 4.5, a number of performance prediction techniques exist.
To frame the afore-mentioned concern, a viewpoint could specify that a
Layered Queueing Network (LQN), as the model kind, is to be used to
predict the measure of interest based on a specific LQN solver configuration.
The concrete analysis for the system, based on an LQN model (architecture
model), would represent the view addressing the afore-mentioned concern.

It makes sense to sort some of the afore-mentioned concepts for archi-
tecture description into the four-layer meta-modeling stack from MDSE
(see Section 2.1)—even though MDSE technology is not necessarily em-
ployed. Environment, system, architecture, stakeholders, and concerns
(Figure 3.1a) are real-world entities situated on the M0 layer. In order to
define the concepts (M2) to be used for architecture description, a set of ar-
chitecture viewpoints are selected, which imply the set of used model kinds.
Countless existing notations on different levels of abstraction may serve
as model kinds, e. g., design-level software modeling languages like the
UML [Object Management Group, Inc., 2013b] or more generic and abstract
languages like Petri Nets or Queueing Networks (Section 4.5). The notion of
architecture description languages (ADLs), detailed in Section 3.1.4, is often
used for these modeling languages in the context of architecture description.
A set of architecture models (grouped in architecture views), located on the
M1 layer, conform to the previously mentioned concepts on the M2 layer
and describe the real-world entities on M0.

Note that just like any model (page 11), architecture descriptions may
be prescriptive (“as-designed”, “as-intended”) or descriptive (“as-imple-
mented”, “as-realized”). See Taylor et al. [2009]) for a discussion on this.

24

3.1. Describing Software System Architectures

3.1.2 Component, Connector, and Configuration

Definition 3.1 includes the notion of architectural elements and relationships.
In the literature, these elements or usually divided into components and
connectors that can be made of software or hardware. With respect to soft-
ware, Shaw and Clements [1997] define a component as “a unit of software,
that performs some function at runtime” and list objects and processes as
examples. (In Section 3.2, we will refine our understanding of a software
component for this thesis.) With respect to hardware components, these may
include server nodes, network routers, or lower-level resources like CPUs.
Connectors mediate interaction among components and often have no cor-
responding element in the real system [Shaw and Clements, 1997]. Example
software connectors include mechanisms for local or remote procedure calls,
or event-based communication. A typical example of a relationship type
is the information to which hardware component(s) a software component
is deployed to. Both the sets of elements and relationships in an architecture
may change as part of a system’s evolution, including changes at runtime
as part of runtime reconfiguration (Section 3.4.2).

A common notion for an architectural snapshot in terms of elements and
relationships is the architectural configuration. Fielding [2000] contributes the
appropriate Definition 3.6:

Definition 3.6 (Architectural Configuration [Fielding, 2000]). “A configura-
tion is the structure of architectural relationships among components, connectors,
and data during a period of system runtime.”

3.1.3 Architectural Style

A common and useful notion to describe high-level architectural decisions
shared by multiple architectures is architectural style. Taylor et al. [2009]
provide an informal definition (Definition 3.7):

Definition 3.7 (Architectural style [Taylor et al., 2009]). “An architectural
style is a named collection of architectural design decisions that a) are applicable in
a given development context, b) constrain architectural design decisions that are
specific to a particular system within that context, and c) elicit beneficial qualities
in each resulting system.”

25

3. Software System Architecture: Description and Reconfiguration

A more technical definition, using the terminology introduced in this chap-
ter, is given by Fielding [2000] (Definition 3.8):

Definition 3.8 (Architectural style [Fielding, 2000]). “An architectural style
is a coordinated set of architectural constraints that restricts the roles/features of
architectural elements and the allowed relationships among those elements within
any architecture that conforms to that style.”

Example architectural styles are client-server, pipes-and-filters, event-based
systems, service-oriented architecture (SOA), and Representational State
Transfer (REST) [Fielding and Taylor, 2002]. Taylor et al. [2009] describe a
large number of common architectural styles using a common description
template. This thesis also builds on a wide-spread architectural style,
namely component-based software systems, as detailed in Section 3.2.

Similar to design patterns, architectural patterns, and reference architec-
tures, architectural styles typically result from solutions that have proven
useful and—as a way of reuse—serve as blueprints for solving similar prob-
lems. Also, architectural style enables to develop architectural analyses that
can be applied to any system that conforms to a respective style, e. g., per-
formance predictions for component-based software systems (Section 4.5).

3.1.4 Architecture Description Languages

Section 3.1.1 introduced the context and the conceptual model of architec-
ture description as defined in the ISO/IEC/IEEE Standard 42010. In that
section, we’ve already mentioned that formalisms are needed to express
architecture views and models that conform to architecture viewpoints and
model kinds. These formalisms are provided by architecture description
languages (ADLs). An ADL definition that uses the terminology introduced
before is provided by Clements et al. [2002] (Definition 3.9):

Definition 3.9 (Architecture description language [Clements et al., 2002]).
“A language (graphical, textual, or both) for describing a software system in terms
of its architectural elements and the relationships among them.”

Based on Section 3.1.2, note that the typical types of architectural elements
to be supported by an ADL are components, connectors, and configurations
[Medvidovic and Taylor, 2000].

26

3.2. Component-Based Software Architectures

In the context of this thesis, we assume that an ADL is a modeling
language that is formal in the following sense: it is or can be defined by
a meta-model on the M2 layer of the four-layered MDSE meta-modeling
stack introduced in Section 2.1. However, an explicit concrete syntax is not
required. This allows to use architecture descriptions in tool-supported
MDSE contexts, e. g., for model analysis and transformations.

Note that these strict assumptions on ADLs are not always required; Tay-
lor et al. [2009], for instance, have a rather broad view on an ADL’s require-
ments: “ADLs can be textual or graphical, informal (such as PowerPoint
diagrams), semi-formal, or formal, domain-specific or general-purpose,
proprietary or standardized, and so on.”

The requirement for tool support is also confirmed by Medvidovic and
Taylor [2000] in their frequently cited article on classifying and comparing
ADLs. State-of-the-art MDSE technology eases the development of ADLs,
including TCSs and GCSs as well as corresponding tool support.

A comprehensive description of (the history of) ADLs is provided by
Taylor et al. [2009]. The authors classify the covered ADLs into three
categories: a) early, first generation ADLs from research projects that are
no longer active (e. g., Darwin [Magee et al., 1995], Rapide [Luckham and
Vera, 1995], and and Wright [Allen and Garlan, 1997]), b) domain- and style-
specific ADLs (e. g., Koala [van Ommering et al., 2000], Weaves [Gorlick and
Razouk, 1991], and Architecture Analysis and Design Language (AADL)
[Feiler et al., 2003]), c) and extensible ADLs (e. g., Acme [Garlan et al., 1997]
and xADL [Dashofy et al., 2005]).

ADLs are sometimes tailored for specific architectural styles and pur-
poses. Of particular interest to this thesis are ADLs to describe component-
based software architectures (CBSAs), as detailed in Section 3.2. We focus
on the existing ADLs UML 2 and PCM and develop a custom ADL for
CBSAs in Chapter 6.

3.2 Component-Based Software Architectures

In this thesis, we focus on so-called component-based software systems (CBSSs),
i. e., software systems that are created by the assembly of software components.
The idea of CBSE was first proposed by Mcilroy [1969] in 1968 at a NATO
software engineering conference. The motivation—based on common prac-

27

3. Software System Architecture: Description and Reconfiguration

tice in other engineering disciplines—has been to have a market for reusable
and well-specified software components that can be reused for different
CBSSs. As generally accepted in software engineering, reuse may increase
the quality of a software product and decrease development costs.

The term component in this context is meant to be more specific compared
to the one previously introduced in Section 3.1.2—i. e., simply being one
type of architectural element from Definition 3.1. A common definition for
software components accepted in the research community emerged in 1996
during the Workshop on Component-Oriented Programming (WCOP):

Definition 3.10 (Software component [Szyperski et al., 2002]). “A software
component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed indepen-
dently and is subject to composition by third parties.”

While this definition provides a general understanding of the term and
fits to the previous description of CBSSs, it is quite unspecific about how
a software component looks like. There have been lots of debates about
a definition of what a software component is and what it is not—which
usually depends quite a lot on the domain and the properties of respective
CBSS, e. g., business-critical enterprise application systems as apposed to
safety-critical embedded systems. Heineman and Councill [2001] include
the notion of a component model (Definition 3.12) into their definition
(Definition 3.11):

Definition 3.11 (Software component [Heineman and Councill, 2001]). “A
software component is a software element that conforms to a component model and
can be independently deployed and composed without modification according to a
composition standard.”

Definition 3.12 (Component model [Heineman and Councill, 2001]). “A
component model defines a set of standards for component implementation, naming,
interoperability, customization, composition, evolution, and deployment.”

A number of component models have been developed during the past
years for several domains, technologies, and purposes. A recent overview,
along with a classification framework, is provided by Crnković et al.
[2011]. Prominent component models from academia and research include
CORBA Component Model (CCM) [Object Management Group, Inc., 2006],

28

3.3. Enterprise Application System Technologies

COM [Box, 1998], Enterprise JavaBeans (EJB) (Section 3.3.1), OSGi [OSGi
Alliance, 2012], Koala [van Ommering et al., 2000] (already mentioned in
Section 3.1.4), Fractal [Bruneton et al., 2006], SOFA [Bureš et al., 2006], as
well as the Palladio Component Model (PCM) [Becker et al., 2009] with a fo-
cus on design-time performance prediction. Together with other component
models, the latter three have also been applied to the Common Component
Modeling Example (CoCoME) [Rausch et al., 2008]. Component models of-
ten include an ADL (Section 3.1.4) and induce a certain (component-based)
architectural style (Section 3.1.3) to systems using the component model.

The component model assumed in this thesis builds on the afore-
mentioned PCM, which will be detailed in Section 4.5. Our core assump-
tions w.r.t. the component model and the architectural style are: a) a system-
independent repository provides descriptions of self-contained and reusable
software components (and other component types), including the defini-
tion of provided and required interfaces; b) a system’s logical software
architecture is described by the selection of software components from the
repository and assembling them via connectors; c) each of the system’s
software components is deployed to one or more execution containers (e. g.,
physical servers) allocated for the system. Note that the UML 2 provides
capabilities to describe and visualize CBSAs, as detailed in the respective
part of the specification [Object Management Group, Inc., 2013b]. We use
UML 2-like visualization as a GCS for our SLAstic meta-model described in
Chapter 6.

3.3 Enterprise Application System Technologies

The approach developed in this thesis is architecture-based, i. e., it makes
no specific assumptions about what technologies are used to implement
the monitored and controlled system. However, note that we focus on dis-
tributed enterprise application systems (EASs). EASs are business-critical
software systems, such as online shopping sites and customer portals, as
well as customer relationship management and enterprise resource planning
systems. Sections 3.3.1 and 3.3.2 briefly introduce state-of-the-art Java and
cloud technologies for implementing such systems. Particularly, this in-
cludes those technologies that occur as part of the proof-of-concept imple-
mentations (e. g., Section 7.3) and the evaluation in case studies and lab

29

3. Software System Architecture: Description and Reconfiguration

Table 3.1. Selected Java SE and Java EE technologies. Additional information is
available on the Java SE/Java EE web sites [Oracle, 2014c,b] and the respective JSRs.

Short Long name JSR Latest

version

Year

EJB Enterprise JavaBeans 345 3.2 2013

JavaEE Java Platform, Enterprise Edition 342 7 2013

JMS Java Message Service 343 2.0 2013

JMX Java Management Extensions 003 1.2 2006

JNDI Java Naming and Directory Interface — 1.2.1 1999

JSF JavaServer Faces 344 2.2 2013

JSP JavaServer Pages 245 2.1 2013

JPA Java Java Persistence API 338 2.1 2013

JTA Java Transaction API 907 1.2 2013

Servlet Java Servlet 340 3.1 2013

experiments (Chapters 12 and 13). For an introduction on the underlying
concepts, principles, and patterns for implementing such systems—e. g.,
application layering, distributed web-based systems, middleware, com-
munication, including remote procedure call (RPC) and message-oriented
middleware (MOM)—refer to respective textbooks like the ones by Fowler
[2002] and Tanenbaum and van Steen [2008].

3.3.1 Java Technologies

During the past decade, Java emerged to a widely used programming
language and platform for implementing EASs. The Java Platform, Stan-
dard Edition (Java SE) already includes a number of libraries and APIs
for implementing EASs, e. g., for UIs (Swing etc.), database connectivity
(JDBC), networking and RPC (RMI etc.), monitoring and management
(JVMTI, JMX, etc.), and naming (JNDI) [Oracle, 2014c]. The Java Platform,
Enterprise Edition (Java EE) adds further technologies for EASs, particularly
for web-based and multi-tiered architectures [Oracle, 2014b]. Core Java EE
technologies for the web tier include Servlet, JavaServer Pages (JSP), and
JavaServer Faces (JSF). The implementation of the business tier is supported
by the Enterprise JavaBeans (EJB) component technology, including support
for naming and directory services (based on JNDI), RPC (based on RMI

30

3.3. Enterprise Application System Technologies

and web services compatible with SOAP [World Wide Web Consortium
(W3C), 2007a], WSDL [World Wide Web Consortium (W3C), 2007b], etc.),
transaction management (based on JTA), messaging (based on JMS), and
persistence (based on JPA). While Java SE applications solely rely only on
a JVM for being executed, Java EE applications need to be deployed to an
Application Server (AS), which manages the execution of the application.
A number of commercial and open source ASs exist, which provide an
implementation of all or a subset of the Java EE specifications.

Specifications for most Java SE and Java EE technologies have been and
are being developed as so-called Java Specification Requests (JSRs) by
Sun Microsystems, Inc. (Sun), Oracle Corporation (Oracle), and the Java
Community Process (JCP).2 Table 3.1 lists a selection of the mentioned
technologies with the latest version number and year of its publication, as
well as the JSR document number.

3.3.2 Cloud Computing Technologies

A widely used definitions for cloud computing has been contributed by the
National Institute of Standards and Technology (NIST) (Definition 3.13):

Definition 3.13 (Cloud computing [Mell and Grance, 2011]). “Cloud com-
puting is a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e. g., networks, servers, stor-
age, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction. This cloud model is
composed of five essential characteristics, three service models, and four deployment
models.”

Especially the three service models—software as a service (SaaS), platform
as a service (PaaS), and infrastructure as a service (IaaS)—and the four
deployment models—private, community, public, and hybrid cloud— men-
tioned in Definition 3.13 and detailed by Mell and Grance [2011] became the
de-facto criteria to classify clouds. We will not give a deeper introduction
into the general concepts of cloud computing and how this can be distin-
guished from previous computing models. For this, please refer to other
resources, e. g., by Armbrust et al. [2009].

2
http://www.jcp.org/

31

http://www.jcp.org/

3. Software System Architecture: Description and Reconfiguration

With respect to the three mentioned service models, IaaS is the ap-
propriate abstraction layer for integration with our SLAstic framework.
Typical offerings included in IaaS products include dynamic provisioning
of computing, and network resources, typically implemented based on vir-
tualization technology. Various commercial and open-source IaaS products
evolved during the last couple of years. The most prominent commercial
IaaS products are Amazon Web Services (AWS) [Amazon Web Services,
Inc., 2014] and Microsoft’s Windows Azure [Microsoft, Inc., 2014], both of
which are offered as public clouds on a pay-per-use basis. Popular open
source IaaS products include Eucalyptus [Nurmi et al., 2009; Eucalyptus
Systems, Inc., 2014] and OpenStack [OpenStack Foundation, 2014], which
are both compatible with AWS and may be used to realize private or hybrid
clouds. In the remainder of this section, we will briefly describe AWS and
Eucalyptus, as these technologies are used in this thesis.

Amazon Web Services

AWS comprises a comprehensive set of cloud services, grouped into the
following categories [Amazon Web Services, Inc., 2014]: a) compute (e. g.,
EC2, auto scaling, and elastic load balancing) and networking (e. g., DNS),
b) storage (e. g., S3 and EBS) and CDN, c) database (e. g., RDS), d) application
services (e. g., MOM and email), e) as well as deployment and management
(e. g., web-based UI and CloudWatch). The most prominent AWS service is
Elastic Compute Cloud (EC2) allowing to dynamically allocate and release
virtual machine instances, which are configured by selecting an Amazon
Machine Image (AMI)—including an operating system and a software
stack—and an instance type—defining the hardware resources allocated
for the instance (CPU, memory, etc.). The CloudWatch service allows to
collect and visualize measures about AWS resources (e. g., usage of memory,
disk, and CPU) and services (e. g., request counts and latencies for the load
balancer, and the number of messages in the MOM), as well as custom ones.
CloudWatch is the basis for the AWS’s auto scaling, which automatically
allocates and releases EC2 instances according to rules defined on the
CloudWatch statistics. The AWS services can be managed via a web-based
UI, a web service API, a CLI, or a Java API. For details on the AWS services
and pricing model, please refer to Amazon Web Services, Inc. [2014].

32

3.4. Self-Adaptive Software Systems

Eucalyptus

Eucalyptus [Eucalyptus Systems, Inc., 2014] is an open source cloud plat-
form, which has been initially started by researchers at the University of
California, Santa Barbara. Eucalyptus includes cloud services compatible to
the API of the AWS services EC2, EBS, S3, auto scaling, elastic load balanc-
ing, and CloudWatch. Eucalyptus Machine Images (EMIs) are compatible
to AMIs. The Euca2ools provides a set of CLI tools to manage a Eucalyptus
cloud. Due to the API compatibility, the afore-mentioned AWS tools can be
used as well. For details on Eucalyptus, please refer to Eucalyptus Systems,
Inc. [2014].

3.4 Self-Adaptive Software Systems

At the beginning of this century, the direction of self-adaptive systems
has been pushed by IBM by launching the autonomic computing initiative.3

A common definition for the term autonomic computing is provided by
Kephart and Chess (Definition 3.14):

Definition 3.14 (Autonomic computing [Kephart and Chess, 2003]). “Com-
puting systems that can manage themselves given high-level objectives from admin-
istrators.”

The term autonomic computing is mainly used in the systems community
with the International Conference on Autonomic Computing (ICAC) being
the leading conference in this field.4 In the software engineering and
software architecture research communities, the terms self-adaptive software
or self-adaptive software systems (SASSs) are more frequently used. For
these communities, the Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS) is the leading event on this topic. A
definition from this community is provided by Oreizy et al. (Definition 3.15):

Definition 3.15 (Self-adaptive software [Oreizy et al., 1999]). “Self-adaptive
software modifies its own behavior in response to changes in its operating environ-
ment.”

3
http://www.research.ibm.com/autonomic/

4
http://www.autonomic-conference.org/

33

http://www.research.ibm.com/autonomic/
http://www.autonomic-conference.org/

3. Software System Architecture: Description and Reconfiguration

In the remainder of this section, we will briefly cover SASS architec-
tures including the MAPE-K control loop (Section 3.4.1), architectural and
architecture-based adaptation (Section 3.4.2), as well as the S/T/A model-
ing approach for adaptation processes developed in the context of this thesis
(Section 3.4.3). For a deeper introduction on SASSs, we refer to Kramer and
Magee [2007], Huebscher and McCann [2008], Salehie and Tahvildari [2009],
Cheng et al. [2009], and de Lemos et al. [2013], who provide state-of-the
art summaries in this area and highlight research challenges. Taylor et al.
[2009] may be used as an introduction to architecture-based approaches to
SASSs.

3.4.1 SASS Architecture and MAPE-K Control Loop

Architectures of self-adaptive software systems (SASSs) comprise the adapt-
able software system, which is subject to adaptation, as well as the adaptation
engine, which decides when and how to adapt the software system. Com-
munication between both parts is performed via sensors and effectors, which
are provided by the adaptable software system. Sensors—also referred
to as monitors—collect and report runtime observations from the adapt-
able software system, providing information about the system’s current
state to the adaptation engine. Such observations include performance
measurements like CPU utilization, memory usage, workload intensity,
and response times of software operations. Techniques for performance
measurement will be detailed in Section 4.2. Effectors conduct the system
adaptations requested by the adaptation engine. Kephart and Chess [2003]
propose a reference architecture for SASSs, including the widely known
MAPE-K control loop. MAPE-K stands for the monitoring, analysis, plan-
ning, and execution processes conducted by the adaptation manager, as well
as the common knowledge that builds the foundation for these processes.
Note that instead of the terms adaptable software system and adaptation
engine, the terms managed element and autonomic manager are also used in
this context. The monitoring process obtains and pre-processes the data
received from the sensors—e. g., by filtering or aggregation—and updates
the knowledge about the current system state. The analysis decides whether
adaptation actions are needed, which are then planned by the adaptation
process. The decision making and planning is based on policies, e. g., based
on rule sets, goals, or utility functions [Kephart and Walsh, 2004]. The

34

3.4. Self-Adaptive Software Systems

execution process is responsible for managing the adaptation by interacting
with the effectors.

3.4.2 Architectural and Architecture-Based Adaptation

The previous introduction to SASSs has made no explicit statements about
how the knowledge kept by the adaptation manager looks like. Obviously,
this may include technical details about the implementation of the adaptable
software system. On the other hand, architecture-based SASSs approaches
employ architectural descriptions of the adaptable system—typically ex-
pressed using an architecture description language (ADL) (Section 3.1.4)—to
decide, plan, and execute adaptations. The remainder of this section intro-
duces core concepts on architectural and architecture-based adaptation.

Supported architectural adaptations are typically defined based on the
elements and relationships captured by the ADL. Particularly, this includes
components, connectors, and configurations, as described in Section 3.1.2.
Hence, example architectural adaptations are the replacement or modifi-
cation of components and connectors, and the modification of their rela-
tionships. Hofmeister [1993] classifies reconfiguration into the levels of
a) implementation, b) geometry, and c) structure. Some architectural styles
(introduced in Section 3.1.3) explicitly include concepts for architectural
adaptation, also referred to as architectural reconfiguration.

Of particular interest to this thesis is the execution of architectural
adaptation at runtime—referred to as architectural online adaptation or online
reconfiguration. The notion of architecture-based (online) adaptation is com-
monly used to emphasize that along with the architectural description,
the real system represented by the architectural model needs to be modi-
fied, and vice versa. According to our notion above, in SASSs this is the
responsibility of the adaptation engine propagating the desired change
via the effectors and keeping a consistent knowledge about the system’s
architecture. Oreizy et al. [1998, 1999, 2008] proposed a conceptual frame-
work for architecture-based adaptation, including the aspect of maintaining
consistency between the architectural model and the implementation. Im-
portant results on architecture-based approaches to SASSs have also been
contributed by Garlan et al. [2003], e. g., by introducing the concept of
style-based adaptation.

35

3. Software System Architecture: Description and Reconfiguration

Executing architectural adaptations at runtime imposes a number of
conceptual and technical challenges as the system is being modified while
it is used and hence is in a specific state. Important results in this area,
e. g., on transactional change, have been contributed by Kramer and Magee
[1985, 1990] under the notion of dynamic (re)configuration and dynamic change
management. Building on this, Matevska [2009] proposed a concept for
runtime reconfiguration of component-based software systems.

3.4.3 Modeling Runtime Adaptation Processes with S/T/A

As a result of joint work in the context of this thesis (Section 5.3), we created
the S/T/A (strategies/tactics/actions) modeling language that allows to
express adaptation processes—involving strategies, tactics, and actions—
on an architectural level. A respective interpreter exists that executes the
modeled processes. The remainder of this section briefly introduces the core
modeling concepts relevant to this thesis. For a comprehensive introduction
to S/T/A, please refer to our publication on S/T/A [Huber et al., 2014].
This section includes contents from this publication.

Event

Strategy

OverallGoal

specification : String

Objective

weight : Double

WeightedTactic

1..*
objectives

triggeringEvent

1

objective

1

tactics

1..*

strategies

1..*

StrategyWeightingFunction

1

AdaptationProcess Tactic AdaptationPlan

name : String

type : Type

Parameter

AbstractControlFlowElement

Action ActionReference

Start Stop
iterationCount : Integer

Loop

condition : String

Branch

usedTactic1

implemented

Plan

1tactics

1..*

steps

0..*

successor0..1

predecessor0..1

parameters

0..*

actions

1..*

outputParam0..1

inputParams0..*

outputParam0..1

inputParams0..*

referredAction

1

branches1..2

body1

Action

Tactic

MetricType

weight : Double

WeightedMetric

Impact
1

lastImpact

weightedMetrics
from meta-model

QosDataRepository

affected

Metrics

1..*

1..*1

metricType

1

cause

1

goal

weightingFunction

*

*

*

*

Figure 3.2. S/T/A meta-model [Huber et al., 2014]

36

3.4. Self-Adaptive Software Systems

According to the previously described architecture-based approach for
(self-)adaptation, S/T/A distinguishes between an architectural model of
the adaptable system and its implementation. In addition to architectural
information about the system, the architectural model includes the defini-
tion of allowed adaptation operations, denoted as degrees of freedom. S/T/A
is ADL-agnostic, i. e., not tailored to a specific architectural modeling for-
malism. S/T/A provides the modeling formalism to express adaptation
processes for the adaptable system as a hierarchy of objectives, strategies,
tactics, and actions. These adaptation processes are evaluated on the architec-
tural level, i. e., based on the architectural knowledge about the adaptable
software system. Architectural runtime reconfigurations (actions) are then
executed to the managed system via effectors and system-specific connec-
tors to the effectors.

Figure 3.2 depicts the S/T/A meta-model, including the classes and
relationships for the core language concepts, namely Strategy, Tactic, and
Action. Each strategy (meta-class Strategy) aims to achieve a given high-level
objective (Objective), e. g., meeting performance requirements specified as
part of the service level agreements (Section 4.1.3). A strategy uses one or
more tactics (Tactic) to achieve its objective. Tactics execute actions (Action),
which implement the actual adaptation operations to be executed. Actions
can be further parameterized by a set of input and output parameters
(Parameter). Note that the actions do not implement the logic of the operation
but trigger the respective adaptation operations when being interpreted. A
tactic is specified by an adaptation plan (AdaptationPlan), which defines the
control flow of executing adaptation actions. In addition to actions to be
executed (ActionReference), an adaptation plan may contains other common
control flow elements (AbstractControlFlowElement) such as loops (Loop) and
branches (Branch). We will not further detail the remaining parts of the
meta-model, as they are not relevant to this thesis.

37

Chapter 4

Quality of Service Evaluation and
Capacity Management

A software system’s quality of service (QoS) denotes the degree to which it
satisfies requirements with respect to non-functional runtime characteristics,
such as performance, availability, and reliability [Becker et al., 2006b]. QoS
evaluation techniques can be divided into approaches based on measure-
ments, simulation, and analytical modeling [Jain, 1991; Lilja, 2005]. Starting
with an introduction of basic QoS terminology and measures, this chapter
gives an overview of QoS measurement, modeling, and prediction—with a
focus on performance and capacity management.

This chapter is organized as follows. Section 4.1 provides an intro-
duction into QoS terminology, characteristics, and measures, as well as
the specification of service level agreements. Section 4.2 covers relevant
foundations of performance measurement. Section 4.3 presents the capacity
planning methodology by Menascé and Almeida [2002], which focuses
on offline, long-term scenarios. Sections 4.4 and 4.5 focus on workload
characterization and forecasting, as well as performance modeling and
prediction.

4.1 Quality of Service

Informally, a system’s quality of service (QoS) can be considered the degree
to which a system’s runtime quality properties satisfy its stakeholders’
requirements. Different QoS definitions exist, some of which limit the in-
cluded categories of properties to non-functional ones [Becker et al., 2006b];
others include functional properties as well [Taylor et al., 2009].

39

4. Quality of Service Evaluation and Capacity Management

In this thesis, we will focus on selected non-functional QoS measures
from a selected set of QoS characteristics, as detailed in the following Sec-
tion 4.1.2. Section 4.1.3 details the specifications of service level agreements.
Section 4.1.4 describes the OMG’s Structured Metrics Meta-Model (SMM)
and our MAMBA extension and tool support for SMM, which can be used
together for representing measures and measurements, and for conducting
model-based QoS analysis.

4.1.1 Terminology

A framework for software product quality is provided by the ISO/IEC Inter-
national Standard 9126 [ISO/IEC, 2001, 2003a,b, 2004]. It proposes a quality
model whose main entities are characteristics, subcharacteristics, and metrics.
Software quality attributes are categorized into characteristics. Character-
istics are further decomposed into subcharacteristics. Subcharacteristics
can be measured by metrics. For a basic set of six different characteristics—
functionality, reliability, efficiency, etc.—the standard provides basic sets
of subcharacteristics—fault tolerance, time behavior, resource utilization,
etc.—and metrics (availability and response time, etc.). The standard further
distinguishes between internal quality, external quality, and quality in use
(metrics). Internal quality considers quality attributes without executing
the system, e. g., based on static analysis (complexity expressed in lines
of code (LOC), etc.). As opposed to this, external quality and quality in
use consider the quality attributes observed from the running system; for
quality in use, it is additionally assumed that the system executes in its
desired environment.

With respect to terminology in this thesis, we follow the structure of the
quality model, i. e., the distinction between characteristics, subcharacteristics,
and metrics. However, we favor the notion of measure over metric because of
its narrow meaning in mathematics. In our understanding of a measure,
we follow Zuse [1998] who provides a thorough definition of measures
and scale types based on empirical and numerical relation systems. This
framework is also described and used by Liggesmeyer [2002]. We focus on
non-functional external and quality in use attributes under the term quality
of service (QoS). Relevant QoS characteristics and measures (independent
of the ISO/IEC Std. 9126) are covered in the following Section 4.1.2.

40

4.1. Quality of Service

4.1.2 Selected QoS Characteristics and Measures

This section briefly introduces the QoS characteristics performance, capacity,
efficiency, scalability, and elasticity, which are relevant to this thesis. Addi-
tionally, we include the term workload, which is not a QoS characteristic but
one of the main influence factors to many QoS characteristics. We provide
and discuss some definitions of the considered characteristics and measures
from the literature. For a thorough introduction to QoS characteristics and
measures, readers may also refer to one or more of the various textbooks
available on this topic (e. g., [Jain, 1991; Smith and Williams, 2002; Menascé
and Almeida, 2002; Lilja, 2005]).

Workload

The workload, also denoted as the usage profile or the operational profile
[Musa, 1993], refers to the way systems—or one of its components or
services—are used. Mainly originating from classic queueing theory [Bal-
samo and Marin, 2007], some common workload terminology and measures
established throughout the past decades. The terms customer, user, job,
and request are synonyms for a unit of work that arrives at a system for
being serviced. Workloads are usually distinguished between open workloads
and closed workloads. For open workloads, it is assumed that independent
customers from a population enter and depart from the system. In a closed
workload, a finite population of customers continuously arrives, departs,
and reenters the system. Regardless of whether an open or closed workload
is assumed, workload descriptions are often divided into workload intensity
and resource demanding characteristics [Menascé and Almeida, 2002]. The
former refers to the characteristics of the number of requests in a certain
time period; the latter refers to the properties of the individual requests,
e. g., the size of files requested. Important intensity measures for open
workloads are the arrival rate—the number of customer arrivals per time
interval—and its reciprocal value, the inter-arrival time. In addition to the
population size, closed workloads often include a specification of think times,
i. e., the time interval between departing and reentering the system.

The global workload a system is exposed to may be comprised of
multiple workload classes or workload components with different characteristics,
e. g., open and closed workloads with different workload intensity and

41

4. Quality of Service Evaluation and Capacity Management

resource demanding characteristics. This set of workload classes and their
frequencies of occurrence is typically denoted by the term workload mix.

Performance

A wide-spread definition for the term performance is provided by Smith
and Williams (Definition 4.1 below). The authors’ decision to limit their
definition to the subcharacteristic of timeliness is based on the focus of
the book that includes this definition; they explicitly mention that other
definitions include additional performance subcharacteristics [Smith and
Williams, 2002].

Definition 4.1 (Performance [Smith and Williams, 2002]). “Performance is the
degree to which a software system or component meets its objectives for timeliness.”

We consider performance to be divided into the two subcharacteristics
time behavior and resource usage. This complies to the afore-mentioned
ISO/IEC Std. 9126—even though, the standard uses the term efficiency
instead of performance.

Important time behavior measures are response time and throughput. The
response time denotes the time needed by a system to answer a service
request. For executions of software operations, the response time is the time
interval elapsed between the start and the end of the execution. Through-
put denotes the number of service requests processed by a system or a
component within a given time interval.

With respect to measures for resource usage, first a basic definition of
a resource is needed. According to Woodside et al. [2007], a resource is a
“system element that offers services required by other system elements.”
Classes and examples of resources include hardware resources (e. g., CPU,
memory, storage), logical software resources (e. g., buffers, semaphores),
and processing software resources (e. g., processes, threads) [Woodside
et al., 2007]. For resources that are either busy or idle at a point in time (e. g.,
CPU), the resource utilization measure denotes the fraction of time a resource
is busy [Jain, 1991] in a given time interval. For resources providing a certain
capacity (e. g., memory or storage), the resource utilization measure denotes
the fraction of the used and the totally available capacity at a given point
in time—which may be further aggregated over a time interval [Jain, 1991].
In addition to these classic measures of resource usage, we also consider

42

4.1. Quality of Service

the number of resources of a certain type as a measure of resource usage.
This is particularly relevant for virtualized environments, e. g., IaaS cloud
infrastructures (Section 3.3.2).

Capacity

Jain [1991] distinguishes three different measures of capacity—nominal ca-
pacity, usable capacity, and knee capacity—which are defined based on the
relation of workload to the afore-mentioned performance measures through-
put and response times. We will extend Jain’s definition of the first two
measures by including other QoS characteristics in addition to performance.
A system’s nominal capacity can be defined as the maximum workload in-
tensity a system is able to service. However, a system operating under such
workload conditions typically violates QoS requirements (SLAs). Under
the constraint that QoS requirements need to be satisfied, the maximum
workload intensity is called a system’s usable capacity. The knee capacity de-
notes the workload intensity level at which response times start to increase
considerably—even though, they may still satisfy QoS requirements.

Including the monetary cost aspect, Menascé and Almeida [2002] suggest
the notion of adequate capacity as quoted in Definition 4.2 below. The cost
aspect is also relevant for the following QoS characteristic efficiency and for
capacity management processes, as detailed in Section 4.3.

Definition 4.2 (Adequate capacity [Menascé and Almeida, 2002]). “A [. . .]
system has adequate capacity if the SLAs are continuously met [. . .], and if the
services are provided within the cost constraints.”

Efficiency

Efficiency is a QoS characteristics that relates other QoS characteristics to
associated costs. An informal definition of efficiency is provided by Taylor
et al. [2009] (Definition 4.3).

Definition 4.3 (Efficiency [Taylor et al., 2009]). “Efficiency is a quality that
reflects a software system’s ability to meet its performance requirements while
minimizing its usage of the resources in its computing environment. In other
words, efficiency is a measure of a system’s resource usage economy.”

43

4. Quality of Service Evaluation and Capacity Management

Note that in this thesis, we use the terms efficiency and resource efficiency
as synonyms. Different measures of efficiency exist—typically expressed as
a fraction of a QoS measure and a direct or indirect measure of resource
usage. Resource usage may be related to the afore-mentioned system re-
sources, e. g., CPU, but also to the use of energy or monetary resources.
Equations (4.1) and (4.2) list two—more or less concrete—efficiency mea-
sures. Equation (4.1) use a measure of efficiency that is the fraction of
an application utilization measure (e. g., request throughput) and power
consumption. Note that both values are normalized to a value between zero
and one based on peak values. The Space, Watts and Performance (SWaP)
measure [Sun Microsystems, 2009] additionally includes the dimension of
space usage, e. g., the number of rack units used by the servers.

Efficiency =
Throughput

Power Consumption
(4.1)

SWaP =
Performance

Space✂ Power Consumption
(4.2)

Scalability

Definition 4.4 below provides a definition for the term scalability by Smith
and Williams [2002]. They see scalability as one dimension of timeliness
included in Definition 4.1. Hence, for them scalability is a subcharacteristic
of performance. Other definitions of scalability are provided by Weinstock
and Goodenough [2006].

Definition 4.4 (Scalability [Smith and Williams, 2002]). “Scalability is the
ability of a system to continue to meet its response time or throughput objectives as
the demand for software functions increases.”

We follow the approach by Duboc et al. [2007] who consider scalability to
be a “meta-quality” characteristic of other quality characteristics (Defini-
tion 4.5):

Definition 4.5 (Scalability [Duboc et al., 2007]). “We define scalability as a
quality of software systems characterized by the causal impact that scaling aspects
of the system environment and design have on certain measured system qualities as
these aspects are varied over expected operational ranges.”

44

4.1. Quality of Service

Elasticity

Elasticity is a QoS characteristic that gained attraction in recent years,
particularly in the context of research on self-adaptive approaches for
virtualized computing environments, e. g., clouds. Herbst et al. [2013b]
propose the following definition for the term elasticity:

Definition 4.6 (Elasticity [Herbst et al., 2013b]). “Elasticity is the degree
to which a system is able to adapt to workload changes by provisioning and
deprovisioning resources in an autonomic manner, such that at each point in time
the available resources match the current demand as closely as possible.”

Elasticity is related to the aforementioned QoS characteristics scalability
and efficiency. Herbst et al. [2013b] suggest to divide elasticity into speed
and precision aspects, and propose respective measures.

4.1.3 Specification of Service Level Agreements

Particularly in business-critical domains, service providers and consumers
often negotiate service level agreements (SLAs), which constitute contractual
specifications of QoS requirements and penalties that are due in case these
QoS requirements are violated. The QoS requirements as part of the SLAs
are also denoted as service level objectives (SLOs). An example for a
performance SLO is that for a defined service, 95 % of all response times observed
within any 30 minute time-window must not exceed 500 milliseconds. In this
thesis, we will not focus on penalties and often use the term SLA as
synonym for SLO. In addition to the afore-mentioned SLOs and penalties
or other actions that are due in case of SLO violations, SLAs typically
include additional information, e. g., a definition of the involved parties
and their roles, the temporal scope, and references to technical services or
interfaces.

For the specification of SLAs, (machine-processable) languages—which
can be considered modeling languages in the context of MDSE (Chap-
ter 2)—and corresponding frameworks have been developed in academic
and industrial contexts. The core concepts and characteristics of popular
approaches are summarized in the remainder of this section (in historical
order).

45

4. Quality of Service Evaluation and Capacity Management

WSLA

Web Service Level Agreement (WSLA) [IBM, 2003; Keller and Ludwig, 2003],
initially proposed by IBM in 2001, provides a framework for defining and
monitoring SLAs. A WSLA document is structured into three parts: defini-
tions of parties, services, and obligations. In addition to service providers
and consumers, the specification explicitly allows the involvement of third
parties, e. g., providing measurement or condition evaluation services. In
the service definition part, SLA parameters specify measures for services,
how measurements are obtained from managed entities, or how compos-
ite measures are computed from other measures. These SLA parameters
are used in the obligations part of the document, in form of service level
obligations and action guarantees. The latter specify constraints on how
and when an obliged party must invoke a party’s action interface also
defined in the WSLA document. The WSLA language is defined as an
XML schema, allowing domain-specific extensions. It already includes a
number of standard extensions for web services, e. g., WSDL/SOAP action
descriptions, measurement directives (counter, response time, invocation
count, etc.), and functions (time series constructors, mean, median, mode,
etc.).

WSOL

Web Service Offerings Language (WSOL) [Tosic et al., 2002; Tosic, 2004]
is a language that allows the formal specification of constraints for web
services. For a web service described using the Web Services Description
Language (WSDL) [World Wide Web Consortium (W3C), 2007b], WSOL
allows to define different service classes that may, for example, differ in
pricing, usage privileges, or guaranteed QoS levels. WSOL supports the
definition of a) functional, b) QoS, and c) access right constraints. In order
to use WSOL for specifying SLAs, included (periodic) QoS measures can
be used in constraint expressions. Management statements can be used
to express pricing information for service usage or penalties due when
constraints are violated. Like WSDL, WSOL is implemented as an XML
schema. The Web Service Offerings Infrastructure (WSOI) [Tosic, 2004]
provides a tooling infrastructure for WSOL, supporting the measurement
and calculation of QoS measures, evaluation of constraints, etc.

46

4.1. Quality of Service

WS-Agreement

Web Service Agreement (WS-Agreement) [Open Grid Forum, 2011] is a
standard published by the Open Grid Forum (OGF). An initial version was
published in 2003. It depends on other WS-* web service specifications,
e. g., WS-Addressing. WS-Agreement allows to formulate SLA documents
including usual contents like temporal scopes of the agreement, involved
parties, service definitions/references, as well as the expression of guar-
antees and terms for the services in form of promises and penalties. The
standard includes a protocol for negotiating SLAs: a so-called agreement
factory offers the structure of agreements to accept in form of WS-Agreement
templates, which clients use to make concrete offers/requests. Also, the
standard proposes runtime states for agreements and terms that can be
used for monitoring the compliance of SLAs. WS-Agreement is specified as
an XML schema, allowing expression languages to be used for formulating
constraints etc.

SLA✝

SLA✝ [Kearney et al., 2010] was developed as part of the FP7 ICT project
SLA@SOI. It supports the definition of involved parties, interface declara-
tions of offered services, and QoS guarantees for these services—including
actions to be taken by respective parties, e. g., payments due if QoS guaran-
tees are violated. SLA✝ includes an expression language for an extensible
vocabulary of nominals (e. g., protocols, data types, and units), functions
(e. g., arithmetic/set operations, time series, and QoS measures), and classes
of events (e. g., violations and warnings). Example QoS measures already in-
cluded are availability, arrival rate, throughput, completion time, mean time
to failure (MTTF), and mean time to repair (MTTR). Example set operations
are sum, standard deviation, median, and mode. Kearney et al. [2010] pro-
vide a set-based specification of the SLA✝’s abstract syntax, for which a Java
API, an XML schema, and a grammar in Backus–Naur Form (BNF) exist.
The implementation is online.1 An example SLA✝ (template) specification
is shown in Figure 4.1.

1
http://sourceforge.net/apps/trac/sla-at-soi/

47

http://sourceforge.net/apps/trac/sla-at-soi/

4. Quality of Service Evaluation and Capacity Management

01: slatemplate{

02: version : sla-star-v1

03: vocabularies :

04: http://sla-at-soi.eu/core

05: parties :

06: Fred : party{

07: role : provider

08: }

09: interfaceDeclrs :

10: IF1 : interfaceDeclr{

11: provider : Fred

12: endpoints :

13: E1 : endpoint{

14: location : fred@xyz.com

15: protocol : email

16: }

17: interface : http://xyz.com/service

18: }

19: variables :

20: S : var{

21: expr : IF1/request

22: },

23: X : var{

24: expr : basic

25: domain : one-of { premium, basic }

26: }

27: terms :

28: AT1 : agreementTerm{

29: pre : arrival-rate(S) <= 2 tx_per_day

30: G1 : state{

31: pre : X == basic

32: post : completion-time(S) < 1 hr

33: },

34: G2 : state{

35: pre : X == premium

36: post : completion-time(S) < 10 min

37: },

38: G3 : action{

39: actor : Fred

40: policy : mandatory

41: pre : violated[G1.post and G2.post]

42: limit : 1 week

43: post : payment{

44: recipient : customer

45: value : 1 euro

46: }

47: }

48: }

49: }

Figure 4.1. Example SLA✝ (template) specification [Kearney et al., 2010] (BNF
serialization)

SLAng

SLAng [Skene, 2007; Skene et al., 2010] focuses on the SLA specification
in application service provisioning scenarios. It supports the definition of
parties, services, penalties, and clauses involved in SLAs. The implemen-
tation of the language is based on the OMG’s EMOF, OCL, and HUTN
specifications, mentioned in Section 2.3.1. The language is extensible in
order to support domain-specific additions. An initial version of the SLAng
language was presented in 2004 [Skene et al., 2004]. Since then, it evolved
considerably, as described by Skene [2007]. The language specification and
supporting tools are available on the SLAng web site [Skene, 2014].

4.1.4 SMM and MAMBA

The Structured Metrics Meta-Model (SMM) [Object Management Group,
Inc., 2012b] is one of the meta-model specifications developed by the
Architecture-Driven Modernization (ADM) Task Force [Object Management
Group, Inc., 2013c], a sub-committee of the OMG (see also Section 2.3.1).
SMM provides generic means to specify elements relevant for the domain of
model-based measurement. In the context of this thesis, we extended SMM

48

4.1. Quality of Service

by additional meta-model constructs and extensible tool support, summa-
rized under the approach called MAMBA. The remainder of this section
first provides a brief overview about the SMM specification, describes our
identified shortcomings that were the motivation for the work on MAMBA,
which is described thereafter. Note that this section is largely based on our
publications on MAMBA [Frey et al., 2011, 2012] and contains parts of these
publications.

SMM Overview

The SMM specification employs the central notion of measures to describe
methods for computing values upon MOF-based models. According to
Section 4.1.1, the term is used as a synonym for metric, in the sense that
it describes an algorithm for calculating specific properties of a software
system’s elements. A software function’s cyclomatic complexity, the con-
tained lines of code, or its average response time constitute classic examples
of such measures. The meta-model defined by SMM enables to specify
those measures—along with the computed results and further concepts
specific for the measurement domain—following an abstract representation
that facilitates its utilization as a common interchange format that can be
used by different tool vendors. Referring to Figure 4.2, which includes the
meta-model’s core classes and relationships, we will provide a brief overall
overview of SMM. For details, please refer to the specification [Object
Management Group, Inc., 2012b].

A Measure can be applied to a specific set of model elements that is
defined through the Scope class. For example, a Scope may limit the compu-
tation of the cyclomatic complexity to source code snippets and therefore
exclude BLOB files that can be present in extracted system models. In
addition, to consider only a subset of the source files (e. g., those containing
C source code), an Operation could be formulated that specifies this restric-
tion using OCL. The classes of SMM mentioned so far inherit from the
AbstractMeasureElement class. Corresponding child classes can get registered
and be supplied via a MeasureLibrary. Furthermore, Figure 4.2a illustrates the
two concrete measures Ranking and DimensionalMeasure. The first may, for ex-
ample, classify a method as low prio or high prio depending on its cyclomatic
complexity residing in [0, 40) or [40,✽), respectively. The DimensionalMeasure

describes a measure that assigns a numeric value. The counterpart of a

49

4. Quality of Service Evaluation and Capacity Management

SmmModel

MeasureLibrary

Operation Scope Measure

DimensionalMeasure Ranking

Observation

ObservationScope SmmElementObservedMeasure

Measurement

-value : Number

DimensionalMeasurement

-value : String

Grade

EObject

AbstractMeasureElement

*-libraries

1*
-measurand

* -observedMeasures

1

*

-measure

1 *-scope

*-scopes

* -observations

* -requestedMeasures

0..1
*

-recognizer

* -measurements

* -measureElements

(a) Core elements and relationships in the SMM meta-model

Measure

-interval : RankingInterval [1..*]

Ranking

-unit : String

DimensionalMeasure

RankingMeasureRelationship

-accumulator : Accumulator

CollectiveMeasure

BaseMeasureRelationship

DirectMeasure

Operation Counting NamedMeasure

-functor : String

BinaryMeasure

Base1MeasureRelationship

Base2MeasureRelationship

1

1

-baseMeasure1To

-from

1

1

-from

-baseMeasureTo

0..1

*

-operation

1

0..1

-from

-rankingTo

1

*

-to

-baseMeasureFrom1

1

-baseMeasure2To

-from
1

*

-to

-baseMeasure2From

1

*

-to

-baseMeasure1From

1

1

-to

-rankingFrom

(b) SMM’s Measure classes

Figure 4.2. Core SMM meta-model parts, including Measure classes [Frey et al., 2011].
Deviating from the SMM specification, EObject instead of MofElement is used as a
measurand’s type.

Measure is a corresponding Measurement that holds the result being produced
through executing the Measure. The counterparts of the previously men-
tioned classes Ranking and DimensionalMeasure are the Measurements Grade and
DimensionalMeasurement. A model element that was measured is referenced
via the measurand relationship of the respective Measurement. This could be a
specific method model element, for instance. As we want to measure Ecore-
based models (Section 2.3.2), measurand points to an EObject in the context of
MAMBA. A concrete measurement process is encapsulated via an instance
of Observation and can therefore be distinguished from other measurement

50

4.1. Quality of Service

runs. The Observation contains information such as the time of the measure-
ment and it describes the actually used Measures and the measured elements
through referencing ObservedMeasure and ObservationScope, respectively.

Further measures that are relevant for our SMM extensions are presented
in Figure 4.2b. A DirectMeasure can measure a model element through ap-
plying an Operation. Counting is a specific DirectMeasure. It is used to restrict
its Scope to a relevant subset of model elements as the referenced Operation

returns 0 or 1 for a given measurand. A NamedMeasure denotes a familiar
measure that can be described unambiguously by solely stating its name.
BinaryMeasures apply two measures—referenced via Base1MeasureRelationship

and Base2MeasureRelationship—to a model element and then evaluate a bi-
nary function upon the corresponding measurements, for example, to
calculate their difference. A CollectiveMeasure enables to apply an accumu-
lator to any number of collected base measurements, e. g., to compute the
standard deviation.

SMM Shortcomings

The SMM specification contains the CollectiveMeasure class modeling the
accumulation of measurements for an associated base measure (Dimensional-
Measure) into a single value. However, using the Accumulator enumeration,
the SMM specification limits the set of supported aggregate functions to
sum, maximum, minimum, average, and standard deviation. This way, common
aggregate functions, such as median or other percentile functions, cannot
be used with SMM so far.

Moreover, especially in service-level management, collective measures
are applied to bounded sets of contiguous base measurements. For example,
in SLA documents the definition of QoS measures, e. g., addressing avail-
ability and performance, is based on time periods. The main reason is that
short-term QoS degradations are hidden by aggregations over long-term
periods. The corresponding aggregate function is then applied in periodic
time steps, considering base measurements observed during the elapsed
time period of specified length. Currently, the SMM specification has no
support for modeling periodic measures of any kind. A further challenge
when adopting SMM’s current version 1.0 can be seen in the lack of the
specification’s maturity. Although the basic structure and ideas of SMM are
encouraging, there still exist some inconsistencies that currently impede its

51

4. Quality of Service Evaluation and Capacity Management

interoperability and that should be addressed.
With our MAMBA approach, we aim to address some of the SMM’s

current shortcomings. Table 4.1 provides a compact comparison of pure
SMM and MAMBA.

Table 4.1. Comparison of pure SMM and MAMBA [Frey et al., 2011]

Issue Pure SMM MAMBA

Meta-models MOF Ecore

Model execution Limited tool support MEE

Raw measurement

data integration

No tool support Via measurement providers

Model querying us-

ing measurements

No native support MQL: implicit calculation

and integration of measure-

ments in queries

Periodic measures No native support Periodic collective MAMBA

measures

SMM as runtime

model

No native support Continuous execution with

MEE

Aggregate functions Limited set: sum, max-

imum, minimum, aver-

age, standard deviation

Extensible set: sum, max-

imum, minimum, average,

standard deviation, median,

percentile, etc.

MAMBA Meta-Model Extensions to SMM

In order to support a) arbitrary aggregate functions, b) extended collective
measures, and c) periodic collective measure, MAMBA includes the below-
described extensions to the SMM meta-model, which are also depicted in
Figure 4.3.

➍ Arbitrary Aggregate Functions. In order to make the set of supported aggre-
gate functions extensible, we added a new meta-model class Aggregate-

Function (abstract) into our SMM extension, as shown in Figure 4.3a.
Also included are six example aggregate functions. The parameterized
PercentileFunction class demonstrates the limitation of using enumera-
tions or strings to select aggregate functions.

52

4.1. Quality of Service

CollectiveMambaMeasure

AggregateFunction

MinFunction SumFunction MedianFunction

MeanFunctionMaxFunction -p : Double

PercentileFunction

-accumulator : Accumulator

CollectiveMeasure

(from smm)
AbstractMeasureElement

(from smm)

*
1 - function

(a) Aggregate functions and collective measures

DimensionalMeasure

(from smm)

Measure

(from smm)
-unit : String

PeriodicCollectiveMambaMeasure

-intervalLength : Integer

-outputPeriod : Integer

PeriodicCount

-intervalDuration : Double

-outputPeriod : Double

PeriodicTime

AggregateFunction

1

*

-function

*

1 -baseMeasure

(b) Periodic collective measures

Figure 4.3. MAMBA extension mechanism for aggregate functions as well as
collective and periodic measures [Frey et al., 2011]

MAMBA users can now use these or custom aggregate functions in
(periodic) collective measures, as detailed in the following paragraphs.
Custom functions can be defined by using meta-model classes that extend
AggregateFunction.

➍ Extended Collective Measures. Since SMM’s CollectiveMeasures cannot use
the newly introduced AggregateFunctions, we added another meta-model
class CollectiveMambaMeasure. CollectiveMambaMeasure extends the SMM
class CollectiveMeasure and references an AggregateFunction, introduced
above. Figure 4.3a shows the meta-model extensions regarding the
newly introduced collective measure and associated aggregate function.

➍ Periodic Collective Measures. We included support for modeling periodic
measures in our SMM extension by introducing the abstract meta-model
class PeriodicCollectiveMambaMeasure. Just like the CollectiveMambaMeasure

class described above, it references a MAMBA aggregate function (Aggre-
gateFunction). This meta-model extension is depicted in Figure 4.3b.
PeriodicCollectiveMambaMeasure extends Measure rather than Dimensional-

Measure (or CollectiveMambaMeasure) in order to preclude semantic ambigu-
ity, for instance because the latter would allow PeriodicCollectiveMamba-

Measure to be used as base measure of collective measures. Currently,
two concrete classes for periodic collective measures are included in
our SMM meta-model extension (see also Figure 4.3b): PeriodicTime and
PeriodicCount. PeriodicTime can be used to model measures where the

53

4. Quality of Service Evaluation and Capacity Management

UML

...KDM

SMMSMM

MAMBA Framework

MDL2SMMMDL

MQL2SMMMQL

Measurement
Providers

Aggregate
Functions

Model
Managers

Periodic
Measures

UML

...KDM

Measurement
Controller

Execution
Engine

SMM

UML

...KDM

Kieker
Measurement

Provider

JDepend
Measurement

Provider
...

Figure 4.4. MAMBA framework with measurement providers

referenced aggregate function is repetitively applied with a time pe-
riod (outputPeriod) incorporating the measurements observed within the
elapsed time period of length intervalDuration. PeriodicCount triggers
the aggregate function to be computed for every outputPeriod-th new
measurements, incorporating the past intervalLength measurements.

Tool Support—MAMBA Framework

Figure 4.4 provides an architectural view of the MAMBA framework in
terms of core components and usage. The general idea is that users pro-
vide a set of domain models, e. g., instances of the Knowledge Discovery
Meta-Model, along with a definition of requested measures in form of SMM
models or textual representations which MAMBA translates to SMM. The
framework executes the input SMM models and outputs these SMM mod-
els enriched by measurements (observations) for the requested measures.
Note that the SMM models may contain additional MAMBA-provided
extensions, such as the aforementioned user-defined (periodic) aggregate
functions. Measurement Providers are used to integrate external static or
dynamic analysis tools, e. g., by executing these and importing the resulting
raw measurement data. Figure 4.4 indicates the integration of the dynamic

54

4.2. Performance Measurement

and respectively static analysis tools Kieker (Chapter 7) and JDepend.2

The Measurement Controller creates an instance of the Execution Engine

and passes the SMM models, including the list of requested measures, to
the latter. As a first step, the Execution Engine inspects the SMM models
in order to determine whether at least one named measure is required
for the computation of the requested measures. We distinguish between
two different modes of execution: if no dependency to a named measure
exists (closed mode), the Execution Engine can directly compute the SMM
measurements simply based on the domain model(s); otherwise (open mode),
the Execution Engine provides the list of required named measures to the Mea-

surement Controller, which initializes appropriate Measurement Providers for
these named measures. The Measurement Providers create observations (i. e.,
measurements for named measures, including additional meta-information)
that are passed to the Execution Engine via the Measurement Controller. After
the termination of each Measurement Provider, the Execution Engine executes
the SMM models just like the way it executes in closed mode.

4.2 Performance Measurement

Measurement-based performance evaluation techniques obtain values for
performance measures of interest—e. g., response times, throughput, and
resource utilization (Section 4.1.2)—by collecting, processing, and analyzing
runtime data from a system under execution. This chapter provides a
brief introduction into selected aspects of performance measurement with
respect to trigger mechanisms (Section 4.2.1), monitors and instrumentation
(Section 4.2.2), perturbation (Section 4.2.3), and monitoring enterprise appli-
cation systems (Section 4.2.4). For a detailed presentation of foundations on
performance measurement of software systems, we suggest to refer to Jain
[1991], Lilja [2005], as well as Menascé and Almeida [2002]. Basic principles
of measurement—not limited to the domain of software systems—is pro-
vided by the Joint Committee for Guides in Metrology (JCGM) [2008]. The
contents of this section are mainly based on these sources. Readers may
also refer to the aforementioned source for definitions of basic measurement
terminology, such as accuracy, precision, resolution, etc.

2
http://clarkware.com/software/JDepend.html

55

http://clarkware.com/software/JDepend.html

4. Quality of Service Evaluation and Capacity Management

4.2.1 Trigger Mechanisms

Mechanisms to trigger measurements of relevant data from a system can be
divided into event-driven and sampling-based strategies [Lilja, 2005; Menascé
and Almeida, 2002]. Event-driven techniques collect or update measure-
ments whenever a relevant event in the system occurs. Example events
include invocations of software operations or the occurrence of exceptions.
In the simplest case, an event-driven measurement routine updates an event
counter. A special event-driven technique is tracing, which involves the
collection of data about an event and the respective current system state.
For example, start and end times, as well as a transaction identifier may be
recorded for executed software operations. Sampling-based measurements
are not triggered by the occurrence of system events but they are executed at
fixed time intervals. Hence, only snapshots of system states are taken, which
provides less detailed information compared to event-driven techniques.
Both event-driven and sampling-based techniques may either provide the
measures of interest directly or they have to be computed indirectly by
other measures.

4.2.2 Monitors and Instrumentation

Tools used to collect measurement data of interest from a software system
are referred to as monitors [Menascé and Almeida, 2002]. According to Jain
[1991], monitors can be classified based on the trigger mechanism, the result
display ability, and the implementation level. Trigger mechanisms have been
discussed in Section 4.2.1 already. The result display ability defines whether
the collected data is displayed/processed online or offline. With respect to
the implementation level, monitors can be roughly divided into hardware
monitors and software monitors (hybrid solutions exist as well). As indicated
by the name, hardware monitors are implemented in hardware and focus on
low-level measurements based on electrical signals and hardware registers.
They are typically part of hardware devices, e. g., CPUs, memory, and hard
disk drives. As opposed to this, software monitors are software routines
integrated in the analyzed software system. The process of integrating
software monitors into a system is called instrumentation. Instrumentation
may be added to the application (source/object/byte) code or the under-
lying runtime environment in form of operating system, middleware, or
application server.

56

4.2. Performance Measurement

Various instrumentation techniques exist, e. g., direct code modification,
indirect code modification using compiler modification or aspect-oriented
programming (AOP), or middleware interception [Jain, 1991; Lilja, 2005;
Kiczales et al., 1996; Menascé and Almeida, 2002]. Often, software-based
logging mechanisms serving useful performance measurements are already
built in to the runtime environment, e. g., access logs of web servers.

Techniques to add instrumentation to Java applications include low-level
byte code manipulation, e. g., based on ASM3 and BCEL,4 AOP-based li-
braries such as AspectJ [Kiczales et al., 2001], or higher level instrumentation
languages such as DiSL [Marek et al., 2012]. The JVM includes the JVM Tool
Interface (JVMTI) [Oracle, 2011], which provides an API for controlling and
monitoring the state of Java applications. Many debuggers and profilers
make use of this interface. Various measures about the JVM and executing
Java applications can be accessed via JMX (see also Section 3.3).

4.2.3 Perturbation

Perturbation is an important aspect to be considered when planning and
executing performance measurements in software systems. This is due to
the fact that the instrumentation and the execution of monitors may alter the
system’s runtime behavior. This is particularly true for software monitors,
which compete for shared resources with the system under analysis, e. g.,
CPU, memory, and storage, or change the software control flow due to
measurement routines. Perturbation that has an impact on a system’s
performance properties, i. e., timing behavior and resource usage, is often
referred to as overhead. However, monitors may also have an impact on
other QoS characteristics, e. g., reliability due to implementation errors.

The degree of perturbation introduced by measurements depends on dif-
ferent aspects, e. g., the measurement strategy—event-driven vs. sampling-
based—, the granularity of instrumentation, as well as the types and quality
of monitors used. Particularly, software-based tracing can introduce consid-
erable perturbation because it may comprise the collection and storage/-
transfer of large amounts of data, imposing demands to I/O and processing
resources. On the other hand, it is sufficient to maintain simple counters
for selected event-driven and sampling-based measurements.

3
http://asm.ow2.org/

4
http://commons.apache.org/proper/commons-bcel/

57

http://asm.ow2.org/
http://commons.apache.org/proper/commons-bcel/

4. Quality of Service Evaluation and Capacity Management

The acceptable degree of perturbation differs depending on the per-
formed measurement-based application. Typical measurement-based ap-
plications for software system development and operation are debugging,
profiling, logging, and monitoring. Debugging and profiling are usually
performed at development time in development environments where a high
degree of perturbation is acceptable. For example, profiler tools typically
impose a high performance overhead but provide very detailed information
on the runtime behavior. Also, experimental tools may be used to gain
the desired information. On the other hand, logging and monitoring are
used during operation in the production environment, which limits the
accepted perturbation to a level that does not violate the system’s SLAs.
Administrators usually accept a certain level of perturbation because they
gain important information about the runtime behavior and system health.

4.2.4 Monitoring of EASs

Continuous monitoring of enterprise application systems (EASs) serves, for
example, to make sure that the system’s QoS requirements are fulfilled as
well as to detect, diagnose, and resolve QoS problems as early as possible.
For this purpose, monitors are placed at different layers of the software
system stack, including network devices, server and storage hardware, the
operating system, middleware and application servers, applications, as well
as business processes. On each level, various QoS measures of interest exist.
While these are typically EAS-agnostic for system level measurements, e. g.,
utilization of CPUs and storage resources, the set of measures becomes
EAS-specific, when it comes to application or business process level, e. g.,
involving measures like completed orders per hour.

Countless monitoring tools have been developed and are in production
use since the past decade at least. For example, Allspaw [2008] provides a set
of best practices, including suggestions of tools, for monitoring EASs. Vari-
ous powerful commercial tools are offered under the umbrella of the term
application performance management (APM) [Kowall and Cappelli, 2013].

58

4.3. Capacity Management

4.3 Capacity Management

This section gives an overview of typical capacity management activities
and techniques. We use the terms capacity planning (e. g., used by Menascé
and Almeida [2002]), capacity management (e. g., used in the ISO/IEC
Standard 20000 [ISO/IEC, 2005b,a]), and resource management (e. g., used
by Kounev et al. [2010]) as synonyms.

Figure 4.5 depicts the capacity planning methodology by Menascé and
Almeida [2002]. It includes three models—representing information on
workload, performance, and costs—as well as respective steps to create,
calibrate, and use these models for prediction. Based on the focus of this
section, we limit the QoS characteristic to be analyzed as part of this capacity
methodology to performance. Menascé and Almeida additionally include
availability. Based on our understanding of capacity (e. g., Definition 4.2), it
makes sense, to extend the methodology to other QoS characteristics, based
on appropriate models and analysis techniques.

The initial step in the process, understanding the environment, com-
prises activities such as identifying the technical hardware and software
infrastructure, integration with other systems, and the SLAs.

The workload characterization step serves to create a workload model for
the system, which represents the usage profile of the system. This includes

Understanding the Environment

Workload Characterization

Workload Model
Validation and Calibration

Workload Forecasting

Performance Model Development

Performance Model Calibration

Cost/Performance Analysis

Performance Prediction

Investment PlanConfiguration Plan Personnel Plan

Cost Model
Development

Cost Prediction

Performance
Model

Workload
Model

Cost
Model

Figure 4.5. Capacity planning methodology by Menascé and Almeida [2002]

59

4. Quality of Service Evaluation and Capacity Management

the identification of the workload classes (open, closed) as well as their
characteristics with respect to workload intensity and resource demands
for services provided by the system. The workload characterization process
typically comprises a combination of measurements (Section 4.2) and expert
knowledge. The goal of the workload model validation and calibration
step is to assess the validity of the workload model w.r.t. the desired level
of accuracy and, if needed, to refine the model to reach this accuracy
level (calibration). Having observed a system’s workload measures for a
certain period of time allows to predict future workload measures using the
workload model. This step is called workload forecasting. We will present
selected techniques for workload modeling and forecasting in Section 4.4.

A performance model is an abstract representation of a system’s perfor-
mance-relevant characteristics. For example, the system may be modeled in
terms of interactions among software entities and their demands to shared
hardware resources such as CPU, network, and I/O. As for the workload
model, the capacity planning process includes development, calibration,
and prediction. Predictive values for performance measures of interest can
be obtained by solving the performance model including information about
the usage profile, included in the workload model. We will present selected
techniques for performance modeling and prediction in Section 4.5.

The cost model comprises the expenditures for buying, installing, and
operating the system in the considered configuration and environment.
This includes startup costs, eg, for hardware devices, software licenses
and development, as well as operating costs, e. g., for system maintenance,
third-party services, and energy. With respect to the corresponding steps in
the capacity planning methodology, a costs models is developed and then
used for prediction. We will not further detail the topic of cost modeling.

In order to assess whether a system configuration provides adequate
capacity, the performance and costs measures obtained from the predictions
are compared with the respective constraints and requirements, e. g., as
contained in the SLAs.

4.4 Workload Characterization and Forecasting

This section briefly surveys selected workload modeling formalisms and
presents selected workload characterization and forecasting techniques.

60

4.4. Workload Characterization and Forecasting

Note that basic workload terminology and measures have already been
introduced in Section 4.1.2.

4.4.1 Workload Modeling

The presentation of the workload modeling formalisms in this section is
based on a classification into approaches a) for queuing models and variants,
b) based on scenarios, and c) based on sessions. References to performance
modeling languages are included, which are introduced in Section 4.5.

➍ Workload Intensity in Queueing Models and Variants.

The Kendall notation [Jain, 1991] for Queueing Models (QMs) includes a
definition of the workload intensity by specifying the inter-arrival time
distribution as well as the population size. Open Queueing Networks
(QNs) typically include entry nodes, for which the stochastic arrival
processes are defined [Smith and Williams, 2002]. The workload intensity
for closed QN can be defined based on population sizes and delay
nodes modeling think times. In multi-class QNs, these parameters
can be defined for each workload class [Bertoli et al., 2009]. In Layered
Queueing Network (LQN) models [Franks et al., 2009], sources of arrivals
are modeled as usual tasks (software servers) that request services from
other tasks in the LQN model. Open and closed workloads can be
modeled by choosing appropriate multiplicities of the tasks and the
associated processor nodes.

➍ Scenario-Based Workload Specification.

Many architecture-level performance modeling approaches include con-
cepts to define the workload intensity by attaching this information to
the modeled performance scenarios. This allows to model frequencies
and patterns of occurrence based on the individual performance-relevant
use cases. In the SPE modeling approach by Smith and Williams [2002],
the performance scenarios are part of the software execution model and
arrival rates can be assigned to each of the scenarios. The workload inten-
sity for the system execution model, i. e., QN models, can be derived from
the software execution model, e. g., automatically by the corresponding
SPE✌ED tool. Likewise, the UML SPT profile [Object Management Group,
Inc., 2005] allows to associate scenarios with open and closed workloads,

61

4. Quality of Service Evaluation and Capacity Management

which are parameterized by specifications of arrivals (occurrence pattern),
population, and think times (external delay) respectively. An according
workload stereotype is assigned to the first step of a scenario. Allowed
attribute values include the definition of probability distributions and
different arrival patterns, e. g., bursty, bounded, and periodic. In the Core
Scenario Model (CSM) [Petriu and Woodside, 2007], an open or closed
workload is also defined based on scenarios by associating it with the
start step of a scenario. Employing the SPT successor, MARTE [Object
Management Group, Inc., 2011c], workloads can be associated to contexts
by defining streams of events triggering the execution of scenarios. These
streams can be specified as timed events, arrival patterns (as for SPT,
including closed and open patterns), workload generator models (e. g.,
UML state machine models), as well as event traces stored in a file.

➍ Session-Based Workload Specification.

For certain kinds of systems, the assumption of workload being an arrival
of independent requests is inappropriate. For example, many web-based
systems employ the concept of sessions for users interacting with the
systems [Menascé et al., 1999; Goševa-Popstojanova et al., 2006]. Such
a session comprises the sequence of inter-related requests posed by a
single user during a single visit.

Menascé et al. [1999] introduced the so-called Customer Behavior Model
Graph (CBMG) in order to model the navigational patterns of similar
sessions. A CBMG consists of a discrete-time Markov chain (DTMC)
modeling the transitions between client requests, as well as average
think times assigned to these transitions. A set of CBMGs with their
relative frequencies of occurrence constitutes the workload mix. In our
previous work [van Hoorn et al., 2008], we used these models in combi-
nation with an application-specific model of valid sessions for workload
generation. In the Palladio Component Model, open and closed work-
loads are defined scenario behaviors, modeling the navigational pattern
between parameterized system calls. More sophisticated workloads mod-
els can be implemented employing MARTE [Object Management Group,
Inc., 2011c] by defining appropriate workload generator models, e. g., by
means of UML state machines.

62

4.4. Workload Characterization and Forecasting

4.4.2 Workload Characterization

It is important to keep in mind, that there is neither a general workload
characterization methodology nor a general set of workload meta-models or
metrics. Instead, these particularly depend on the goal and the abstraction
level of the workload characterization process. For example, from a business
perspective one might be interested in the number of purchase orders sent
per hour, while on a protocol or hardware resource level, characteristics of
HTTP requests or I/O operations respectively may be more relevant.

➍ Characteristics of Web Workloads.

Some characteristics that are specific for workload intensities and re-
source demands occurring for systems in the World Wide Web have
been identified by researches. This includes burstiness of arrival pro-
cesses [Arlitt et al., 2001], self-similarity and seasonal patterns in the
request rates [Crovella and Bestavros, 1997; Arlitt et al., 2001], heavy-
tailed distributions of file sizes and user think times [Crovella and
Bestavros, 1997], the difficulty to distinguish real users from robots [Arlitt
et al., 2001], as well as the importance of session-based workload charac-
terization [Menascé et al., 1999; Arlitt et al., 2001; Goševa-Popstojanova
et al., 2006]

Menascé and Almeida [2002] describe a possible workload characteri-
zation methodology for such systems. Possible views on workload can
range from business to technology perspectives, implying the workload
models to cover business, functionality, protocol, or resource-oriented
parameters. Depending on the selected subsystems to be studied (e. g.,
interactive portals or back-end services), the basic workload components
(e. g., user sessions or transactions) as well as the concrete parameters
need to be chosen. For the subsequent data collection step, monitoring
tools (system and application level) as well as server access logs are
typical sources of information. The global workload contained in this
data should then be partitioned into workload classes, for example, by
grouping requests based on types (images, services, etc.), service names,
or resource demands (e. g., estimated by response times).

63

4. Quality of Service Evaluation and Capacity Management

➍ Approaches Applying Clustering.

In order to identify similar workload classes within the global work-
load mix, clustering is a technique often used. A number of clustering
algorithms exists which have been surveyed, for example, by Berkhin
[2002]. Menascé et al. [1999] applied k-means clustering to identify sim-
ilar sessions contained in web server access logs. In a first step, the
sequence of requests contained in the access log is transformed into a
session log—containing a CBMG for each session. The distance metric
for the clustering algorithm is defined based on the CBMG’s transitions
and think time matrices. Arlitt et al. [2001] applied clustering to identify
and analyze user sessions by their resource demands—in terms of the
number of cacheable, non-cacheable, and search requests.

4.4.3 Workload Characterization and Forecasting Based on
Time Series Analysis

Workload forecasting techniques can be divided into quantitative and quali-
tative techniques [Menascé and Almeida, 2002]. Quantitative approaches
use collected values of workload measures to predict future trends, while
qualitative approaches are relying on estimates provided by experts. Com-
mon approaches for quantitative workload forecasting employ established
techniques from time series analysis, which are being used for forecasting
in many domains.

A time series X represents a sequence of values {x0, x1, . . .} associated
with a corresponding sequence of equidistant time points t = t0, t1, For
example, the number of requests to system-provided services observed
during time intervals of five minutes may be represented as a time series.
Established techniques exist to analyze properties of time series, e. g., covari-
ance, correlation, stationarity, linearity, seasonality, as well as to transform
time series, e. g., using regression (smoothing, filtering, etc.) and differenc-
ing operations. These techniques are useful for workload characterization
and forecasting. Recently, a self-adaptive approach for workload character-
ization and forecasting based on time series analysis has been presented
by Herbst et al. [2013a]. Their work includes a classification of forecasting
algorithms, including autoregressive integrated moving average (ARIMA)
models, for workload forecasting. In the context of this thesis and in collab-

64

4.5. Performance Modeling and Prediction

oration with Herbst (Section 5.3), Bielefeld [2012] developed an approach
for forecasting response times based on time series analysis in order to
detect performance anomalies. For a thorough introduction into time series
analysis, readers may refer to one of the many textbooks available on this
topic, e. g., by Shumway and Stoffer [2006].

4.5 Performance Modeling and Prediction

This section starts with an overview of approaches for software performance
modeling and prediction (Section 4.5.1) before introducing the Palladio
Component Model in more detail (Section 4.5.2).

4.5.1 Overview of Approaches

Performance modeling languages and prediction techniques can be grouped
into a) analytic (or analysis-oriented) and b) architecture-level (or design-
oriented) approaches. This sections aims to provide a rough overview of
the field. For a more detailed introduction into the topic of model-based and
model-driven software performance engineering, readers may, e. g., refer to
Balsamo et al. [2004], Woodside et al. [2007], and Cortellessa et al. [2011].
Surveys focusing on component-based systems are provided by Becker
et al. [2006a] and Koziolek [2010]. References to more specific sources are
included below.

Analytic performance modeling languages, many of which are known
for decades, typically support very abstract constructs—such as processes,
resources, and queues—which are suitable for computer system perfor-
mance evaluation [Jain, 1991] but have no directly corresponding elements
in the software architecture. Efficient techniques and tools to solve such
models exist, e. g., based on product-form solutions (approximate or exact)
and simulation. Well-known approaches in this category include those
that employ variants of Markov processes, Queueing Models (QMs) and
Queueing Networks (QNs) [Menascé et al., 2004; Balsamo and Marin, 2007],
Petri Nets (PNs) [Bause and Kritzinger, 2002; Balbo, 2007], process algebras
[Clark et al., 2007]. Building on this work, approaches such as Layered
Queueing Networks (LQNs) [Rolia and Sevcik, 1995; Franks et al., 2009] and
Queueing Petri Nets (QPNs) [Bause and Buchholz, 1998; Kounev et al., 2012]

65

4. Quality of Service Evaluation and Capacity Management

Figure 4.6. Closed Queueing Network [Denning and Buzen, 1978]

«PAcontext»

b : Browser ws : WebServer vs : VideoServer

processSelection

initialPlayout

...

confirm

«PAclosedLoad»
{PApopulation=$NUsers,
PAextDelay=('mean','asgn',20,'ms')}}

«PAstep»
{PArespTime=
('req','percentile',95,500,'ms')}}

«PAstep»
{PAdemand=
('est','mean',1,'ms')}}

«PAstep»
{PArep=$N,
PAdemand=('est','mean',10,'ms'),
PAextOp=('filesys',12),('network',65)}

...

...

(a) Sequence diagram

«PAcontext»

{PAschdPolicy=PreemptResume,
PArate=1,
PAutilization=$Util,
PActxtSwT=('est','mean',40,'us')}

b : Browservp : VideoPlayer
vw :

VideoWindow

«PAhost»
:ClientWorkstation

«GRMdeploys»

(b) Deployment diagram

Figure 4.7. UML SPT sequence (a) and deployment (b) diagrams [Object Manage-
ment Group, Inc., 2005]

have been developed that aim to improve modeling of software aspects,
e. g., software resources. Introductions into a number of tools for these
approaches are provided by ACM SIGMETRICS [2009]. As an example,
Figure 4.6 shows a QN from the original publication by Denning and Buzen
[1978], which models the performance of a computer system with three
resources and a closed workload.

During the past decade, model-based approaches aiming to predict the
performance of software systems in early design stages have been developed.

66

4.5. Performance Modeling and Prediction

Many of these approaches share the concept of augmenting architectural
software design models by performance-relevant properties [Woodside
et al., 2002], e. g., resource demands. Examples are the pioneering work by
Smith and Williams [2002], OMG’s UML SPT [Object Management Group,
Inc., 2005] and MARTE profiles [Object Management Group, Inc., 2011c], as
well as the CB-SPE [Bertolino and Mirandola, 2004] and the Palladio [Becker
et al., 2009] approaches both tailored for the performance prediction of
component-based software systems. As an example, Figure 4.7 shows two
UML diagrams with SPT annotations, as included in the SPT specification
[Object Management Group, Inc., 2005].

Various transformations from architecture-level performance model-
ing languages to analytic performance languages have been developed
[Di Marco and Mirandola, 2006] to derive quantitative performance indica-
tors for software architectures. Performance interchange formats, e. g., S-
PMIF [Smith et al., 2005], KLAPER [Grassi et al., 2007], and CSM [Petriu and
Woodside, 2007], aim to bridge the gap between analysis and architecture-
level models.

4.5.2 Palladio Component Model

The Palladio Component Model (PCM) [Becker et al., 2009] is a modeling
language for architecture-based performance prediction of component-
based software systems (CBSSs). A PCM instance consists of four com-
plementary models providing architectural views to structural as well as
performance-relevant behavioral aspects of a CBSS: a) a repository model,
b) a system model, c) a resource environment model, and d) an allocation
model. Additionally, usage models allow to specify corresponding work-
loads. Transformations from PCM instances to analytic performance models
and simulation models exist, allowing to derive performance indices of
interest—e. g., statistical distributions of operation response times and re-
source utilization. The remainder of this section describes PCM’s modeling
concepts and related terminology required to understand the remaining
parts of this thesis. For further details, we refer to the publications on PCM
[Becker et al., 2009; Reussner et al., 2011]. Note that this section includes
contents from one of our publications [von Massow et al., 2011].

67

4. Quality of Service Evaluation and Capacity Management

ICatalog

void getBook()

ICRM

void getOffers()

<<Requires>>

<<Requires>> <<Provides>>

Bookstore

SEFF <searchBook>

CRM

SEFF <getOffers>

Catalog

SEFF <getBook>

<<Provides>><<Provides>>

IBookstore

void searchBook()

<<Requires>>

(a) Repository diagram of the Bookstore

<<InternalAction>>

formatResults

ResourceDemand

50 <CPU>

<<ExternalCallAction>>

Required_ICatalog_Bookstore.getBook

<<ExternalCallAction>>

Required_ICRM_Bookstore.getOffers

(b) RDSEFF of the searchBook service

Figure 4.8. PCM repository contents of the Bookstore example application

Repository

A PCM repository model contains the type-level specification of available
interfaces and components. An interface constitutes a named set of service
signatures, as known from object-oriented modeling. Components provide
or require these interfaces. Figure 4.8a illustrates the PCM repository of a
Bookstore application, which is used as a running example in this thesis.
In order to use a PCM instance for performance prediction, the perfor-
mance-relevant behavior of each service implementation provided by the
components must be specified. In this thesis, we will limit ourselves to one
supported formalism—the Resource Demanding SEFF (RDSEFF). Similar
to activity modeling employing the UML [Object Management Group,
Inc., 2013b], an RDSEFF specifies a service implementation as a control
flow of actions. PCM distinguishes between internal actions and external
call actions—the former being a quantitative specification of the hardware
and software resources used by the service; the latter denoting calls to
required services. RDSEFFs provide additional features like probabilistic
and guarded branches, loops, and operations on variables. Figure 4.8b
illustrates the RDSEFF of the Bookstore’s searchBook service.

68

4.5. Performance Modeling and Prediction

<<CompositeStructure>>

theBookstore

bookstore <Bookstore> catalog <Catalog>

crm <CRM>

Figure 4.9. PCM system diagram of the Bookstore application

System

A PCM system model provides a deployment-independent component-
connector view of the system assembly. Components defined in the reposi-
tory can be (potentially multiply) instantiated as so-called assembly contexts
and inter-connected using so-called assembly connectors—constrained by
the interface providing/requiring specification. The services provided and
required by the system are delegated to/from the implementing assembly
contexts. Figure 4.9 illustrates the Bookstore’s system model.

Resource Environment

A PCM resource environment model specifies the available resource infras-
tructure and its performance-relevant characteristics. Resource containers,
e. g., physical servers, are inter-connected by linking resources, e. g., network
links. Each resource container is associated with the contained processing
resources (e. g., CPU and HDD), which can be demanded in the RDSEFFs.
For each resource, the resource environment model contains a specifica-
tion of the performance-relevant properties of the resources—e. g., capacity,
processing rates, throughput, and scheduling disciplines.

Allocation

A PCM allocation model specifies the deployment of the system’s assembly
contexts to resource containers. Each of these mappings is modeled as an
allocation context.

69

4. Quality of Service Evaluation and Capacity Management

Usage model

A PCM usage model allows to specify closed and open workloads. Proba-
bilistic user behavior is described in an RDSEFF-like formalism including
branches, loops, and calls to system-provided services. Closed workloads
include the definition of population size and think time; open workloads
include the definition of inter-arrival times.

70

Part II

SLAstic Approach

Chapter 5

Research Design

This chapter gives an overview of the research design employed for the
work on this dissertation. Section 5.1 describes the scope and the vision
of this research, and lists the research questions to be addressed. Based
on this, Section 5.2 describes the research plan and provides a summary
of results. The collaborations that were conducted in the context of this
research are outlined in Section 5.3.

5.1 Scope, Vision, and Research Questions

Section 5.1.1 describes the scope and outlines the envisioned approach. The
research questions addressed in this research are listed in Section 5.1.2.
Note that an introduction to the relevant foundations has previously been
provided in Chapters 2 to 4.

5.1.1 Scope and Vision

The scope of this research is the development of a self-adaptive capacity
management approach for component-based software systems (CBSSs),
employing architecture-based runtime reconfiguration and model-driven
techniques. The objective of the adaptation is that the capacity of the
controlled software is adapted based on high-level goals, such as meeting
SLAs while trying to minimize resource usage. An intuitive strategy is to
increase/decrease the provided capacity with increasing/decreasing de-
mand for capacity, particularly based on the workload intensity. We want to
cover both reactive and proactive strategies. Considered adaptation actions
focus on architectural runtime reconfiguration operations. The decision
on when and how to adapt the system are based on architectural models

75

5. Research Design

used at runtime, including QoS-relevant information continuously obtained
from the controlled system. Particularly, this includes the possibility to use
model-driven techniques for performance evaluation at runtime. MDSE
techniques help to increase the degree of automation in the framework, e. g.,
by automatic system instrumentation.

To summarize, the envisioned approach comprises a combination of
architectural modeling languages for CBSSs, an extensible architecture-
based self-adaptation framework, architectural runtime reconfiguration for
CBSSs, as well as supporting model-driven techniques. The targeted class
of CBSSs to be supported are enterprise application systems.

5.1.2 Research Questions

In particular, this thesis addresses the following research questions based
on the previously described scope and envisioned approach:

• RQ1: Which aspects need to be modeled?

• RQ2: What is a suitable modeling language?

• RQ3: What are relevant QoS measures to be monitored?

• RQ4: What are basic analyses for online capacity management?

• RQ5: What is a framework that supports the SLAstic approach?

• RQ6: Where and how can MDSE techniques support the approach?

• RQ7: What are suitable reconfiguration operations to control system
capacity?

These research questions will be addressed by the activities conducted as
part of the work packages described in the following section.

5.2 Research Plan and Summary of Results

Based on the previously described vision and research questions, the re-
search for this thesis is structured into the following five work packages
WP1–WP5, whose goals and results will be detailed in the following Sec-
tions 5.2.1 to 5.2.5:

76

5.2. Research Plan and Summary of Results

• WP1: Architectural Modeling

• WP2: Online Capacity Management Framework

• WP3: Model-Driven Online Capacity Management

• WP4: Runtime Reconfiguration for Controlling Capacity

• WP5: Evaluation

For each work package, we present the goals and a summary of results. We
refer to the respective parts in this thesis and refer to other sources for work
not being covered or detailed in this document.

The chapter structure in this thesis (also summarized in Section 1.3)
reflects the structure of the research plan. The approach is presented in the
following Chapters 6 to 10 of this Part II in a sequence matching the order
of work packages. The work on utilizing the Palladio Component Model,
which is cross-cutting the work packages, is included in Chapter 11 at the
end of this part. The evaluation is presented in Part III. Foundations and
related work analyzed from literature as part of the research on the work
packages are summarized in Part I and in Chapter 16.

In the early phase of this research, the overall vision and the research
plan have been presented to the related research communities at different
workshops [van Hoorn, 2009a,b; van Hoorn et al., 2009a,b]. Moreover, the
research was planned in a proposal document that has been refined together
with the PhD supervisor at the beginning of this research in 2008–2009.

5.2.1 WP1: Architectural Modeling

Goals

This work package comprises the activities for selecting or developing a
suitable modeling language to be used for the SLAstic approach. Employ-
ing the modeling language, it must be able to express various architectural
aspects about the controlled software system up to an appropriate level
of detail. This includes structural and behavioral information about the
component-based architecture, performance requirements (SLAs) and prop-
erties, as well as adaptation constraints, policies, etc. A model expressed
with the language serves as the basis for monitoring instrumentation, for
framework initialization, and for the online analysis at runtime.

77

5. Research Design

Particularly, this work package addresses the research questions RQ1
(Which aspects need to be modeled?) and RQ2 (What is a suitable modeling
language?).

Based on a survey of existing architecture and performance modeling
approaches, the expected outcomes of this work package are a specification
and an implementation of the selected or developed modeling language,
which is usable for the subsequent work packages.

Summary of Results

The main results of this work package are the architectural modeling lan-
guages described in Chapter 6 and their integration with the Palladio
Component Model (PCM), as described in Chapter 11. With respect to
architectural modeling, the core of the SLAstic meta-model is the ability
to provide a structural view on CBSS architectures using an abstraction
level close to the one provided by PCM. Additionally, the SLAstic meta-
model includes concepts to model system behavior and usage, as well
as reconfiguration capabilities, operations, and plans. We integrated the
meta-model agnostic modeling languages SMM/MAMBA (introduced in
Section 4.1.4) and S/T/A (introduced in Section 3.4.3), which are a result of
a collaborative research in the context of this thesis (Section 5.3). MAMBA
is employed to attach performance measures to SLAstic models. S/T/A
is mainly employed to express reconfiguration plans. With respect to the
integration of PCM, this includes the transformation of SLAstic models
to PCM models and the concept of decorating PCM models by a SLAstic
model for use at runtime. Meta-model implementations conforming to the
Ecore meta-meta-model are available for all of the developed modeling
languages. For the SLAstic meta-model, the Ecore version is an export from
Rational Software Architect. Parts of the SLAstic meta-model have addition-
ally been specified in Object-Z, focusing on specific modeling constraints.
Based on the M2T transformation provided by EMF, the meta-models were
transformed to Java code to make them available for the SLAstic framework
implementation.

The research on this work package started with a study of relevant
foundations from related research areas, including languages for modeling
software architectures (ADLs), performance, and adaptation, as well as
meta-modeling concepts and technologies from MDSE (Chapters 2 to 4).
Already in an early phase of this research, we came to the conclusion that

78

5.2. Research Plan and Summary of Results

the component model (architectural style) and modeling language provided
by PCM matches large parts of the requirements for our approach. Initially,
we used PCM directly and created a decorator meta-model for adding
information on SLAs and reconfiguration constraints and operations to
PCM instances [Stöver, 2009]. Thanks to today’s MDSE technologies, which
ease the development of modeling languages and tool support, we decided
to develop the SLAstic meta-model tailored to our approach. As opposed
to PCM, the SLAstic meta-model does not aim to be a complete meta-
model including the QoS-relevant or performance-relevant information to
predict software performance (QoS). Instead, we kept the SLAstic meta-
model compact with a focus on runtime reconfiguration. Thanks to the
transformation to PCM instances and the decoration concept, it can be used
for performance prediction.

5.2.2 WP2: Online Capacity Management Framework

Goals

This work package comprises the activities for developing a self-adaptation
framework for the SLAstic approach. Employing the framework, it must be
possible to continuously monitor relevant QoS measures from a software
system, continuously perform capacity planning at runtime, and to recon-
figure the controlled system at runtime. The framework should provide
a separation of architecture and technology in that a) the online analyses
are based on the architectural runtime model (conforming to the modeling
language from WP1) and architecture-level QoS measures, and that b) it is
possible to connect the framework to systems implemented with different
technologies. It should provide the basic structure and components for
online capacity management, which should be extensible for customization,
e. g., w.r.t. algorithms, analyses methods, and supported technologies. In
addition to its primary use for online capacity management, the framework
should also be used for offline analysis, e. g., by importing previously mon-
itored data. The purpose of the offline operation to be supported by the
framework is the ability to evaluate different adaptation strategies, configu-
rations, etc., using pre-recorded workloads. In order to ease this evaluation
without having the need for a running system, the integration of a simulator
is desirable.

79

5. Research Design

Particularly, this work package addresses the research questions RQ3
(What are relevant QoS measures to be monitored?), RQ4 (What are basic analyses
for online capacity management?), and RQ5 (What is a framework that supports
the SLAstic approach?).

The basis for this work package is a literature study on state-of-the-
art in software performance engineering (including capacity management,
performance prediction, etc.) and self-adaptation, including supporting
frameworks. The expected outcome of this work package is a concep-
tual architecture and a proof-of-concept implementation of a framework
supporting the SLAstic approach. With respect to instrumentation and
dynamic analysis of Java EE-based enterprise application systems, we can
build on existing work developed in our research group [Focke, 2006; van
Hoorn, 2007; Rohr et al., 2008]. However, in its current state, this work
is not supporting online analysis and is not designed for extensibility, as
required by our approach.

Summary of Results

The main results of this work package are the Kieker and SLAstic frame-
works whose conceptual architectures and implementations are described in
Chapters 7 and 8. Kieker provides an extensible framework for implemen-
tation-level instrumentation, monitoring, and dynamic analysis of software
systems. Kieker became a big focus of this thesis and resulted in a frame-
work that supports but is not limited to the SLAstic approach. Also thanks
to enormous contributions by colleagues (see also Sections 5.3 and 15.2.4),
its implementation became way more than a proof of concept. Building on
Kieker, the SLAstic framework provides a reusable and extensible platform
for architecture-based online capacity management. The framework imple-
ments a MAPE-K-based self-adaptation loop (Section 3.4.1). The framework
is tailored to online capacity management by the components for a) perfor-
mance evaluation, b) workload forecasting, c) performance prediction, and
d) adaptation planning, which are contained in the framework’s adaptation
controller component. A core component is a model manager that maintains
a (continuously updated) runtime model conforming to the SLAstic meta-
model developed in WP1. Online and offline analysis modes are supported.
The SLAstic.SIM discrete-event simulator for runtime reconfigurable PCM
instances has been developed and integrated (Section 11.3). SLAstic builds

80

5.2. Research Plan and Summary of Results

on Kieker in that it uses it for collecting and providing runtime data from
the simulated systems and for importing previously recorded workload
stimuli.

The research on this work package started with a study of relevant
foundations from SPE and self-adaptation (Chapter 4 and Section 3.4) in
combination with the work on the foundations for WP1. Stöver [2009]
developed a first version of the SLAstic framework (Section 5.3.1), which
has been further refined in the future time based on the experiences. The
initial framework version used PCM as a runtime model. During SLAstic’s
development, various parts that are useful for dynamic software analysis
in general were integrated into the Kieker framework. The development
of SLAstic.SIM, our discrete-even simulator for runtime reconfigurable
PCM instances, was performed in the context of the thesis by von Massow
[2010]. Work on prediction of performance measures based on time series
analysis has been performed in the context of the research on the ΘPAD
approach [Bielefeld, 2012; Frotscher, 2013] (Section 5.3). Work on the use of
model repository technologies, e. g., to be used within the model manager
contained in the SLAstic framework, was performed in the context of the
thesis by Kiel [2013] (Section 5.3.1). Chapter 15 provides a retrospective
look at Kieker’s history, development, and impact.

5.2.3 WP3: Model-Driven Online Capacity Management

Goals

This work package comprises the activities to improve automation of re-
occurring, schematic tasks within the SLAstic approach employing model-
driven techniques—particularly model transformations—and technologies
from MDSE. Potential tasks to be automated are the generation of mea-
surement instrumentation, the transformation of implementation-level mea-
surements to architecture-level QoS measures, extraction of SLAstic models
from implementation-level measurement data, and model-driven analyses
at runtime.

Particularly, this work package addresses the research question RQ6
(Where and how can MDSE techniques support the approach?).

The expected outcome of this work package is a set of techniques
for the afore-mentioned automation using model-driven techniques. The

81

5. Research Design

Im
p

le
m

e
n

ta
ti

o
n

A
rc

h
it

e
c
tu

re
D

o
m

a
in

AST

Code

DSL

M
o

d
e
l-

D
ri

v
e
n

 S
o

ft
w

a
re

 D
e
v
e
lo

p
m

e
n

t

S
ta

ti
c
 A

n
a
ly

s
i s

D
y
n

a
m

ic
 A

n
a
l y

s
is

M
o

d
e
l-

D
ri

v
e
n

 I
n

s
tr

u
m

e
n

ta
ti

o
n

Queries

Analysis
Directives

Instrumentation
Directives

Monitoring
Events

Measure-
ments

Results

ADL

Shop

search()

:AvgRT

val=730

:EvalRes

val=true

:OpExec

tin=211
tout=955

<<OpExecProbe>>

<<RespTReq>>

<<AvgRespT>>

Instr.
code '@intercept#Call:CallProbe[]

Call bookstore.searchBook

Figure 5.1. Model-driven instrumentation and analysis in the DynaMod approach
[van Hoorn et al., 2011a]

techniques should be implemented as a proof-of-concept. Most likely, the
activities require extensions to the modeling languages developed in WP1.

Summary of Results

The main results of this work package are the model-driven techniques for
the SLAstic framework, described in Chapter 9, and integrating PCM as
described in Chapter 11. With respect to the results described in Chapter 9,
this particularly includes the following three aspects: a) model-driven gener-
ation of a Kieker instrumentation based on modeling constructs contained in
the SLAstic meta-model and MAMBA; b) transformation of implementation-
level Kieker records into SLAstic monitoring events; c) extraction and up-
dates of a SLAstic model based on Kieker records and SLAstic monitoring
events. As described in Chapter 7, Kieker also provides model extraction
functionality based on dynamic analysis. Kieker includes an earlier and
rudimentary version of the SLAstic meta-model. With respect to the PCM
integration, the results for this work package include a) the transforma-

82

5.2. Research Plan and Summary of Results

tion from SLAstic models to PCM instances, which—together with the
afore-mentioned extraction of SLAstic models—enables a basic extraction
of PCM instances via dynamic analysis for further refinement; b) the deco-
ration of PCM instances, which enables the use of PCM-based performance
prediction at runtime.

In the DynaMod research project [van Hoorn et al., 2011a], we already
built on the approach for model-driven instrumentation and analysis devel-
oped for this thesis—combining it with static analysis. Figure 5.1 provides
an illustration of the approach from our publication on this topic [van Hoorn
et al., 2011b]. In order to make the modeling foundations meta-model ag-
nostic and automate the interpretation of measurements, we started a joint
work (Section 5.3) on the MAMBA framework, which builds on the OMG
meta-model specification SMM, as detailed in Sections 2.3.1 and 4.1.4.

5.2.4 WP4: Runtime Reconfiguration for Controlling Capac-
ity

Goals

This work packages comprises the activities to select a set of architectural
runtime reconfiguration operations that serve to control the capacity of
component-based software systems and integrate these operations into the
SLAstic approach. The goal is to use these operations in our approach to
increase the system’s resource efficiency while meeting SLAs.

Particularly, this work package addresses the research question RQ7
(What are suitable reconfiguration operations to control system capacity?).

The expected outcome of this work package is the selection, specifica-
tion, integration, and proof-of-concept implementation of the considered
operations. The basis for this work package is a study of architectural
runtime reconfiguration approaches. We can build on existing work on
transparent runtime reconfiguration of component-based software systems,
conducted by Matevska [2009].

Summary of Results

The main results of this work package are the five architectural runtime
reconfiguration operations considered in this thesis and their integration

83

5. Research Design

into the framework (including S/T/A), as described in Chapter 10. With
respect to a specification and proof-of-concept implementation, we defined
the operation semantics for the Palladio Component Model and imple-
mented them in SLAstic.SIM (Section 11.3). In our lab experiments (WP5),
these architectural reconfigurations were implemented for Java EE and IaaS
technologies as additional proofs of concept (Chapter 13).

An important basis for the results in this work package was the work
by Matevska [2009] on transparent reconfiguration of component-based
systems. We jointly supervised the thesis by Bunge [2008] who implemented
a transparent runtime reconfiguration in a Java EE application server and
performed quantitative experiments, e. g., w.r.t. the costs of reconfiguration
(see also Section 5.3).

5.2.5 WP5: Evaluation

This work package comprises all activities related to the goal of evaluating
the overall approach including its components developed in WP1–4.

Table 5.1 provides an aggregated view on the evaluation methodology
including the evaluation questions and measures as well as the associated
evaluation methods and scales of measurement. Roughly based on the
Goal Question Metric (GQM) approach [Basili et al., 1994; van Solingen
and Berghout, 1999], we define a set of (evaluation) questions. With each
question, we associate a number of measures to be obtained by applying
one or more evaluation methods.1 We use a combination of the following
evaluation methods: a) proof-of-concept implementation, b) case study,
c) lab experiment, d) simulation, e) literature review, and f) argumentation.
For a measure we distinguish qualitative and quantitative scales of measurement.
Qualitative measures employ a scale of measurement that is nominal or
ordinal. As opposed to that, quantitative measures use interval or ratio
scales. For an introduction into scales (or levels) of measurement, please
refer to respective literature, e. g., by Zuse [1998], and by Field and Hole
[2012].

The decision to employ a combination of the afore-mentioned evaluation
methods is that we are convinced that their complementary use is well-
suited to answer the considered questions.

1As discussed in Section 4.1.1, we favor the notion of measure over metric—even though, the
latter is used in the GQM context.

84

Table 5.1. Evaluation questions (EQ), measures (EM), methods, and scales of
measurement

Method Scale

P
r
o
o
f
o
f
c
o
n
c
e
p
t

C
a
s
e
s
tu
d
y

L
a
b
e
x
p
e
r
im

e
n
t

S
im

u
la
ti
o
n

L
it
e
r
a
tu
r
e
r
e
v
ie
w

A
r
g
u
m
e
n
ta
ti
o
n

Q
u
a
li
ta
ti
v
e

Q
u
a
n
ti
ta
ti
v
e

EQ1: Is the overall approach applicable to realistic scenarios?

EM1.1: Confirmation of assumptions

EM1.1.1: Variations in workload ✌ ✌ ✌

EM1.1.2: Underutilized resources ✌ ✌ ✌

EM1.2: Perturbation by application monitoring ✌ ✌ ✌ ✆

EM1.3: Suitability of modeling language ✌ ✌ ✌ ✌ ✌

EM1.4: Suitability of separating architecture

and technology

✌ ✌ ✌ ✌ ✌

EQ2: Does the approach have the desired properties?

EM2.1: Extensibility of framework for specific purposes and technologies

EM2.1.1: Modeling language ✌ ✌

EM2.1.2: Monitoring ✌ ✌ ✌ ✌ ✌

EM2.1.3: Analysis ✌ ✌ ✌ ✌ ✌

EM2.1.4: Reconfiguration ✌ ✌ ✌ ✌

EM2.2: Reusability of framework

EM2.2.1: Modeling language ✌ ✌ ✌ ✌ ✌

EM2.2.2: Monitoring ✌ ✌ ✌ ✌ ✌

EM2.2.3: Analysis ✌ ✌ ✌ ✌ ✌

EM2.2.4: Reconfiguration ✌ ✌ ✌ ✌

EM2.3: Suitability of reconfiguration operations

EM2.3.1: Impact on Capacity ✌ ✌ ✌

EM2.3.2: Transparency ✌ ✌ ✌

EM2.4: Suitability of MDSE techniques ✌ ✌ ✌ ✌ ✌

EQ3: How does the approach compare to other approaches?

EM3.1: Novelty ✌ ✌ ✌

EM3.2: Validity and performance ✌ ✌

EQ4: How do we assess our work?

EM4.1: Degree of reaching the goals ✌ ✌

EM4.2: Impact (use by others) ✌ ✌ ✌

5. Research Design

• Proof-of-concept implementations serve to show the applicability of ap-
proaches with respect to technical feasibility, and enable their use in other
experimental evaluation methods.

• Case studies, focusing on industrial enterprise application systems, are
a valuable means for a variety of reasons, e. g., for getting feedback
on the developed approach, gaining knowledge about state-of-the art
technologies and best practices (e. g., w.r.t. system architectures, use of
MDSE, and monitoring), as well as to have access to production workload
and performance data, which may contribute to confirming assumptions
underlying this research (varying usage profiles, underutilized resources,
etc.).

• Lab experiments serve to obtain evaluation results in controlled envi-
ronments. The envisioned experimental setup comprises the use of the
developed adaptation framework with a sample application exposed to
synthetic workload—ideally based on production usage profiles.

• Particularly with respect to the evaluation of reconfiguration operations,
simulation serves as a more flexible method compared to lab experiments,
because it is not necessary to implement the reconfiguration operations.

• Literature review is used to identify, build on, and compare previous
approaches and results by other researchers.

• For questions that are not answered by either of the aforementioned
methods, we use the method of argumentation. The respective question
is then answered by a discussion which is mainly based on a subjective
assessment rather than on qualitative or quantitative results obtained
from experiments.

Proof-of-concept implementations have been developed for the SLAstic
meta-model including the S/T/A and SMM/MAMBA languages and their
integration (WP1), the Kieker and SLAstic frameworks (WP2), the sup-
porting model-driven techniques (WP3), the five runtime reconfiguration
operations for controlling capacity and their integration into the SLAstic
approach (WP4), as well as the integration of PCM. These proof-of-concept
implementations form the basis for three types of experimental evaluations,
namely an industrial case study (Chapter 12), lab experiments (Chapter 13),
as well as simulation (Chapter 14). In these experimental evaluations, three
types of systems were used in online and offline settings: a distributed

86

5.3. Collaborations in the Context of this Research

Java-based web portal in production (case study), a Java-based sample
application in a private cloud setting (lab experiment), and the running
Bookstore example used throughout the thesis (simulation). The evaluation
results can be found in Chapters 12 to 16, as well as in Chapter 17. The
conducted non-experimental evaluations comprise a retrospective view
on Kieker’s history, development, and impact (Chapter 15), as well as a
discussion of related work (Chapter 16).

5.3 Collaborations in the Context of this Research

This section summarizes the collaborations with students (Section 5.3.1) as
well as with researchers and industry (Section 5.3.2) in the context of this
thesis.

5.3.1 Students

A considerable number of students helped in conducting the research for
this thesis as part of Master’s and Diploma theses,2 seminars, and student
projects. These works were conducted at the Universities in Kiel and Olden-
burg and have been partially co-supervised with the following researchers
and partners from collaborating companies: Sören Frey, Wilhelm Hassel-
bring, Reiner Jung, Stefan Kaes (XING), Holger Knoche (b+m Informatik),
Jasminka Matevska, Matthias Rohr, Thomas Stahl (b+m Informatik), and
Jan Waller.

In this section, we will briefly summarize the core works that contributed
to this thesis in ascending chronological order. Note that details on a couple
of these works are not further detailed in this thesis.

➍ Bunge [2008] contributed to WP4 (Section 5.2.4) by providing a proof-
of-concept implementation of a runtime reconfiguration operation in
a Java EE application server, including a quantitative evaluation in lab
experiments with respect to the following measures while executing
reconfigurations: failure rates, user-perceived response times, CPU uti-
lization.

2At German universities, a Diploma thesis (Diplomarbeit) is a 6-month final thesis for the
Diploma degree (Diplom), which is equivalent to a Master’s degree.

87

5. Research Design

➍ Stöver [2009] contributed to WP1 (Section 5.2.1) and WP2 (Section 5.2.2).
With respect to WP2, she developed an initial version of the online adap-
tation framework, including a qualitative and quantitative evaluation
based on lab experiments. With respect to WP1, Stöver used PCM as
the runtime model, extending it by meta-models (including a textual
concrete syntax) for reconfiguration specifications, reconfiguration plans,
and SLAs.

➍ von Massow [2010] contributed to WP2 (Section 5.2.2) and WP4 (Sec-
tion 5.2.4). He developed the SLAstic.SIM simulator for runtime recon-
figurable PCM models, which can be connected the SLAstic framework.
With respect to WP4 he contributed a proof-of-concept implementation
of the reconfiguration operations considered in this thesis.

➍ As part of a Master’s seminar and his Master’s thesis (not supervised
by me), Fittkau [2011, 2012] contributed to WP2 (Section 5.2.2) and WP5
(Section 5.2.5) by developing adapters for the SLAstic online adaptation
framework to the cloud computing platforms Eucalyptus and Amazon
Web Services (AWS) (Section 3.3.2), and using the framework in different
lab experiments.

➍ Magedanz [2011] contributed to WP2 (Section 5.2.2) and WP5 (Sec-
tion 5.2.5) by developing a solution for Kieker to monitor .NET appli-
cations and working on the Nordic Analytics case study, mentioned in
Section 15.3.1.

➍ Günther [2011] contributed to WP3 (Section 5.2.3) by working on the
transformations of SLAstic models into PCM models.

➍ Bielefeld [2012] contributed to WP2 (Section 5.2.2) and WP5 (Section 5.2.5)
by working on forecasting support based on time series analysis and the
XING case study. The same holds for Frotscher [2013], who extended
Bielefeld’s work.

➍ Richter [2012] contributed to WP2 (Section 5.2.2), WP3 (Section 5.2.3), and
WP5 (Section 5.2.5) by developing a generative method for instrumenting
COBOL applications.

88

5.3. Collaborations in the Context of this Research

➍ Kiel [2013] contributed to WP2 (Section 5.2.2) by evaluating the scalability
of model repository technologies, especially CDO, which can be used to
manage the models at runtime. Moreover, Kiel implemented considerable
parts of the MAMBA framework.

5.3.2 Researchers and Industry

This research included various collaborations with researchers from our and
other research groups, which also contributed to this work. With respect
to Kieker (WP2, Section 5.2.2), these collaborations were conducted with
many colleagues from the University of Oldenburg and Kiel University,
leading to joint publications (e. g., [Rohr et al., 2008; van Hoorn et al., 2009c,
2012]). MAMBA (WP1 and WP3, Sections 5.2.1 and 5.2.3) was joint work
with colleagues from Kiel University [Frey et al., 2011, 2012], also in the
context of other research projects. With respect to transparent runtime
reconfiguration of CBSSs (WP4), we worked together with [Matevska, 2009],
e. g., as part of the joint supervision of Bunge’s thesis. S/T/A (WP1 and
WP2, Sections 5.2.1 and 5.2.2) was joint work with colleagues from the
Descartes research group at the Karlsruhe Institute of Technology (KIT)
[Huber et al., 2012, 2014]. We also collaborated with this research group
on workload forecasting in the context of Herbst’s and Bielefeld’s Master’s
theses [Herbst, 2012; Bielefeld, 2012; Herbst et al., 2013a]. Also, mainly in
the Kieker context, we worked together with a number of companies, as
detailed in Section 15.3.1.

89

Chapter 6

Architectural Modeling

This chapter describes the SLAstic meta-model that has been developed for
being used in the SLAstic approach for representing architectural informa-
tion about the controlled component-based software system (CBSS) and the
adaptation process. The meta-model builds the basis for other parts of the
SLAstic approach, detailed in Chapters 8 to 11. For example, instances of
the SLAstic are used at runtime by the SLAstic online adaptation frame-
work (Chapter 8) and by the supporting MDSE techniques (Chapter 9),
e. g., for model-driven instrumentation. The meta-model integrates with
the complementary meta-model agnostic modeling approaches S/T/A and
MAMBA, which were developed in the context of this thesis and have been
described in Section 3.4.3 and Section 4.1.4 respectively. All meta-model
implementations are available as part of the supplementary material to this
thesis [van Hoorn, 2014].

The remainder of this chapter is structured as follows. Section 6.1
introduces the languages and technologies used for the specification and
implementation of the SLAstic meta-model. The subsequent sections detail
the SLAstic meta-model based on the organization into aspects concerning
system structure (Section 6.2), behavior and usage (Section 6.3), adaptation
and reconfiguration (Section 6.4), as well as QoS measures (Section 6.5).

6.1 Specification Languages and Implementation

This chapter uses a combination of a) the Unified Modeling Language
(UML) 2.5 [Object Management Group, Inc., 2013b] and b) the Object-Z
specification language [Smith, 2000] to represent the meta-models. We
follow the common approach of employing UML class diagrams for visual-
izing the abstract syntax of the meta-model (Chapter 2).

91

6. Architectural Modeling

As the primary reference, the SLAstic meta-model is implemented with
Rational Software Architect (RSA), a well-known MDSE tool. The RSA-
based meta-model representation is exported to Ecore, in order to make
it available to the EMF-based MDSE tooling infrastructure employed in
this thesis, including automatic generation of Java code (Section 2.3.2).
We additionally specified a subset of the SLAstic meta-model in Object-
Z, mainly to formalize additional constraints on the meta-model. We
prefer Object-Z to OCL for this purpose due to Object-Z’s more compact
representation. Basic validations, like type checking, on the Object-Z were
performed using publicly available tools [Community Z Tools Project, 2014].
For a comprehensive introduction into Object-Z and the underlying Z
Specification Language, please refer to other sources, e. g., by Smith [2000],
Woodcock and Davies [1996], as well as Spivey [2001]. The SMM/MAMBA
and S/T/A meta-models (as described in Sections 3.4.3 and 4.1.4) are
specified directly in Ecore.

Note that the descriptions of the modeling languages focuses on the
core concepts and omits unimportant details. The implementations of the
modeling languages serve as the main reference [van Hoorn, 2014].

6.2 System Structure

A SLAstic system model is partitioned into four complementing sub-models,
each of which provides a specific architectural view on the modeled system:
The type repository model specifies the set of available software component
types along with information on their required and provided interfaces,
as well as available types of execution containers, hardware and software
resources, etc. As a logical view on the software composition, the component
assembly model specifies the set of assembly components —being instances
of the component types from the type repository—as well as their inter-
connection via connectors. The set of available execution containers, along
with information on their inter-connection via network links, is specified in
the execution environment model. The component deployment model specifies
the mapping of the assembly components from the component assembly
model to execution containers, as so-called deployment components.

The partitioning of the system model into the four submodels is depicted
as an Object-Z specification in Figure 6.1. By presenting relevant excerpts
of the SLAstic meta-model, the remainder of this section describes these
four sub-models more formally.

92

6.2. System Structure

SystemModel

typeRepository : TypeRepositoryModel
componentAssembly : ComponentAssemblyModel©
executionEnvironment : ExecutionEnvironmentModel©
componentDeployment : ComponentDeploymentModel©

❅ ac : AssemblyComponent ⑤ ac P componentAssembly.assemblyComponents
✌ (❉ dc : DeploymentComponent ⑤ dc P componentDeployment.deploymentComponents

✌ dc.assemblyComponent = ac)

Figure 6.1. Object-Z specification of the SystemModel meta-class referencing the four
submodels (© denotes object containment). The specification includes the constraint
that each assembly component must have at least one corresponding deployment
component.

Figure 6.2. Subset of the meta-classes for the type repository. Note that attributes
are not shown.

6.2.1 Type Repository

A type repository model (TypeRepositoryModel) contains type specifications of
components (ComponentType), interfaces (Interface), connectors (ConnectorType),
execution containers (ExecutionContainerType), resources (ResourceType), and
network links (NetworkLinkType), detailed in the remainder of this section.
Note that we will exclude connector and network link types from the
following description as they have not been further considered in this thesis.
Relevant parts of the meta-model related to the type repository model are
depicted in Figure 6.2.

93

6. Architectural Modeling

ComponentType
FQNamedElement

providedInterfaces : P Interface
requiredInterfaces : P Interface
operations : P Operation©

❅ o1, o2 : Operation ⑤ (o1 ✘ o2 ❫ {o1, o2} ❸ operations) ✌ o1.signature ✘ o2.signature

{s : Signature; i : Interface ⑤ i P providedInterfaces ❫ s P i.signatures ✌ s}
= {s : Signature; o : Operation ⑤ o P operations ❫ s = o.signature ✌ s}

Figure 6.3. Object-Z specification of the ComponentType meta-class, including the
constraint that a ComponentType must have an Operation for each Signature of the
provided Interfaces. By extending the meta-class FQNamedElement, component types
have a fully-qualified name. P denotes the power set, which corresponds to a
reference with multiplicity “many” (e. g., ✝) in class diagrams.

➍ Component Types, Interfaces

Interfaces declare a set of signatures (Signature) having a name, a list
of parameter types, and a return type as attributes. A component type
declares provided and required interfaces, and implements a set of oper-
ations (Operation) with distinct signatures. For each interface provided by
a component type, a corresponding operation (Operation) with an equal
signature must be implemented by that component type (formalized
in Figure 6.3). Internal modeling of operation implementations is not
part of the type repository. The usage profile (Section 6.3.3) includes
quantitative information on calling relationships between operations and
signatures of required interfaces. Note that we currently omit type inher-
itance, i. e., we assume a flat type hierarchy for all elements contained in
the type repository.

➍ Execution Container Types, Resource Types, and Resource Specifications

An execution container type includes a specification of which hardware
resources each execution container (Section 6.2.3) of this type contains.
Resources may be of different types, modeled by the abstract class
ResourceType. Concrete resource type classes exist for CPU (CPUType) and

94

6.2. System Structure

memory (MemSwapType) resources. CPUType includes attributes for vendor,
model, and clock rate. In certain cases, it is sufficient to use the generic
resource type (GenericResourceType). Contained in an execution container
type are resource specifications (ResourceSpecification), which instantiate
resource types for an execution container type. For example, an execution
container type may be equipped with multiple CPUs of the same resource
type. For memory resources, a specific resource specification exists,
which includes instance-specific information on the resource (size of
memory and swap). Figure 6.4 includes the specifications of the concrete
meta-classes for resource types and resource specifications.

6.2.2 Component Assembly

A component assembly model (ComponentAssemblyModel) provides a view on
a system’s logical assembly in terms of assembly components (Assembly-
Component) and their interconnection using assembly connectors (Assembly-
Connector). Both assembly components and assembly connectors are typed
with respect to the component and connector types defined in the type
repository model (Section 6.2.1). As for component types, a system assembly
declares a set of required and provided interfaces. Delegation connectors
are used to delegate calls directed to provided interfaces further to assembly
components that provide an implementation for these interfaces; likewise,
required interfaces of assembly components may be connected to required
interfaces of the component assembly for delegation. The meta-modeling
concepts and constraints related to component assembly are included in
Figure 6.5 (on page 97).

6.2.3 Execution Environment

An execution environment model (ExecutionEnvironmentModel) specifies the
set of available execution containers (ExecutionContainer) as well as their inter-
connection via network links (NetworkLink). According to the component
assembly specification described in the previous Section 6.2.2, the execution
containers and network links are typed based on the respective types
defined in the type repository. Figure 6.6 (page 98) shows the relevant
parts of the concepts related to the execution environment that have been
described so far. Figure 6.4 includes the parts of the meta-model relevant to

95

(a) Abstract and concrete meta-classes for resource modeling and their use in
execution containers and execution container types

CPUType
ResourceType

vendor : String
model : String
clockRateMhz : N

(b) Meta-class for CPU resource type

MemSwapResourceSpecification
ResourceSpecification

memCapacityBytes : N

swapCapacityBytes : N

resourceType P ↓MemSwapType

(c) Meta-class for memory-specific resource
specification

ExecutionContainer

executionContainerType : ExecutionContainerType
networkLinks : P NetworkLink
resources : P Resource©

❅ resSpec : ResourceSpecification ✌
(resSpec P executionContainerType.resources
ô (❉ res : Resource ⑤ res P resources ✌ res.resourceSpecification = resSpec))

(d) Meta-class for execution containers including the constraint that each container’s resources
must match its type’s resource specifications

Figure 6.4. Object-Z specifications of meta-classes for resource types and resource
specifications. ↓ denotes the union of a type and all of its subtypes.

(a) Subset of the meta-classes for the component assembly

AssemblyComponent

componentType : ComponentType
providingConnectors : P AssemblyConnector
requiringConnectors : P AssemblyConnector

componentType.providedInterfaces =
{i : Interface; c : AssemblyConnector ⑤ c P providingConnectors ❫ c.interface = i ✌ i}

componentType.requiredInterfaces =
{i : Interface; c : AssemblyConnector ⑤ c P requiringConnectors ❫ c.interface = i ✌ i}

(b) Meta-class AssemblyComponent with the constraint that all provided and required interfaces
must be connected

AssemblyComponentConnector
AssemblyConnector

providingComponent : AssemblyComponent
requiringComponent : AssemblyComponent

interface P providingComponent.componentType.providedInterfaces
interface P requiringComponent.componentType.requiredInterfaces

(c) Meta-class AssemblyComponentConnector with the constraint that the connected components
provide/require the connector’s interface

Figure 6.5. Meta-model excerpts of the component assembly model

6. Architectural Modeling

Figure 6.6. Core meta-classes and relations for the execution environment model

Figure 6.7. Component deployment model containing deployment components

modeling the relation between an execution container’s resources and the
afore-mentioned resource types and specifications.

6.2.4 Component Deployment

A component deployment model (ComponentDeploymentModel) specifies the
deployment of assembly components to execution containers, as so-called
deployment components (DeploymentComponent). Figure 6.7 shows the relevant
part of the meta-model. At least one deployment component must exist for
each assembly component (included as constraint in Figure 6.1 on page 93).

6.3 System Behavior and Usage

The SLAstic meta-model includes an extensible set of meta-classes for rep-
resenting basic monitoring events related to the structural meta-model
entities—e. g., executions of operations—and information derived from the
basic events, such as traces as well as call frequencies and call relationships

98

6.3. System Behavior and Usage

Figure 6.8. Meta-classes for operation execution and resource usage events

for operations. The remainder of this section details the meta-model con-
cepts for monitoring events (Section 6.3.1), traces (Section 6.3.2), and usage
(Section 6.3.3).

6.3.1 Monitoring Events

Based on the abstract meta-class Event, the SLAstic meta-model currently
includes meta-classes for representing monitoring events with respect to
executions of operations and usage of resources. Figure 6.8 shows the rele-
vant meta-classes. Note that the current set of meta-classes for monitoring
events is tailored to the needs for this thesis. Additional meta-classes can
be added in case these are needed for certain analyses.

➍ Operation Executions

Each operation execution event (abstract meta-class OperationExecution)
includes information about trace and session identifiers, the start and end
of the operation execution (tin, tout), as well as information on the posi-
tion of the execution in a trace (eoi, ess). We further distinguish between
executions of deployment component operations (DeploymentComponentOp-
erationExecution) and connector operations (ConnectorOperationExecution).
Each of these concrete meta-classes adds additional references to respec-
tive entities in the SLAstic meta-model.

99

6. Architectural Modeling

➍ Resource Usage

Each resource usage event (abstract meta-class ResourceMeasurement) in-
cludes a timestamp of measurement and a reference to the measured
resource from the SLAstic meta-model. We further distinguish be-
tween usage events for the afore-mentioned resource types, i. e., generic
(ResourceUtilization), CPU (CPUUtilization), and memory (MemSwapUsage).
The generic event simply includes a single utilization value, while the
events for the more concrete resource types include more detailed infor-
mation known from system measurements, as depicted in Figure 6.8.

6.3.2 Traces

Figure 6.9 shows the meta-classes and relationships for representing traces
(abstract meta-class Trace). We distinguish two trace representations, which
contain equivalent information for valid traces (abstract meta-class ValidTrace)
and can be transformed into the respective other form: a) execution traces
(ExecutionTrace) represent a trace as a sequence of the afore-mentioned oper-
ation executions; b) message traces (MessageTrace) represent a trace based on
the messages interchanged among architectural entities—currently limited
to synchronous call and reply messages.

Figure 6.9. Meta-classes and relationships for representing traces

100

6.3. System Behavior and Usage

Figure 6.10. Usage model

6.3.3 Usage

The SLAstic usage model contains quantitative information about inter-
nal and external calls to operations and interface signatures. The meta-
class and relationships are depicted in Figure 6.10. A calling relationship
(CallingRelationship) stores a frequency distribution (FrequencyDistribution)
—the information often visualized in histograms—for calls from an opera-
tion contained in a component type to a signature of an interface. Three
different types of call frequencies (OperationCallFrequency, AssemblyComponent-
ConnectorCallFrequency, SystemProvidedInterfaceDelegationConnectorFrequency) al-
low to decorate operations of component types, as well as signatures of
assembly component connectors and system-provided interface delegation
connectors by the information about how many times they have been called
during an observation period. Note that similar as for the monitoring
events, the usage model meta-model has been developed to support the
needs for the analyses in this thesis and can be extended as needed.

101

6. Architectural Modeling

6.4 Reconfiguration

The SLAstic meta-model provides an extensible set of concepts for archi-
tectural information concerning reconfiguration. Particularly, this includes
modeling adaptation operations, adaptation capabilities, as well as adaptation
plans and adaptation results. In this chapter, we use the notion reconfiguration
instead of adaptation due to the focus of this thesis. We see reconfiguration
as a specific type of adaptation denoting the change of an architectural
configuration. The described concepts may be used for other types of
adaptation as well.

In Section 3.4.3 we have already described the meta-model agnostic
S/T/A approach for modeling adaptation processes, which is a result of
joint work during the course of this thesis. To summarize, S/T/A allows
to model adaptation strategies, tactics, and actions. We will not further
cover adaptation strategies in this section but assume that they can be
specified using S/T/A. S/T/A formalisms for modeling tactics and actions
are integrated in the SLAstic for modeling reconfiguration plans.

Note that many of the concepts introduced in this section are abstract
in order to provide the basis for concrete implementations, e. g., targeting
runtime reconfiguration for controlling capacity as described in Chapter 10.

6.4.1 Reconfiguration Plan and Reconfiguration Actions

A reconfiguration operation defines a parameterized method to modify an ar-
chitectural configuration. Similar to operations in programming languages,
a reconfiguration operation is specified by a signature—including input
and output parameters—and semantics that specify the effect of change,
e. g., in an imperative or functional way. An execution of a reconfigura-
tion operation is denoted as a reconfiguration action (abstract meta-class
ReconfigurationAction in Figure 6.11). The SLAstic meta-model does not
include a dedicated meta-class for reconfiguration operations. Instead,
concrete meta-classes extending ReconfigurationAction can be considered re-
configuration operations. Parameters are specified as meta-class attributes
or references. A subset of the parameters typically refers to meta-classes of
the SLAstic meta-model.

An adaptation plan groups a set of associated—and possibly inter-depen-
dent—reconfiguration actions. Coming back to the analogy of programming

102

6.4. Reconfiguration

ReconfigurationPlan

STAReconfigurationPlan

AdaptationPlan

AbstractControlFlowElement

0..*
- steps

1
- staPlan

...
ActionReference

Action
- referredAction1SLAsticAction

...

ReconfigurationAction

SequentialReconfigurationPlan

1..*
- actions

...

Figure 6.11. Reconfiguration plan including reconfiguration actions. The integration
of S/T/A adaptation plans is highlighted with a gray background. Meta-classes
from the S/T/A language are depicted with dashed borders.

languages, this refers to a program determining the sequence of statements
to be executed, including control flow elements and calls to operations. The
abstract meta-class ReconfigurationPlan is the basis for an extensible set of
reconfiguration plan types. Note that reconfiguration plans are typically
created on the fly and, hence, are not contained by another meta-class.
Figure 6.11 includes two types, namely SequentialReconfigurationPlan and
STAReconfigurationPlan:

• SequentialReconfigurationPlan is a basic reconfiguration plan type that
allows to specify a sequence of reconfiguration operations to be executed.
One core limitation of this type is that results of one operation execution
cannot be passed to subsequent operation calls.

• For being able to express more advanced reconfiguration plans, we in-
tegrate the concepts for modeling S/T/A adaptation plans using the
STAReconfigurationPlan type. Such plan contains an S/T/A adaptation
plan (AdaptationPlan). As described in Section 3.4.3, an S/T/A adaptation
plan includes a set of nested control flow elements (AbstractControlFlow-
Element). The reconfiguration actions from the SLAstic meta-model are
integrated by the abstract meta-class SLAsticAction. According to the spe-
cialization of ReconfigurationActions, SLAsticActions need to be specialized
by extending the respective reconfiguration action meta-class. The rea-
son that SLAsticAction extends both ActionReference and Action is that the

103

6. Architectural Modeling

ReconfigurationModel

ReconfigurationCapability

...

0..*
- capabilities

ReconfigurationProperty

...

0..*
- properties

Figure 6.12. Reconfiguration model including reconfiguration capabilities and
properties

definition of reconfiguration operations in S/T/A is done on instance
level (Action) rather than on type level (extension of ReconfigurationAction

in the SLAstic meta-model).

6.4.2 Reconfiguration Capabilities and Properties

For an adaptable software system, it cannot be assumed that the sup-
ported reconfiguration operations can be applied to each architectural
entity that—according to reconfiguration operation’s signature—supports
this reconfiguration in principle. Moreover, additional constraints may
exist. In the SLAstic meta-model these aspects are handled under the no-
tion of reconfiguration capabilities. Moreover, it can be relevant to model
properties of executed reconfiguration operations. As depicted in Fig-
ure 6.12, the SLAstic meta-model provides basic support for modeling
reconfiguration capabilities (ReconfigurationCapability) and reconfiguration
properties (ReconfigurationProperty), contained in a reconfiguration model
(ReconfigurationModel). The abstract meta-classes need to be extended based
on the specific needs for the respective reconfiguration operations.

6.5 QoS Measures and Instrumentation

The SLAstic meta-model includes concepts to annotate the architectural
entities in a SLAstic model by directives for desired QoS measures (Sec-
tion 4.1.2) and measurement instrumentation (Section 4.2.2). Figure 6.13
shows relevant and representative meta-classes provided for this purpose.
Custom extensions are possible by extending the respective meta-classes
according to the included examples. The QoSAnnotationModel contains defini-

104

6.5. QoS Measures and Instrumentation

QoSAnnotationModel

QoSMeasure
0..*- objectives 0..* - properties

Measure

Collective
Mamba
Measure

...

Periodic
Collective
Mamba
Measure

Collective
QoSMeasure

Instrumentation
0..* - instrumentations

...

PeriodicDeployment
ComponentOperation
Measure

PeriodicAssembly
ComponentOperation
Measure

PeriodicCombinedCPU
UtilizationMeasure

PeriodicCollective
QoSMeasure

DeploymentComponent
OperationExecution
Instrumentation

AssemblyComponent
OperationExecution
Instrumentation

CPUUtilization
Instrumentation

OperationReference
- operation:Operation

DeploymentComponentOperationReference
- deploymentComponent:DeploymentComponent

ResourceReference
- resource:Resource

AssemblyComponentOperationReference
- assemblyComponent:AssemblyComponent

... ...

...

...

Figure 6.13. Annotations for QoS measures and instrumentation. Meta-classes
from the SMM and MAMBA languages are depicted with dashed borders. Helper
meta-classes are depicted in smaller size.

tions of QoS objectives (e. g., SLAs) and properties (both elements of type
QoSMeasure), as well as instrumentation (Instrumentation).

For modeling QoS measures, the meta-model agnostic modeling lan-
guage SMM including our MAMBA extensions (Section 4.1.4) is integrated.
The integration is conducted by the meta-class QoSMeasure extending the
SMM meta-class Measure. Note that this already allows to annotate SLAstic
models by QoSMeasures exploiting all SMM/MAMBA concepts. For con-
venience, the SLAstic meta-model includes a set of specific meta-classes
extending QoSMeasure and more specific Measure classes. Examples, depicted
in Figure 6.13, include QoS measures for operations on assembly- and
deployment-level (e. g., invocation counts and response times), as well as
CPU utilization. Note that constraints are needed for the concrete QoSMeasure

meta-classes in order to consistently set the SMM’s Measure properties, such
as the Scope and it’s recognizer in form of an Operation (cf. Section 4.1.4).

Meta-classes extending Instrumentation express different types of mea-
surement instrumentation for architectural entities contained in SLAstic

105

6. Architectural Modeling

models. Figure 6.13 includes three example meta-classes relevant to this
thesis. They allow to specify the instrumentation of operations (assembly-
and deployment) in order to capture information about their executions,
as well as the instrumentation of CPUs to measure their utilization. The
resulting measurements for these types of instrumentation are the monitor-
ing events described in Section 6.3.1. Note that usually the instrumentation
serves to provide Measurements for the QoSMeasures (cf. Chapter 9).

106

Chapter 7

Kieker Framework

This chapter describes the Kieker framework for application performance
monitoring and dynamic analysis of software systems. During the course of
this thesis, Kieker evolved from a small tool for monitoring response times
of Java software operations into an extensible framework for analyzing the
runtime behavior of concurrent and distributed software systems, not being
limited to the application in the context of the SLAstic approach.

Note that this chapter focuses on the core concepts of the Kieker frame-
work, including a brief description of its implementation. Additional details
about Kieker are available at various places (e. g., [Rohr et al., 2008; van
Hoorn et al., 2009c, 2012; Kieker Project, 2014a,b]). This chapter also in-
cludes revised contents from these sources, e. g., w.r.t. minor changes in
naming and architectural decisions. Chapter 15 reviews Kieker’s history,
development, and impact.

This chapter is structured as follows. Section 7.1 provides an overview
of the framework architecture. Section 7.2 details the use of Kieker for
logging and analyzing distributed control flow traces. Section 7.3 briefly
presents the framework’s reference implementation.

7.1 Overview of Framework Architecture

The Kieker framework is structured into a monitoring part, referred to
as Kieker.Monitoring, and an analysis part, referred to as Kieker.Analysis.
Kieker.Monitoring provides an infrastructure for obtaining and logging mea-
surements from software systems, while Kieker.Analysis provides a corre-
sponding infrastructure to analyze these measurements. Figure 7.1a depicts
the core components and their assembly, and summarizes the basic vo-
cabulary needed to understand the framework. The Kieker framework is

107

7. Kieker Framework

Kieker.Monitoring

Sampling Management
Interface

Time Source

Monitoring
Writer

Logging

Logging

Monitoring
Record

Kieker.Analysis

Analysis
Controller

Monitoring
Reader

Analysis /
Visualization

Plugin

Analysis Configuration

Adaptive
Monitoring

Monitoring
Controller

Monitoring
Probe

Monitoring
Log/Stream

(a) Kieker’s core components and assembly. Extensible components include labels in italic font
style.

1.1: record = new MonitoringRecord(..)

11.2: log(record)

1
3: serialize(..)

1

1
2: log(record)

**

*

*

1

4.2: inputRecord(record)

4.1: record = deserialize(...)

1..*

1

1

*

*

*
1..*

*

*

...

:Monitoring
 Controller

:Analysis
 Controller

:Monitoring Probe

:Monitoring Writer :Monitoring Reader

:Monitoring Record

:Filter Plugin

(b) Communication among Kieker framework components for creating, serializing,
deserializing, and analyzing a Monitoring Record

Figure 7.1. Kieker’s core components, assembly, and interactions

designed for extensibility by allowing to use custom implementations of all
mentioned components—except for the two controllers.

On the monitoring side, Monitoring Probes collect measurements rep-
resented as Monitoring Records, which a Monitoring Writer serializes to a
configured Monitoring Log or Stream. On the analysis side, Monitoring Read-
ers deserialize Monitoring Records of interest from the Monitoring Log/Stream
and pass them to a configurable architecture of Analysis Plugins. Both the
monitoring and analysis part include dedicated controller components,
named Monitoring Controller and Analysis Controller. Figure 7.1b depicts the
core interaction pattern in the Kieker framework for creating, serializing,
deserializing, and analyzing a Monitoring Record.

The following Sections 7.1.1 to 7.1.3 detail Monitoring Records and Moni-
toring Logs/Streams, as well as Kieker’s monitoring and analysis components
that are part of Kieker.Monitoring and Kieker.Analysis.

108

7.1. Overview of Framework Architecture

Monitoring Record
- loggingTimestamp : long

- type (..) : ...
- value (..) : ...

OperationExecutionRecord

- operationSignature: String

- sessionId : String
- eoi, ess : int
- tin, tout : long

- hostname : String

- traceId : long

CPUUtilizationRecord

- hostname: String

- user, system, wait, nice,

- timestamp : long

- cpuID : String

 irq, totalUtilization, idle: double

MemSwapUsageRecord

- hostname: String

- swapTotal, swapUsed, swapFree : long

- timestamp : long

- memTotal, memUsed, memFree : long

ResourceUtilizationRecord

- hostname: String

- utilization : double

- timestamp : long

- resourceName : String

- names () : String[]

Figure 7.2. Abstract and example Monitoring Record meta-classes

7.1.1 Monitoring Records and Monitoring Log/Stream

A Monitoring Record is a data structure used to represent data obtained from
a single measurement. Informally, a Monitoring Record includes a set of
named and typed attributes, as well as operations to serialize and deserial-
ize the values associated with the attributes. Monitoring Records are typed,
i. e., the contained set of attributes is determined by a respective Monitoring
Record type. Figure 7.2 shows the meta-model, including an abstract meta-
class and example concrete meta-classes for Monitoring Records. Note that
we use a slightly sloppy way of modeling the Monitoring Record’s attributes:
they are not modeled as references to a dedicated meta-class for attributes
but meta-class attributes are used directly. Moreover, we do not distinguish
type and instance meta-classes for Monitoring Records; types are defined by
extending the abstract meta-class, from which instances can be created. The
abstract meta-class comprises a single attribute to store the point in time a
Monitoring Record has been logged (detailed in Section 7.1.2). A Monitoring
Record includes three operations that serve to access the names, types, and
values of the attributes as indicated in Figure 7.2. Figure 7.2 includes four
concrete Monitoring Records—three for storing measurements of resource
utilization, and another one for capturing information on operation exe-
cutions, including control flow information. For these Monitoring Records,
corresponding architecture-level monitoring events were introduced in Sec-
tion 6.3.1 already. However, note that monitoring records only use plain
data types instead of referencing to instances of other meta-classes. For
example, OperationExecutionRecords include the host name and operation

109

7. Kieker Framework

ResourceUtilizationRecord;..7730;..7730;SRV0;CPU-0;0.344

ResourceUtilizationRecord;..7740;..7740;SRV0;CPU-0;0.321

ResourceUtilizationRecord;..7750;..7750;SRV0;CPU-0;0.121

OperationExecutionRecord;..7752;SRV1;Catalog.getBook();324;AJKJ;3;2;..7751;..7752

ResourceUtilizationRecord;..7760;..7760;SRV0;CPU-0;0.114

Figure 7.3. Example file system representation of Monitoring Records

signature as a string, while the architecture-level events include references
to respective entities in the SLAstic model.

As detailed in Sections 7.1.2 and 7.1.3, Monitoring Records are transferred
from the monitoring part to the analysis part via a so-called Monitoring
Log or Stream. A core characteristic of the Kieker approach is that we
make no specific assumption about what medium is used for realizing a
Monitoring Log or Stream. Examples include files in local or distributed
file systems, databases, queues/channels provided by message-oriented
middleware (MOM), or direct thread communication. The only requirement
is that a corresponding pair of Monitoring Writer and Monitoring Reader exists
that allow to serialize and deserialize Monitoring Records to a respective
medium-specific representation. Figure 7.3 provides an example file system
representation of a Monitoring Log/Stream, including Monitoring Records
conforming to the types included in Figure 7.2. In this case, each row
includes the Monitoring Record types as well as the list of attribute values—
starting with the logging timestamp— in a comma-separated values (CSV)
format (using a semicolon as separator).

7.1.2 Monitoring Part

The core components in the monitoring part, called Kieker.Monitoring, are
Monitoring Probes, Monitoring Controllers, and a Monitoring Writer (Fig-
ures 7.1a and 7.4a). A Monitoring Controller initializes and controls an
instance of a Kieker.Monitoring component deployed to a software system.
Note that a set of Monitoring Controllers is typically used in distributed
monitoring scenarios. As depicted in Figure 7.4a, a Monitoring Controller is
used by a set of Monitoring Probes and it has an associated Monitoring Writer.
A mentioned before (see also Figure 7.1b), the core pattern is that Monitoring

110

7.1. Overview of Framework Architecture

(a) Core Kieker.Monitoring entities

(b) Core Kieker.Analysis entities (omitting the Analysis Controller)

Figure 7.4. Core entities of the Kieker monitoring and analysis framework

Probes create Monitoring Records and pass them to the Monitoring Controller;
the Monitoring Controller delegates the record to the configured Monitoring
Writer, which communicates with the respective Monitoring Log/Stream.

A Monitoring Controller provides a set of operations to Monitoring Probes.
Examples—grouped into interfaces—are provided in Figure 7.1a, including
operations for a) getting access to a time source, e. g., to obtain the current
time, b) passing created Monitoring Records to the Monitoring Writer, c) and
maintaining the configuration of sampling-based measurements.

A Monitoring Probe implements the measurement logic that collects
and possibly preprocesses measurement data from the monitored software
system. A Monitoring Probe creates Monitoring Records and passes these
to the associated Monitoring Controller using the aforementioned interface.
With respect to the foundations on performance measurement described in

111

7. Kieker Framework

Section 4.2, we make no further assumptions about the trigger mechanism
(even-driven vs. sampling-based), the instrumentation technique (e. g., di-
rect/indirect code modification), or how the measurement data of interest
is obtained (e. g., control flow information or resource utilization using
dedicated tools or libraries).

Regardless of their implementation, Monitoring Writers implement an
interface that is used by the Monitoring Controller to delegate the records
to be passed to the Monitoring Log or Stream. At the time of delegating a
Monitoring Record to the Monitoring Writer, the Monitoring Controller sets the
Monitoring Record’s logging timestamp, mentioned in Section 7.1.1 (see also
Figure 7.2).

7.1.3 Analysis Part

The core components in the analysis part, called Kieker.Analysis, are Monitor-
ing Readers, an Analysis Controller, and an Analysis Configuration of Analysis
Plugins (Figures 7.1a and 7.4b). An Analysis Controller initializes and controls
an instance of the Kieker.Analysis component, which serves to analyze the
Monitoring Records provided by one or more Monitoring Logs or Streams. As
depicted in Figures 7.1b and 7.4b, Monitoring Readers deserialize Monitor-
ing Records from a Monitoring Log or Stream. A Monitoring Reader passes
Monitoring Records to Analysis Plugins, which process the data, e. g., to pass
them to other Analysis Plugins or to provide appropriate outputs in form
of visualizations or alerts. Note that Monitoring Readers can be seen as a
special kind of Analysis Plugins. In addition to Analysis Plugins, an Analysis
Configuration may include Repositories (Figure 7.4b), which are associated
with Analysis Plugins and may be used for sharing state between Analysis
Plugins, e. g., by connecting to DBMSs or MOM.

We make no specific assumptions about the architectural style used for
the Analysis Configuration of Analysis Plugins, e. g., whether it is event-based,
based on pipes and filters, or uses a hybrid style. Figure 7.4b includes
the concept for an Analysis Configuration based on pipes and filters, as this
has been Kieker’s focus so far. In this case, Analysis Plugins have zero or
more Output Ports, via which analysis results in form of events may be
passed to other Analysis Plugins. Note that the type of events in the Analysis
Configuration is not limited to Monitoring Records, even though Monitoring
Readers—special Analysis Plugins—are expected to output Monitoring Records

112

7.2. Control Flow Tracing and Analysis

via their Output Ports. Analysis Plugins that additionally have zero or more
Input Ports are called Filters. Filters can be connected to the aforementioned
Repositories.

7.2 Control Flow Tracing and Analysis

This section describes how the Kieker framework can be used to monitor
and analyze distributed control flow traces including timing information.
The extracted information can be used to derive models and visualizations
about a software system’s architecture, usage profile, and performance
properties, which may serve as a basis for further analysis.

Note that the description in this section is based on a special type of
Monitoring Records, namely OperationExecutionRecord (see Figure 7.2 and
Section 7.2.2), which include information on executed software operations.
The approach can also handle other control flow events [Knoche et al., 2012],
e. g., operation calls, entries, and exits.

The remainder of this section describes Kieker’s meta-model for rep-
resenting architectural models (Section 7.2.1), details the automatic trace-
based model reconstruction (Section 7.2.2), and provides example architec-
tural views generated from the reconstructed models (Section 7.2.3).

7.2.1 System and Trace Meta-Model

Figure 7.5 (page 114) depicts the core parts of the meta-model used inside
the Kieker.Analysis component to represent the architectural structure of a
monitored software system in terms of components and their deployment.
Note that the modeling abstractions are quite close to the ones described in
Section 6.2. On the type level, a component type has a fully-qualified name
and implements a set of operations. In the simplest case, a component type
corresponds to an implementation-level module of the software system,
e. g., a class in an object-oriented system. Each operation has a signature
with a name, a list of modifiers, a list of parameter types, and a return type.
Assembly components are logical components, having a name and conform-
ing to a component type. Multiple assembly components conforming to
the same component type may exist. Each assembly component may be
instantiated multiple times as so-called allocation components. An allocation

113

7. Kieker Framework

Figure 7.5. Core classes of the meta-model for representing component-based
software systems, which is used by Kieker’s trace analysis. Note that only the core
attributes are included in this diagram.

:CRM

getBook(...)

getOffers(...)

getBook(...)

searchBook(...)

:Bookstore :Catalog

Legend:

= trace
= call message

= return message
= execution with eoi i and ess j

0;0

i;j

1;1

2;1

3;2

Figure 7.6. Tracing-related terminology in Kieker [van Hoorn et al., 2009c]

component is a deployed instance of an assembly component, located on a
so-called execution container. An execution container may, e. g., correspond
to a physical or virtual machine. It is possible to describe nested execution
containers.

114

7.2. Control Flow Tracing and Analysis

Figure 7.7. Meta-model used by Kieker for representing reconstructed traces.

An execution denotes the execution of an operation of an associated
allocation component at runtime. The UML sequence diagram in Figure 7.6
includes four executions of three different operations (getBook() is called
twice). A request to a system-provided operation results in a nested control
flow of corresponding executions, referred to as a trace. Each execution can
be described by a corresponding call message, representing an operation call
which starts the execution, and a return message, representing the end of an
execution returning the control flow to the calling execution, as illustrated
in Figure 7.6. In Kieker.Analysis, two equivalent representations of traces
are used internally: execution traces and message traces. An execution trace
representation of a trace is simply the ordered (by execution order index values)
sequence of executions (see Figure 7.7). A message trace describes a trace in
terms of an ordered sequence of messages instead of executions. Figure 7.7
shows the relations among executions, messages, execution traces, and message
traces. The notion of the eoi and ess values contained in Figures 7.6 and 7.7
will be detailed in the following section.

7.2.2 Logging and Reconstructing Trace Information

Kieker includes the Monitoring Record type OperationExecutionRecord which
can be used to write execution information into the Monitoring Log/Stream.
As shown in Figure 7.2, an OperationExecutionRecord contains information
about the executed operation, the host name on which the execution was
performed, as well as timestamps, typically with nanosecond resolution, for

115

7. Kieker Framework

the start (tin) and end (tout) of an execution. Additionally, an OperationEx-
ecutionRecord includes trace and session identifiers, as well as additional
control flow information (eoi and ess), as detailed below. An example CSV-
based serialization of an OperationExecutionRecord is included in Figure 7.3.
Note that a very basic operation signature is shown in the example, e. g.,
omitting operation parameters and modifiers.

Kieker includes different Monitoring Probe types for logging OperationEx-
ecutionRecords within an application and provides efficient facilities for
attaching a unique trace identifier to the thread executing a service request,
which is then contained in any OperationExecutionRecord of that trace (see
Figure 7.7).

If the reconstruction of traces from a Monitoring Log/Stream contain-
ing OperationExecutionRecords would only include the trace information
presented so far, we would require the following assumptions: a) no two
execution start or end time events (tin/tout) within the same trace occur
at the same time; and b) clocks in a distributed system are perfectly syn-
chronized (both with respect to the respective time resolution). Since
both assumptions cannot be guaranteed in realistic environments, Kieker
includes efficient facilities to attach two additional parameters to any Opera-
tionExecutionRecord in order to log the information needed to reconstruct
(distributed) traces from the Monitoring Log/Stream reliably: an execution
order index (eoi) and an execution stack size (ess).

1. An execution with an eoi value i denotes the i-th execution started within
a trace (starting with the value 0).

2. An execution with an ess value j denotes an execution that was started
when the depth of the calling stack for the corresponding trace was j.

The executions shown in the example trace in Figure 7.6 are annotated with
the corresponding eoi and ess values. Note that while an execution order
index is unique within a trace, an execution stack size value can—and usually
does—occur more than once.

While it is straightforward to derive execution traces from the Monitor-
ing Log, for later analysis it is usually easier to derive analysis models
from message traces. In Kieker.Analysis, execution traces are derived from the
Monitoring Log/Stream and then transformed into equivalent message trace
representations from which analysis models and diagrams are created.

116

7.2. Control Flow Tracing and Analysis

7.2.3 Reconstructing Architectural Views

From the obtained system models and traces (instances of the meta-model
in Figures 7.5 and 7.7), structural and behavioral architectural views can
be created. As representative examples, this section describes sequence
diagrams and calling dependency graphs. Example visualizations, created
by the Kieker implementation described in Section 7.3, are shown in Fig-
ure 7.8. Additional visualizations derived in a similar way, e. g., dynamic
call trees and Markov chains, are also described in our previous works
[Rohr et al., 2008; van Hoorn et al., 2009c].

Sequence Diagrams

UML sequence diagrams provide a dynamic architectural viewpoint in
terms of interactions among runtime objects implementing software ser-
vices. In Figure 7.6 of the previous section, we used a sequence diagram to
illustrate the trace-related terminology needed to define execution traces and
message traces. Message traces can be transformed to UML sequence dia-
grams in a straightforward way. Figures 7.8a and 7.8b show UML sequence
diagrams generated by a Kieker visualization component for the running
Bookstore example. Given the timing information included in the execution
traces, the sequence diagrams could easily be augmented with additional
data, e. g., observed response times. The UML specification [Object Man-
agement Group, Inc., 2013b] and the UML profiles for performance [Object
Management Group, Inc., 2005, 2011c] suggest appropriate notations for
performance annotations.

When analyzing traces from the Monitoring Log or Stream, a valuable
initial analysis is to determine the trace equivalence classes. Informally,
a trace equivalence class contains all traces that are equal in terms of
the control flow structure, i. e., the sequence diagrams of all traces in an
equivalence class are identical. Based on the message traces this analysis
can be implemented efficiently.

Dependency Graphs

While sequence diagrams, or execution traces, provide a view on the se-
quence of interactions among objects in a single trace (or scenario/use case),
it is often desirable to analyze this information in an aggregated form.

117

SRV0::

@3:..Bookstore

SRV0::

@1:..Catalog

SRV0::

@2:..CRM

SRV1::

@1:..Catalog

searchBook()

getBook(..)

getOffers()

getBook(..)

(a) Deployment-level sequence diagram

@3:..Bookstore @1:..Catalog @2:..CRM

searchBook()

getBook(..)

getOffers()

getBook(..)

(b) Assembly-level sequence diagram

<<execution container>>
SRV1

<<deployment component>>
@1:..Catalog

<<execution container>>
SRV0

<<deployment component>>
@1:..Catalog

<<deployment component>>
@2:..CRM

<<deployment component>>
@3:..Bookstore

$ searchBook()1635

getBook(..)

getBook(..)

getOffers()

1062
573

1092

543
1635

(c) Deployment-level operation dependency graph

$ <<assembly component>>
@3:..Bookstore

1635 <<assembly component>>
@1:..Catalog

<<assembly component>>
@2:..CRM

1635
1635

1635

(d) Assembly-level component dependency graph

Figure 7.8. Selected visualizations generated by Kieker based on reconstructed trace
information. For a complete overview of visualizations supported by Kieker, please
refer to the Kieker user guide [Kieker Project, 2014a].

7.3. Framework Implementation

Interactions among objects constitute runtime dependencies among these
system entities, which can be described using weighted directed depen-
dency graphs: each entity is assigned a node and each dependency relation
an edge; the edge is directed from an entity using a particular service to the
entity providing that service; the edges are augmented with the total num-
ber of call actions among the respective entities observed in the considered
set of traces.

We implemented a Kieker.Analysis component which computes depen-
dency graphs from a set of message traces. These dependency graphs are
then available for further analysis or visualization. Figures 7.8c and 7.8d
show dependency graphs generated by Kieker, visualizing calling dependen-
cies among operations (deployment-level) and components (respectively) of
the Bookstore application. The diagrams provide aggregated views of the
runtime dependencies observed in 1635 traces.

7.3 Framework Implementation

This section briefly presents the implementation of the framework described
in Section 7.1. The implementation of the framework, mainly based on
Java, is publicly available as open-source software [Kieker Project, 2014b].
The description in this section is based on Kieker 1.9, which is the most
recent version at the time of writing. Note that a far more comprehensive
description of the implementation and its usage is available, e. g., as part of
the user guide [Kieker Project, 2014a].

The Kieker implementation can be divided into two parts: first, the
framework conforming to the description in Section 7.1, which provides
extension points for custom extensions to be used with the framework;
second, concrete components that have been developed for specific purposes
by making use of the framework-provided extension points. Based on the
afore-described Figure 7.1, Figure 7.9 depicts Kieker’s core components,
extension points, and features.

The following sections describe the extensible framework architecture
including the extension points (Section 7.3.1), provide an overview about
the framework components developed based on the extension points (Sec-
tion 7.3.2), and briefly summarizes developments for non-Java platforms
(Section 7.3.3).

119

7. Kieker Framework

Kieker.Analysis

Analysis
Controller

Monitoring
Reader

Analysis /
Visualization

Plugin

Analysis Configuration

Monitoring
Record

Monitoring
Log/StreamKieker.Monitoring

Sampling JMX
Interface

Time Source

Logging

Logging

Adaptive
Monitoring

Monitoring
Controller

C
ur

re
nt

 ti
m

e

R
es

ou
rc

e
ut

iliz
at

io
n

C
PU

 u
til

iz
at

io
n

O
pe

ra
tio

n
ex

ec
ut

io
n

C
on

tro
l-f

lo
w

 e
ve

nt
s

<c
us

to
m

 m
on

ito
rin

g
re

co
rd

 ty
pe

>

<c
us

to
m

 m
on

ito
rin

g
re

ad
er

>

Fi
le

 s
ys

te
m

<c
us

to
m

 v
is

ua
liz

at
io

n>

Se
qu

en
ce

 d
ia

gr
am

s

D
ep

en
de

nc
y

gr
ap

hs

C
al

l g
ra

ph
s

Visualization

Architecture reconstr.

Pipes and filters framework

Monitoring
Records

Monitoring
Readers

Analysis/Visualization
Plug-Ins

<c
us

to
m

 tr
ac

e
an

al
ys

is
>

Trace analysis <c
us

to
m

 re
co

ns
tru

ct
io

n
pl

ug
-in

>

<c
us

to
m

 a
na

ly
si

s
pl

ug
-in

/to
ol

>

Ja
va

 M
es

sa
gi

ng
 S

er
vi

ce
 (J

M
S)

Ja
va

 M
an

ag
em

en
t E

xt
. (

JM
X)

M
em

or
y/

sw
ap

 u
sa

ge

R
ea

l-t
im

e
re

pl
ay

er
N

am
ed

 p
ip

e

D
at

ab
as

e
(S

Q
L)

TC
P/

IP

Pe
rfo

rm
an

ce
 A

na
ly

si
s

N
am

ed
 p

ip
e

<c
us

to
m

 m
on

ito
rin

g
w

rit
er

>

Control-flow
tracing

Resource
monitoring

<c
us

to
m

 te
ch

no
lo

gy
>

C
PU

 u
til

iz
at

io
n

M
em

or
y

us
ag

e

Sigar

Servlet

<c
us

to
m

 m
on

ito
rin

g
pr

ob
e>

Ja
va

 M
es

sa
gi

ng
 S

er
vi

ce
 (J

M
S)

Ja
va

 M
an

ag
em

en
t E

xt
. (

JM
X)

Monitoring
Writers

Monitoring
Probes/Samplers

Sy
st

em
 ti

m
e

<c
us

to
m

 ti
m

e
so

ur
ce

>

Time
Sources

O
ut

pu
t s

tre
am

TC
P/

IP
Fi

le
 s

ys
te

m
D

at
ab

as
e

(S
Q

L)

As
pe

ct
J

M
an

ua
l

Se
rv

le
t

C
XF

/S
O

AP

<c
us

to
m

 in
te

rc
ep

tio
n

 te
ch

no
lo

gy
>

Sp
rin

g

VB
6,

 C
O

BO
L,

 ..
.

Monitoring
Probe

Monitoring
Writer

Figure 7.9. Kieker’s core components, extension points, and features (based on
[Kieker Project, 2014a])

7.3.1 Extensible Framework Architecture

This section describes the extensible framework architecture comprising
non-replaceable monitoring and analysis controllers as well as extension
points for custom components.

Non-Replaceable Monitoring and Analysis Controllers

The Monitoring Controller provides interfaces for a) logging Monitoring
Records using the configured Monitoring Writer, b) retrieving the current
time via the configured Time Source, c) scheduling and removing periodic
samplers, d) activating and deactivating Monitoring Probes at runtime, as
well as e) enabling, disabling, and terminating monitoring. The Monitoring
Controller is configured via well-documented configuration properties that
are evaluated during initialization. Multiple Monitoring Controllers can be
used in parallel, even within the same Java Virtual Machine (JVM).

The Analysis Controller provides interfaces for a) defining Analysis Config-
urations by registering and connecting Analysis Plugins, including Monitoring

120

7.3. Framework Implementation

Readers, Filters, and Repositories, b) running and terminating executions of
the Analysis Configuration, c) as well as for persisting and loading Analysis
Configurations.

Extension Points

Extension points can be divided into those for custom components in the
Kieker.Monitoring and Kieker.Analysis part, as well as the Monitoring Records
used in both parts.

➍ Monitoring Records. For the definition and use of Monitoring Record
types, Kieker provides an interface (IMonitoringRecord), which—according
to Section 7.1.1—declares operations for getting and setting a logging
timestamp as well as to serialize and deserialize a Monitoring Record.
An abstract class (AbstractMonitoringRecord) implementing this interface
is provided by Kieker, which already implements the management of
the logging timestamp and provides some convenience functionality for
extending classes. Different variants for the implementation of custom
Monitoring Record types exist, e. g., to support the implementation of
immutable classes.

➍ Monitoring

Extension points in Kieker.Monitoring are provided for custom Monitor-
ing Probes, Monitoring Writers, and Time Sources. Dedicated interfaces
(IMonitoringProbe, ISampler) and abstract classes (AbstractMonitoringWriter,
AbstractTimeSource) need to be implemented or extended respectively.
Custom Monitoring Probes (including samplers) are typically technology-
specific w.r.t. the techniques used for instrumentation and for gathering
the runtime data. The common part is the creation of Monitoring Records
and their delivery to the Monitoring Controller. Convenience functionality
for the implementation of asynchronous Monitoring Writers is provided.

➍ Analysis

Extension points in Kieker.Analysis are provided for custom Monitoring
Readers, Filters, and Repositories. Dedicated abstract classes (Abstract-
ReaderPlugin, AbstractFilterPlugin, and AbstractRepository) already pro-
vide common functionality and need to be extended. In each case,

121

7. Kieker Framework

methods for initialization and termination need to be implemented. For
Monitoring Readers, it is additionally required to implement the function-
ality to deserialize Monitoring Records from the respective Monitoring Log
or Stream. Monitoring Records are then provided via a declared Output
Port. For Filters, the functionality to be triggered by the events received
via the Input Ports needs to be implemented, including the delivery of
events via Output Ports. Kieker’s pipes-and-filters API makes use of
Java annotations to declare an Analysis Plugin’s configuration properties
including default values, Input Ports and Output Ports, etc. Declarations
of Input Ports and Output Ports include definitions of a port name, de-
scription, and a list of accepted event types. Note that the event types
are not limited to Monitoring Records but may be any Java type.

7.3.2 Framework Components

Building on the previously described extension points, a number of com-
ponents have been developed. This section aims to provide an overall
overview about the available set of components that are contained in the
Kieker distribution.

Monitoring Records

The most important Monitoring Record types provided by Kieker are those
that can be used for representing control flow events and resource utilization,
including the ones from Figure 7.2.

Monitoring

➍ Particularly two types of Monitoring Probes are currently included in the
Kieker distribution. Monitoring Probes of the first type focus on tracing
of events observed in application-internal control flows (Section 7.2);
Monitoring Probes of the second type focus on monitoring the utilization
of system-level resources. With respect to control flow tracing, the
included Monitoring Probes make use of AOP-based instrumentation
and interception techniques employing technologies such as AspectJ
[The Eclipse Foundation, 2014], Spring interceptors [SpringSource, 2014],
Servlet filters [Oracle, 2014a], as well as the interceptors provided by

122

7.3. Framework Implementation

the Apache CXF [The Apache Foundation, 2014] library for SOAP-based
web services. These technologies are in wide-spread use in Java-based
enterprise application systems (Section 3.3). Monitoring Probes based on
the different technologies can be used in combination, which is the case
in the evaluation Chapters 12 and 13. The CXF-based Monitoring Probes
allow distributed tracing across remote machines. Monitoring Probes for
measurements of resource utilization exist for CPUs and memory. These
probes make use of the sampling interface provided by the Monitoring
Controller, i. e., they are triggered in configurable intervals. Respective
Servlet filters exist that ease the registration of the Monitoring Probes in
Servlet containers.

➍ A number of Monitoring Writers are included in the distribution, which
can be used for Monitoring Logs or Streams realized employing local or
distributed file systems, SQL databases, JMX, JMS, direct memory com-
munication, and via TCP/IP-based network connections. For both the
file system and the database Monitoring Writers synchronous and asyn-
chronous implementations exists. Different variants of the file system
Monitoring Writers exist, which write CSV-based, binary, or compressed
representations. File system Monitoring Writers are particularly useful
for offline analysis, where Monitoring Records are first collected and
processed later in a batch-like mode. On the other hand, the Monitor-
ing Writers based on Java Management Extensions (JMX), Java Message
Service (JMS), TCP/IP, and direct memory communication are most use-
ful for online analysis, when the Monitoring Records are analyzed while
the system is running and producing additional Monitoring Records—
including settings with monitoring and analysis being deployed on
separate machines.

➍ Time Sources based on the current system time are available, which
use the milliseconds and nanoseconds included in the Java Runtime
Environment (JRE). Examples for other useful Time Sources, which are
currently not included in the Kieker distribution, obtain the current time
from a simulation engine (Section 11.3) or a Network Time Protocol (NTP)
server (developed by Zobel [2012]).

123

7. Kieker Framework

Analysis

➍ According to the previously mentioned Monitoring Writers, correspond-
ing Monitoring Readers exist, i. e., for file systems, SQL databases, JMX,
JMS, TCP/IP, and direct memory communication. Note that the pipes-
and-filters architecture allows the use of multiple Monitoring Readers,
which allows to merge multiple Monitoring Logs or Streams, e. g., from
different machines using the file system as a Monitoring Log.

➍ Various useful Filters have been developed ranging from simple Filters
for counting events, over Filters that select events based on specific
attributes (e. g., trace identifiers or timestamps), to Filters that serve
the trace reconstruction and analysis, as described in Section 7.2. With
respect to the latter, Filters are available that provide the architecture
visualization capabilities described in Section 7.2.3, including calling
dependency graphs on deployment, component, and operation level, as
well as sequence diagrams and call trees. The examples in Figure 7.8
have been created with these Filters. The Repository supporting the trace
analysis maintains an instance of the system model as described in
Section 7.2.1. A Filter for delaying the incoming stream of Monitoring
Records according to the time resolution from the original Monitoring Log
or Stream is included as well.

7.3.3 Monitoring Adapters for Other Platforms

In order to support the monitoring of platforms other than Java, respective
adapters have been developed, including C# [Magedanz, 2011], Visual Ba-
sic 6 (VB6) [van Hoorn et al., 2011b], and COBOL [Richter, 2012; Knoche
et al., 2012]. The developed Monitoring Probes focus on tracing of application-
internal control flows and produce Monitoring Records according to those
provided for Java systems. The adapters either use the Java-based Kieker
framework directly via a language-specific bridge to Java or write an in-
termediate representation of the monitoring data, which is transformed
to the respective Monitoring Records. Similar to this, adapters for different
monitoring facilities have been developed, e. g., RRDtool as detailed in
Section 12.3.

124

Chapter 8

SLAstic Framework

This chapter describes the SLAstic framework, which implements a MAPE-
K-based (Section 3.4.1) self-adaptation platform tailored to the model-driven
and architecture-based online capacity management approach developed in
this thesis.

The chapter is structured as follows. Section 8.1 provides an overview of
the framework architecture. Sections 8.2 to 8.5 describe the core framework
components: Model Manager, Monitoring Manager, Adaptation Controller,
and Reconfiguration Manager. Section 8.6 briefly presents the framework’s
proof-of-concept implementation.

8.1 Overview of Framework Architecture

The framework is composed of the following three main processing compo-
nents: Monitoring Manager (also denoted as SLAstic.Monitoring),
Adaptation Controller (SLAstic.Control), and Reconfiguration Manager
(SLAstic.Reconfiguration). Figure 8.1 provides an illustrative (Figure 8.1a)
and a more technical (Figure 8.1b) view on the framework’s top-level archi-
tecture, including the three mentioned components, their relationships, and
their external integration with the adaptable software system. Figure 8.1a
includes related activities for model-driven instrumentation and model
extraction, which will be detailed in Chapter 9.

A software system to be controlled by the SLAstic framework needs to
be equipped with two types of interfaces—one for providing monitoring
events based on a customized monitoring instrumentation and a second for
receiving reconfiguration triggers. Via these interfaces, the system interacts
with the framework components SLAstic.Monitoring and SLAstic.Recon-
figuration, which map to the M and E activities as part of the MAPE-K

125

8. SLAstic Framework

Adaptable Software System

...

Ar
ch
ite
ct
ur
e

Te
ch
no
lo
gy

SLAstic.
MONITORING

SLAstic.CONTROL

Analysis

Adaptation Engine

SLAstic
Model

SLAstic.
RECONFIGURATION

Raw
Monitoring
Records

Monitoring
Events

Reconfiguration
Plans

Reconfiguration
Actions

Instrumentation

Initialization

Extraction

SLAstic
Model

(a) Components and context

FrameworkInstance

:SLAstic.CONTROL
Monitoring

Events

Technology/Architecture
Translation

:SLAstic.MONITORING
Sensors

API
Reconfiguration
Plans

:SLAstic.RECONFIGURATION
Effectors
API

(b) Composite structure

Figure 8.1. Top-level views on the SLAstic framework architecture

control loop. Figure 8.1a depicts a separation between two different layers
of abstraction: the technology-specific implementation of the controlled
system1 vs. its architectural representation and reasoning. This separation
is a core property of our approach. We make no specific assumptions about
the technologies that are used for the implementation of the controlled
system and its interfaces. The SLAstic.Control component, which maps
to MAPE-K’s A and P activities, solely reasons based on architectural run-
time models of the controlled system. A Model Manager, which is part of

1We use the terms controlled software system and adaptable software system interchangeably.

126

8.2. Model Manager

SLAstic.Control, provides DBMS-like access to these runtime models that
conform to the meta-model introduced in Chapter 6 (K in MAPE-K). The
components SLAstic.Monitoring and SLAstic.Reconfiguration translate be-
tween the two abstraction levels based on a bidirectional mapping between
architectural and implementation entities, which is also maintained by the
Model Manager.

Having a first idea about the framework architecture and integration, the
supported workflow is as follows. The Monitoring Manager continuously
receives technology-specific Monitoring Records—e. g., Kieker monitoring
records (Section 7.1.1)—from the controlled software system and translates
them into architecture-level SLAstic monitoring events described in Sec-
tion 6.3. Based on these events and the architectural knowledge captured in
the runtime models, a configuration of analysis components contained in
the Adaptation Controller continuously performs model-based performance
and workload analyses, performance predictions, and adaptation planning.
If the adaptation planning decides on an adaptation to be executed, it
creates a reconfiguration plan conforming to the respective meta-model
described in Chapter 6 and passes this plan to the Reconfiguration Manager.
The Reconfiguration Manager is responsible for the transactional execution
of this plan, which includes the translation of architecture-level reconfigura-
tion actions into calls to the respective technology-specific interfaces of the
adaptable software system.

Starting with the Model Manager, the following Sections 8.2 to 8.5 will
detail the core framework components. Based on this, we developed the
Java-based proof-of-concept implementation presented in Section 8.6.

8.2 Model Manager

The Model Manager provides DBMS-like functionality for the SLAstic
runtime model and the bidirectional mapping between architecture and
implementation. The functionality includes meta-model-specific services
like CRUD (create, read, update, and delete) operations and constraint
validation on SLAstic models, as well as technical services like persistence
and transaction management (cf. Section 2.3 on model repositories).

As depicted in Figure 8.2, the Model Manager is decomposed into nine
subcomponents, detailed in the remainder of this section. A dedicated

127

8. SLAstic Framework

Model Manager

:Component Deployment Model Manager

:Execution Environment Model Manager

:Component Assembly Model Manager

:Type Repository Model Manager

:Usage Model Manager

:Model Repository Service Manager

:Arch2Technology Mapping Manager

:Reconfiguration Model Manager

:Constraint Validation Manager

Technology/Architecture
Translation

SLAstic
Model

Figure 8.2. Decomposition of the Model Manager into subcomponents

Model Manager exists for the SLAstic system and usage models. The five
components on the left-hand side of the diagram—Type Repository Model
Manager, Component Assembly Model Manager, Execution Environment
Model Manager, Component Deployment Model Manager, and Usage
Model Manager—include the CRUD functionality for the corresponding
submodels of the SLAstic meta-model. These submodel managers have
access to each other, in order to satisfy the inter-model dependencies.

8.2.1 Type Repository Model Manager

The Type Repository Model Manager manages an instance of the SLAstic
meta-model’s type repository (Section 6.2.1), including the following entities:
Component Types, Connector Types, Interfaces, Execution Container Types,
Network Link Types, and Resource Types. It provides operations to create,
register, and lookup these entities and their properties.

8.2.2 Component Assembly Model Manager

The Component Assembly Model Manager manages an instance of the
SLAstic meta-model’s Component Assembly Model (Section 6.2.2), includ-
ing the following entities: Assembly Components, Assembly Connectors,
(as well as System-Provided and System-Required) Interfaces. Like the Type
Repository Model Manager, the Component Assembly Model Manager
provides corresponding create, register, and lookup operations. Moreover,

128

8.2. Model Manager

it provides operations to connect an Assembly Component with another
Assembly Component, with a System-Provided Interface, or with a System-
Required Interface using an appropriate Assembly Connector.

8.2.3 Execution Environment Model Manager

The Execution Environment Model Manager manages an instance of the
SLAstic meta-model’s Execution Environment Model (Section 6.2.3), in-
cluding the following entities: Execution Containers (including contained
Resources) and Network Links. In addition to the usual create, register, and
lookup operations, the Execution Environment Model Manager provides
add and remove operations for the list of allocated Execution Contain-
ers (allocatedExecutionContainers, see Figure 6.6), and operations to connect
Execution Containers via Network Links.

8.2.4 Component Deployment Model Manager

The Component Deployment Model Manager manages an instance of the
SLAstic meta-model’s Component Deployment Model (Section 6.2.4), in-
cluding Deployment Components. In addition to the usual create, register,
and different variants of lookup operations, the Component Deployment
Model Manager provides operations to delete and to migrate a Deployment
Component. The delete operation does not really remove a Deployment
Component from the model but marks it inactive.

8.2.5 Usage Model Manager

The Usage Model Manager manages an instance of the SLAstic meta-
model’s Usage Model (Section 6.3.3), including information on calling
relationships and calling frequencies. It provides operations to lookup
information contained in the model by passing the decorated model entities
(e. g., Connector, Operation, Interface, Signature), as well as to increment
frequencies (with implicit creation of model entities).

129

8. SLAstic Framework

8.2.6 Constraint Validation Manager

The Constraint Validation Manager implements the functionality to check
whether the SLAstic meta-model constraints are satisfied for the current
version of the SLAstic runtime model. Also, it is used to test pre- and
post-conditions of the previously mentioned model change operations.

8.2.7 Reconfiguration Model Manager

The Reconfiguration Model Manager provides access to an instance of the
SLAstic meta-model’s Reconfiguration Model (Section 6.4.2)—including ca-
pabilities and properties—and translates results of executed reconfiguration
operations (Section 6.4.1) on the SLAstic model.

8.2.8 Arch2Technology Mapping Manager

The Arch2Technology Mapping Manager maintains bidirectional mappings
between technology and architectural identifiers, separated by SLAstic meta-
model entity types, e. g., for execution containers and assembly components.
It provides an operation to register a mapping, and two operations to lookup
an identifier by providing an architecture-specific identifier or technology-
specific identifier respectively.

8.2.9 Model Repository Service Manager

The Model Repository Service Manager connects to a model repository
technology and wraps its technology-specific services—described in Sec-
tion 2.1—in an API. These services are provided by state-of-the-art meta-
model-agnostic model repository technologies (Section 2.1) and have been
investigated by Kiel [2013] in the context of this thesis (Section 5.3.1).

8.3 Monitoring Manager

The Monitoring Manager connects to a monitoring infrastructure in or-
der to receive implementation-level monitoring events. These monitoring
events are transformed into SLAstic monitoring events (Section 6.3) that

130

8.3. Monitoring Manager

are related to architectural entities from the SLAstic runtime model main-
tained by the Model Manager. For this purpose, both interfaces of the
Model Manager (Figure 8.2) are used in order to get access to the a) SLAstic
runtime model and b) the mappings between identifiers on implementation-
level and architecture-level. The created monitoring events are sent to
the Adaptation Controller for further processing via a dedicated interface
(Figure 8.3a), as detailed in the following Section 8.4.

In this work, we assume that the Monitoring Manager employs Kieker as
the monitoring infrastructure. Hence, it receives Monitoring Records and ex-
ecutes a transformation function MonitoringRecordÑ Event for each record
from implementation level (MonitoringRecord, Section 7.1.1) to architecture
level (Event, Section 6.3.1). Relevant to this thesis are the Kieker Monitoring
Records for resource measurements and operation executions (Section 7.1.1),
which are transformed into corresponding SLAstic monitoring events for
operation executions and resource usage (Section 6.3). This transformation
will be detailed in Chapter 9.

In this thesis, we distinguish two cases with respect to the completeness
of the SLAstic runtime model. In the first case, the SLAstic runtime is
complete in that each implementation-level entity has a representation in an
architectural entity, i. e., for each incoming monitoring event, a correspond-
ing architectural entity exists and can be looked up in the Model Manager.
This case is enforced by the model-driven instrumentation and analysis
support, described in Chapter 9. In the second case, the SLAstic runtime
model is not complete—in its extremist form, it is even completely empty.
Here, it is required to create model entities on-demand, before a monitoring
event can be created. This second case will be detailed in Chapter 9.

Kieker’s support for replaying recorded Monitoring Logs is the basis
for operating the SLAstic framework in an offline mode. Note that the
Monitoring Manager may be connected to other monitoring facilities, as
well. Kieker me be also used to import the data from other monitoring
infrastructures, as we will see in this thesis (e. g., RRDtool).

131

8. SLAstic Framework

SLAstic.CONTROL

:Model ManagerTechnology/
Architecture
Translation

Monitoring
Events

:Model Updater SLAstic
Model

CEP Engine
+ Timer

:Analyzer

Timer

Reconfi-
guration

(a) Adaptation Controller

Analyzer

Model
Manager

CEP
Engine

+ Timer
:Performance Predictor

:Workload Forecaster

:Performance Evaluator

Reconfi-
guration:Adaptation Planner

(b) Analyzer

Figure 8.3. Composite structure of the Adaptation Controller and the Analyzer

8.4 Adaptation Controller

Figure 8.3 depicts the composite structure of the Adaptation Controller.
On the top-level (Figure 8.3a), it comprises a Model Manager, a Model
Updater, and an Analyzer component, as well as a Complex Event Pro-
cessing (CEP) Engine and Timer functionality. The Model Manager, as
detailed in Section 8.2, provides access to the SLAstic runtime model as
an architectural view on the system’s structure and usage. The Model Up-
dater first processes the incoming monitoring events to update the runtime
model—mainly w.r.t. system usage (Section 6.3). Moreover, it dispatches
the monitoring events to the CEP Engine to make them available for the
Analyzer component, which—based on these events and the knowledge
contained in the runtime model, performs the following tasks: performance
evaluation, workload forecasting, performance prediction, and adaptation
planning (Figure 8.3b). The following Sections 8.4.1 to 8.4.3 detail the
components of the Adaptation Controller.

8.4.1 Complex Event Processing (CEP) Engine and Timer

The Complex Event Processing (CEP) Engine provides functionality to
publish and to analyze streams of events [Cugola and Margara, 2012]. For
the Adaptation Controller, this provides the platform for asynchronous
communication between the components. For this thesis, we assume that an

132

8.4. Adaptation Controller

select

current_timestamp as currentTimestampMillis,

deploymentComponent.assemblyComponent,

count(*)

from DeploymentComponentOperationExecution.win:time(10 sec)

group by deploymentComponent.assemblyComponent

output all every 5 seconds

Figure 8.4. EPL statement to periodically collect the number of operation executions
for each Assembly Component observed within the past 10 seconds every 5 seconds.

event is an object with named properties, extending the meta-class Event, i. e.,
it already includes the monitoring events introduced in Section 6.3. Note
that an event’s properties are not limited to plain types, but may include
references to other objects—e. g., entities from the SLAstic runtime model.
An event is published by passing it to a dedicated method provided by the
CEP Engine. Components create SQL-like CEP statements and register them
with the CEP Engine. Even though we are not making specific assumptions
about a CEP technology, we will use the Event Processing Language (EPL),
which is part of the Esper CEP component, as a representative language
for expressing CEP statements. A detailed EPL documentation is provided
by the Esper Team and EsperTech, Inc. [2014]. For each registered CEP
statement, a component must provide a handler method, which is called by
the CEP Engine passing the result objects.

As an example, Figure 8.4 shows an EPL statement, which serves to
periodically (every 5 seconds) obtain the number of operation executions
per Assembly Component observed in the past 10 seconds. The example
depicts the possibility to navigate the model—in this case to access the
Assembly Component via the Deployment Component referenced by the
operation execution event (Section 6.3.1).

The Timer is the central component to maintain the current time assumed
by the Adaptation Controller. First, it provides a method for the other
components to obtain the current time, given as the number of time units
elapsed since the UNIX epoch (00:00:00 UTC on January 1, 1970). In case the
SLAstic framework operates in online mode, the current time represents the

133

8. SLAstic Framework

Performance
Analysis

Workload
Characterization

and
Forecasting

Performance
Prediction

Adaptation
Planning

Figure 8.5. Activity diagram of the (proactive) analysis phase. The activities execute
in parallel. The structure depicts the data dependencies.

current system time on the computer executing the Adaptation Controller.
In offline mode, the current time is determined by an external trigger, which
is, for instance, based on the most recent timestamp observed in incoming
events by the SLAstic framework. The Timer includes a method to receive
time triggers.

8.4.2 Model Updater

The Model Updater receives architecture-level monitoring events from
the Monitoring Manager and, based on these events, updates the SLAstic
runtime model using the Model Manager and emits existing and new events
to the CEP Engine. Of particular concern for the Model Updater ist the
update of the Usage Model, including information on calling relationships
and calling frequencies.

Note that updates of the runtime model are also performed by the
Monitoring Manager. However, while the Monitoring Manager copes with
the mapping between technology and architecture, the Model Updater only
works with architectural entities and events.

8.4.3 Analyzer

The Analyzer includes components executing the analysis activities focusing
on capacity management, namely performance analysis, workload characteriza-
tion and forecasting, performance prediction, and adaptation planning. Figure 8.5
depicts the data flow between the four activities assuming a proactive
scenario. As depicted in Figure 8.3b, the Analyzer includes a dedicated

134

8.4. Adaptation Controller

subcomponent for each of the activities. These four subcomponents will be
detailed in the following sections.

Performance Evaluator

The Performance Evaluator is responsible for the continuous assessment of
the controlled system’s performance properties, including current observa-
tions and predictions. Particularly, the detection and alerting of violations
to the internal and external performance requirements (SLAs), specified as
part of the SLAstic meta-model’s QoS Model (Section 6.5). In addition to
this, the Performance Evaluator logs performance and efficiency statistics
for online or offline analysis and visualization.

Workload Forecaster

The Workload Forecaster is responsible for the continuous characterization
and forecasting of workload parameters from the controlled software sys-
tem. This activity includes the analysis of the workload observed in the
elapsed period and, based on this, estimating near-future trends. Hence, it
implements techniques like the ones described in Section 4.4, e. g., based on
time series analysis. Parameters for workload characterization and forecast-
ing are specified as part of the SLAstic meta-model’s QoS Model. Note that
a Workload Forecaster is particularly useful for proactive capacity planning
scenarios in combination with online performance prediction executed by
the Performance Predictor described below.

Performance Predictor

The Performance Predictor is responsible for continuous prediction of per-
formance measures of the controlled system for the near future. This activity
uses results from the Workload Forecaster and architectural information
captured in the SLAstic runtime model as inputs for the predictions. It
employs model-based performance prediction techniques like the ones de-
scribed in Section 4.5. As mentioned before, the Performance Predictor is
particularly needed for proactive capacity management.

135

8. SLAstic Framework

Adaptation Planner

The Adaptation Planner is responsible for detecting and planning required
adaptations of the controlled software system in order to ensure that desired
high-level goals are satisfied. Adaptation planning is based on the definition
of objectives, e. g., optimizing resource efficiency, as well as strategies and
tactics to meet these objectives. All these aspects may, for instance by
expressed using the S/T/A modeling language described in Section 3.4.3.
For example, the Adaptation Planner may follow a rule-based policy to plan
adaptations based on reactive or proactive SLA violation events emitted
by the Performance Evaluator. The output of the adaptation planner is
a reconfiguration plan that, as described in Section 6.4.1, determines the
sequence of reconfiguration actions to be executed. In order to determine
suitable reconfiguration plans, the Adaptation Planner typically makes use
of similar techniques employed by the aforedescribed components, e. g.,
model-based software performance prediction.

8.5 Reconfiguration Manager

The Reconfiguration Manager is responsible for executing the reconfigu-
ration plans created by the Adaptation Planner. Therefore, it interprets
the reconfiguration plan, which determines the sequence of reconfigura-
tion operations to be executed. As a reconfiguration operation refers to
architectural entities from the SLAstic runtime model (Section 6.4), the
corresponding implementation-level counterparts need to be looked up
using the Model Manager’s bidirectional mapping between architecture
and implementation. Additional details about the Reconfiguration Manager
will be provided in Section 10.2.3.

8.6 Framework Implementation

We developed a Java-based implementation for the SLAstic framework de-
scribed in the previous sections. Similar to the implementation of the Kieker
framework described in Section 7.3, the SLAstic framework implementation
includes a basic set of components, being designed for reusability and ex-
tensibility. The SLAstic implementation is publicly available as open source

136

8.6. Framework Implementation

software as part of the Kieker project, e. g., via van Hoorn [2014]. Various
framework components developed for the SLAstic framework implementa-
tion that served to be useful also for other purposes have been integrated
into the Kieker framework.

The remainder of this section is structured as follows. Section 8.6.1
provides an overview of the reusable and extensible framework architecture.
Section 8.6.3 focuses on the configuration and setup of framework instances.
Section 8.6.4 briefly describes the integration with the Kieker framework.
Section 8.6.5 gives examples for concrete framework components that have
been implemented. Note that we provide implementation details only to a
degree that is needed for this thesis. Technical details, particularly on how
to use the framework, are provided as part of the framework documentation
and associated examples.

8.6.1 Overview

Matching the framework’s conceptual high-level architecture (Figure 8.1), a
framework instance is composed of a) a Monitoring Manager, b) an Adapta-
tion Controller, and c) a Reconfiguration Manager. According to Figure 8.1,
the Adaptation Controller is decomposed into a Model Manager, a Model
Updater, and an Analyzer. The latter is further decomposed into a Perfor-
mance Evaluator, a Workload Forecaster, a Performance Predictor, and an
Adaptation Planner. For each of these components, the framework includes
an abstract Java type that declares the respective interface and provides basic
functionality. Custom classes must implement these abstract classes. Basic
implementations exist for each of the types, which may be used in cases
where a component’s functionality is not needed, e. g., workload forecasting
or performance prediction in reactive adaptation scenarios. Table 8.1 lists
the names of the abstract and basic Java types. A super type implemented
by each framework component lets components access their configuration
properties and their dedicated subdirectory within the results directory
created for each framework execution. Moreover, it declares methods for
a) initialization, b) startup, and c) termination, which are called by the
framework logic.

To summarize, similar to Kieker’s implementation described in Sec-
tion 7.3, the SLAstic framework implementation consists of a generic (core)
part that serves the basis for custom extensions as well as concrete frame-

137

8. SLAstic Framework

Table 8.1. Implementation classes for conceptual framework components. Note that
the name prefixes I and Abstract for interfaces and abstract classes respectively are
omitted for better readability.

Conceptual Component Java type (abstract and default implementation)

Monitoring Manager {Abstract|Dummy}MonitoringManagerComponent

Adaptation Controller {Abstract|Basic}ControlComponent

x Model Manager {Abstract|Dummy}ModelManager

x Model Updater {Abstract|Dummy}ModelUpdaterComponent

x Analyzer {Abstract|Basic}AnalysisComponent

x Performance Evaluator {Abstract|Dummy}PerformanceEvaluatorComponent

x Workload Forecaster {Abstract|Dummy}WorkloadForecasterComponent

x Performance Predictor {Abstract|Dummy}PerformancePredictorComponent

x Adaptation Planner {Abstract|Dummy}AdaptationPlannerComponent

Reconfiguration Manager {Abstract|Dummy}ReconfigurationManagerComponent

work components to be reused. For example, the Model Manager already
provides a basic integration of the Eclipse Modeling Framework (EMF)
technologies, e. g., for loading and storing model instances. A concrete
Model Manager has been developed for the SLAstic meta-model described
in Chapter 6, using the Java classes generated from the Ecore meta-model.
Concrete Model Managers for other meta-models, e. g., PCM, have been de-
veloped as well. Also for the Reconfiguration Manager, this extensibility is
helpful, as it is partially technology-specific and depends on the controlled
system’s effector APIs. On the other hand, extensibility does not play a
primary role for the Monitoring Manager, as the Kieker records already
provide a certain abstraction and the Kieker-specific Model Manager allows
to connect to arbitrary monitoring logs (by design).

We integrated the Java version of Esper [Esper Team and EsperTech,
Inc., 2014], which—according to Gualtieri et al. [2009]—is the leading open
source CEP engine. On framework startup, an Esper instance is created by
the Adaptation Controller. Esper allows to use either an internal or external
time source, which is employed to switch between SLAstic’s online and
offline operation mode.

138

8.6. Framework Implementation

SLAstic.
MONITORING

SLAstic.CONTROL

Monitoring Log
from Case Study

...

Production
Workload

(a) Online/production

SLAstic.
MONITORING

SLAstic.
RECONFIGURATION

SLAstic.CONTROL

Monitoring Log
from Case Study

...

Workload
Generator

JMeter/
Markov4JMeter

(b) Online/lab

SLAstic.
MONITORING

SLAstic.
RECONFIGURATION

SLAstic.CONTROL

Monitoring Log
from Case Study

Log
Replayer

Kieker.
LogReplayer (RT)

...

SLAstic.SIM

(c) Offline/simulation

SLAstic.
MONITORING

SLAstic.CONTROL

Monitoring Log
from Case Study

Log
Replayer

Kieker.
LogReplayer (RT)

(d) Offline/lab

Figure 8.6. Framework uses and integrations for online and offline analyses

8.6.2 Framework Deployments

Figure 8.6 depicts the four typical framework uses and integrations for
online and offline analyses.

1. Online/production (Figure 8.6a). The SLAstic framework is connected to a
production system that is exposed to production workloads. Two modes
can be distinguished in this setting. First, SLAstic.Control is used to
perform online capacity management. Hence, the framework is used in
its intended form. Second, SLAstic.Monitoring logs the observed moni-

139

8. SLAstic Framework

toring data into a Kieker Monitoring Log for offline analysis. Particularly,
SLAstic.Reconfiguration is not used, e. g., because the system does not
provide adaptation capabilities.

2. Online/lab (Figure 8.6b). The SLAstic framework is connected to a sys-
tem in a controlled lab experiment. The system is exposed to synthetic
workload derived from logged production workload (previous setting,
cf. [Schulz et al., 2014]). A load driver like JMeter/Markov4JMeter [van
Hoorn et al., 2008] is used to generate probabilistic and intensity-varying
workload. The SLAstic framework is employed for online capacity man-
agement.

3. Offline/simulation (Figure 8.6c). The SLAstic framework is connected to
the SLAstic.SIM simulator for runtime reconfigurable component-based
software systems that is triggered by workload events derived from
logged production workloads. This setting is detailed in Section 11.3 as
part of the description of SLAstic.SIM.

4. Offline/lab (Figure 8.6d). The SLAstic framework is connected to the
Kieker log replayer that replays Monitoring Records from a Monitoring
Log, e. g., collected from a production system. As no adaptable system,
neither real nor simulated, is involved, SLAstic.Reconfiguration does not
communicate with effector APIs.

8.6.3 Configuration and Startup

The SLAstic framework currently includes a Java API and command-line
interface to instantiate and execute a framework in the deployments men-
tioned in Section 8.6.2. In each case, the class FrameworkInstance is instanti-
ated, passing the file system location of the configuration file (Java properties
file format). The configuration file specifies, for instance, the concrete types
of the framework components to instantiate by providing the fully-qualified
class name (cf. Table 8.1) along with component-specific configuration pa-
rameters. When calling the framework instance’s run method, the framework
components are instantiated, initialized (properties, component context,
etc.), wired, and their execute method is called. If desired, a SLAstic.SIM
instance is started (cf. Figure 8.6c).

140

8.6. Framework Implementation

:FrameworkInstance

:AbstractKiekerMonitoringManager

KiekerAnalysisStarterJMS

:JMSLogReplayer
 (kieker)

:NamedRecordPipe
 (kieker)

Write

Read

Figure 8.7. Components for online analysis via JMS (cf. Figures 8.6a and 8.6b)

8.6.4 Kieker-based SLAstic Configurations

As previously mentioned, the SLAstic framework builds on and is tightly
integrated with the Kieker framework. Particularly, for the SLAstic.Mon-
itoring component, the SLAstic framework already includes concrete im-
plementations that connect to a Kieker.Monitoring instance via a JMS or file
system Monitoring Log or Stream and process incoming Monitoring Records.
This enables the support for the four online and offline deployment modes
described in Section 8.6.2.

In order to invoke a SLAstic framework instance together with a con-
nection to a Kieker Monitoring Log or Stream, respective startup tools exist.
Figure 8.7 depicts the architecture, exemplified for the connection to a
Kieker JMS Monitoring Stream. The core components are a Kieker replayer
component, which connects to the configured Monitoring Log or Stream,
and the embedded SLAstic framework instance. In the SLAstic frame-
work instance, this setup requires the use of a Kieker-specific Monitoring
Manager component (to extend AbstractKiekerMonitoringManager). The ab-
stract Kieker-specific implementation for a Monitoring Manager creates
a Kieker.Analysis instance, including a Monitoring Reader that connects to
the JVM-internal Kieker named record pipe also connected to the Moni-
toring Writer as part of the replayer. The Kieker.Analysis instance executes
asynchronously. Inside the Monitoring Manager, a Kieker pipes-and-filters
configuration is created that connects the Monitoring Reader with subse-
quent filters extracting the current time from Monitoring Records (Kieker
plugin CurrentTimeEventGenerationFilter) and passing timer events to the
Adaptation Controller’s Timer—but only in case the framework is in an
offline/replay mode (Figure 8.6d). Concrete Monitoring Manager classes ex-

141

8. SLAstic Framework

tending AbstractKiekerMonitoringManager refine the prepared pipes-and-filters
configuration by additional filters, which perform additional processing of
records, e. g., translating the implementation-level monitoring records to
architectural monitoring events (Chapter 9). Another form of refinement of
the analysis configuration by implementing classes is that the Kieker Moni-
toring Manager stores incoming Monitoring Records as a Kieker file system
Monitoring Log in the component context for later analysis (Figures 8.6a
and 8.6d). For a file system Monitoring Log, the respective file system re-
player, including a real-time mode, is used. Startup tools for additional
types of Monitoring Logs/Streams can be implemented and used accordingly.

8.6.5 Concrete Framework Components

During the course of the thesis, concrete framework components, imple-
menting the abstract framework classes in Table 8.1, have been developed.
The remainder of this section lists selected implementations, including those
for concepts described in later parts of this thesis. These components are
part of the publicly available framework implementation.

The Kieker-specific Monitoring Manager has been detailed in Section 8.6.4
already. Accordingly, a Monitoring Manager to connect to SLAstic.SIM
(cf. Figure 8.6c and Section 11.3.2) has been implemented in order to re-
ceive Monitoring Records from the simulator. Model Managers have been
developed for the SLAstic meta-model and for the PCM meta-models. Mon-
itoring Manager and Model Updater components implement the Monitoring
Record transformation and model extraction described in Sections 9.2 and 9.3.
A Performance Evaluator component computes and logs time series of se-
lected performance measures, e. g., response times, invocation counts, and
resource utilization. A Performance Evaluator that checks SLAs has been
developed by Stöver [2009] as part of her thesis. Time- and rule-based
Adaptation Planners have been developed for the simulation and lab exper-
iments described in Chapters 13 and 14. Reconfiguration Managers exist to
connect the SLAstic framework to the SLAstic.SIM simulator (Section 11.3),
to Eucalyptus and AWS infrastructures (Section 13.3), and to reconfigure
systems based on HTTP requests [Stöver, 2009].

142

Chapter 9

Model-Driven Online Capacity
Management

This chapter describes model-driven techniques that have been developed
as part of the thesis to increase the automation of the SLAstic approach,
building on the architectural modeling as well as the Kieker and SLAstic
frameworks, described in Chapters 6 to 8. The developed techniques
are grouped into the three different parts, namely model-driven instru-
mentation, transformation of monitoring events, and model extraction via
dynamic analysis—summarized below. The three techniques are detailed in
the remainder of this chapter in Sections 9.1 to 9.3. Each section includes
a description how the respective technique is integrated into the SLAstic
framework, including some details about the implementation.

➍ Model-Driven Instrumentation. For building new software systems to
be equipped with SLAstic’s online capacity management support, the
recommended choice is to employ a model-driven software engineer-
ing (MDSE) approach as introduced in Chapter 2—e. g., according to
Stahl and Völter [2006]. The use of MDSE forces architectural models
to constitute a representation of the implemented system. Along with
implementation artifacts being generated from models expressed using
one or more DSLs, system instrumentation can be generated as well.
Therefore, we developed an approach for model-driven generation of
Kieker-based instrumentation from SLAstic models.

➍ Transformation of Monitoring Events. A core characteristic of the SLAstic
framework is the separation between implementation- and technology-
aspects of the controlled software system as well as the architectural
view on this system employed by the Adaptation Controller to detect,

143

9. Model-Driven Online Capacity Management

plan, and execute adaptations (cf. Figure 8.1a). Therefore, we devel-
oped a transformation from implementation-level monitoring events to
architectural monitoring events.

➍ Model Extraction via Dynamic Analysis. SLAstic may also be used with
existing systems which haven’t been built based on MDE. In this case,
the software system needs to be instrumented manually in order to
provide measurements about its runtime behavior during its execution.
Therefore, we developed an approach for reconstructing SLAstic system
and usage models (see Chapter 6) from application-level and system-
level monitoring data. In a subsequent step, these models can be refined
and augmented, e. g., by service level objectives and reconfiguration
capabilities.

9.1 Model-Driven Instrumentation
Figure 9.1a depicts the model-driven instrumentation approach. In the ideal
case, the system implementation is being developed based on a MDSE-
based development process, e. g., as proposed by Stahl and Völter [2006]
(cf. Chapter 2). This involves the automatic generation of implementation
artifacts, deployment descriptors, etc. based on M2M and M2T transforma-
tions, as well as manual implementations by developers. The model-driven
instrumentation is integrated into these transformations. As part of the
transformation, monitoring instrumentation and configuration is generated
based on the instrumentation annotations in the SLAstic model, which have
been described in Section 6.5. During the transformation, architectural enti-
ties are mapped to implementation-level entities, e. g., component types to
Java packages or classes. These mappings are stored in the technology/ar-
chitecture mapping, which—as described in Section 8.2—is essentially a
bijective function that maps architectural identifiers to implementation-level
identifiers and vice versa. Note that the examples in this section focus on
instrumentation for measuring resource utilization and information about
operation executions because these provide measures of interest for this
thesis. However, the presented approach is not limited to these types of
instrumentation but can be extended accordingly. Also, we focus on Kieker-
based instrumentation, which is not a conceptual constraints but provides a
defined target of generation.

144

9.1. Model-Driven Instrumentation

Technology/
Architecture
Mapping

SLAstic.
MONITORING

SLAstic.
RECONFIGURATION

SLAstic.CONTROL

...

Adaptable Software System
Model Transformations

SLAstic Model
incl. Instrumen-
tation Directives

System Imple-
mentation incl.
Monitoring In-
strumentation

(a) Overview of model-driven instrumentation approach

:Resourceresource
resource

id = "@34562"

execution
Container

execution
ContainerType

name = "cpu2"

resources

resource
Type

resource
Specification

:CPUUtilization
 Instrumentation

name = "SRV0"

id = "@1255"

:Resource
 Specification

:Execution
 Container

:Signature

name = "searchBook"
returnType = "void"
paramTypes = <>

:AssemblyComponent

name = "Bookstore"
packageName = "bookstore"

:Signature

name = "searchBook"
returnType = "void"
paramTypes = <>

:DeploymentComponent
 OperationExecution
Instrumentation

:DeploymentComponent
deploymentComponent

execution
Container

assembly
Component

signature

:Operation
operation

component
Type

interface
signatures

operations
id = "@90789"

id = "@8972"

(b) SLAstic model (excerpt) including two
monitoring directives

web.xml

kieker.monitoring.propertiesBookstore.java

aop.xml

 kieker.monitoring.-
 hostname= @34562

@OperationExecutionMonitoringProbe
 (id="@8972:@90789")
public void searchBook() {

<!DOCTYPE aspectj PUBLIC "-//AspectJ/DTD//EN/" "http://aspectj.org
<aspectj>
 <weaver>...</weaver>
 <aspects>
 <aspect name="kieker.monitoring.probe.aspectj.operationExecution
 ...

 <filter-name>sessionAndTraceRegistrationFilter</filter-name>
 <filter-class>kieker.monitoring.probe.servlet.SessionAndTraceRegis
...
 <param-name>CPUMemUsageServletContextListener.samplingInter
...
 <listener-class>kieker.monitoring.probe.servlet.CPUMemUsageServl

(c) Example implementation artifacts includ-
ing generated Kieker monitoring instrumen-
tation and configuration (excerpts)

Figure 9.1. Overview and examples of model-driven instrumentation approach

Figures 9.1b and 9.1c depict an excerpt of a SLAstic model for the
running example including architecture-level instrumentation directives, as
well as example excerpts from generated technology-specific monitoring
instrumentations and configurations for the Kieker framework respectively.

• The two instrumentation directives included in Figure 9.1b, which were
introduced in Section 6.5, indicate that monitoring probes are to be added
to the software system, which measure the utilization of the referenced
resource (CPU in this case) as well as information about executions of the
referenced Operation of the referenced DeploymentComponent.

145

9. Model-Driven Online Capacity Management

Table 9.1. Kieker record types and corresponding SLAstic meta-classes

Kieker record type SLAstic event type

OperationExecutionRecord ConnectorOperationExecution,

DeploymentComponentOperationExecution

ResourceUtilizationRecord ResourceUtilization

CPUUtilizationRecord CPUUtilization

MemSwapUsageRecord MemSwapUsage

• Figure 9.1c sketches possible Kieker-specific monitoring instrumentation
and configuration generated from the architecture-level instrumentation
directives. For this example, we assume that instrumentations for opera-
tion executions are added based on Java annotations processed by AspectJ
[Kiczales et al., 2001] (Section 4.2.2). This instrumentation mechanism is
included in the Kieker implementation (see [Kieker Project, 2014a]). In
this case, the AspectJ configuration file (aop.xml) needs to be generated,
which includes the list of aspects to use. A Java annotation is added to
each method to be monitored (example in Bookstore.java). In the example,
the annotation includes implementation-level identifiers to be included
in the Monitoring Records produced by this Monitoring Probe. The Kieker
configuration file (kieker.monitoring.properties) includes the identifier of the
host name. The CPU utilization is monitored by a Kieker Monitoring Probe
integrated based on Java Servlet technology (Section 3.3.1, registered in
the application’s web.xml). Note that a complementary Servlet-based Mon-
itoring Probe supports the monitoring of operation executions (web.xml).

Note that in this case, we assume a 1:1 mapping function between archi-
tectural identifiers and implementation-level identifiers included in Fig-
ures 9.1b and 9.1c.

9.2 Transformation of Monitoring Events

As described in Section 8.3, the Monitoring Manager transforms imple-
mentation-level monitoring events to architectural monitoring events. This
section details this transformation. Implementation-level monitoring events
are instances of Kieker monitoring records (Figure 7.2). Architectural

146

9.2. Transformation of Monitoring Events

:CPUUtilizationRecord

timestamp = 13771..
hostname = "@34562"
cpuID = "@1255"
user = 0.0819

idle = 0.7748

...

:Resourceresource
resource

:ExecutionContainer

name = "SRV0"
execution
Container

executionContainerType

:ResourceSpecification

name = "cpu2"

resources
resource
Type

:CPUUtilization

timestamp = 13771..
user = 0.0819

idle = 0.7748

...

resourceSpecification

Figure 9.2. Transformation result for CPUUtilizationRecord. Existing entities are
displayed in gray color.

monitoring events are instances of the SLAstic monitoring events, which
are part of the SLAstic meta-model (Section 6.3.1). Table 9.1 lists the
Kieker monitoring records and SLAstic event types that are considered
in this section, as these are relevant for this thesis. The meta-classes are
included in Figures 6.8 and 7.2. In case additional monitoring events are
added, respective transformations need to be developed. Note that for the
transformations described in this section, we assume that all model entities
that are looked up already exist. However, on-demand creation of entities
is supported by including the transformation for model extraction, which
will be described in Section 9.3.

Sections 9.2.1 and 9.2.2 detail the transformation of monitoring events
for resource usage (CPU, generic resources, and memory) and operation
executions. Java-based implementations of the transformation are included
in the SLAstic framework implementation described in Section 8.6 as part
of the Monitoring Manager (SLAstic.Monitoring).

9.2.1 Resource Usage

Transformations of resource usage monitoring events currently exist for
utilization of CPU and generic resources, as well as for memory usage.
These transformations are detailed in the remainder of this section.

CPU Utilization

This transformation takes a Kieker CPUUtilizationRecord as input and cre-
ates a SLAstic CPUUtilization event as output. An example is depicted in
Figure 9.2. The easy part of the transformation is the assignment of the
properties with plain type, i. e., the timestamp and the utilization (combined,

147

9. Model-Driven Online Capacity Management

idle, irq, nice, system, user, wait) values by the corresponding values of the
CPUUtilizationRecord. The Resource to be referenced by the CPUUtilization

event is determined in a two-step procedure. First, the ExecutionContainer

is looked up using the Model Manager: a) looking up the corresponding
architectural identifier for the host name’s implementation-level identifier
given by the CPUUtilizationRecord’s hostname property, and b) looking up
the ExecutionContainer using the architectural identifier. In a second step,
the Resource is retrieved from the Model Manager in a similar procedure:
a) looking up the architecture-level identifier for the resource identifier given
by the CPUUtilizationRecord’s cpuID property, and b) looking up the Resource

with this architectural identifier to be contained in the ExecutionContainer.
Note that in this case, the Resource has the resource type CPUType.

Generic Resource Utilization

This transformation takes a Kieker ResourceUtilizationRecord as input and
creates a SLAstic ResourceUtilization event as output. The procedure of this
transformation equals the afore-described transformation. First, the times-
tamp and utilization values are assigned. In the second step, the matching
Resource is retrieved from the Model Manager, as described for the CPU
utilization event transformation. Note that in this case, the implementation-
level resource identifier is contained in the ResourceUtilizationRecord’s prop-
erty resourceName and that the retrieved is of resource type GenericResource-

Type.

Memory Usage

This transformation takes a Kieker MemSwapUsageRecord as input and creates
a SLAstic MemSwapUsage event as output. Again, this transformation is a
two-step procedure: a) assigning the values of plain type (memUsedBytes
and swapUsedBytes) and b) retrieving and assigning the appropriate Resource.
Note that the MemSwapUsageRecord’s properties about the total amount of
memory and swap (memTotal and swapTotal) are not considered. The re-
trieved Resource has the type MemSwapType and references a MemSwapResource-

Specification.

148

9.2. Transformation of Monitoring Events

:Signature

name = "searchBook"
returnType = "void"
paramTypes = <>

operationSignature =
 "@8972:@90789"

:OperationExecutionRecord

hostname = "@34562"

traceId = 887
sessionID = "ZU1KG2GF"
eoi = 0
ess = 0
tin = ..3075
tout = ..3090

:AssemblyComponent

name = "Bookstore"
packageName = "bookstore"

:Signature

name = "searchBook"
returnType = "void"
paramTypes = <>

:DeploymentComponent
 OperationExecution

traceId = 887
sessionID = "ZU1KG2GF"
eoi = 0
ess = 0
tin = ..3075
tout = ..3090

:DeploymentComponent
deploymentComponent

execution
Containerassembly

Component

signature:Operation
operation

:ExecutionContainer

name = "SRV0"
execution
ContainerType

componentType
interface

signatures
operations

Figure 9.3. Transformation result for OperationExecutionRecord. Existing entities
are displayed in gray color.

9.2.2 Operation Executions

This transformation takes a Kieker OperationExecutionRecord as input and cre-
ates a SLAstic OperationExecution event as output, which is either of concrete
type DeploymentComponentOperationExecution or ConnectorOperationExecution. Fig-
ure 9.3 depicts an example. According to the transformations described in
Section 9.2.1, this transformation can be separated into two parts: a) assign-
ment of plain values and b) lookup and assignment of references to entities
in the SLAstic runtime model. The simple part—assignment of values—
concerns the properties traceId, sessionId, eoi, ess, tin, and tout, which are
present in both objects. Additionally, a DeploymentComponentOperationExecution

includes references to a DeploymentComponent and an Operation, which need to
be looked up employing the Model Manager. The basis for looking up the
DeploymentComponent are the implementation-level identifiers contained in the
OperationExecutionRecord’s properties hostname and operationSignature. Using
the host name identifier, the corresponding ExecutionContainer is looked
up as described for the transformation of CPU utilization records. As ex-
emplified in Figure 9.1, the property operationSignature is a concatenation
of two identifiers—(implementation-level) component and operation. The
implementation-level component identifier is used to lookup the correspond-
ing AssemblyComponent, after having translated the implementation-level iden-
tifier to the architecture-level identifier. The looked up ExecutionContainer

and AssemblyComponent are now used to retrieve the DeploymentComponent to be
assigned to the resulting DeploymentComponentOperationExecution. The Operation

is looked up from the Model Manager using the ComponentType and the (trans-
lated) operation identifier.

149

9. Model-Driven Online Capacity Management

9.3 Model Extraction via Dynamic Analysis

In order to support scenarios in which SLAstic models for the controlled
software system are not available and in which no model-driven instru-
mentation according to Section 9.1 is employed, this section details the
automatic extraction approach based on dynamic analysis. The extraction
concerns the system structure and its usage, represented by the respective
parts of the SLAstic meta-model covered in Sections 6.2 and 6.3. The extrac-
tion process is integrated in the following three phases: a) transformation
of monitoring events including the on-demand creation and updating of
architectural entities, such as types, (assembly and deployment) compo-
nents, and execution containers; b) trace reconstruction based on operation
execution events; c) processing of the reconstructed traces for updates of
the usage model (e. g., call relationships and frequencies), assembly model
(e. g., assembly connectors), as well as the execution environment (e. g.,
network links). The first phase is integrated into the transformation ap-
proach for monitoring events described in Section 9.2. In this case, the
mapping function including the relation of implementation-level entities to
architectural entities is created and updated on-the-fly. Note that the usage
model extraction is also relevant for scenarios in which SLAstic models are
available and model-driven instrumentation is used, because workloads are
typically varying over time (Section 4.4).

Section 9.3.1 describes the extraction of control flow traces and the
usage model. Section 9.3.2 details the on-demand creation and refinement
of architectural entities. The type and operation signature abstraction is
detailed in Section 9.3.3. A Java-based implementation of the described
extraction is included in the SLAstic framework implementation described
in Section 8.6 as part of the Monitoring Manager (SLAstic.Monitoring) and
the Model Updater (SLAstic.Control).

9.3.1 Trace and Usage Model Extraction

This section describes how traces are reconstructed from the stream of
SLAstic OperationExecution events and how these traces are processed to
update the SLAstic usage model. For details on the SLAstic meta-model
parts for traces and the usage model, please refer to Section 6.3. Note

150

9.3. Model Extraction via Dynamic Analysis

select a, b from pattern

[

every-distinct(a.traceId, TIMEOUT+1 sec)

a=OperationExecution

->

((b=OperationExecution(traceId=a.traceId)

OR

time:interval(TIMEOUT sec))

until (timer:interval(TIMEOUT+1 sec) OR TerminationRecord)

)

]

Figure 9.4. EPL statement to collect operation executions of a trace. The statement
is parameterized by a TIMEOUT variable.

that for this step it is assumed that SLAstic OperationExecution events are
available, e. g., by the transformation described in Section 9.2.2 that may be
extended by the on-demand creation that will be described in Section 9.3.2.

Trace Reconstruction

Similar to the trace reconstruction approach implemented in the Kieker
framework (Section 7.2), this reconstruction of traces is based on collecting
operation executions with an equal trace identifier and reconstructing the
calling relationships based on the control flow information contained in the
monitoring events (eoi and ess properties).

First, the SLAstic’s CEP Engine is used to group operation executions by
their trace identifiers. Operation executions with an equal trace identifier
are assumed to belong to the same trace. Figure 9.4 shows the pattern-
based EPL query that collects groups of executions with the same trace
identifier (traceId property) from the incoming stream of OperationExecution

events. The CEP Engine instantiates a new pattern when it observes a trace
identifier that it has not observed before within the given period of time
(TIMEOUT + 1 seconds). The OperationExecution triggering the instantiation
of this pattern is the first element in the result set for this query—being

151

9. Model-Driven Online Capacity Management

an array of OperationExecution objects with one or more elements. Now
the CEP Engine awaits a sequence of additional OperationExecutions with
this trace identifier. The query terminates and returns its result set after
no additional matching event has been observed for a given period of
time (based on the TIMEOUT variable) or the SLAstic framework terminates
(TerminationRecord event). For a more detailed description on pattern-based
queries in EPL, please refer to the EPL documentation [Esper Team and
EsperTech, Inc., 2014].

In a second step, the set of OperationExecutions is further processed in
a trace reconstruction step, resulting in a Trace object (Figure 6.9). The
OperationExecutions are sorted by eoi and transformed into a MessageTrace

(Figure 6.9) by emulating a stack machine using the OperationExecution’s

eoi and ess values. In case the set of OperationExecutions is incomplete, the
trace reconstruction fails and the resulting Trace object is of concrete type
InvalidTrace. In the case of success, the concrete type is MessageTrace, which
is a ValidTrace.

Trace Processing for Usage Model Updates

Further processing of traces is performed only on MessageTrace objects, as
instances of a ValidTrace; i. e., InvalidTrace objects are not considered. A
MessageTrace is processed by iterating over the sequence of contained Messages.
The remainder of this section describes the processing algorithm.

For each Message m, the algorithm first determines whether it is a
SynchronousCallMessage or a SynchronousReplyMessage.

• In case m is a SynchronousCallMessage, it increments the call frequency of
the called Operation in the usage model (OperationCallFrequency) by 1.

• In case m is a SynchronousReplyMessage, it first determines the provided
Interface of the returning OperationExecution from the Model Manager
based on the ComponentType and Signature associated with the executed
Operation. If m is a reply message to a system entry call (i. e., not originat-
ing from a system-internal call), the SystemProvidedInterfaceDelegationCon-

nector involved in this execution is looked up (based on the providing
AssemblyComponent and the Signature) and the calling frequency of this
Signature is incremented by 1 for this connector. Otherwise, i. e., if m is
associated with a system-internal call, the algorithm performs two steps.

152

9.3. Model Extraction via Dynamic Analysis

First, according to the system entry call, the AssemblyComponentConnector is
looked up (based on the requiring and providing AssemblyComponents and
the Signature) and the calling frequency of the Signature is incremented
by 1 for this connector. Second, the count of how many times the calling
Operation (associated with the receiver of m) calls the Signature of the cur-
rently involved required Interface is updated. Note that this information
is further updated while processing this trace and propagated to the
Model Manager after the entire trace is processed.

After each Message contained in the Trace has been processed, the frequency
distribution of calling relationships for calls from each operation to signa-
tures of required interfaces is propagated to the Model Manager for being
updated in the usage model. Remember that the invocation count to each
called interface/signature combination from each executed operation was
collected and updated while processing the trace.

9.3.2 On-Demand Creation and Refinement of Architectural
Entities

This section details the on-demand creation and refinement of architectural
entities. The use case is that the query for a mapping of an architectural
entity to an implementation-level entity results in an empty result. In this
case, missing entities are created on-the-fly and the mapping is created
(with a newly perceived architectural identifier) so that future lookups lead
to a valid result (previously created entity). This section focuses on the
on-demand creation capabilities for the afore-mentioned transformation
from Kieker monitoring records to SLAstic monitoring events and the usage
model extraction. The set of discovery functions may need to be extended
for additional transformations and extractions. Note that this section covers
only the SLAstic system model, as the update of the usage model has
already been covered in Section 9.3.1. The description is structured into five
parts based on the covered entity types, namely a) execution container and
execution container types, b) resources, c) components, component types,
and interfaces, d) operations, as well as e) assembly connectors, required
interfaces, and network links.

153

9. Model-Driven Online Capacity Management

:CPUUtilizationRecord

timestamp = 13771..
hostname = "SRV0"
cpuID = "2"
user = 0.0819

idle = 0.7748

...

:Resource

:CPUUtilization

timestamp = 13771..
user = 0.0819

idle = 0.7748

...

:ExecutionContainer

name = "SRV0" :ExecutionContainerType

name = "SRV0_T"

:ResourceSpecification

name = "cpu2"

:CPUType

name = "CPU_RES_TYPE"
clockRateMhz = -1
vendor = "<NO-VENDOR>"

resource

resourceSpecification

execution
Container

resource

executionContainerType

resources

resourceType

(a) Transformation of CPUUtilizationRecord

:Signature

name = "searchBook"
returnType = "void"
paramTypes = <>

operationSignature =
 "void bookstore.Bookstore.
 searchBook()"

:OperationExecutionRecord

hostname = "SRV0"

traceId = 887
sessionID = "ZU1KG2GF"
eoi = 0
ess = 0
tin = ..3075
tout = ..3090

:AssemblyComponent

name = "Bookstore"
packageName = "bookstore"

:ComponentType

name = "Bookstore_T"
packageName = "bookstore"

:Signature

name = "searchBook"
returnType = "void"
paramTypes = <>

:DeploymentComponent
 OperationExecution

traceId = 887
sessionID = "ZU1KG2GF"
eoi = 0
ess = 0
tin = ..3075
tout = ..3090

:DeploymentComponent :ExecutionContainer

name = "SRV0"

:ExecutionContainerType

name = "SRV0_T"

:Operation

deploymentComponent

execution
Container

assembly
Component

signature

operation

operations

executionContainerType

componentType

:Interface

name = "IBookstore_T"
packageName = "bookstore"

providedInterfacessignatures

(b) Transformation of OperationExecutionRecord

Figure 9.5. Transformation results for CPUUtilizationRecord (a) and Opera-

tionExecutionRecord (b) including the on-demand creation of architectural entities

➍ Execution Container and Execution Container Type

The on-demand creation operation for an ExecutionContainer expects a
name for the entity to be created. This is typically the implementation-
level host name contained in the Kieker record (hostname property). In-
cluded in the on-demand creation is the creation of an ExecutionContainer-

Type. The name used for the ExecutionContainerType is the ExecutionCon-

tainer name extended by a type suffix (" T"). Both the newly created
ExecutionContainer and the corresponding ExecutionContainerType contain
no specifications of resources. The new ExecutionContainer is marked
allocated.

154

9.3. Model Extraction via Dynamic Analysis

As an example, Figures 9.5a and 9.5b include the on-demand creation of
an ExecutionContainer and a corresponding ExecutionContainerType for the
host name "SRV0" contained in the transformed Kieker records.

➍ Resources

The on-demand creation operation for a Resource expects a Resource name
and Resource type identifier, as well as the ExecutionContainer to contain
the Resource. The operation first determines whether a ResourceSpecification

with this name already exists in the corresponding ExecutionContainerType.
If this is not the case, a ResourceSpecification with the Resource name is
created for the ExecutionContainerType. In order to avoid name clashes
among the different types of resources, a type-specific prefix is added
to the Resource name, e. g., "cpu". Along with the ResourceSpecification,
an appropriate ResourceType is created, e. g., CPUType for CPU resources.
Default values are assigned to the ResourceType in case no detailed infor-
mation is available, e. g., the clock rate of a CPU. Note that for a memory
resource, a MemSwapResourceSpecification is created; the information about
memory and swap size are included in a Kieker MemSwapUsageRecord.

As an example, Figure 9.5a includes the on-demand creation of a Resource,
a ResourceSpecification, and a CPUType for the implementation-level CPU
resource on the ExecutionContainer "SRV0".

➍ Components, Component Types, and Interfaces

The on-demand creation of an AssemblyComponent expects a name for
the entity to be created. The basis for this name is, for instance, the
implementation-level class name contained as part of the operationSig-

nature property in Kieker’s OperationExecutionRecords, which is further
processed by the procedure described in Section 9.3.3. Included in the
creation of an AssemblyComponent is the creation of a ComponentType and an
Interface. As for the on-demand creation of an ExecutionContainer and
a corresponding ExecutionContainerType, the name of the ComponentType

is the AssemblyComponent name extended by a type suffix (" T"). The
Interface name includes an additional prefix "I". The new Interface,
which contains no Signature so far, is added to the ComponentType’s list
of provided Interfaces. The on-demand creation of a DeploymentComponent

follows the afore-described on-demand creation of an ExecutionContainer

and an AssemblyComponent—along with their associated entities.

155

9. Model-Driven Online Capacity Management

As an example, Figure 9.5b includes the on-demand creation of a Deploy-

mentComponent, an AssemblyComponent, a ComponentType, and an Interface.

➍ Operations

The on-demand creation of an Operation expects a ComponentType and an
operation signature. The operation signature particularly includes an op-
eration name, parameter types, and a return type. The basis for these val-
ues is, for instance, the implementation-level signature contained as part
of the operationSignature property in Kieker’s OperationExecutionRecords,
which is further processed by the procedure described in Section 9.3.3.
A Signature with the respective values is created and assigned to the
new Operation. The Operation is added to the ComponentType’s list of oper-
ations. Moreover, another equal Signature is created and added to the
ComponentType’s default Interface.

As an example, Figure 9.5b includes the on-demand creation of an
Operation and two (equal) Signatures.

➍ Assembly Connectors, Required Interfaces, and Network Links

The on-demand creation of AssemblyConnectors is part of processing a
SynchronousReplyMessage of a Trace. In case, the message refers to a reply
for an entry call, this may involve the creation of a SystemProvidedInter-

faceDelegationConnectors; otherwise, i. e., no entry level call, an Assembly-

ComponentConnectors may need to be created. A SystemProvidedInterface-

DelegationConnector is created based on the Interface and the Assembly-

Component (the delegation receiver) involved in the reply. Similarly, an
AssemblyComponentConnector is created based on the Interface as well as
the calling and receiving AssemblyContexts involved in the reply message.
For the requiring AssemblyContext, this can involve the addition of the
Interface to the list of required Interfaces. A NetworkLink between the
ExecutionContainers involved in the reply message is created, in case it
does not exist.

9.3.3 Type and Operation Signature Name Abstraction

During on-demand creation of architectural entities, these entities are as-
signed names that are based on the implementation-level names found in

156

9.3. Model Extraction via Dynamic Analysis

the Kieker monitoring records. For example, an OperationExecutionRecord

has the property operationSignature that comprises the fully-qualified imple-
mentation type name, as well as the implementation-level operation name,
parameter and return types, modifiers, etc. (see Section 7.2). Intuitively, one
could map this implementation-level type and signature to architectural
entity names as part of the on-demand creation (Section 9.3.2). However,
typically implementation-level names do not have a 1:1 relationship to archi-
tectural names. Instead, an implementation-level package may correspond
to an architectural component. For this reason, this section describes our
approach for type and operation signature name abstraction used during
on-demand creation of architectural entities. Note that this approach is only
needed for on-demand creation of entities and not if a model-driven instru-
mentation approach, as described in Section 9.1, is employed. In that case,
architectural entities are determined based on the architecture/technology
mapping maintained by the Model Manager. In this section, we will present
four different abstraction modes. Additional modes can be added easily.

Name Abstraction Based on Package Hierarchy

The basic idea is that a 3-tuple (package, type, operation) of fully-qual-
ified implementation-level type name (split into package and type) and
operation signature (operation) is transformed into a 3-tuple (package’,

type’, operation’), which includes the abstracted architecture-level names.
The approach is based on a name hierarchy’s depth d. For a fully-qualified
name, the parameter d specifies at what level in the name hierarchy
the package name ends and the type name starts. For example, con-
sider the implementation-level tuple ("a.b.c", "D", "void op()"). On
implementation-level, the fully-qualified name has a depth d = 4 because
the type name is the fourth element in the hierarchy. Assuming an ab-
straction mode that maps elements at level 3 to architectural entities, the
resulting 3-tuple would be ("a.b", "C", "void d op()"). In this case, the
implementation-level class name "D" becomes prefix of the operation signa-
ture.

157

9. Model-Driven Online Capacity Management

Table 9.2. Example results of type and operation signature name abstraction

Input d Output

Mode 1 Mode 2 Mode 3

(Class strict) (Package strict) (Single component)

A.op(. . .) 1 A.op(. . .) N/A @.a op(. . .)

a.B.op(. . .) 2 a.B.op(. . .) A.b op(. . .) @.a b op()

a.b.C.op(. . .) 3 a.b.C.op(. . .) a.B.c op(. . .) @.a b c op(. . .)

a.b.c.D.op(. . .) 4 a.b.c.D.op(. . .) a.b.C.d op(. . .) @.a b c d op(. . .)

Mode 4 (l=1) Mode 4 (l=2) Mode 4 (l=3)

(Package level) (Package level) (Package level)

A.op(. . .) 1 A.op(. . .) @.a op(. . .) @.a op(. . .)

a.B.op(. . .) 2 A.b op(. . .) a.B.op(. . .) @.a b op(. . .)

a.b.C.op(. . .) 3 A.b c op(. . .) a.B.c op(. . .) a.b.C.op(. . .)

a.b.c.D.op(. . .) 4 A.b c d op(. . .) a.B.c d op(. . .) a.b.C.d op(. . .)

Abstraction Modes

Table 9.2 includes examples for the four different abstraction modes that
will be described below. Operation modifiers, return types, and parameter
types are omitted from these and the following examples for the sake of
comprehensibility. The 3-tuples are given in the typical serialized form for
operation signatures (see also Section 7.2) with the three tuple elements
being separated by a dot ("."). The parameter type list is depicted by "(...)".
The four abstraction modes work as follows:

1. Mode 1: Class strict.

This mode implements the naïve approach of mapping implementation-
level package, type, and signature names directly to the respective names
on the architectural level. For example, the input 3-tuple ("a.b.c",

"ClassD", "op(...)") results in the equal output 3-tuple ("a.b.c",

"ClassD", "op(...)"). See Table 9.2 for additional examples.

2. Mode 2: Package strict.

This mode assumes that the last element of an implementation-level
package name maps to the architectural type. For example, the imple-
mentation-level 3-tuple ("a.b", "ClassC", "op(...)") results in the 3-

158

9.3. Model Extraction via Dynamic Analysis

tuple ("a", "B", "classC op(...)"); the 3-tuple ("a.b.c.d", "ClassE",

"op(...)") results in ("a.b.c", "D", "classE op(...)"). Note that the
capitalization of names is modified according to common naming con-
ventions. Name elements that become part of the signature name are
separated by " " (dots being replaced by a single " " character). See
Table 9.2 for additional examples.

3. Mode 3: Single component.

This mode assumes that all implementation-level types correspond to a
single architectural type. For example, the 3-tuple ("a.b.c", "ClassD",

op(...)") results in the 3-tuple ("", "@", "a b c theClass op(...)"),
with "@" denoting a fix type name. See Table 9.2 for additional examples.

4. Mode 4: Package level.

In this mode, which is parameterized by a parameter l P N
+, the name

element at level l ↕ d becomes the type. For example, the 3-tuple
("a.b.c", "ClassD", "op(...)") (d = 4) results in the output 3-tuple
("a.b", "C", "classD op(...)") for l = 3. For l ➙ d + 1, the result
equals the result from mode 3 (single component). See Table 9.2 for
additional examples.

159

Chapter 10

Runtime Reconfiguration for
Controlling Capacity

In the SLAstic approach, architectural runtime reconfiguration, as intro-
duced in Section 3.4.2, is the means to apply architecture-based online adap-
tation to the controlled system. The SLAstic meta-model includes concepts
to express reconfiguration-related properties of the system, including recon-
figuration operations and plans, as well as reconfiguration capabilities and
properties (Section 6.4). The SLAstic framework (Chapter 8) includes com-
ponents to plan and execute adaptations on an architectural level in form of
reconfiguration plans, interacting with respective technology-specific effec-
tors provided by the controlled software system. In principle, the SLAstic
allows to integrate arbitrary runtime reconfiguration operations that are
based on architectural entities from the SLAstic meta-model, particularly
w.r.t. the system structure (Section 6.2). This chapter focuses on the five
runtime reconfiguration operations that serve as a means for online capacity
management in this thesis. The description aims to serve as a blueprint on
how to integrate additional operations.

This chapter is structured as follows. Section 10.1 provides a first
overview of the operations. Section 10.2 details their integration into the
SLAstic framework, including extensions to the meta-model, the Model
Manager, and the Reconfiguration Manager. Note that technology-specific
implementations of these operations will be provided and used in Sec-
tion 11.3.3 as well as Chapters 13 and 14. This chapter contains contents
from our previous publications [van Hoorn et al., 2009a,b; von Massow
et al., 2011; Huber et al., 2014].

161

10. Runtime Reconfiguration for Controlling Capacity

C3

C2

C1 C1 C3

C2C2

(a) Replication (Ñ) and de-replication (Ð)

C2

C3

C2

C1

C3

C1

(b) Migration (⇄)

N1
...

NmNmN1
...

Nm+1

(c) De-allocation (Ñ) and allocation (Ð)

Figure 10.1. SLAstic reconfiguration operations [von Massow et al., 2011]

10.1 Overview of Operations

The scope of this thesis is architecture-based online capacity management.
Based on architectural knowledge about the overall system and its usage,
the architectural configuration is changed at runtime in order to provide
adequate capacity. As introduced in Section 3.4.2, architecture-based online
adaptation employs architectural runtime reconfiguration as a means to
carry out change to the controlled software system. In this thesis, we are
particularly interested in those changes to a software system that have
an impact to its measure of adequate capacity. Based on Menascé and
Almeida’s definition of adequate capacity (Definition 4.2 on page 43), ca-
pacity concerns two main system properties, namely SLAs and costs. For
this thesis, we decided to focus on a set of architectural reconfiguration
operations having an impact on a system’s capacity.

The considered runtime reconfiguration operations are illustrated in Fig-
ure 10.1. They comprise three application-level operations—software com-

162

10.1. Overview of Operations

ponent replication, de-replication, and migration (Figures 10.1a and 10.1b)—
and two system-level operations—execution container allocation and de-
allocation (Figure 10.1c). We will refer to these five operations as the SLAstic
runtime reconfiguration operations in this thesis. A UML-like graphical con-
crete syntax is used in Figure 10.1 to represent SLAstic model instances—in
this case showing parts of the component assembly model, the component
deployment model, as well the execution environment model. For example,
the right part of Figure 10.1a includes a SLAstic instance that includes three
assembly components, C1, C2, and C3, which are deployed to two execution
containers. A single deployment component exists for both C1 and C3. For
C2, two deployment components exist—being distributed over the two exe-
cution containers. The arrows between the deployment components refer
to requires/provides relationships of the assembly components defined
in the component assembly model. In this case, C1 requires the assembly
components C2 and C3. In this example, calls from C1 to C3 are remote
calls. Calls from C1 to C2 are distributed between the two deployment
components of C2.

Sections 10.1.1 to 10.1.5 describe the five SLAstic runtime reconfiguration
operations, which aim to control a system’s properties with respect to
capacity. We will informally describe the semantics of these operations
and their expected impact on system capacity. The integration of these
operations into the framework will be described in Section 10.2. Note
that each of the operations requires a technology-specific implementation,
which makes use of the actual system’s effector APIs via a respective
Reconfiguration Manager. However, we provide a high-level description of
the expected semantics. The description is based on the assumptions about
transactional reconfiguration of CBSSs, as proposed by Matevska [2009].

10.1.1 Software Component Replication

The replication operation creates an additional deployment component for
an assembly component on an execution container, which is already de-
ployed to the execution environment model. In the example in Figure 10.1a
(from left to right), a second deployment component of C2 is instantiated.
As described above, calls to C2 are distributed between the two deployment
components. The strategy how calls are distributed is implementation-
specific, e. g., calls by the same client may always be distributed to the

163

10. Runtime Reconfiguration for Controlling Capacity

same deployment component. Note that each execution container must
not contain more than one deployment component for the same assembly
component.

The goal of applying this reconfiguration operation is to distribute the
amount of resources used by C2 to other—already-allocated—execution
containers. Coming back to the example (Figure 10.1a), possible triggers
for executing this reconfiguration operation are that the workload demands
to C1 and/or C2 increase, requiring additional capacity for these services.
In this case, capacity on the other execution container, which may not be
fully utilized, is available. This may decrease response times for C1 and C2,
which may be necessary to satisfy SLAs. With respect to costs, applying
this reconfiguration operation may increase resource efficiency by utilizing
allocated resources more efficiently.

10.1.2 Software Component De-Replication

The de-replication operation is the inverse operation to the afore-described
replication. A deployment component is removed from the component
deployment model. Note that it is required, that at least another deployment
component for the same assembly component exists. In the example in
Figure 10.1a (from right to left), deployment component C2 is removed.
Again, the implementation of this operation is technology-specific. However,
a common approach, based on the proposed strategy for the replication, is
that the deployment component to be removed is blocked in a sense that
requests by new clients are not distributed to this deployment component.
The deployment component can be safely removed after all requests by
clients using that component are served (cf. [Matevska, 2009]).

The goal of applying this reconfiguration is to release capacity used by
the component to be de-replicated. Possible triggers in the example could
be that the workload demands to C1 and/or C3 decrease and that capacity
provided by a single deployment component of C2 is sufficient. Moreover,
the application of this operation can be a preparation for applying an
execution container de-allocation operation, as detailed below.

164

10.1. Overview of Operations

10.1.3 Software Component Migration

Conceptually, the migration operation moves a deployment component from
one execution container to another. Figure 10.1b includes two applications of
the migration operation to C3, namely moving it from a dedicated execution
container to an execution container shared with C1 and C2 (from left to
right), as well as the reverse direction (from right to left). In certain cases,
this operation may be implemented as a combination of the afore-described
replication and the de-replication operations. However, on the architectural
level, it makes sense to have an explicit migration operation. Note that
for stateful components, the application of this operation may involve a
migration of state.

The goals for applying this operation for capacity management corre-
spond to the goals of the replication and de-replication operations, e. g.,
enabling a more efficient use of system resources by using already-allocated
resources or freeing resources, which can be released in a subsequent step.

10.1.4 Execution Container Allocation

The allocation operation adds an execution container to the list of allocated
execution containers in the execution environment model. This system-level
operation consists of the allocation of a (virtual or physical) server node,
which may include the installation of middleware services or Application
Servers. The example in Figure 10.1c (from right to left) includes the al-
location of the execution container Nm+1. After applying this operation,
Nm+1 is, for example, available as a target of software component replica-
tion or migration operations. Intuitively, the goal of the allocation is the
provisioning of additional capacity in terms of computing resources.

10.1.5 Execution Container De-Allocation

The de-allocation operation is the reverse operation of the allocation op-
eration, i. e., it removes an execution container from the list of allocated
execution containers in the execution environment model. A precondition
for applying this operation is that no deployment component is located
on the respective execution container. The example in Figure 10.1c (from
left to right) includes the de-allocation of the execution container Nm+1.

165

10. Runtime Reconfiguration for Controlling Capacity

Operating costs—e. g., caused by power consumption or usage fees in cloud
environments—can be saved by de-allocating execution containers.

10.2 Framework Integration

This section describes how the five SLAstic reconfiguration operations are
integrated into the framework, namely by extending the SLAstic meta-
model (Section 10.2.1), the Model Manager (Section 10.2.2), as well as the
Reconfiguration Manager (Section 10.2.3). The Model Manager is respon-
sible for reflecting the changes into the runtime model based on model
transformations. The Reconfiguration Manager is responsible for executing
the architectural operations employing the technology-specific effector APIs.
Note that the description of the framework integration also serves as a
blueprint for integrating additional runtime reconfiguration operations into
the SLAstic framework.

10.2.1 Meta-Model Extensions

The SLAstic meta-model includes reconfiguration-specific modeling con-
structs (Section 6.4), namely adaptation operations, adaptation capabilities,
and adaptation plans. For each reconfiguration operation, a meta-class
has to be created that extends the abstract meta-class ReconfigurationAction

(Section 6.4.1). Each concrete ReconfigurationAction class basically declares
the signature of the reconfiguration operation, i. e., including the operation’s
name (which is the meta-class name) as well as its parameters. We will omit
the description of extensions for adaptation capabilities. Extensions w.r.t.
the adaptation plan meta-modeling are not required.

For the five SLAstic runtime reconfiguration operations, Figure 10.2
shows the respective meta-classes in S/T/A notation—each action cor-
responds to an S/T/A Action; corresponding ReconfigurationAction meta-
classes exist.

• The S/T/A action replicateComponent (ReconfigurationAction meta-class Com-

ponentReplication) corresponds to the software component replication op-
eration from Section 10.1.1. It expects an AssemblyComponent (component)
and an ExecutionContainer (to) as inputs, and returns a DeploymentComponent

166

10.2. Framework Integration

(component). The expected result is that after the successful execution of the
operation, the returned model entity refers to an additional deployment
component of the input assembly component, which is deployed to the
given execution container. Note that as a precondition, the execution con-
tainer must be allocated and must not contain a deployment component
for the given assembly component (cf. Section 10.1.1).

• The S/T/A action dereplicateComponent (ReconfigurationAction meta-class
ComponentDereplication) corresponds to the software component de-repli-
cation operation from Section 10.1.2. It expects a DeploymentComponent

(component) as input. The expected result is that after the successful
execution of the operation, the given deployment component does no
longer exist. Note that as a precondition, another deployment component
for the corresponding assembly component must exist (cf. Section 10.1.2).

• The S/T/A action migrateComponent (ReconfigurationAction meta-class Com-

ponentMigration) corresponds to the software component migration op-
eration from Section 10.1.3. It expects a DeploymentComponent (component)
and an ExecutionContainer (to) as inputs, and returns a DeploymentComponent

(component). The expected result is that after the successful execution of the
operation, the given deployment component no longer exists and instead
a new deployment component for the common assembly component

<<Action>>
allocateContainer

input
type:ExecutionContainerType

output
container:ExecutionContainer

<<Action>>
deallocateContainer

input
container:ExecutionContainer

<<Action>>
migrateComponent

input
component:DeploymentComponent

output
component:DeploymentComponent

to:ExecutionContainer

<<Action>>
replicateComponent

input
component:AssemblyComponent

output
component:DeploymentComponent

to:ExecutionContainer
<<Action>>

dereplicateComponent
input

component:DeploymentComponent

Figure 10.2. S/T/A actions corresponding to the SLAstic runtime adaptation opera-
tions, including the list of input and output parameters [Huber et al., 2014]

167

10. Runtime Reconfiguration for Controlling Capacity

exists on the given execution container. Note that as a precondition, the
execution container must be allocated and must not contain a deployment
component for the given assembly component (cf. Section 10.1.3).

• The S/T/A action allocateContainer (ReconfigurationAction meta-class Con-

tainerAllocation) corresponds to the execution container allocation oper-
ation from Section 10.1.4. It expects an ExecutionContainerType (type) as
input. The expected result is that after the successful execution of the
operation, a new execution container of the given type is available.

• The S/T/A action deallocateContainer (ReconfigurationAction meta-class
ContainerDellocation) corresponds to the execution container de-allocation
operation from Section 10.1.5. It expects an ExecutionContainer (container)
as input. The expected result is that after the successful execution of the
operation, the given execution container is no longer allocated. Note that
as a precondition, no deployment component must be located on this
execution container (cf. Section 10.1.5).

10.2.2 Model Manager Extensions

As described in Section 8.2.7, one of the Reconfiguration Model Manager’s
responsibilities is the reflection of executed reconfigurations in the SLAstic
model. In order to do this, it must provide respective operations to trigger
model transformations. The respective part of the Model Manager includes
operations to execute changes to the runtime model. Already during
the execution of a reconfiguration plan by the Reconfiguration Manager,
the Model Manager updates the runtime SLAstic model using the other
submodel managers.

Note that for the five considered SLAstic runtime reconfiguration op-
erations, the type repository model and the component assembly model
are read-only, i. e., no changes are executed in these models. Changes are
only executed in the execution environment model and the component
deployment model.

Table 10.1 lists the Reconfiguration Model Manager’s relevant opera-
tion signatures. The Reconfiguration Model Manager only executes the
operations if the respective preconditions, which were mentioned in Sec-
tion 10.2.1, are satisfied. The performed model transformations are as
follows (imperative description):

168

10.2. Framework Integration

Table 10.1. Model Manager’s reconfiguration operation signatures

Operation name Argument name:type Return type

replicateComponent c : AssemblyComponent

to: ExecutionContainer

DeploymentComponent

dereplicateComponent c: DeploymentComponent void

migrateComponent c: DeploymentComponent

to: ExecutionContainer

DeploymentComponent

allocateExecutionContainer e: ExecutionContainer boolean

deallocateExecutionContainer e: ExecutionContainer boolean

• replicateComponent. A deployment component, with the assembly compo-
nent and the execution container given as parameters, is created in the
component deployment model. A respective operation for this purpose is
provided by the Component Deployment Model Manager (Section 8.2.4).
The created deployment component is returned by this operation.

• dereplicateComponent. The passed deployment component is deleted from
the component deployment model using the Component Deployment
Model Manager’s operation for this purpose. Note that the component is
not physically removed but marked inactive because, for instance, moni-
toring events referencing this entity may be received after the component
has been de-replicated.

• migrateComponent. This operation consecutively performs the steps de-
scribed for the replicateComponent and dereplicate operations, returning
the newly created deployment component.

• allocateExecutionContainer. The passed execution container is added to
the execution environment model’s list allocatedExecutionContainers of
allocated execution containers (cf. Figure 6.6 on page 98). A respec-
tive operation for this purpose is provided by the Execution Environ-
ment Model Manager. In contrast to the signature of the correspond-
ing operation added to the meta-model (page 168), the Reconfiguration
Model Manager’s signature expects an ExecutionContainer instead of an
ExecutionContainerType as parameter. The reason is that the Reconfig-
uration Manager obtains a preliminary execution container—passing
the type—from the Execution Environment Model Manager when start-

169

10. Runtime Reconfiguration for Controlling Capacity

ing to execute the corresponding reconfiguration operations. The allo-

cateExecutionContainer operation confirms this preliminary allocation.

• deallocateExecutionContainer. The passed execution container is removed
from the execution environment model’s list allocatedExecutionContainers

of allocated execution containers. A respective operation for this purpose
is provided by the Execution Environment Model Manager.

10.2.3 Reconfiguration Manager Extensions

As introduced in Section 8.5, the Reconfiguration Manager is responsible
for executing architectural reconfiguration plans (Figure 6.11) by interacting
with the technology-specific effector APIs. Hence, the Reconfiguration
Manager is separated into a technology-agnostic (architectural) part and
a technology-specific part. The technology-agnostic parts takes care of
the transactional interpretation of the architectural reconfiguration plans
by triggering the execution of operations from the technology-specific
parts, communicating with the Model Manager for model queries and
updates, including rollbacks etc.. Model queries and updates also concern
the mappings between implementation-level and architecture-level entities
maintained by the Arch2Technology Mapping Manager.

When adding runtime reconfiguration operations to the SLAstic frame-
work, usually both parts of the Reconfiguration Manager need to be ex-
tended. First, the technology-agnostic parts needs to know what parts
of the SLAstic runtime model need to be queried and updated as part
of the specific operations. Second, technology-specific implementations
for the operations need to be provided. For example, for the five SLAstic
runtime reconfiguration operations, respective functionality is included in
the technology-agnostic part—as detailed below—and technology-specific
implementations for the Palladio Component Model (PCM) and Eucalyptus-
based infrastructures exist, which will be detailed in Chapters 11 and 13.

The technology-agnostic part of the Reconfiguration Manager includes
an operation (doReconfiguration) accepting a SLAstic ReconfigurationPlan (Sec-
tion 6.4.1) to be executed. Remind that the data structures representing
the contained runtime reconfiguration operations have been introduced
in Section 10.2.1. Roughly based on the visitor design pattern [Gamma
et al., 1995], the execution of runtime reconfiguration operations is dis-
patched to respective operation-specific handler operations. Such handler

170

10.2. Framework Integration

operations must exist for each runtime reconfiguration operation. These
handler operations perform the corresponding runtime model changes via
the Reconfiguration Model Manager and trigger the technology-specific
effector operations from the Reconfiguration Manager. Note that the exe-
cution of a plan is performed in a transactional context—(currently) in the
sense that only one reconfiguration plan is executed at a time.

For the five SLAstic runtime reconfiguration operations, the technology-
specific handler operations work as follows—omitting failure handling:

• replicateComponent: a) Call the Reconfiguration Model Manager’s repli-

cateComponent operation, b) trigger the technology-specific replicateComponent

operation in the respective part of the Reconfiguration Manager passing
the deployment component.

• dereplicateComponent: a) Call the Reconfiguration Model Manager’s de-

replicateComponent operation, b) trigger the technology-specific derepli-

cateComponent operation in the respective part of the Reconfiguration Man-
ager passing the deployment component.

• migrateComponent: a) Call the Reconfiguration Model Manager’s migrate-

Component operation, b) trigger the technology-specific migrateComponent

operation in the respective part of the Reconfiguration Manager.

• allocateExecutionContainer: a) Call the Reconfiguration Model Manager’s
allocateExecutionContainer operation, b) trigger the technology-specific
allocateExecutionContainer operation in the respective part of the Recon-
figuration Manager.

• deallocateExecutionContainer: a) Call the Reconfiguration Model Man-
ager’s migrateComponent operation, b) trigger the technology-specific deal-

locateExecutionContainer operation in the respective part of the Reconfigu-
ration Manager.

Note that we omitted the checks of fulfilled preconditions, as enumerated
in Sections 10.1 and 10.2.1, from the description. The technology-specific op-
erations include the updates to the mapping between implementation-level
and architecture-level entities maintained by the Arch2Technology Mapping
Manager. As mentioned before, technology-specific implementations of
the five SLAstic runtime reconfiguration will be presented in Chapters 11
and 13.

171

Chapter 11

Utilizing the Palladio Component
Model in SLAstic

This chapter describes the integration of the Palladio Component Model
(PCM) [Becker et al., 2009], introduced in Section 4.5.2, into the SLAstic
approach. In SLAstic, PCM is utilized for simulation-based analysis and
online performance prediction. For this purpose, we developed a) a M2M
transformation of SLAstic models to PCM instances, called SLAstic2PCM,
b) a decoration concept for PCM instances enabling their use as runtime
models with the SLAstic framework, and c) the discrete-event simulator
SLAstic.SIM that simulates runtime reconfigurable PCM instances and inte-
grates with the SLAstic framework. As part of SLAstic.SIM, we extended
PCM by reconfiguration support for the SLAstic operations described in
Chapter 10.

This chapter is structured as follows. Section 11.1 describes the SLAs-
tic2PCM transformation. Section 11.2 outlines the concept for decorating
PCM instances by SLAstic models. Section 11.3 presents the SLAstic.SIM
discrete-event simulator and its integration into the SLAstic framework.
Proof-of-concept implementations for the concepts described in this chapter
are available as part of the supplementary material [van Hoorn, 2014]. They
are part of the implementations of the SLAstic meta-model and the SLAstic
framework.

11.1 Transformation from SLAstic to PCM

In order to employ model-based performance prediction for SLAstic models,
we developed the model-to-model (M2M) transformation (Section 2.2) called
SLAstic2PCM. From an instance of the SLAstic meta-model, SLAstic2PCM

173

11. Utilizing the Palladio Component Model in SLAstic

Table 11.1. High-level mapping between SLAstic and PCM meta-model partitions

SLAstic PCM

— (Resource Repository Model)

Type Repository Model,

Usage Model

Repository Model

Component Assembly Model System Model

Execution Environment Model,

Type Repository Model

Resource Environment Model

Component Deployment Model Allocation Model

Usage Model Usage Model

generates a PCM instance that can be used with existing Palladio tools,
including Palladio-Bench, transformations from PCM to other performance
models, as well as our SLAstic.SIM simulator for runtime reconfigurable
PCM models.

The transformation results in a basic—but complete—PCM instance,
which needs further refinement and calibration, e. g., w.r.t. resource de-
mands in RDSEFFs. The reason is that the performance modeling features
provided by the SLAstic meta-model are by far not as expressive as those
provided by the PCM. However, this manual refinement is explicitly sup-
ported in the SLAstic framework, for example, by the SLAstic-PCM model
decoration concept described in Section 11.2.

This section provides a textual and language-independent description
of the transformation. The description refers to elements of the PCM
and SLAstic meta-models. For details on these meta-models, please refer
to Becker et al. [2009] and Chapter 6 respectively, as well as the Ecore-
based implementations of the meta-models that are also available via the
supplementary material [van Hoorn, 2014]. We will use the Bookstore
system, already known from previous chapters, as a running example
to demonstrate different steps of the SLAstic2PCM transformation. An
ATL-based (see page 19) SLAstic2PCM implementation has been developed
and will be presented briefly. Note that considerable parts of the research
presented in this section were conducted in the context of the Diploma thesis
by Günther [2011], as mentioned in Section 5.3.1. This section includes
contents from this work.

174

11.1. Transformation from SLAstic to PCM

Figure 11.1. Diagram of the PCM repository for the Bookstore created by SLAs-
tic2PCM. An RDSEFF for the searchBook operation is shown in Figure 11.2.

Table 11.1 provides a first high-level of the relationship between the
partitions of the SLAstic and the PCM meta-model. Sections 11.1.2 to 11.1.6
describe the generation for each of the PCM partitions, i. e., repository,
system, resource environment, allocation, and usage. Section 11.1.7 briefly
describes the implementation of SLAstic2PCM, which employs the ATLAS
Transformation Language (ATL). Section 11.1.8 lists current limitations.

11.1.1 Generation of the PCM Resource Repository

As depicted in Table 11.1, the generation of the PCM resource repository
(pcm::ResourceRepository1) does not rely on any SLAstic model partition. It
simply includes the creation of the PCM resource types for CPU, HDD,
LAN, and delay resources.

11.1.2 Generation of the PCM Repository Model

A PCM repository (pcm::Repository) is created, assigning constant values to
its id, entityName, and repositoryDescription attributes.2 The lists of contained
interfaces and components, i. e., interfaces and components, are obtained by
transforming each element of the corresponding lists contained in the
slastic::TypeRepositoryModel, i. e., interfaces and componentTypes. Additional

1In this section, meta-classes from the PCM meta-model are prefixed by pcm::. Accordingly,
SLAstic meta-classes are prefixed by slastic::. Package names are omitted to improve
readability.

2In the PCM meta-model, attribute names include the name of the owning class as a name
postfix, e. g., childComponentContexts ComposedStructure. We omit this postfix unless
needed.

175

11. Utilizing the Palladio Component Model in SLAstic

information from the slastic::UsageModel is used to create Resource De-
manding SEFFs (RDSEFFs) contained in the pcm::Repository’s components.
The remaining parts of this section detail these three core repository-related
generation steps. Figure 11.1 shows a diagram for the PCM repository,
which results from the application of SLAstic2PCM to the SLAstic instance
of the Bookstore.

Interfaces

Each slastic::Interface
3 is transformed into a pcm::Interface. The val-

ues of the slastic::Interface’s attributes id and name are assigned to the
pcm::Interface’s attributes id (with prefix "i")4 and entityName.

The contained list of pcm::Signatures (signatures) is generated by trans-
forming the slastic::Interface’s corresponding list of slastic::Signatures

(signatures). For each pcm::Signature, the serviceName is assigned the value
of the corresponding slastic::Signature’s name; the list of pcm::Parameters

(parameters) is generated from the slastic::Signature’s list of parameter
types (paramTypes) .

Component Types

Each slastic::ComponentType is transformed into a pcm::BasicComponent. The
PCM meta-model supports the composition of pcm::BasicComponents into
pcm::CompositeComponents. The slastic::ComponentType’s attribute values for id

and name are assigned to the pcm::BasicComponent’s attributes id (prefix "c")
and entityName.

The pcm::BasicComponent’s list of pcm::ProvidedRoles (providedRoles) is ob-
tained by creating a pcm::ProvidedRole for each slastic::Interface contained
in the slastic::ComponentType’s providedInterfaces list. The id and entityName

of the each pcm::ProvidedRole is created by concatenating the ids/names

of the slastic::Interface and slastic:ComponentType, prefixed by "pr" and
"Provided " respectively. For example, for a slastic::Interface with name

"ICRM T" and a slastic:ComponentType with name "CRM T", this results in an

3We use meta-class names as words in sentences. Plural and possessive forms of the
meta-class are used to improve readability, even though the actual meta-class name is singular.

4Because identifiers in the SLAstic meta-model are unique among entity types, prefixes are
used to make identifiers unique across the resulting PCM model.

176

11.1. Transformation from SLAstic to PCM

entityName "Provided ICRM T CRM T". The pcm::ProvidedRole’s providedInter-

face references the matching pcm::Interface, obtained by the above-described
interface transformation.

Accordingly, the pcm::BasicComponent’s list of pcm::RequiredRoles (required-
Roles InterfaceProvidingEntity) is obtained by creating a pcm::RequiredRole

for each slastic::Interface in the slastic::ComponentType’s requiredInterfaces

list.

RDSEFFs

Any pcm::BasicComponent contains a list of pcm::ServiceEffectSpecifications.
Each pcm::ServiceEffectSpecification describes the implementation of a
pcm::Signature. In order to to be valid, a pcm::BasicComponent must con-
tain a pcm::ServiceEffectSpecification for each pcm::Signature declared by
the pcm::ProvidedRole’s pcm::Interfaces. A concrete implementation, ex-
tending pcm::ServiceEffectSpecification, is pcm::ResourceDemandingSEFF. As a
pcm::ResourceDemandingBehavior, it contains a list of pcm::AbstractActions, whose
first and last elements must be a pcm::StartAction and pcm::StopAction re-
spectively. A pcm::ExternalCallAction models the call to an external service
specified by its pcm::Role and pcm::Signature. A pcm::InternalAction quanti-
fies (pcm::PCMRandomVariable) a pcm::ParametricResourceDemand to a referenced
pcm::ProcessingResourceType. pcm::LoopAction and pcm::BranchAction are avail-
able to model loops and branches, which both again contain a list of
pcm::AbstractActions. A number of additional pcm::AbstractActions exist.

A pcm::ResourceDemandingSEFF is created from a slastic::Operation and
the corresponding slastic::OperationCallFrequency and slastic::CallingRe-

lationship information contained in the slastic::UsageModel. The created
pcm::ResourceDemandingSEFF references the pcm::Signature (describedService)
that corresponds to the slastic::Operation’s slastic::Signature.

For each pcm::ResourceDemandingSEFF, SLAstic2PCM creates the behavioral
specification in terms of the pcm::AbstractAction according to the following
pattern (see also [Günther, 2011]). Figure 11.2 shows a generated RDSEFF
of the Bookstore’s searchBook method, included in the PCM repository in
Figure 11.1.

1. Creation of a pcm::StartAction.

2. Creation of a pcm::InternalAction with a pcm::ParametricResourceDemand

177

11. Utilizing the Palladio Component Model in SLAstic

Required_ICatalog__T_Bookstore__T.getBook

IntPMF[(1;0.9999999999999999)]

Required_ICRM__T_Bookstore__T.getOffers

Figure 11.2. Diagram for an RDSEFF of the Bookstore’s searchBook operation created
by SLAstic2PCM

(resourceDemand) to the pcm::ResourceType ’CPU’. The specification of the
demand is set to a fixed value. This pcm::InternalAction models a compu-
tation executed after entering a software operation.

3. Creation of a sequence of pcm::LoopActions—one for each slastic::Calling-

Relationship referencing the current slastic::Operation as its calling oper-
ation (callingOperation). Such a pcm::LoopAction for a slastic::CallingRela-

tionship is created as follows:

• The pcm::ResourceDemandingBehavior (bodyBehavior) consists of a sequence
of the following pcm::AbstractActions: pcm::StartAction, pcm::Internal-

Action, pcm::ExternalCallAction, pcm::InternalAction, and pcm::StopAct-

ion. The two pcm::InternalActions, again with a (fix) pcm::ParametricRe-

sourceDemand to a ’CPU’ pcm::ResourceType, model setup and tear down
computations that are executed before and after the pcm::ExternalCall-

Action. The pcm::ExternalCallAction’s pcm::Signature calledService and
pcm::Role (role) are assigned the corresponding entities created from
the slastic::Operation (callingOperation), slastic::Interface (calledIn-
terface), and slastic::Signature (calledSignature), which are referenced
by the slastic::CallingRelationship.

178

11.1. Transformation from SLAstic to PCM

• The pcm::LoopAction’s iteration count (iterationCount of type pcm::PCMRan-

domVariable) is created from the slastic::CallingRelationship’s slastic::-

FrequencyDistribution.

Let c1...n, with ci P N
+, the sorted set of invocation counts to a

slastic::Interface’s slastic::Signature and f1...n, with fi P N
+, the cor-

responding list of absolute frequencies for these counts, which are both
contained in the slastic::CallingRelationship’s slastic::FrequencyDis-

tribution, as sequences values and frequencies. The absolute number s
of slastic::Operation executions that are involved in one or more calls
to the slastic::Interface’s slastic::Signature is the sum of absolute
frequencies:

s =
n

∑
i=1

fi (11.1)

Using s, we can compute the relative frequencies r1...n from the absolute
frequencies f1...n:

ri =
fi
s

(11.2)

A stochastic expression for the iteration count is created to be used
as the pcm::PCMRandomVariable’s specification. In this case, the created
stochastic expression is a probability mass function given in PCM’s
stochastic expression notation:

IntPMF[(c1; r1) ☎ ☎ ☎ (ci; ri) ☎ ☎ ☎ (cn, rn)] (11.3)

4. Creation of a pcm::InternalAction with a pcm::ParametricResourceDemand

(resourceDemand) to the pcm::ResourceType ’CPU’. Again, the specification
of the resource demand is set to a fixed value. This pcm::InternalAction

models a computation executed before exiting a software operation.

5. Finally, a pcm::StopAction is created.

179

11. Utilizing the Palladio Component Model in SLAstic

Figure 11.3. Diagram of the PCM system model for the Bookstore created by
SLAstic2PCM

11.1.3 Generation of the PCM System Model

In PCM, a pcm::System is a pcm::ComposedProvidingRequiringEntity, which is
also used to model pcm::CompositeComponents (see Section 11.1.2). A pcm::Com-

posedProvidingRequiringEntity is a pcm::InterfaceProvidingRequiringEntity, as
described in Section 11.1.2, and a pcm::ComposedStructure. A pcm::Composed-

Structure contains a set of pcm::AssemblyContexts, which are basically in-
stances of a component type defined in the pcm::Repository (Section 11.1.2).
Three different kinds of pcm::Connectors are used to connect pcm::Assembly-

Contexts contained in a pcm::ComposedStructure—a) pcm::ProvidedDelegation-

Connectors and b) pcm::RequiredDelegationConnectors connect matching pcm::-

ProvidedRoles (pcm::RequiredRoles respectively) of a pcm::ComposedStructure and
a pcm::AssemblyContext; c) a pcm::AssemblyConnector connects a pcm::Required-

Role of a pcm::AssemblyContext to the pcm::ProvidedRole of a second pcm::Assem-

blyContext.
A pcm::System is created from a slastic::ComponentAssemblyModel. Con-

stant values are assigned to the attributes id and entityName. The con-
tained AssemblyContexts (childComponentContexts) and pcm::AssemblyConnectors

(compositeAssemblyConnectors) are created from the slastic::ComponentAssembly-

Model’s lists of slastic::AssemblyComponents (assemblyComponents) and

180

11.1. Transformation from SLAstic to PCM

slastic::AssemblyComponentConnectors (assemblyComponentConnectors). The
slastic::ComponentAssemblyModel’s list of slastic:SystemProvidedInterfaceDeleg-
ationConnectors (systemProvidedInterfaceDelegationConnectors) is used to gen-
erate both the pcm::System’s lists of pcm::ProvidedRoles (providedRoles) and
pcm:ProvidedDelegationConnector (providedDelegationConnectors). These trans-
formations are detailed in the remainder of this section.

Figure 11.3 shows a diagram for the PCM system model, which re-
sults from the application of SLAstic2PCM to the SLAstic instance of the
Bookstore.

Components and Connectors

The generation of a pcm::AssemblyContext from a slastic::AssemblyComponent

is straightforward: id and entityName are assigned the slastic::Assembly-

Component’s id (prefixed by "ac") and name (prefixed by "Assembly "); encapsu-
latedComponent references the pcm::BasicComponent corresponding to the
slastic::AssemblyComponent’s slastic::ComponentType.

A pcm::AssemblyConnector is created from a slastic::AssemblyComponent-

Connector. It references the pcm::AssemblyContexts (requiringChildComponent-
Context and providingChildComponentContext), obtained by the transformation
described in the previous paragraph. Additionally, it references the match-
ing pcm::RequiredRole (requiredRole) and the pcm::ProvidedRole (providedRole),
defined for the pcm::AssemblyContext’s encapsulated type (Section 11.1.2).
The entityName is assigned the value of the slastic::AssemblyComponentConnect-

or’s name attribute.

Roles and Delegation Connectors

Each pcm::ProvidedRole is generated based on the slastic:SystemProvided-

InterfaceDelegationConnector’s slastic::Interface: id and entityName are set
to the slastic::Interface’s id (prefixed by "p") and entityName (prefixed by
"Provided "). The providedInterface is the pcm::Interface corresponding to
this slastic::Interface.

A pcm::ProvidedDelegationConnector is created for each slastic::System-

ProvidedInterfaceDelegationConnector. The attribute childComponentContext ref-
erences the pcm:AssemblyContext corresponding to the slastic::AssemblyCom-

ponent referenced by the slastic::SystemProvidedInterfaceDelegationConnector.

181

11. Utilizing the Palladio Component Model in SLAstic

Figure 11.4. PCM resource environment model created by SLAstic2PCM (Bookstore
system)

The innerProvidedRole references matching pcm::ProvidedRole of the pcm:Assem-

blyContext’s type (Section 11.1.2).
Accordingly, the pcm::System’s lists of pcm::RequiredRoles (requiredRoles)

and pcm:RequiredDelegationConnector (requiredDelegationConnectors) are gener-
ated from the slastic::ComponentAssemblyModel’s list of slastic:SystemRequi-

redInterfaceDelegationConnectors, i. e., systemRequiredInterfaceDelegationConnec-
tors.

11.1.4 Generation of the PCM Resource Environment Model

The pcm::ResourceEnvironment contains the lists of pcm::ResourceContainers

(resourceContainer) and pcm::LinkingResources (linkingresource). Each pcm::Re-

sourceContainer includes a list of pcm::ProcessingResourceSpecifications, each
being an instance of a pcm::ProcessingResourceType (i. e., CPU, hard disk, or
delay) from the pcm::ResourceRepository along with an associated pcm::Sched-

ulingPolicy and a processing rate (pcm::PCMRandomVariable). A pcm::LinkingRe-

source with a given pcm::CommunicationLinkResourceSpecification connects two
pcm::ResourceContainers. The pcm::CommunicationLinkResourceSpecification spec-
ifies the pcm::CommunicationLinkResourceType along with the latency and
throughput (pcm::PCMRandomVariable).

A pcm::ResourceEnvironment is created from a slastic::ExecutionEnviron-

mentModel. The pcm::ResourceEnvironment’s list of ResourceContainers (resource-
Container) is created from the slastic::ExecutionEnvironmentModel’s list of
slastic::ExecutionContainers (executionContainers). The values of the pcm::-

182

11.1. Transformation from SLAstic to PCM

Allocation_Assembly_Catalog__T

Catalog__T <Assembly_Catalog__T>

Allocation_Assembly_Catalog__T

Catalog__T <Assembly_Catalog__T>

Allocation_Assembly_CRM__T

CRM__T <Assembly_CRM__T>

Allocation_Assembly_Bookstore__T

Bookstore__T <Assembly_Bookstore__T>

Figure 11.5. Diagram of the PCM allocation model created by SLAstic2PCM

ResourceContainer’s id and entityName attributes are assigned the values of
the slastic::ExecutionContainer’s attribute values id and name. The pcm::-

ResourceContainer’s list of ProcessingResourceSpecifications (activeResource-
Specifications) is obtained by transforming the slastic::ExecutionContainer’s

list of slastic::ResourceSpecifications (resources).
Figure 11.4 shows the PCM resource environment model, which re-

sults from the application of SLAstic2PCM to the SLAstic instance of the
Bookstore.

11.1.5 Generation of the PCM Allocation Model

The pcm::Allocation contains a list of pcm::AllocationContexts. Each pcm::-

AllocationContext references a pcm::AssemblyContext and a pcm::ResourceCon-

tainer.
A pcm::Allocation is created from a slastic::ComponentDeploymentModel. Its

id attribute is set to a fixed value and it references the pcm::ResourceEnviron-

ment (targetResourceEnvironment) and the pcm::System (system), both created by
this transformation (Sections 11.1.3 and 11.1.4). The pcm::Allocation’s id is
set to a fixed value. The list of pcm::AllocationContexts (allocationContexts)
is obtained by transforming each element in the slastic::ComponentDeploy-

mentModel’s list of slastic::DeploymentComponents. A pcm::AllocationContext is
created from a slastic::DeploymentComponent by assigning the pcm::Assembly-

Context (assemblyContext) and the pcm::ResourceContainer (resourceContainer),
which correspond to the slastic::AssemblyComponent (assemblyComponent) and
the slastic::ExecutionContainer (executionContainer) referenced by the slas-

tic::DeploymentComponent and which are created by the transformations de-

183

11. Utilizing the Palladio Component Model in SLAstic

scribed in Sections 11.1.3 and 11.1.4. The pcm::AllocationContext’s id and
entityName are assigned the values of the slastic::DeploymentComponent’s id

(prefixed by "alc") and, respectively, the entityName (prefixed by "Allo-

cation ") of the referenced pcm::AllocationContext.
Figure 11.5 shows a diagram for the PCM allocation model, which

resulted from the application of SLAstic2PCM to the SLAstic instance of
the Bookstore.5

11.1.6 Generation of the PCM Usage Model

A pcm::UsageModel contains a list of pcm::UsageScenarios, each of which con-
tains a specification of the pcm::Workload and the pcm::ScenarioBehavior. The
pcm::Workload can either be a pcm::OpenWorkload, with a given inter-arrival time
(pcm::PCMRandomVariable), or a pcm::ClosedWorkload with a given population
size and think time (pcm::PCMRandomVariable). A pcm::ScenarioBehavior con-
tains a sequence of pcm::AbstractUserActions. Basic pcm::AbstractUserActions

are pcm::Delay and pcm::EntryLevelSystemCall. A pcm::EntryLevelSystemCall

models the invocation of a service provided by a pcm::System, referenced by
the corresponding pcm::ProvidedRole and pcm::Signature. The pcm::Abstract-

UserActions pcm::Loop and pcm::Branch contain nested pcm::ScenarioBehaviors,
with associated probabilistic (pcm::PCMRandomVariable) loop iteration counts
and branch probabilities respectively. Each (sub)sequence of pcm::Abstract-

UserActions starts and stops with pcm::Start and pcm::Stop respectively.
A pcm::UsageModel is created from the list of slastic:SystemProvidedInter-

faceDelegationConnectors (systemProvidedInterfaceDelegationConnectors) and
the associated information contained in the slastic::UsageModel. For each
slastic::SystemProvidedInterfaceDelegationConnector, a pcm::UsageScenario

with a pcm::OpenWorkload specification is created. The pcm::ScenarioBehavior

(scenarioBehavior) contained in the pcm::UsageScenario consists only (in addi-
tion to pcm::Start and pcm::Stop, of course) of a single pcm::EntryLevelSystem-

Call referring to the pcm::Signature and the pcm::System’s ProvidedRole created
for the slastic::SystemProvidedInterfaceDelegationConnector (Section 11.1.3).

5Note that this configuration cannot be executed in the Palladio-Bench, because each
pcm::AssemblyContext must be allocated exactly once—in this case, Catalog is allocated
twice.

184

11.1. Transformation from SLAstic to PCM

Figure 11.6 shows a diagram for a pcm::UsageScenario contained in the
slastic::UsageModel, which resulted from the application of SLAstic2PCM to
the SLAstic instance of the Bookstore.

11.1.7 Implementation of SLAstic2PCM

SLAstic2PCM was implemented with the ATLAS Transformation Language
(ATL), introduced in Section 2.3.2. As depicted in Figure 11.7, the ATL mod-
ule slastic2pcm.atl creates a PCM instance, consisting of six PCM submodels,
from a SLAstic system model and a SLAstic usage model. Figure 11.8 lists
an example transformation rule from the ATL-based SLAstic2PCM trans-
formation. The complete ATL module is part of the SLAstic framework,
available via the supplementary material [van Hoorn, 2014]. It has a length
of 518 lines and includes 37 transformation rules. Additional details on
SLAstic2PCM’s implementation are described by Günther [2011].

<<SystemCallAction>>

IBookstore__T.searchBook

<<Open Workload>>

Interarrival Time: 1

Figure 11.6. Diagram for the pcm::UsageScenario created by SLAstic2PCM

slastic2pcm.atl

SLASTIC_SYSTEM

SLASTIC_USAGE

PCM_REPOSITORY

PCM_SYSTEM

PCM_RESOURCEENVIRONMENT

PCM_ALLOCATION

PCM_RESOURCETYPE

~>

Bash script

Eclipse launcher

Java API

.slastic

.slasticusage
PCM_USAGE

.resourcetype

.repository

.allocation

.resourceenvironment

.usagemodel

.system

SLAstic instance PCM instanceSLAstic2PCM

Figure 11.7. Implementation of the SLAstic transformation SLAstic2PCM. The ATL-
based transformation can be invoked via a) Java API, b) Bash script, and c) an Eclipse
launch configuration.

185

11. Utilizing the Palladio Component Model in SLAstic

rule ExecutionContainerToResourceContainer {

from src: Slastic!ExecutionContainer

to tgt: Pcm!ResourceContainer in RESOURCEENVIRONMENT (

id <- src.id.toString(),

entityName <- src.name,

activeResourceSpecifications_ResourceContainer

<- src.executionContainerType.resources

)

}

Figure 11.8. Example SLAstic2PCM rule for transforming a SLAstic execution
container into a PCM resource container

Three mechanisms are provided to invoke the ATL-based SLAstic2PCM
implementation, namely via Java API, via Bash script and via an Eclipse
launch configuration (Figure 11.7). The Java API allows to invoke the
transformation within Java programs, e. g., as part of the SLAstic framework.
The Bash script wraps a main method included in the afore-mentioned Java
API. Finally, the Eclipse launch configuration, provided by the ATL tool
infrastructure, can be used to invoke the transformation inside the Eclipse
IDE.

11.1.8 Current Limitations

The current limitations of the SLAstic2PCM transformation can be divided
into three categories: a) concepts of the PCM meta-model not being gen-
erated, b) missing parts of transformations on the conceptual level, and
c) parts of the transformation not included in the prototype implementation.
The remainder of this section lists the limitations based on this categoriza-
tion, merging the latter two categories. Note that we expect that each of
the critical limitations can be resolved with little effort as both all required
information is available and the implementation is straightforward.

The PCM instances created by the transformation do not include all of
the concepts provided by the PCM meta-model. Particularly, slastic::Com-

186

11.1. Transformation from SLAstic to PCM

ponentTypes are transformed into pcm::BasicComponents instead of using pcm::-

CompositeComponents. The reason is that information about component (type)
composition is not needed for the SLAstic approach so far, and as such,
is not included in the meta-model. Hence, the decision to transform to
pcm::BasicComponents is straightforward. However, pcm::BasicComponents may
be detailed as pcm::CompositeComponents as part of the manual refinement
step. Other concepts currently not being generated by the transformation
include pcm::PassiveResources, and additional types of pcm::Actions as part
of RDSEFFs (e. g., w.r.t. asynchronous behavior).

Limitations with respect to the transformation on a conceptual and
implementation level comprise the following:

• As part of the transformation from slastic::Signatures to pcm::Signatures,
pcm::DataTypes and pcm::ExceptionTypes are not created from the type infor-
mation in the SLAstic model and assigned to the respective attributes.
These types are currently modeled as strings in the SLAstic meta-model
because additional information is not needed.

• As part the pcm::System generation (Section 11.1.3), the creation of the
system’s required roles and corresponding delegation connectors are
currently not included in the implementation. However, this information
is available in the SLAstic model.

• As part of the pcm::ResourceEnvironment generation (Section 11.1.4), the
creation of pcm::LinkingResources and their connection with pcm::Resource-

Containers is currently not implemented. However, this information is
available in the SLAstic model. The processingRate is currently set to a
fixed value (100), but, e. g., the slastic::CPUType’s clockRateMhz could be
used. The pcm::SchedulingPolicy is not set because this information is not
available in the SLAstic meta-model. Processor sharing is used as default.

• As part of the pcm::UsageModel (Section 11.1.6), the pcm::OpenWorkload’s
interArrivalTime is currently set to a fixed value (1) rather than exploiting
the information contained in the slastic::UsageModel, i. e., frequency and
observation time.

• The transformation is based on an old version of the PCM meta-model.

187

11. Utilizing the Palladio Component Model in SLAstic

1
- pcmComponentComponentType

(from slastic)

ComponentTypePCM
(from slasticDecorPcm)

ImplementationComponentType
(from pcm)

1
BasicComponent

(from pcm)
...

Figure 11.9. PCM decoration example for component types

11.2 Decoration of PCM Instances

The focus of the SLAstic meta-model is to serve as an architectural runtime
model for architecture-based online capacity management in the SLAstic
framework. As opposed to the SLAstic meta-model, PCM aims to be a
full-blown modeling language for model-based performance prediction.
Hence, it needs to include a comprehensive set of performance-relevant
details. However, as described in Chapter 8, online performance prediction
is one of the activities of proactive online capacity management. In order
to benefit from the performance prediction capabilities provided by the
PCM infrastructure, we developed a basic concept to link SLAstic runtime
models with a corresponding PCM instance.

The basic approach is that extending meta-classes for a subset of the
SLAstic meta-classes exist, which include a model reference to the corre-
sponding entity from the PCM meta-model. As an example, Figure 11.9
depicts the decoration of a PCM component type by a SLAstic component
type. In this case, ComponentTypePCM serves as the decoration class. Based on
this pattern, other meta-classes exist that extend SLAstic’s meta-classes and
serve to decorate respective PCM classes.

Two particular use cases for the decoration exist. First, assume an ex-
isting SLAstic model, which is transformed into a PCM instance—e. g.,
employing the SLAstic2PCM transformation described in Section 11.1. In
this case, the resulting PCM may be refined in the PCM tooling infras-
tructure, while retaining the connection to the source SLAstic model. At
runtime, the connected PCM instance can be used for performance predic-
tion. Second, a PCM instance may exist that is to be used at runtime in the
SLAstic framework. In this case, a respective SLAstic model employing the
decorator meta-classes is generated. Note that such transformation does
not exist, yet. In both cases, we refer to this as decoration, as for components

188

11.3. Simulation of Runtime Reconfigurable PCM Instances

working with the SLAstic runtime model, the connection to the PCM model
is transparent, i. e., not visible. However, note that the Model Manager
needs to be aware of this connection as changes to the SLAstic model need
to be propagated to the PCM instance.

Both use cases provide an argument why we chose to use pcm::Implemen-

tationComponentType as the reference type of the component type decora-
tor meta-class depicted in Figure 11.9. As detailed in Section 11.1, a
slastic::ComponentType is transformed into a pcm::BasicComponent. However,
in PCM other component types exist, e. g., pcm::CompositeComponent. Such
types enable more detailed modeling, e. g., w.r.t. a type’s internal structure.
Having chosen pcm::ImplementationComponentType as the reference type allows
to retain the connection even after a refactoring action to a generated model
or to a PCM instance, which is to be decorated and includes such construct.

11.3 Simulation of Runtime Reconfigurable PCM

Instances

This section describes the SLAstic.SIM discrete-event simulator for runtime
reconfigurable PCM models and its integration into the SLAstic frame-
work. Considerable parts of the research presented in this section were
conducted in the context of the Diploma thesis by von Massow [2010] (as
mentioned in Section 5.3.1) and our joint publication on this work [von Mas-
sow et al., 2011]. This section includes contents from these two publications,
which may serve as a reference for further details on SLAstic.SIM. For an
introduction into simulation, please refer to respective textbooks, e. g., by
Banks [1998], Banks et al. [2009], and Page and Kreutzer [2005].

The remainder of this section is structured as follows. Sections 11.3.1
and 11.3.2 give an overview of SLAstic.SIM as as well as its architecture and
integration into the SLAstic framework. In Section 11.3.3, we describe how
the SLAstic reconfiguration operations from Chapter 10 are implemented
within SLAstic.SIM using PCM. The execution of the simulation model is
described in Section 11.3.4.

189

11. Utilizing the Palladio Component Model in SLAstic

11.3.1 Overview

Like the SimuCom reference simulator, which is included in the Palladio-
Bench, SLAstic.SIM simulates PCM models in order to obtain performance-
relevant properties from the simulated system. However, as opposed to
SimuCom, SLAstic.SIM can be considered an adaptive software system
as introduced in Section 3.4.1 as it provides an effector and sensor API
like a real software system. Like SLAstic.SIM, SimuCom is implemented
employing Desmo-J. SimuCom’s simulation code is completely generated
from a PCM instance employing a M2T transformation prior to simulation
start. This approach is well-suited for software architectures, which are
not reconfigured during simulation. However, it is not trivial to extend
SimuCom’s M2T transformation by simulation support of runtime reconfig-
urable PCM instances. This was one of the main reasons for us to develop
a new simulator for PCM models with runtime reconfiguration support,
following an interpretive simulation approach. Another reason was that the
SimuCom simulations are only executable in an OSGi [OSGi Alliance, 2012]
environment like Eclipse. As opposed to SimuCom, SLAstic.SIM currently
does not support the simulation of middleware models.

SLAstic.SIM has been developed for two use cases within the SLAstic
approach: simulative evaluation and online performance prediction. The
first use case has already been outlined in Section 8.6.2 (illustrated in Fig-
ure 8.6c): SLAstic.SIM is employed to replace a real system connected to the
SLAstic framework. SLAstic.SIM simulates an adaptable component-based
software system, continuously provides monitoring data to the SLAstic
framework, and receives reconfiguration triggers to be incorporated into
the further simulation. The second use case refers to the use of SLAstic.SIM
as part of the performance prediction and adaptation planning activities
mentioned in Section 8.4.3. Included in SLAstic.SIM is a PCM-specific im-
plementation of the SLAstic runtime reconfiguration operation described in
Chapter 10. Integrated into SLAstic.SIM is Kieker for logging and providing
(simulated) monitoring data, as well as for receiving workload events.

11.3.2 Architecture and Framework Integration

SLAstic.SIM’s core components, relationships, and its integration into the
SLAstic framework are depicted in Figure 11.10. For the SLAstic.Control

190

11.3. Simulation of Runtime Reconfigurable PCM Instances

SLAstic.
Monitoring

SLAstic.
Reconfiguration

SLAstic.ControlWorkload
traces

SLAstic.SIM

PCM
instance

monitoring reconfigurationworkload

Kieker.
LogReplayer

SimulationCore

IMonitoringController
IReconfiguration
PlanReceiver

IMonitoring
RecordReceiver

ModelManager
SimulationController

Figure 11.10. High-level architecture and integration of SLAstic.SIM [von Massow
et al., 2011] (cf. Figure 8.6c).

component, SLAstic.SIM emulates a real software system with runtime
reconfiguration capabilities. The SimulationController is responsible for the
simulation life-cycle and for handling external events. Initially, the input
PCM instance is transformed into an internal representation used during
simulation and maintained by the ModelManager. The ModelManager includes
a ReconfigurationController and a controller for each PCM model partition,
e. g., an AllocationController. The SimulationCore executes the simulation
including the generation and execution of internal simulation events. SLAs-
tic.SIM employs the Java-based discrete-event simulation framework Desmo-
J [Page and Kreutzer, 2005]. Communication with SLAstic.SIM is possible
via the workload, monitoring, and reconfiguration ports. These ports allow to
a) input the workload driving the simulation, b) receive the performance
data generated during simulation, and c) request reconfigurations to be
executed by the simulator, as detailed below. Our monitoring and analysis
framework Kieker is used for reading the workload traces and for logging
the simulation data. The remainder of this section provides additional
details on external workload traces, monitoring, and reconfiguration.

191

11. Utilizing the Palladio Component Model in SLAstic

Workload

Workload is received from a Kieker.LogReplayer component which reads
workload traces from a monitoring log and passes them to registered
plugins (Section 7.1.3)—in this case SLAstic.SIM. As these logs typically
contain complete control flow traces and not just the top-level entry calls,
the SimulationController filters the incoming workload and delegates it to
the SimulationCore.

Monitoring

Currently, SLAstic.SIM includes probes for collecting the following infor-
mation during simulation:

• Executions. Each simulated execution of external calls is monitored with
the associated information on the service and assembly context, the
resource container, the entry and exit times, as well as the control flow in-
formation. OperationExecutionRecords (Section 7.2.2) are used to represent
this data.

• CPU utilization. For each CPU of allocated resource containers, the
utilization is measured in intervals of 0.5 simulated time units. CPUUti-
lizationRecords (Figure 7.2) are used to represent this data.

• Active users. If a call from outside of the system occurs, we increment
the user count and write a monitoring record. Upon the return of a call
the user count is decremented again and another record is written. We
defined a custom monitoring record type to represent this data.

The monitoring records are created by the probes and passed to the
SLAstic.Monitoring component via Kieker’s MonitoringController. The moni-
toring probes are injected using the Google Guice6 dependency injection
framework. This gives the possibility to enable or disable probes between
different simulation runs by simply replacing a class’s implementation. It is
also possible to disable each of these probes separately or to add additional
ones.

6Google Guice: http://code.google.com/p/google-guice/

192

http://code.google.com/p/google-guice/

11.3. Simulation of Runtime Reconfigurable PCM Instances

ReconfigurationPCM

ComponentMigration
- component : AllocationContext
- destination : ResourceContainer

ComponentReplication
- component : AssemblyContext
- destination : ResourceContainer

ComponentDeReplication
- component : AllocationContext

ContainerAllocation
- container : ResourceContainer

ContainerDeAllocation
- container : ResourceContainer

ReconfigurationPlanPCM

1..* - operations

Figure 11.11. SLAstic.SIM reconfiguration plan and operations [von Massow
et al., 2011]

Reconfiguration

The IReconfigurationPlanReceiver interface (Figure 11.10) makes it possible
to send reconfiguration plans to the simulator. Plans are received and
checked by the SimulationController, which forwards it to the ModelManager.
The ModelManager translates each plan into internal reconfiguration events.
These events are simulated by the SimulationCore. As depicted in Fig-
ure 11.11, a plan includes a list of reconfiguration actions to be executed,
which is similar to the respective part of the SLAstic meta-model (Sec-
tion 6.4.1). These action are successively applied to the simulation model
by the ReconfigurationController. Each operation of a reconfiguration plan is
transformed into one or more events, which are scheduled and executed
consecutively. If an event fails to execute, the current plan is aborted. The
following section details the PCM-specific implementation and execution
of the SLAstic runtime reconfiguration operations from Chapter 10 (cf.
Figure 11.11).

11.3.3 PCM-Specific Runtime Reconfiguration Operations

Figure 11.11 includes the signatures of the PCM-specific implementations of
the five SLAstic runtime reconfiguration operations for controlling capacity,
described in Chapter 10. The execution of these operations will be described
in the remainder of this section. Additional details are provided by von
Massow [2010].

193

11. Utilizing the Palladio Component Model in SLAstic

ReplicationController

blockAndRemoveInstance

notifyFailure

AllocationController

[else]

[else]

[numberOfInstances > 1]

[allocationContextExists]

component: AllocationContext

noUsersLeft

blockInstance

blockAndRemoveInstance

removeAllocationContext

Figure 11.12. Activity diagram for the component de-replication operation [von
Massow, 2010]

1. Component replication. For the given assembly context, a new allocation
context located on the destination container is created and added to the
model. The destination container must be allocated prior to the call and
must not contain an allocation context for this assembly context.

2. Component de-replication. The existing allocation context is blocked, which
means that no new calls are dispatched to this instance. As soon as
all running transactions handled by the component are finished, the
allocation context is removed from the model. Prior to the request, at
least two allocation contexts must exist for the assembly context. The
activity diagram in Figure 11.12 depicts the execution of a de-replication
operation within SLAstic.SIM.

3. Component migration. The migration is implemented by executing a
replication followed by a de-replication operation. Hence, the new
allocation context immediately handles new calls while the old allocation
context exists until all executing calls are finished.

4. Container de-allocation. The container is marked unavailable which means
that it cannot be the target of migration or replication operations until
it is allocated again. Prior to the request, the resource container to be
de-allocated must be allocated and empty—i. e., it must not contain any
allocation context.

5. Container allocation. The container is marked available which means that
it can be the target of migration or replication operations. The operation

194

11.3. Simulation of Runtime Reconfigurable PCM Instances

can be executed if the resource container exists in the simulation model
and is not allocated at that time. Upon completion, components can
be replicated or migrated to it. Initially, exactly those resource contain-
ers from the resource environment being associated with at least one
deployment context are marked as allocated.

11.3.4 Simulation

Desmo-J offers two styles of modeling [Page and Kreutzer, 2005]: process-
based and event-based. We chose to use the event-based model as all our
state changes in the simulation model are instantaneous and there would
be no real life-cycle. Below, we give a brief overview of the generation and
execution of control flows.

Control Flow Generation

On each external call from the input workload, the complete control flow
chain is generated. This is done by traversing and evaluating the corre-
sponding RDSEFF. Call enter and return events are generated for each
ExternalCallAction.7 For each InternalAction, an internal action event is
produced, containing the resource demands of the input InternalAction.
BranchActions are evaluated by deciding which transition to take and travers-
ing the transition’s body. LoopActions are evaluated similarly by determining
the iterations and then traversing the body for each iteration. The result
is a list of Desmo-J events which are scheduled consecutively. Note that
SLAstic.SIM’s support for parametric stochastic expressions, e. g., as part of
parametric resource demand specifications of InternalActions as well as iter-
ation counts (LoopAction) and branch conditions (BranchAction), is currently
limited to constants.

Execution of Control Flow Chains

On occurrence of an external call, the allocation contexts for the correspond-
ing assembly contexts are determined and one of these is selected based
on the uniform probability distribution. The resource demands of internal

7As introduced in Section 11.1.2, ExternalCallAction, InternalAction, BranchAction,
and LoopAction are RDSEFF-specific classes in the PCM meta-model

195

11. Utilizing the Palladio Component Model in SLAstic

actions are mapped to the corresponding resources of the current resource
container. Each of these resources has a scheduler. Currently, we support
hard disk drive scheduled by a first-come/first-served strategy and CPU
usage by processor sharing. These components are also replaceable by
implementing corresponding interfaces.

196

Part III

Evaluation

Chapter 12

Industrial Case Study

This chapter describes a case study with an industrial enterprise application
system (EAS). Kieker is integrated into the production system to monitor
distributed trace and performance information in production. The SLAstic
framework is used for offline analysis, namely for model extraction and
performance characterization. Note that particularly Kieker has been used
with additional industrial EASs (cf. Chapter 15). However, for this thesis
we chose to focus on this case study as a representative EAS to be described
in detail.

This chapter is structured as follows. Section 12.1 describes the con-
ducted evaluation methodology. Section 12.2 describes the case study
system. Section 12.3 details the monitoring and analysis infrastructure. The
data preprocessing is described in Section 12.4. Model extraction and perfor-
mance characterization are covered by Sections 12.5 and 12.6. Section 12.7
provides a summary of results. This chapter contains parts of a previous
publication [van Hoorn et al., 2009c].

12.1 Evaluation Methodology

In this case study, we integrate a Kieker-based application-level instru-
mentation into the case study system in order to obtain control flow and
performance data. This data—along with data about CPU utilization—is
collected over an observation period of more than seven months and an-
alyzed by the Kieker and SLAstic frameworks, including the techniques
described in this thesis. The analyses include the extraction of architectural
models as well as a performance evaluation w.r.t. varying workloads and
utilization of CPUs.

201

12. Industrial Case Study

The case study primarily serves to address the questions EQ1 (Is the
overall approach applicable to realistic scenarios?) and EQ2 (Does the approach
have the desired properties?), as introduced in Section 5.2.5.

• With respect to EQ1, we cover the following evaluation measures:

• EM1.1 (Confirmation of assumptions): The obtained monitoring data is
analyzed w.r.t. variations in workload intensity (EM1.1.1) and resource
efficiency in terms CPU utilization (EM1.1.2).

• EM1.2 (Perturbation by application monitoring): The perturbation imposed
by Kieker in the production environment is evaluated on a qualitative
scale.

• EM1.3 (Suitability of modeling language): We evaluate whether the pro-
posed SLAstic meta-model is able to provide an abstract view on the
case study system’s architecture.

• EM1.4 (Suitability of separating architecture and technology): We evaluate
whether the separation of architecture and technology is suitable for
analyzing the case system.

• With respect to EQ2, we cover the following measures:

• EM2.1 (Extensibility of framework for specific purposes and technologies): In
order to use the Kieker and SLAstic frameworks for this case study,
extensions for monitoring (EM2.1.2) and analysis (EM2.1.3) need to
developed. By doing this, we evaluate the extensibility of our frame-
works.

• EM2.2 (Reusability of framework): We investigate to what degree existing
parts of our frameworks can be reused for the case study, particularly
in terms of modeling languages (EM2.2.1), monitoring (EM2.2.2), and
analysis (EM2.2.3).

• EM2.4 (Suitability of MDSE techniques): By applying the developed
MDSE techniques for model extraction to the case study system, we
evaluate their suitability.

Many of the measures are evaluated on a qualitative scale by demonstrating
the applicability of the developed approaches based on the implemented
(proof-of-concept) implementations as part of the Kieker and SLAstic frame-
works.

202

12.2. Case Study System

<<device>>

Front−End Server
(on−site)

<<execution environment>>

Web Server/

<<artifact>>

PortalServiceB

<<artifact>>

PortalServiceC

<<artifact>>

PortalServiceA

<<device>>

Application Server

<<execution environment>>

Java EE Container

<<artifact>>

BusinessServices

<<device>>

Front−End Server
(off−site)

<<device>>

Back−End
System

<<device>>

DB Cluster

Client

<<device>>

H/W LB

<<device>>

0..1

*

12

M2

N2

22

2

K

0..1

*

21

<<device>>

3rd Party
System

Java EE Container

instrumented subsystem

Figure 12.1. Architecture of the case study system [van Hoorn et al., 2009c].

12.2 Case Study System

The case study system is a distributed Java EE-based self-service portal that
provides customers web-based access to their account data, e. g., contracts,
invoices, and e-mail settings. It is maintained and operated by one of
Germany’s largest (almost 600,000 corporate and private customers at
the end of 2011) regional providers of telecommunication services, which
include Internet, telephone, and mobile.

Figure 12.1 depicts the multi-tiered system architecture. Two equally
equipped (on-site) front-end servers in the presentation tier, referred to
as FE0 and FE1 in this chapter, serve HTTP client requests that are distributed
by an upstream hardware load balancer. Both FE0 and FE1 host three parallel
portal instances, serving static and dynamic web contents. The portal
instances are Java EE web applications, jointly deployed into an Apache
web server/Java EE container installation. The two front-end nodes request
web services from two equally-equipped application servers (AS0 and AS1)
in the business-tier. The web service requests from FE0 and FE1 to AS0 and
AS1 are load-balanced in a round-robin fashion, employing the Apache web

203

12. Industrial Case Study

server’s mod proxy balancer module.1 The Java EE application logic on all
four nodes is implemented using the Spring framework and the Apache
CXF web service technology. The business-tier nodes access a replicated
cluster of database servers as well as various services from the business tier,
e. g., via web service or EJB calls. For a brief introduction into common
architectures and technologies used by Java EE-based EASs, please refer to
Section 3.3.1.

12.3 Monitoring and Analysis Infrastructure

The two front-end nodes (FE0 and FE1) and the two application server
nodes (AS0 and AS1) are equipped with monitoring facilities to acquire
and collect a) the CPU utilization for each of the four server nodes and
b) distributed application-level trace information, as described in Section 7.2.
The monitoring infrastructure for the CPU utilization was already in place
when starting the case study. We developed an importer that enables the
integration of these CPU measurements into Kieker and SLAstic. In order
to monitor distributed trace information, we refined and integrated Kieker.
Sections 12.3.1 and 12.3.2 detail the monitoring facilities. As detailed in
Section 12.3.3, the monitored data is processed offline, employing the Kieker
and SLAstic frameworks.

12.3.1 Monitoring of CPU Utilization

On the two front-end nodes (FE0 and FE1) and the two application server
nodes (AS0 and AS1), the CPU utilization is continuously measured and
logged using RRDtool. In order to process the data with Kieker and
SLAstic, we developed a Kieker-based importer program.

RRDtool Configuration

RRDtool (short for Round Robin Database tool) is a popular open-source
tool for storing (and plotting) aggregated time series data in so-called
Round Robin Databases (RRDs). An RRD is configured to accept input data

1
http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

204

http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

12.3. Monitoring and Analysis Infrastructure

for one or more named data sources in periodic time steps for a given base
interval. The values for a time step, called primary data points, are passed to
Round Robin Archives (RRAs) that are contained in an RRD and aggregate
a configured number of primary data points into a consolidated data point
using one of the available consolidation functions (average, maximum, etc.).
These consolidated data points are archived in the RRA’s circular storage
allocated for each of the data sources. The RRDtool web site includes a
tutorial introducing basic concepts and examples of use.2

Table 12.1 lists the configuration of the RRD used on each of the nodes in
the case study. Four data sources exist for fractions of time a CPU spends in
a) user space, b) system (i. e., kernel) space, c) idle mode, and d) waiting for
I/O operations. An external script provides corresponding CPU utilization
measurements with a base interval of 300 seconds. This data is stored as
time series by four RRAs. RRA 0 keeps the individual measurements of
the past 400 days. Note that the consolidation function (maximum) has no
effect, because it is applied to a single value. RRAs 1–3 store average values
with a resolutions of 0.5, 2, and 24 hours for a configured number of days
(Table 12.1b).

Data Import into Kieker

We developed an importer program that converts the CPU utilization data
from RRA 0 (for each server node) into a Kieker (file system) monitoring
log of CPUUtilizationRecords (Figure 7.2), enabling further processing with
the Kieker and SLAstic frameworks. In an intermediate step, a Bash script
creates one CSV file per server node—each row including a 300 second step
with the corresponding values from RRA 0 for each of the data sources, i. e.,
user, system, idle, and io. A Java program employs Kieker to import the CSV
data into a monitoring log of CPUUtilizationRecords. One CPUUtilizationRecord

is created for each CSV row. Table 12.2 lists which values are assigned
to individual CPUUtilizationRecords based on corresponding data from the
server node’s RRA 0. The fields idle, user, and system are computed from the
values of the corresponding data sources. The totalUtilization is computed
by subtracting the idle value from 1. Because the data source io is available
only on the front-end nodes and the values of the data sources closely but

2
http://oss.oetiker.ch/rrdtool/

205

http://oss.oetiker.ch/rrdtool/

12. Industrial Case Study

Table 12.1. Configuration for each of the RRDs and the contained RRAs

(a) RRD base interval and data sources (of equal type and heartbeat value)

Base interval 300 sec. (i. e., 5 min.)

Data sources “user”, “system”, “idle”, “io” | type: Gauge | heartbeat: 600 sec.

(b) Configuration of the RRAs contained in the RRD. The two bottom lines list properties derived from the

upper parameter values together with the information that a primary data points maps to a 5 minutes

base interval (Table 12.1a). The consolidation function of RRA 0 has no effect, as it is applied to single

values.

RRA parameter RRA 0 RRA 1 RRA 2 RRA 3

Consolidation function (Maximum) Average Average Average

Rows 115200 700 775 797

Primary data points per row 1 6 24 288

Time interval per row 5 min. 30 min. 120 min. 24 hours

Capacity (days) 400 14.58 64.58 797

Table 12.2. Assignment of values to CPUUtilizationRecord fields (hostname omitted).
Variables indexed by RRA0 refer to the values of the corresponding data source
values contained in RRA 0.

Field Value Field Value

timestamp timestampRRA0 system systemRRA0

cpuID "cpu0" wait totalUtilization - user - system

idle idleRRA0 nice 0.0

totalUtilization 1.0 - idle irq 0.0

user userRRA0

not exactly sum up to the value 1, we decided to approximate the wait
value, which is the corresponding field in the records, by subtracting user
and system from the total utilization value. The hostname is set to the name
of the respective host.

206

12.3. Monitoring and Analysis Infrastructure

12.3.2 Monitoring of Trace Information

Six Kieker.Monitoring instances on the front-end nodes (one for each portal)
in addition to one Kieker.Monitoring instance per business-tier node, result
in a total number of eight concurrent Kieker.Monitoring instances distributed
over the four server nodes. Each Kieker.Monitoring instance is configured to
use an asynchronous file system writer, as described in Section 7.3, which
writes the Monitoring Log to the local file system.

Six different Monitoring Probe types, detailed below, are integrated on
three layers of the software architecture—namely, Servlet-based HTTP
request entry point, Spring-based business logic, and CXF-based web
services—to jointly monitor distributed execution traces across the server
nodes of the front-end and business-tier. OperationExecutionRecords are
used as the Monitoring Record type representing the data of an execution, as
described in Sections 7.2 and 7.3.

• Servlet probes. A Monitoring Probe on the front-end nodes intercepts
incoming HTTP service requests and initializes the trace and session
information for this request, including a unique trace identifier, as well
as the initialization of the execution order index and execution stack size
values (see Section 7.2). After the execution of the actual request, the
Monitoring Probe resets the trace information and logs the execution on
the HTTP request level. This Monitoring Probe had been developed in a
previous case study during the course of this thesis and has been refined
as part of this case study.

• Spring probes. A Spring-based Monitoring Probe intercepts and logs execu-
tions of the business service implementations on the business-tier nodes.
This Monitoring Probe had been developed in a previous case study during
the course of this thesis and has been refined as part of this case study.

• CXF probes. Two CXF Monitoring Probes on the front-end nodes are used
to intercept outgoing web service calls as well as the corresponding
responses to and from the business-tier. For each outgoing web service
call, the trace and session identifiers, as well as the execution order index
value are integrated into the corresponding SOAP message. A trace’s
execution order index value is updated according to the value contained in
the response message sent by the business-tier node. Two corresponding
CXF Monitoring Probes are integrated into the business-tier nodes to

207

12. Industrial Case Study

Table 12.3. Basic statistics about the (raw) Kieker monitoring logs with operation
executions

Node Size Observation Period #
L
o
g
s

#
F
il
e
s

#
E
x
e
c
u
ti
o
n
s

FE0 3.8 GB Nov. 26, 2009 – July 11, 2010 51 870 18,358,970

FE1 3.9 GB Nov. 26, 2009 – July 11, 2010 42 866 18,482,244

AS0 3.2 GB Dec. 06, 2009 – July 11, 2010 47 799 17,183,364

AS1 3.3 GB Dec. 06, 2009 – July 11, 2010 31 798 17,280,534

manage the trace and session information of incoming and outgoing
SOAP messages. A web service call results in a logged execution on the
calling front-end node and a logged execution on the called business-tier
node. These Monitoring Probes have been developed as part of this case
study.

12.3.3 Offline Analysis

In this case study, the Kieker and SLAstic frameworks are employed in the
framework deployments 1. (online/production) and 4. (offline/lab) described
in Section 8.6.2 and depicted in Figures 8.6a and 8.6d. The production
monitoring data is written to a file system Monitoring Log, which is processed
offline by Kieker and SLAstic. Kieker’s analysis features are used for basic
trace analysis and visualization. SLAstic serves to extract a SLAstic model
instance of the case study system, as well as to process the workload
and performance measurements. For the latter, we additionally use the
statistical language and environment R [R Development Core Team, 2014]
with respective scripts processing the data provided by SLAstic.

12.4 Data Preprocessing

Table 12.3 lists basic statistics from the monitoring logs collected from the
four server nodes. A first version of Kieker was deployed on November 26,

208

12.4. Data Preprocessing

2009 to the front-end nodes. The instrumentation of the business-tier nodes
was deployed on December 6, 2009. During the course of the subsequent
weeks, we deployed refined versions of the Kieker-based instrumentation,
particularly regarding the distributed tracing functionality via web services.
The observation period for all nodes ends on July 11, 2010. Table 12.3
includes for each server node the number of Kieker monitoring logs, the
number of contained Kieker log files, and the number of monitored opera-
tion executions—obtained by counting the lines in the log files. Note that
each of the two front-end nodes includes three parallel portal instances,
each having its own monitoring logs. In the further analysis, we do not
distinguish between the three portal instances. A new monitoring log is
created each time the respective application or portal instance is (re)started.
A first attempt to process the raw data with Kieker’s trace analysis revealed
that three corrupted monitoring records are included in the monitoring
logs of the business-tier nodes. These records were removed. CPU utiliza-
tion measurements obtained by the RRDtool (RRA 0) are available for the
400-day period (cf. Table 12.1a) from June 14, 2009 to July 19, 2010.

Kieker’s trace analysis tool detected 23,804,565 traces from which
23,551,575 (98,94%) could be reconstructed successfully. The trace detection
timeout was configured to five hours based on the memory consumption
needed for the trace reconstruction. (A higher timeout value leads to in-
creased memory usage because executions within a trace are stored for a
longer period of time, waiting for additional executions of the same trace.)
We performed a basic investigation of the distribution of broken traces over
time. The results are depicted in Figure 12.2. It can be observed that the
number of invalid traces is particularly high during the time that only the
front-end nodes are instrumented. A second drop in the number of broken
traces can be observed at the beginning of March.

For the further analysis, we decided to create a refined monitoring log in
which all executions belonging to broken traces are removed. An execution
of Kieker’s trace analysis tool on the refined monitoring log resulted in
23, 551, 569 successfully reconstructed traces (100%). The numbers of valid
traces over time are included in Figure 12.3a. Also included in the figure
is the average maximum execution stack size per trace. In addition to this,
Figure 12.3b lists the frequencies of occurrence for the observed maximum
execution stack sizes (ess).

209

12. Industrial Case Study

Number of invalid traces per Day

UTC Calendar time (from 2009−11−26 to 2010−07−11)

Nov Dec Dec Jan Jan Feb Mar Mar Apr Apr May May Jun Jun

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

in
va

lid
 t
ra

c
e
s
/d

a
y

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

Figure 12.2. Number of invalid traces (per day) during the observation period

12.5 Model Extraction

Sections 12.5.1 and 12.5.2 describe the architectural models of the case study
system extracted by the Kieker and SLAstic frameworks.

12.5.1 Kieker Model

We used Kieker’s standard trace reconstruction and analysis features to
extract and visualize architectural models conforming to the system and
trace meta-model described in Section 7.2.1 (cf. [Kieker Project, 2014a]). The
reconstructed architecture comprises 10 component types, 110 operations,
10 assembly components, 4 execution containers, and 20 deployment compo-
nents. The analysis took 30 minutes on a Sun Blade X6270 (cf. Figure 13.1).
Figure 12.4 shows generated calling dependency graphs of the architectural
models on different abstraction levels.

210

12.5. Model Extraction

Valid Traces

UTC Calendar time (from 2009−11−26 to 2010−07−11)

Nov Dec Dec Jan Jan Feb Mar Mar Apr Apr May May Jun Jun

0
e
+

0
0

1
e
+

0
5

2
e
+

0
5

3
e
+

0
5

4
e
+

0
5

va
lid

 t
ra

c
e
s
/d

a
y

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

a
v
g
(m

a
x
.
e
s
s
)/

d
a
y

(a) Valid traces and ess values over time
Max. ess 0 1 2 3 4

traces 9,343,275 8,269,224 2,848,574 3,090,487 9

(b) Frequencies of maximum ess value

Figure 12.3. Number of valid traces (per day) and average maximum execution
stack sizes (red in (a)) during the observation period

• Figure 12.4a depicts calls to and between the four nodes. Corresponding
to the system architecture in Section 12.2—and depicted in Figure 12.1
(dashed part)—the two-layer architecture with two front-end and two
business-tier nodes can be observed. Also visible are the load-balanced
accesses to/between the front-end and business-tier nodes. As described
in Section 12.2 the business-tier nodes are not only accessed via the on-
site front-end nodes but also by other (off-site) systems (cf. Figure 12.1).
In total, the number of external calls sums up to 23,551,569, which
corresponds to the aforementioned number of extracted traces reported
by Kieker’s trace analysis.

211

$
<<execution container>>

FE1

11759833

<<execution container>>
FE011663502

<<execution container>>
BE1

64359

<<execution container>>
BE063875

5695105

5667871

5647093

5617686

(a) Execution container dependency graph

<<execution container>>
FE1

<<execution container>>
FE0

<<execution container>>
BE1

<<execution container>>
BE0

<<deployment component>>
@1:..KiekerRequestRegistrationAndLoggingFilter

6433220

<<deployment component>>
@2:..KiekerTpmonResponseInProbe

5326613

<<deployment component>>
@2:..KiekerTpmonResponseInProbe

5247200

<<deployment component>>
@1:..KiekerRequestRegistrationAndLoggingFilter

6416302

<<deployment component>>
@4:..KiekerTpmonResponseOutProbe

64359

<<deployment component>>
@4:..KiekerTpmonResponseOutProbe

63875

6249466
5695105

5667871

5647093

5617686

6222157
<<deployment component>>

@5:..EmailService

786479 <<deployment component>>
@3:..AccountService

4467170

<<deployment component>>
@9:..DnsService

9523

<<deployment component>>
@6:..SupportService281983

<<deployment component>>
@8:..WebhostingService

112870

<<deployment component>>
@7:..DomainService

143119

<<deployment component>>
@10:..EasynetService6

15

<<deployment component>>
@8:..WebhostingService

<<deployment component>>
@10:..EasynetService

111789

<<deployment component>>
@3:..AccountService

4449843

<<deployment component>>
@9:..DnsService

9531
<<deployment component>>

@5:..EmailService

784136

<<deployment component>>
@6:..SupportService281211

<<deployment component>>
@7:..DomainService

143192

6

3

$

(b) Deployment-level component dependency graph (slightly re-arranged)

<<assembly component>>
@6:..SupportService

<<assembly component>>
@5:..EmailService

<<assembly component>>
@7:..DomainService

<<assembly component>>
@8:..WebhostingService

<<assembly component>>
@2:..KiekerTpmonResponseInProbe

<<assembly component>>
@9:..DnsService

<<assembly component>>
@10:..EasynetService

<<assembly component>>
@1:..KiekerRequestRegistrationAndLoggingFilter

<<assembly component>>
@3:..AccountService

<<assembly component>>
@4:..KiekerTpmonResponseOutProbe

getSmsContacts(..)

deleteSmsNumber(..)

getMySQLVersion(..)

getVirtualServerEnvironment()

getMySQLQuota(..)

getSmsAuthorizations(..)

setSmsNumberToStandard(..)

sendSupportRequest(..)

migrateContract(..)

terminateStaticIp(..)

getIncreaseBandwidthResult(..)

increaseBandwidth(..)

orderStaticIp(..)

createWlanAccount(..)

activateSmsNumber(..)

addSmsContact(..)

getFtpQuota(..)

getOrderStaticIpResult(..)

getSmsNumbers(..)

getMailQuota(..)

getSmsAuthorization(..)

removeSmsContact(..)

getAntiVirLicenseList(..)

terminateAntiVirLicense(..)

scheduleAntiVirLicenseActivation(..)

createSmsToken(..)

sendSms(..)

addAntiVirLicense(..)

setSmsAuthorizations(..)

queueSms(..)

removeListEntryFromSpamFilter(..)

updateSpamFilterConfiguration(..)

createFreeEmailAccount(..)

deleteEmailAccount(..)

getSpamFilterConfiguration(..)

getPackageConfiguration(..)

6

addEmailVirusScan(..)

getVacationInfo(..)

updateEmailForward(..) 3

updateVacationInfo(..)

reactivateEmailVirusScan(..)

deleteEmailVirusScan(..)

createEmailAccount(..)

addEmailAlias(..)

addListEntryToSpamFilter(..)

deleteEmailAlias(..)

createEmailAccount(..)

getMailAccounts(..)

$ handleMessage(..)

10573813

doFilter(..)12849522

handleMessage(..)128234

isDomainFree(..)

setDomainStartDate(..)

performDomainOrder(..)

reassignDomain(..)

isValidContact(..)

getTopLevelDomains(..)

getDomainInfo(..)

getDomainCategory(..)

createSubdomain(..)

getDomains(..)

getDomains(..)

restartDomainTransfer(..)

getFederalStateForZipCode(..)

deleteSubdomain(..)

updateMySql(..)

hasProweb(..)

getWebspaceSubdirectories(..)

terminateMySql(..)

createFtpAccount(..)

getEmailFromMasterAccount(..)

updateWebspace(..)

getProwebDomainNames(..)

createWebStatsSession(..)

updateFtpAccount(..)

getWebspaceQuota(..)

setPHPVersion(..)

sendProwebMigrationRequest(..)

changeDomainUsageCategory(..)

createWebspaceSubdirectory(..)

terminateFtpAccount(..)

getAvailablePHPVersions(..)

getWebhostingCategory(..)

createMySql(..)

getWebhostingDetails(..)

getWebUserIds(..)

getWebhostingCategories(..)

createWebspace(..)

22627755

deleteResourceRecord(..)

getZone(..)

addResourceRecord(..)

isUpToDate(..)

modifyResourceRecord(..)

12471623

updateCssPassword(..)

createToken(..)

passwordRequestByMailAllowed(..)

getAccountInfos(..)

printContractConfirmation(..)

checkToken(..)

deleteToken(..)

hasAcknowledgedDnsTermsOfUse(..)

getCustomerAccount(..)

21

getMyAdminLoginLink(..)

getEndDateFromMainContract(..)

acknowledgeDnsTermsOfUse(..)

getPackageConfiguration(..)

updateAccountPassword(..)

getWebStatisticLink(..)

checkLogin(..)

getAccountNumberForDbUser(..)

104731

55

3612

641

3094

8545

25

3124

1

5

4901

7

545

637

162

1599

55022

9012

229034

54873

3391

275

52685

1

1302

296

22887

720

402

1610

12542

65451

91

9976

315928

498

427153

75605

2444

20

414

91

8563

19876

8134

18878

604951

31694

2

497

220

778

126562

3517
32134

170

8994

80843

10

829

61

95

49158

3671

89

68

22273

102

2225

2721

502

6491

121

21

756

130

29

4451

991

219

9602

60283

60356

305

378

8224

576

8224

1652

84200

20408

275

1250601

269

22504

13995

9014

4878186

1076

9090

332

7970

35141

77

2582799

1076

(c) Assembly-level operation dependency graph (excerpt)

Figure 12.4. Visualizations of selected architectural models reconstructed by Kieker

12.5. Model Extraction

• Figure 12.4b shows the deployment-level component dependency graph
of the system, comprising the 20 deployment components (10 assembly
components/component types) and their weighted calling dependencies.
Note that three of the component types (including Kieker in the name)
were introduced by Kieker’s monitoring probes, namely the Servlet filter
and the CXF probes for outgoing and incoming web service calls. In addi-
tion to the expected requests to the front-end nodes via the Servlet probe
(KiekerRequestRegistrationAndLoggingFilter), direct calls to the probe that
monitors outgoing web service calls (KiekerTpmonResponseInProbe) can be
observed. These calls are caused by asynchronous business-tier requests
by the web portals in the front-end nodes.

• Figure 12.4c shows an excerpt of the assembly-level operation dependency
graph. It can be seen that the three components introduced by the Kieker
instrumentation each have a single operation. In each case, the weights of
the calls are the sum of the calls per deployment component. The depicted
operations in the business tier belong to the component DomainService (cf.
Figure 12.4b).

12.5.2 SLAstic Model

We applied our approach for extracting a SLAstic model from the Kieker
monitoring log, employing the MDSE-based techniques detailed in Sec-
tion 9.3. Details on the SLAstic system and usage model are described in
the remainder of this section.

The analysis took 310 minutes on the same machine that has already
been used for the Kieker analysis. Note that the long duration is a conse-
quence of various SLAstic features (Section 8.6.4) being enabled, e. g., the
rewriting of the entire Kieker monitoring log by SLAstic’s Monitoring Man-
ager, and the extraction of time series for various performance measures. A
current (performance) limitation in the implementation of the latter feature
requires the time series files to be closed after each entry due to the large
number of open file handles (794 in this case). Without the aforementioned
features and the usage model extraction being disabled, the analysis took
about 60 minutes.

213

12. Industrial Case Study

System Model

For the type and operation signature name abstraction (Section 9.3.3), the
mode class strict (page 158) is used, i. e., component types refer to Java
classes. As a consequence, the architectural structure is close to the struc-
ture included in the reconstructed Kieker model (described in Section 12.5
and visualized in Figure 12.4). Corresponding to the reconstructed ar-
chitectural entities in the Kieker model, the reconstructed SLAstic model
includes 10 component types, 110 operations, 10 assembly components,
20 deployment components, and 4 execution containers. However, as the
Kieker meta-model includes only a subset of the concepts from the SLAstic
meta-model, additional entities are included, e. g., 10 interfaces, 110 sig-
natures, 4 execution container types, 3 system delegation connectors, and
10 assembly component connectors. Each execution container type includes
a resource specification for a single CPU; the resource instance is included
in each of the respective four execution containers.

Due to the naming rules of the extraction procedure (Section 9.3.2), the
entity names slightly deviate from those in the Kieker model. This mainly
concerns prefixes and suffixes, e. g., SupportService T, ISupportService T (),
and FE0 T are names for a component type, an interface, and an execution
container type in the SLAstic model. Due to the architectural structure
being similar to the Kieker model, we omit a visual representation of the
SLAstic model.

Usage Model

As described in Section 6.3.3, the usage model currently includes three types
of usage information, namely a) calling relationships between operations of
component types and signatures of interfaces, b) operation call frequencies,
as well as c) assembly connector call frequencies.

• An interesting property w.r.t. the (111) calling relationships can be ob-
served for the calling frequency distribution between the Servlet filter’s
doFilter operation and the handleMessage operation for outgoing web ser-
vice calls. A histogram of the frequency distribution is shown in Fig-
ure 12.5. A single call of the handleMessage operation may lead to up to
932 web service calls to the business-tier nodes. Note that the doFilter

214

12.5. Model Extraction
1
e
+

0
0

1
e
+

0
2

1
e
+

0
4

1
e
+

0
6

s

0 200 400 600 800

F
re

q
u
e
n
c
y
 (

lo
g
 s

c
a
le

)

Number of calls

Figure 12.5. Distribution of calling frequencies from the doFilter operation to the
handleMessage operation

operation does not call handleMessage directly: the doFilter is an intercep-
tor for incoming service requests; requests are handled by parts of the
portal that are not instrumented and issue the web service requests. All
other calling relationships have a deterministic number of calls: 1 in all
other cases except for one, which is 3. Note that the information about
zero calls is not explicitly included in the usage model but needs to be
computed by also considering the total number of executions of the callee
operation.

• The frequencies of execution for the 110 operations vary between 1 and
23, 045, 436 (mean 638, 471; quartiles 275/2, 582/21, 807). The three most
frequently executed operations are the handleMessage operations of outgo-
ing (23, 045, 436 executions) and incoming (22, 755, 989) web service calls,
as well as the Servlet filter’s doFilter operation (12, 849, 522). Execution
frequencies of selected operations are included in Figure 12.4c. The distri-
bution of execution frequencies across the different component types is
included in Figure 12.4b.

• The call frequencies for the system-provided delegation connectors (corre-
sponds to the entry-level system calls) can be obtained from Figure 12.4b,
namely 12, 849, 522, 10, 573, 813, and 128, 234 for the three different entry
points (Servlet filter and web service interceptors).

215

12. Industrial Case Study

UTC Calendar time (from 2010−04−19 00:00:51 to 2010−04−25 23:59:51)

Apr 19 Apr 19 Apr 20 Apr 20 Apr 21 Apr 21 Apr 22 Apr 22 Apr 23 Apr 24 Apr 24 Apr 25 Apr 25

0
5

0
1

0
0

2
0

0
3

0
0

A
rr

iv
a

l
ra

te

0
5

0
1

0
0

2
0

0
3

0
0

Figure 12.6. Arrival rates of the Servlet entry (assembly-level) over one week

12.6 Performance Characterization

The following two sections describe the characterization of the workload
(Section 12.6.1) and the CPU utilization (Section 12.6.2).

12.6.1 Workload Characterization

As introduced in Section 4.1.2, workload characteristics are often divided
into measures concerning workload intensity and resource demands. Some
information on the workload intensity has already been reported in Fig-
ure 12.3a—in that case the number of valid traces that were executed by
the system during each day of the observation period. In this section, the
focus of workload characterization will be on workload intensity in terms
of arrival rates—to be understood as the number of requests to a software
service observed over a specified time period (cf. page 41). The SLAstic
framework already reports arrival rates for different architectural entities
(software services) in the SLAstic model, namely for assembly components,
for deployment components, and for operations. In order to study the
characteristics of how logical components of the case study system are
used, we will consider arrival rates for assembly components. Remind that
Figure 12.4b depicts the deployment components of the case study system.
In this case, always two deployment components of the same type are
grouped into a single assembly component (10 in total, cf. Section 12.5.2).
The arrival rate for an assembly component is the sum of arrivals to any of
the operations of any of the (two) deployment components.

Selected results are shown in Figures 12.6 and 12.7. For this analysis,

216

UTC Calendar time (from 2010−04−23 00:00:51 to 2010−04−23 23:59:51)

00:00 03:42 07:24 11:06 14:48 18:30 22:12

0
5

0
1

0
0

1
5

0

A
rr

iv
a

l
ra

te

0
5

0
1

0
0

1
5

0

(a) Servlet entry (one day)

UTC Calendar time (from 2010−04−23 00:00:51 to 2010−04−23 23:59:51)

00:00 03:42 07:24 11:06 14:48 18:30 22:12

0
1

0
0

2
0

0
3

0
0

4
0

0

A
rr

iv
a

l
ra

te

0
1

0
0

2
0

0
3

0
0

4
0

0

(b) Business-tier entry (one day)

UTC Calendar time (from 2010−04−23 00:00:51 to 2010−04−23 23:59:51)

00:00 03:42 07:24 11:06 14:48 18:30 22:12

0
5

0
1

0
0

1
5

0
2

0
0

A
rr

iv
a

l
ra

te

0
5

0
1

0
0

1
5

0
2

0
0

(c) AccountService (one day)

UTC Calendar time (from 2010−04−23 00:00:51 to 2010−04−23 23:59:51)

00:00 03:42 07:24 11:06 14:48 18:30 22:12

0
5

1
0

1
5

2
0

A
rr

iv
a

l
ra

te

0
5

1
0

1
5

2
0

(d) EmailService (one day)

Servlet 0.766✟ 0.022 0.602✟ 0.034 0.507✟ 0.039

Business tier 0.810✟ 0.019 0.507✟ 0.039

AccountService 0.422✟ 0.043

EmailService

(e) Correlation coefficients (Pearson, 95% CI) for pairs of arrival rates in (a)–(d)

Figure 12.7. Arrival rates and correlations for selected assembly components

12. Industrial Case Study

the SLAstic framework was configured to compute the arrival rate in 60-
second intervals. Note that the times are given in UTC, while the case study
system—and probably most of its users—is located in CET (UTC+1) and
CEST (UTC+2) respectively. Figure 12.6 depicts the arrival rates of requests
to the front-end nodes that have been observed during one week (Monday
to Sunday), selected from the overall observation period. Particularly, these
are the requests also processed by Kieker’s Servlet filter (Figure 12.4). A
typical seasonal usage pattern for EASs can clearly be observed also for this
system: each day, the arrival rate increases during the morning hours and
decreases in the evening, leading to very low arrival rates during the night;
during the lunchtime period, the arrival rates decrease. During this week,
the arrival rates on Wednesday and Thursday are considerably higher than
on the other days of the week.

Figures 12.7a to 12.7d show the arrival rates for a selected day (Friday)
from this week, namely the Servlet entry point (Figure 12.7a, showing an
excerpt from Figure 12.6), the business-tier entry point (Figure 12.7b), as well
as the business-tier services AccountService (Figure 12.7c) and EmailService

(Figure 12.7d). Note that these services, in addition to the web service
component in the front-end, are the four most frequently called services.
The aforementioned usage pattern over a day can be observed in the plots
for this specific day.

We were interested to what extent the requests to services in the case
study system show a linear relationship, i. e., whether the arrival rates are
proportional to each other or whether they are (also) impacted by other
factors. As a measure of correlation, we computed the Pearson correlation
coefficients for each pair of arrival rates from Figures 12.7a to 12.7d. The
resulting coefficients along with the 95% confidence intervals are listed
in Figure 12.7e. The values are roughly in a range between 0.4 and 0.8,
indicating that a certain level of linear relationship exists in each case. This
is supported by the visual impressions that can be drawn from Figures 12.7a
to 12.7d. High coefficients can be observed between the business-tier entry
and the AccountService (0.810) as well as between the Servlet entry and the
business-tier entry (0.766). Medium values can be observed between Servlet
entry and AccountService (0.602), as well as between Servlet/business-tier
and EmailService (both 0.507). The lowest values can be observed between
AccountService and EmailService (0.422). A high correlation value between
Servlet entry and business-tier entry was expected as Servlet entry calls

218

12.6. Performance Characterization

also lead to business-tier requests. However, as described in Section 12.5.2
(usage model), the number of calls is not deterministic and business-tier
calls may also result from asynchronous front-end requests as well as direct
business-tier requests (cf. Figures 12.1 and 12.4b). Both the AccountService

and the EmailService are only called via the business-tier entry point, i. e., a
direct dependency exists in these cases. Based on the data from the usage
model, it can be computed that the ratio of the number of AccountService

and business-tier calls is 40%; for the EmailService, the ratio is 7%. The
high ratio for business-tier/AccountService may explain the high correlation
value for this pair of services. The indirect call paths from the Servlet
entry—via the business-tier entry—can explain the medium correlation
with the AccountService. The EmailService shows a lower linear relationship
to the other services—particularly, to the AccountService located at the same
architectural layer.

12.6.2 Characterization of CPU Utilization

This section summarizes the results of analyzing the CPU utilization of
the four server nodes. As described in Section 12.3.1, different CPU
utilization measures (cf. Table 12.2), including the total CPU utilization
(totalUtilization) and its components (user, system, etc.), were imported
from RRDtool into Kieker and the SLAstic framework. The resolution of
measurements is five minutes. In this section, we focus on the total CPU
utilization measurements.

Figure 12.8 shows the CPU utilization of the four servers over one
week (Figures 12.8a to 12.8d) and over one day in this week (Figures 12.8e
to 12.8h). The time periods (week/day) correspond to the periods consid-
ered for the workload characterization in Section 12.6.1. In addition to this,
Figure 12.9 shows statistics and probability density plots of the observed
CPU utilization measurements.

A seasonal pattern can be observed for the CPU utilization over the
week in that the seven days can be identified (higher utilization during the
day; lower utilization during the night). However, this pattern is not as
distinct as for the arrival rates (e. g., Figure 12.7). Note that due to the high
resolution of measurements (five minutes), the higher utilization values
dominate the lower utilization values in the plots. Figures 12.9a and 12.9b
depict the probability density functions for the utilizations. As listed in

219

UTC Calendar time (from 2010−04−19 00:01:00 to 2010−04−25 23:56:00)
Apr 19 Apr 20 Apr 21 Apr 22 Apr 23 Apr 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) FE0 (one week)

UTC Calendar time (from 2010−04−19 00:01:00 to 2010−04−25 23:56:00)
Apr 19 Apr 20 Apr 21 Apr 22 Apr 23 Apr 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) FE1 (one week)

UTC Calendar time (from 2010−04−19 00:01:00 to 2010−04−25 23:56:00)
Apr 19 Apr 20 Apr 21 Apr 22 Apr 23 Apr 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) AS0 (one week)

UTC Calendar time (from 2010−04−19 00:01:00 to 2010−04−25 23:56:00)
Apr 19 Apr 20 Apr 21 Apr 22 Apr 23 Apr 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) AS1 (one week)

UTC Calendar time (from 2010−04−23 00:01:00 to 2010−04−23 23:56:00)
00:01 03:42 07:23 11:04 14:45 18:26 22:07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) FE0 (one day)

UTC Calendar time (from 2010−04−23 00:01:00 to 2010−04−23 23:56:00)
00:01 03:42 07:23 11:04 14:45 18:26 22:07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f) FE1 (one day)

UTC Calendar time (from 2010−04−23 00:01:00 to 2010−04−23 23:56:00)
00:01 03:42 07:23 11:04 14:45 18:26 22:07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g) AS0 (one day)

UTC Calendar time (from 2010−04−23 00:01:00 to 2010−04−23 23:56:00)
00:01 03:42 07:23 11:04 14:45 18:26 22:07

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h) AS1 (one day)

Figure 12.8. CPU utilization (5 minute intervals) of the four servers over one week
((a)–(d)) and over a selected day ((e)–(h))

12.6. Performance Characterization

0.0 0.1 0.2 0.3 0.4 0.5

0
10

20
30

40
D

en
si

ty

CPU Utilization

0
1

AS0
AS1

(a) Density for Figures 12.8a to 12.8d (week)

0.0 0.1 0.2 0.3 0.4 0.5

0
5

10
15

20
25

30
35

D
en

si
ty

CPU Utilization

FE0
FE1
AS0
AS1

(b) Density for Figures 12.8e to 12.8h (day)

Quantiles

min 0.25 0.50 0.75 0.95 max mean sd

FE0 0.00 0.04 0.05 0.07 0.11 0.47 0.06 0.04

FE1 0.00 0.01 0.02 0.03 0.07 0.37 0.02 0.03

AS0 0.01 0.16 0.24 0.40 0.65 0.92 0.29 0.17

AS1 0.00 0.04 0.05 0.08 0.22 0.53 0.07 0.06

mean 0.02 0.07 0.10 0.14 0.34 0.21 0.11 0.05

(c) Summarizing statistics (week). The last row shows the statistics for the
mean CPU utilization of all servers per observation time.

Figure 12.9. Statistics and probability density functions for CPU utilization

Figure 12.9c, front-end server FE1 has the lowest mean CPU utilization
(2%), followed by front-end server FE0 (6%) and application server AS1 (7%).
The measurements for FE0 and AS0 have a similar distribution. The CPU
utilization of application server AS0 shows a considerably higher mean value
(29%) and standard deviation. Relative to their mean values, the standard
deviations for the other three servers is also quite high.

In general, it can be concluded, that the CPU utilization of all four
servers—also in light of the higher measurements for AS0—is extremely
low. This is particularly true for both front-end nodes FE1 and FE0, whose
utilization is less or equal 0.03 and 0.07 respectively for 75% of the time, as
well as less or equal 0.07 and 0.11 respectively for 95% of the time. Looking
at the mean CPU utilization of all four servers every 5 minutes, it can be

221

12. Industrial Case Study

observed that this value is less or equal 0.14 during 75% of the time and
less or equal 0.34 during 95% of the time (last row in Figure 12.9c).

12.7 Summary of Results

In this case study, we employed the Kieker and SLAstic frameworks to
instrument, monitor, and analyze a typical distributed Java EE-based en-
terprise application system (EAS). The Kieker-based instrumentation was
used to monitor performance and trace information. Monitoring data from
production use was collected over a period of more than seven months.
This data was (pre-)processed by the Kieker and SLAstic frameworks for
performance and workload characterization, as well as extraction of Kieker
and SLAstic models. We observed and quantified varying workloads and
low CPU resource utilization in the production data.

With respect to the addressed evaluation questions EQ1 (Is the overall
approach applicable to realistic scenarios?) and EQ2 (Does the approach have the
desired properties?) we come to the following conclusions:

• EQ1: The performance evaluation revealed that the system is exposed to
a varying workload intensity (EM1.1.1) and that the system’s resources
in terms of CPU utilization is very low (EM1.1.2). No perceivable per-
formance overhead and stability issues caused by our monitoring were
reported in this case study (EM1.2). We experienced that both the ex-
tracted Kieker and SLAstic models provide useful views to the case
system’s architecture in terms of structure and behavior (EM1.3). With
respect to the structure, the web service functionality is automatically
extracted as architectural components. However, based on a model re-
finement, they could be transformed into connector elements. Note that
when using our model-driven instrumentation approach described in
Section 9.1, this manual refinement would not be necessary. The sepa-
ration of architecture and technology turned out to work well for this
case study (EM1.4). Note that we had no access to system source code
and deployment environment but were able to extract the architectural
information solely based on the monitoring data.

• EQ2: The frameworks’ extensibility (EM2.1) and reusability (EM2.2)
could be exploited to a high degree. Several extensions to Kieker were

222

12.7. Summary of Results

developed as part of this case study, e. g., Monitoring Probes for distributed
tracing via web service calls. The RRD-based monitoring infrastructure for
CPU utilization, which was already present in the system, was integrated
into Kieker by developing a respective adapter that transforms the data
into respective Kieker Monitoring Records. Large parts of the existing
framework parts could simply be used or have been further refined for
reuse—also for/from further case studies and lab experiments. The
MDSE techniques could successfully be employed to extract architectural
models of the case study system (EM2.4). The offline analysis of the data
set required a considerable amount of processing time. This has also been
investigated by Fittkau et al. [2013] who developed first improvements.
However, for our offline analysis in the case study setting, Kieker’s trace
analysis performance was sufficient.

Threats to Validity Threats to external validity particularly concern the
size of the of the case study system and the fact that we considered only
a single system in this chapter. We are aware that EASs of much larger
size exist, consisting of hundreds or thousands of servers instead of the
four servers in this systems. However, we argue that the considered system
can be considered a representative for this class of EASs. We conducted
similar case studies with other production systems—particularly in the
Kieker context, as detailed in Chapter 15. Also, Kieker has been integrated
into a company’s MDSE platform conforming to the approach by Stahl and
Völter [2006]. With respect to internal validity, we assessed most of the
qualitative measures by evaluating our own approach, e. g., its extensibility
and reusability. However, we argue that similar reuse and extension of
our approaches has been conducted by other researchers and practitioners,
as, for instance, detailed in Chapter 15. Other internal threats include
that a) different Kieker versions were used throughout the observation
period, b) broken traces traces were removed from the monitoring log, and
c) only a single week of the observation data was used for the performance
characterization. We did not fully analyze the reason for the occurring
broken traces. However, as distinct steps of decreasing broken traces
can be observed in the data (Figure 12.2), we assume that refined Kieker
versions fixed the problem. As mentioned in Section 12.4, the number of
broken traces compared to the total number of traces (✓ 1%) is negligible—

223

12. Industrial Case Study

particularly, knowing that the majority of these traces occurred in the
beginning of the observation period with a second decrease in March. The
selected week for the workload characterization is from April, i. e., contains
a low number of broken traces. In our opinion, the selection of a single
week does not have a big impact on the results, as a varying workload
intensity can be observed in Figure 12.3a (number of valid traces per day)
for the complete observation period. The selected week in April includes an
average workload intensity compared to the rest of the observation period
(looking at the values starting from March).

224

Chapter 13

Lab Experiments

This chapter presents the results of applying our developed approach in a
lab experiment. SLAstic is employed to control the capacity of a Java EE-
based sample application deployed to an Eucalyptus-based IaaS cloud
environment (Section 3.3.2).

This chapter is structured as follows. Section 13.1 describes the con-
ducted evaluation methodology. Sections 13.2 to 13.4 present the experi-
mental setting, the developed framework extensions, and the experimental
results. Section 13.5 provides a summary of results for the lab experiments.
This chapter includes contents of joint work with Fittkau [2011] and Huber
et al. [2012, 2014] (cf. Section 5.3).

13.1 Evaluation Methodology

In our experiment, we expose a Java-based enterprise application, deployed
to a Eucalyptus-based IaaS cloud infrastructure, to a synthetic probabilis-
tic workload with varying intensity based on a 24-hour workload profile
obtained from an industrial system. The SLAstic framework is used to
control the capacity of the application, aiming for increased resource effi-
ciency. Based on a rule-based adaptation policy, application instances are
added and removed based on continuously obtained performance measure-
ments about the workload intensity. The experiment is executed in two
scenarios—with (Scenario 1) and without (Scenario 2) adaptive capacity
management.

This experiment primarily serves to address the questions EQ1 (Is the
overall approach applicable to realistic scenarios?), and EQ2 (Does the approach
have the desired properties?), as introduced in Section 5.2.5.

225

13. Lab Experiments

• With respect to EQ1, we cover the following evaluation measures:

• EM1.2 (Perturbation by application monitoring): The monitoring overhead
imposed by Kieker is evaluated on a qualitative scale.

• EM1.3 (Suitability of modeling language): We evaluate whether the pro-
posed SLAstic meta-model is able to provide an abstract view on the
sample system’s architecture.

• EM1.4 (Suitability of separating architecture and technology): We evaluate
whether the separation of architecture and technology is suitable for
the IaaS-based lab environment.

• With respect to EQ2, we cover the following measures:

• EM2.1 (Extensibility of framework for specific purposes and technologies): In
order to use the Kieker and SLAstic frameworks for this experiment,
extensions for monitoring (EM2.1.2), analysis (EM2.1.3), and reconfig-
uration (EM2.1.4) need to developed. By doing this, we evaluate the
extensibility of our frameworks.

• EM2.2 (Reusability of framework): We investigate to what degree existing
parts of our frameworks can be reused for the lab experiment, particu-
larly in terms of modeling languages (EM2.2.1), monitoring (EM2.2.2),
analysis (EM2.2.3), and reconfiguration (EM2.2.4).

• EM2.3 (Suitability of reconfiguration operations): We integrate the SLAstic
framework with the Eucalyptus infrastructure, including a technology-
specific implementation of the SLAstic reconfiguration operations de-
allocation and allocation of execution containers, as well as replication
and dereplication of software components (Chapter 10). A quantitative
evaluation investigates their potential to increase resource efficiency
(EM2.3.1) and their transparency (EM2.3.2).

• EM2.4 (Suitability of MDSE techniques): By applying the developed
MDSE techniques for model extraction to the lab system, we evaluate
their suitability.

As for the case study (Chapter 12), many of the measures are evaluated
on a qualitative scale by demonstrating the applicability of the developed
approaches based on the implemented (proof-of-concept) implementations
as part of the Kieker and SLAstic frameworks.

226

13.2. Experimental Setting

OpenJMS Server

SLAstic Instance

Vers. 0.7.7b

Sy
st

em
: S

un
 B

la
de

 X
62

70
C

PU
:

2

x
In

te
l X

eo
n

E5
54

0

 (4

-c
or

e
2.

53
G

H
z)

R
AM

:
 1

2x
2G

B
D

D
R

3
O

S:

 D

eb
ia

n
Le

nn
y

Adaptation Controller

HTTP

Tomcat Server

Ve
rs

. 6
.0

.1
8

Sy
st

em
: S

un
 B

la
de

 X
62

70
C

PU
:

2

x
In

te
l X

eo
n

E5
54

0

 (4

-c
or

e
2.

53
G

H
z)

R
AM

:
 1

2x
2G

B
D

D
R

3
O

S:

 S

ol
ar

is
 1

0

Workload Generation
& Load Balancing

JMeter
(Markov4JMeter)

Ve
rs

. 2
.4

Load Balancer

HTTP

Eucalyptus IaaS Cloud

Eucalyptus CLC

System: Sun Blade X6240
CPU: 2 x AMD Opteron 2384
 (4-core 2.7GHz)
RAM: 8x2GB DDR2
OS: Debian Squeeze

Cloud Controller

Eucalyptus NC
System: Sun Blade X6240
CPU: 2 x AMD Opteron 2384
 (4-core 2.7GHz)
RAM: 8x2GB DDR2
OS: Debian Squeeze

Eucalyptus
Node

Tomcat Server

Type: m1.small
#CPUs: 1
RAM: 1024MB
OS: Ubuntu
EMI: 28820CF4

Eucalyptus Instance

Kieker
Vers. 1.3

JPetStore
Vers. 5 (iBATIS)

HSQLDB
Vers. 1.8

Ve
rs

. 6
.0

.1
8

Vers. 2.0.3
SOAP

JMS

HTTP

SSH

Figure 13.1. Overview of the experiment infrastructure

13.2 Experimental Setting

Section 13.2.1 provides a detailed description about the software and hard-
ware infrastructure, including the instrumented sample enterprise appli-
cation, its deployment to the Eucalyptus-based IaaS infrastructure (see
page 33), as well as the workload generator and the integration of the
SLAstic framework for online capacity management. The two experiment
scenarios, including the workload curve and the rule-based adaptation strat-
egy, are detailed in Section 13.2.2. Note that the extensions for the SLAstic
framework that have been developed for this experiment are described in
Section 13.3.

13.2.1 Software and Hardware Environment

Figure 13.1 depicts the technical experiment infrastructure in terms of
hardware and software components as well as connections among these—
including additional information on hardware equipment, version numbers,
and protocols.

227

13. Lab Experiments

In total, the infrastructure comprises four physical machines, which are
part of the Software Performance Engineering Lab (SPEL) at Kiel Univer-
sity’s Software Engineering Group.1 A first machine (Adaptation Controller)
hosts an instance of the SLAstic framework that controls the adaptation and
receives Kieker monitoring records via the JMS server deployed to the same
machine. A second machine (Workload Generation and Load Balancing)
hosts the workload generator and the load balancer. The Eucalyptus cloud
is hosted by the remaining two machines—one of which (Cloud Controller)
hosts the Eucalyptus Cloud Controller (CLC) that manages Eucalyptus
instances being dynamically created and released on the other machine
(Eucalyptus Node). Each Eucalyptus instance hosts a Kieker-instrumented
instance of the JPetStore sample application, connected to an HSQLDB
DBMS. The maximum number of parallel Eucalyptus instances is limited
to eight.

The remainder of this section provides further details on a) the JPetStore
sample application, b) the load balancing approach, c) and the workload
generation.

JPetStore Sample Application The iBATIS JPetStore 5 is a distributed
Java EE application that represents a typical online shopping system—in
this case offering pets. An HTML-based web interface enables to perform
typical use cases, such as signing in and off, browsing through the product
catalog, maintaining a virtual shopping cart, and purchasing an order.
The technical architecture comprises a common 3-tier structure for web
applications with a presentation layer, a service layer, and persistence layer
connected to a DBMS. Building on Java EE web technologies, the JPetStore
needs to be deployed to an Application Server (Section 3.3.1)—in our case
an Apache Tomcat Servlet container. The persistence layer connects to a
relational DBMS—in our case HSQLDB. A more detailed description of the
application w.r.t. its use cases and technical architecture can be found in
our previous works [van Hoorn, 2007; van Hoorn et al., 2008].

The iBATIS JPetStore has been developed to demonstrate the capabilities
of the Apache iBATIS persistence framework. Since its first use as part of
my Diploma thesis [van Hoorn, 2007], we have used the application for
experiments in many contexts—including teaching and research (e. g., [van

1
http://www.se.informatik.uni-kiel.de/en/research/software-performance-engineering-lab-spel/

228

http://www.se.informatik.uni-kiel.de/en/research/software-performance-engineering-lab-spel/

13.2. Experimental Setting

Hoorn et al., 2008; Gul et al., 2008; Marwede et al., 2009; Rohr et al., 2010]).
In the meantime, iBATIS has been retired and superseded by a successor,
called MyBatis. The respective successor of iBATIS JPetStore 5 is the My-
Batis JPetStore 6. However, despite of the replaced persistence framework,
the application has experienced no major changes. For quite some time
already, the JPetStore (originally the iBATIS version; in the meantime, the
MyBatis version) is part of each Kieker release to demonstrate its use for
Java EE-based applications in the user guide [Kieker Project, 2014a]. The
version used in this experiment is the version included in the Kieker release
1.3, which was the most recent version when performing these experiments.
The JPetStore is based on the Java Pet Store sample application, which has
originally been developed by Sun Microsystems to demonstrate the capabil-
ities of Java EE (then referred to as J2EE). The Java Pet Store application has
a long tradition of being used by researchers in experimental evaluations
(e. g., by [Chen et al., 2002; Juse et al., 2003; Shams et al., 2006]).

We modified the JPetStore by a) adding monitoring instrumentation and
b) adding a component to increase the CPU resource demands, as detailed
below:

• Instrumentation. The JPetStore includes a Kieker-based instrumentation
for monitoring operation executions, CPU utilization, and memory usage
(Chapter 7). For monitoring operation executions, we employ the AspectJ-
based (load-time weaving) and Servlet-based probes. We instrumented
all 40 non-trivial operations (i. e., excluded getter and setter methods) for
instrumentation by annotation (@OperationExecutionMonitoringProbe). The
Servlet probe is used to monitor executions of the application entry
point. A second Servlet probe is used to activate the monitoring of
CPU and memory usage in intervals of 15 seconds. As detailed in
Chapter 7, the respective probes produce the monitoring records of
type OperationExecutionRecord, CPUUtilizationRecord, and MemSwapUsageRecord.
Depending on the two experiment scenarios (Section 13.2.2), Kieker is
configured to send monitoring records either to the file system or to the
JMS server.

• Additional CPU Demands. In order to increase the complexity of the
application in terms of the CPU demands, we added an additional com-
ponent, called ComplexityService. It provides a single method that, when
executed, performs a CPU-intensive computation based on a sequence of

229

13. Lab Experiments

trigonometric functions applied to a random number. Without concurrent
executions, this computation takes one millisecond on the experiment in-
frastructure. This method is invoked once by each service of the JPetStore
components CatalogService, OrderService, AccountService at the beginning
of their executions.

Load Balancing In order to distribute the HTTP requests by the workload
generators across the active JPetStore instances, we developed a basic load
balancer. It maintains a list of host names referring to active application in-
stances. Via a web-based UI, host names can be created and removed, which
is done by the SLAstic framework when creating and removing respective
application instances. For each new emulated user, the workload generator
queries the workload generator for a host name, which is randomly selected
based on the uniform distribution among the registered host names. The
load balancer is part of the SLAstic framework and implemented based on
Java Servlet technology.

Workload Generation For the workload generation, we use the estab-
lished Apache JMeter tool, including our Markov4JMeter extension for
probabilistic and intensity-varying workload [van Hoorn et al., 2008]. With
respect to the probabilistic navigation profile, we use the workload model for
the JPetStore that has been described in our publication on Markov4JMeter
[van Hoorn et al., 2008]. We slightly modified the workload model so that
at the beginning of a new user session the host name is queried from the
load balancer. Details on the workload intensity will be provided in the
following Section 13.2.2.

13.2.2 Workload Curve and Scenarios

In this experiment, we make the assumption that we have a good under-
standing of the correlation between application-level workload intensity—in
this case, the number of requests to a software component per minute—and
the CPU utilization. For each software component, we define a rule set
specifying the number of component instances to be provided at certain
workload intensity levels, e. g., five instances in periods with a workload

230

13.2. Experimental Setting
0

5
0

1
0
0

1
5
0

0 5 10 15 20
Experiment time (minutes)

A
c
ti
v
e
 s

e
s
s
io

n
s

Figure 13.2. Varying workload intensity specification for the experiment

intensity of 27, 000 requests per minute. Deviations between the number of
component instances specified in the rule set and the number of instances
actually allocated, trigger the SLAstic framework’s Adaptation Planner to
create an adaptation plan with the goal to achieve the requested architec-
tural configuration. This plan is then sent to the Reconfiguration Manager
for execution. This section details the workload intensity curve and the two
experiment scenarios.

Workload Intensity Curve

Figure 13.2 depicts the workload intensity function used in the experiment.
It specifies the number of concurrent user sessions over time to be emulated
by the workload generator.

The workload intensity function mimics a workload intensity pattern
that is representative for many web-based software systems
(cf. Section 12.6.1): the intensity increases until a first peak at noon, which
is followed by a second lower peak in the afternoon and a third peak in
the evening; during the night, the intensity decreases considerably. We
derived this function from 24-hour workload intensity data of an industrial
production system that has been monitored with Kieker and scaled it on
both experiment time and workload intensity dimension. With respect
to time, we scaled the duration from the original 24 hours to 24 minutes
experiment time, i. e., each experiment minute maps to a corresponding
hour of the original data. With respect to the workload intensity, we scaled
the curve to a maximum number of 158 concurrent sessions based on a
preparative experiment in which we linearly increased the workload inten-
sity to determine the adequate capacity with six JPetStore instances. This

231

13. Lab Experiments

workload intensity specification has been used by us in other experiments
before (e. g., [Rohr et al., 2010]), using different scale factors.

Scenario 1 (Fixed Number of Nodes)

This scenario represents a static resource provisioning scenario, i. e., a fixed
number of Eucalyptus instances—each hosting a JPetStore instance—is
serving the requests from the workload generator throughout the entire
experiment. Based on an already-mentioned preparative experiment, we
determined a number of six instances to provide an adequate capacity for
the configured workload.

A shell script is used to create the six Eucalyptus instances and regis-
tering them in the load balancer before starting the scenario. Each of the
six Kieker instances is configured to write the monitoring data to the local
file system. Hence, the SLAstic-based Adaptation Controller is not used
during the execution of this scenario. However, after having collected the
resulting monitoring logs from the six instances, they are processed by the
framework in an offline mode (cf. Section 8.6.2).

Scenario 2 (Varying Number of Nodes)

This scenario represents an adaptive online capacity scenario, i. e., the num-
ber of Eucalyptus instances is changed dynamically based on the workload
intensity (Figure 13.6a). We configured a rule-based adaptation strategy
based on the arrival rate of requests to the JPetStore’s entry level opera-
tion (assembly-level). Based on preparative experiments, we determined
baseline bounds with steps of 5,000 requests. For instance, two instances
provide an adequate capacity at a workload intensity level of 5,000 requests;
three instances, provide an adequate capacity at a workload intensity level
of 10,000 requests; etc.. Table 13.1 lists the rules for determining the number
of instances to be provisioned based on the workload intensity. So far,
only the center entry is relevant. Further details on the adaptation strategy
(including also the lower and upper values) and its implementation will be
provided in Section 13.3.3.

Just before starting the experiment, an initial application instance is
started and registered with the load balancer. SLAstic is configured to obtain

232

13.3. Framework Extensions

Table 13.1. Baselines used for rule-based adaptation planning

Workload intensity bounds Instance

Lower Center Upper count

0 0 200 1

3,000 5,000 7,000 2

8,000 10,000 12,000 3

13,000 15,000 17,000 4

18,000 20,000 22,000 5

23,000 25,000 27,000 6

:EuApplication
 CloudService

HTTP

eventNotifier
SOAP

IApplication
CloudService

HTTP
SSH«ReconfigurationManager»

:AppCloudReconfiguration Manager

Technology/
Architecture
Translation

Reconfig-
 uration

«AdaptationPlanner»
:RuleBasedAdaptationPlanner

:WorkloadIntensityRuleEngine:ConfigurationManager

CEP Engine
+ Timer

Model
Manager

Load Balancer

Eucalyptus CLC

Eucalyptus Instance

Application

Figure 13.3. SLAstic framework extensions for the lab experiment

monitoring records via JMS and to automatically allocate or deallocate
JPetStore instances based on the afore-mentioned rules.

13.3 Framework Extensions

In order to integrate the SLAstic framework with Eucalyptus cloud infras-
tructures and to realize a rule-based adaptation strategy, we developed three
components: a) a cloud API with a Eucalyptus-specific implementation,
b) a Reconfiguration Manager, and c) an Adaptation Planner. Figure 13.3
depicts these components (bold font style) and their integration. Referring
to Figure 13.1, these components are part of the SLAstic instance. They will

233

13. Lab Experiments

ApplicationCloudService

CloudNodeType

CloudNode Deployment

CloudedApplication
IApplication
CloudService

ApplicationInstanceEuCloudNodeType

EuApplicationCloudService EuCloudedApplication

EuCloudNode

EuApplicationInstance

* deployments

instances
*

node

1
allocated
Nodes *

1 type

application
1

application
1

*

node
Types*

*

CloudedApplicationConfiguration

ApplicationInstanceConfiguration

1

1

EuCloudedApplicationConfiguration

configuration

configuration

EuApplicationInstanceConfiguration

applications*

*

IApplicationCloudService

allocateNode(...)
deallocateNode(...)
createAndRegisterApplication(...)
removeApplication(...)
deployApplicationInstance(...)
undeployApplicationInstance(...)
...

ApplicationCloudServiceConfiguration
1

configuration
EuApplicationCloudServiceConfiguration

Figure 13.4. Cloud API and Eucalyptus-specific implementation (gray classes)

be described in the following Sections 13.3.1 to 13.3.3 and are available as
part of the SLAstic framework [van Hoorn, 2014].

13.3.1 Cloud API and Eucalyptus-specific Implementation

Instead of integrating the SLAstic framework directly with the Eucalyp-
tus cloud interfaces, we decided to develop an abstraction layer, which
aims to ease the integration with other IaaS platforms similar to Eucalyp-
tus. This abstraction layer comprises a vendor-independent API in form
of a service interface (IApplicationCloudService) based on a set of—mainly
abstract—data classes, as well as an abstract implementation of the inter-
face (ApplicationCloudService). In order to use this API to integrate with
the Eucalyptus platform, we developed a concrete Eucalyptus-specific in-
stance of this API. The vendor-independent API and the Eucalyptus-specific
extensions are depicted in Figure 13.4.

The meta-model underlying the API (Figure 13.4) allows to represent
IaaS-based environments used to deploy multiple instances of application
services. The environment provides a set of node types (e. g., virtual ma-
chine types and images) and corresponding nodes instances (e. g., allocated
virtual machines), as well as application services and corresponding in-
stances deployed to respective node instances. The interface provides a set
of operations that serve to communicate with the respective cloud platform

234

13.3. Framework Extensions

and other technical services, e. g., load balancers and Application Servers.
Example operations include the instantiation or termination of virtual ma-
chines, as well as the instantiation of application instances. The abstract
implementation of the interface already includes abstract implementations
of these operations, which mainly serve to maintain the instance of the un-
derlying meta-model. Vendor-specific implementations of the API, e. g., for
Eucalyptus or AWS, must add the logic to communicate with the respective
cloud platform.

As mentioned before, we implemented a version of this API that serves
to integrate with Eucalyptus but also with the remaining parts of our tech-
nical experiment infrastructure (Section 13.2.1), including the load balancer
and the Tomcat server. To give an example of required extensions to the
meta-model, the Eucalyptus-specific class for a node type (EuCloudNodeType)
includes the EMI identifier; the class for a node instance includes an IP ad-
dress, a host name, and the instance identifier as returned by the Eucalyptus
Cloud Controller (CLC) after instantiation. As an example of Eucalyptus-
specific implementations of a service operation, the allocation of a node in-
volves a) a Eucalyptus call to create a virtual machine (euca-run-instances),
b) waiting for the machine to become available, c) setting and fetching a
host name via SSH, and d) updating the internal data model. As a second
example, the deployment of an additional application instance involves
a) the deployment of the application artifact via SCP, b) waiting for the
application to become available, and c) adding the instance to the load
balancer.

13.3.2 Reconfiguration Manager

In order to integrate the SLAstic framework with a specific platform—in
this case, the Eucalyptus-based experiment infrastructure—it is required to
develop a concrete Reconfiguration Manager. Such concrete Reconfiguration
Manager extends the abstract Reconfiguration Manager already included
in the SLAstic framework (Section 8.5)—which already handles a common
part of executing reconfiguration plans, including rollbacks, changes to
the SLAstic runtime model, etc.—by technology-specific functionality. As
depicted in Figure 13.3, the developed Reconfiguration Manager uses the
cloud API described in the previous Section 13.3.1. The basic procedure
is to translate the architecture-level SLAstic reconfiguration operations (cf.

235

13. Lab Experiments

Chapter 10) executed as part of the interpretation of an adaptation plan into
technology-specific actions using the technology/architecture translation
and the cloud API in three steps: a) for each architectural model entity
(e. g., ExecutionContainer) contained as parameter of the requested reconfig-
uration operation (e. g., component replication), lookup the identifier of
the corresponding technical entity (e. g., CloudNode) using the technology/ar-
chitecture translation (Section 8.2.8); b) looking up the concrete technical
entities (e. g., CloudNode) based on the identifier using the cloud API; c) trig-
ger the execution of the technical reconfiguration using respective calls to
the cloud API (e. g., deployApplicationInstance). As part of the execution,
the Reconfiguration Manager updates the SLAstic runtime model.

13.3.3 Adaptation Planner

We developed an Adaptation Planner that implements the adaptive capacity
management strategy described in Section 13.2.2 (Scenario 2). As depicted
in Figure 13.3, the Adaptation Planner’s core components are a rule engine
and a configuration manager. A rule set defines the number of Deployment
Components to provision for an Assembly Component with respect to
given workload intensity levels. The workload intensity refers to the num-
ber of calls to operations provided by an Assembly Component per time
interval—regardless of which Deployment Component services the request.
The rule engine regularly receives workload intensity measurements and
evaluates the rule sets. In case a change of the number of Deployment
Components is needed, the connected configuration manager is triggered
to increase or decrease the number of Deployment Components for the
affected Assembly Component. The configuration manager is connected to
a Reconfiguration Manager—in this case the cloud Reconfiguration Man-
ager (Section 13.3.2)—which receives and executes the adaptation plans
produced by the Adaptation Planner. Note that the used monitoring events
are a result of the transformation described in Section 9.2.

A rule set exists for each Assembly Component whose capacity is to
be controlled at runtime. Each rule set includes a function nextBaseline:
(x, b) ÞÑ b✶, with x being a workload intensity level and b being a baseline
tuple (u, c, l, n), consisting of upper (u), center (c), and lower (l) workload
intensity levels, as well as a node count (n); Let b✶ = (u✶, c✶, l✶, n✶). If x ➙ l

236

13.3. Framework Extensions

select current_timestamp as currentTimestampMillis,

deploymentComponent.assemblyComponent, count(*)

from DeploymentComponentOperationExecution.win:time(60 seconds)

where deploymentComponent.assemblyComponent.packageName

= "com.ibatis.jpetstore.web"

and deploymentComponent.assemblyComponent.name

= "DispatcherServlet"

group by deploymentComponent.assemblyComponent

output all every 60 seconds

Figure 13.5. CEP query to compute invocation counts for an AssemblyComponent

and x ↕ u, then b✶ = b; else b✶ is the baseline with the greatest c, for
which c ↕ x (i. e., a floor lookup on an ordered set). For each Assembly
Component, the rule engine maintains the current baseline, starting with a
workload intensity of 0. For an incoming workload intensity value (for an
Assembly Component), the next baseline is determined using the function
nextBaseline. The configuration used for this experiment (Scenario 2) is
listed in Table 13.1.

The rule engine receives workload intensity events from the SLAstic
framework’s CEP engine (Section 8.4.1). Figure 13.5 shows a respective
CEP query specified in EPL (page 132), which serves to obtain the number
of operation executions for each Assembly Component—in this case the
JPetStore’s entry-level component invocations in 60 second intervals. A
result for this query—determined by the three components in the select

statement—comprises the current time, the Assembly Component, and the
invocation count. The rule engine triggers the configuration manager to
enforce the newly desired capacity (as detailed above).

In this lab experiment, we assume that an Assembly Component has a
dedicated Execution Container. Hence, in order to increase capacity, the
configuration manager creates an adaptation plan with a loop (iteration
count equals the number of instances to add) of a) an Execution Container
allocation operation, and b) an Assembly Component replication operation
request for the given Assembly Component to the previously allocated
Execution Container; likewise, for the decreasing capacity an adaptation

237

13. Lab Experiments

plan is created that comprises a loop (iteration count equals number of
instances to remove) of a) a Deployment Component dereplication operation,
and b) an Execution Container deallocation operation. Constraints can
be configured to limit the maximum number of Execution Containers per
Execution Container Type and to specify what Execution Container Type is
to be allocated for which Assembly Component.

13.4 Experimental Results

Section 13.4.1 starts with an initial description of the performance results
for both scenarios, including the introduction of the data visualization
used in this section as well as observations common to both scenarios.
Sections 13.4.2 and 13.4.3 provide a more detailed discussion of scenario-
specific results. A quantitative analysis of the increase of resource efficiency
gained by adaptive capacity management in this experiment follows in
Section 13.4.4.

13.4.1 Initial Description of Performance Results

Figure 13.6 (on page 240) shows relevant performance measurements for
the Scenarios 1 and 2.

• Figure 13.6a shows the measured workload intensities for both scenarios
in terms of the request arrival rate at the application’s entry point. The
measured workload intensity curve for Scenario 1 is smooth and appears
proportional to the workload intensity specification, which is based on
the number of active user sessions (Figure 13.2). For Scenario 2, the
workload intensity curve particularly differs from the other curve during
experiment minutes eight to thirteen.

• Figure 13.6b shows the average response time of the application’s entry
point for both scenarios. For both scenarios, peak values can be observed
at the experiment start time. For Scenario 2, peak values can also be
observed at five other points in time.

• Figures 13.6c and 13.6d show the average CPU utilization measurements
and the number of allocated nodes throughout the experiment time. The
average CPU utilization has been calculated by adding the individual

238

13.4. Experimental Results

CPU utilization values for the allocated nodes and dividing this sum by
the number of allocated nodes. For Scenario 1, the number of allocated
server nodes is at a constant number of six throughout the experiment
(Figure 13.6c). For Scenario 2, the number varies between one and six
based on the adaptive capacity management (Figure 13.6d). The CPU
utilization statistics for Scenario 2 show higher values than the statistics
for Scenario 1, e. g., mean 0.21 vs. 0.10, maximum 0.64 vs. 0.33, and
standard deviation 0.14 vs. 0.068.

Moreover, Figures 13.7 and 13.8 (pages 241 and 243) show deployment
component dependency graphs extracted from the monitoring data of
Scenario 1 and 2 respectively.

Due to an error in the experiment setup of Scenario 2, the deallocation
operations were not successfully executed. Hence, starting from experiment
minute 23, the number of nodes stays at a fix number of six nodes. In our
opinion the impact of this error on the results described is negligible. For
the further analysis in this chapter, we rescaled the CPU measurements
reflecting a proportional approximation of the CPU utilization for the
desired number of servers based on the CPU utilization of the actually
allocated servers. These values are included in Figure 13.6d. The original
measurements for the affected period correspond to the ones for Scenario 1
(Figure 13.6c). The measurements for the arrival rates are not affected. The
response time measurements are the actually obtained measurements based
on the erroneous configuration. The same holds for the information about
the weighted calling dependencies depicted in Figure 13.8.

13.4.2 Scenario 1

As mentioned before, both the CPU utilization and the response times in
Scenario 1 show peak measurements at the beginning of the experiment.
This effect is typical for Java applications when classes are used for the
first time due to initial JVM operations, such as class loading. These initial
operations cause both high CPU utilization and high response times. In
addition to the initial peaks, both response times and CPU utilization show
varying values that can be explained by the varying workload intensity
the system is exposed to. However, the response times during experiment
minutes two and six are unexpectedly high given the low workload intensity

239

▼❛①✐♠✉♠ ♥✉♠❜❡r ♦❢ ✐♥st❛♥❝❡s ✽

❈P❯ ❝♦r❡s ♣❡r ✐♥st❛♥❝❡ ✶

❘❆▼ ♣❡r ✐♥st❛♥❝❡ ✶✵✷✹ ▼❇

❈P❯ t②♣❡ ✷① ❆▼❉ ❖♣t❡r♦♥ ✷✸✽✹ ✇✐t❤ ✷✳✼ ●❍③

❘❆▼ t②♣❡ ❉❉❘✷✲✻✻✼

◆❡t✇♦r❦ ✶ ●✐❣❛❜✐t

❚❛❜❧❡ ✶✳ ❖✉r ❊✉❝❛❧②♣t✉s ❝♦♥✜❣✉r❛t✐♦♥

✺✳✹ ❙❝❡♥❛r✐♦s

❚❤❡ ❡①♣❡r✐♠❡♥t ✇✐❧❧ ✐♥❝❧✉❞❡ t✇♦ s❝❡♥❛r✐♦s✳ ❚❤❡ ✜rst s❝❡♥❛r✐♦ ✇✐t❤ ❛ ✜①❡❞ ♥✉♠✲
❜❡r ♦❢ ♥♦❞❡s ✇✐t❤♦✉t ❙▲❆st✐❝ ✐s t❤❡ ❝♦♥tr♦❧ s❝❡♥❛r✐♦✳ ■♥ t❤❡ s❡❝♦♥❞ s❝❡♥❛r✐♦✱
❙▲❆st✐❝ ✇✐❧❧ ❜❡ ✉s❡❞ ❢♦r ❛✉t♦♠❛t✐❝ s❝❛❧✐♥❣ ♦❢ ❏P❡t❙t♦r❡✳ ❆❢t❡r ❞❡s❝r✐❜✐♥❣ t❤❡
✉s❡❞ ✇♦r❦❧♦❛❞ ✐♥t❡♥s✐t②✱ t❤❡ t✇♦ ❢♦r♠❡r ♠❡♥t✐♦♥❡❞ s❝❡♥❛r✐♦s ❛r❡ ❞❡s❝r✐❜❡❞ ✐♥
❞❡t❛✐❧✳

Workload Intensity

Experiment time [minutes]

00 02 04 06 08 10 12 14 16 18 20 22 24 26

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

3
5
0
0
0

A
rr

iv
a
l
ra

te

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

3
5
0
0
0

A
rr

iv
a
l
ra

te

Arrival rate with a fixed number of nodes

Arrival rate with a varying number of nodes

❋✐❣✳ ✸✳ ❚❤❡ ✉s❡❞ ❞❛②✲♥✐❣❤t✲❝②❝❧❡ ✇♦r❦❧♦❛❞ ✐♥t❡♥s✐t② ✇❤❡r❡ ♠✐♥✉t❡s ♠❛♣ t♦ ❤♦✉rs
♦❢ ❛ ❞❛②

❋✐❣✉r❡ ✸ ♣r❡s❡♥ts t❤❡ ❣❡♥❡r❛t❡❞ ✇♦r❦❧♦❛❞ ❢♦r ❜♦t❤ s❝❡♥❛r✐♦s ❛s ❞❡r✐✈❡❞ ❢r♦♠
t❤❡ ♠❡❛s✉r❡♠❡♥t ❞❛t❛✳ ❚❤❡ ✇♦r❦❧♦❛❞ ✐♥t❡♥s✐t② ❢✉♥❝t✐♦♥ ♦r✐❣✐♥s ❢r♦♠ t❤❡ ❚❤✉rs❞❛②✲
✇♦r❦❧♦❛❞ ♦❢ ❛ ❈❡❲❡✲❈♦❧♦r✲s②st❡♠ ❬✶✾❪✳ ■t ❝♦♥❢♦r♠s t♦ ❛ t②♣✐❝❛❧ ❞❛②✲♥✐❣❤t✲❝②❝❧❡
✇♦r❦❧♦❛❞ ✐♥t❡♥s✐t② ❢♦r ♠♦st ✇❡❜s✐t❡s✳ ❚❤❡ ♠✐♥✉t❡s ♠❛♣ t♦ ❤♦✉rs ♦❢ ❛ ❞❛②✳ ■♥ t❤❡

(a) Arrival rates (Scenarios 1 and 2)

Average Operation Response Times

Experiment time [minutes]

00 02 04 06 08 10 12 14 16 18 20 22 24 26

0
5

1
0

1
5

2
0

2
5

3
0

R
e
s
p
o
n
s
e
 t
im

e
 [
m

ill
is

e
c
o
n
d
s
]

0
5

1
0

1
5

2
0

2
5

3
0

R
e
s
p
o
n
s
e
 t
im

e
 [
m

ill
is

e
c
o
n
d
s
]

Average operation response time with a fixed number of nodes

Average operation response time with a varying number of nodes

❋✐❣✳ ✺✳ ❆✈❡r❛❣❡ r❡s♣♦♥s❡ t✐♠❡s

✷✼✳ ❲✐t❤ t❤❡ ❞❡❝r❡❛s❡✱ t❤❡ ❛❧❧♦❝❛t❡❞ ♥♦❞❡s✱ ❡①❝❡♣t t❤❡ ✜rst ♥♦❞❡✱ ❛r❡ t❡r♠✐♥❛t❡❞
✐♥ ♠✐♥✉t❡ ✷✸✱ ✷✹✱ ❛♥❞ ✷✺✳

❋✐❣✉r❡ ✺ ♣r❡s❡♥ts t❤❡ ❛✈❡r❛❣❡ r❡s♣♦♥s❡ t✐♠❡s ❛t t❤❡ ❡♥tr②✲❧❡✈❡❧ ♠❡t❤♦❞s✳ ❆t
t❤❡ ❜❡❣✐♥♥✐♥❣ t❤❡ ❛✈❡r❛❣❡ r❡s♣♦♥s❡ t✐♠❡s ❛r❡ ❛❜♦✈❡ ✶✺ ♠s✳ ❯♥t✐❧ ♠✐♥✉t❡ t❡♥✱
t❤❡ ❛✈❡r❛❣❡ r❡s♣♦♥s❡ t✐♠❡s ❛r❡ ❜❡❧♦✇ t❤r❡❡ ♠s✳ ■♥ ♠✐♥✉t❡ t❡♥✱ t❤❡② ✐♥❝r❡❛s❡ t♦
✷✵ ♠s✳ ❚❤❡♥✱ t❤❡ ❛✈❡r❛❣❡ r❡s♣♦♥s❡ t✐♠❡s ❞r♦♣ ❛♥❞ ❛r❡ ❝♦♥st❛♥t❧② ❜❡❧♦✇ ❢♦✉r
♠s ✉♥t✐❧ ♠✐♥✉t❡ ✷✵✳ ■♥ ♠✐♥✉t❡ ✷✵✱ t❤❡r❡ ✐s ❛ s♠❛❧❧ r✐s❡ t♦ s❡✈❡♥ ♠s✳ ❚❤❡♥✱ t❤❡
❛✈❡r❛❣❡ r❡s♣♦♥s❡ t✐♠❡s ❞r♦♣ ❛❣❛✐♥ ❛♥❞ st❛② ❛r♦✉♥❞ t❤r❡❡ ♠s ✉♥t✐❧ ♠✐♥✉t❡ ✷✼✳

✺✳✻ ❉✐s❝✉ss✐♦♥ ♦❢ t❤❡ ❘❡s✉❧ts

■♥ t❤✐s s❡❝t✐♦♥ t❤❡ ❞❡s❝r✐❜❡❞ r❡s✉❧ts ❢♦r t❤❡ t✇♦ s❝❡♥❛r✐♦s ❛r❡ ❞✐s❝✉ss❡❞ ❛♥❞
❝♦♠♣❛r❡❞ t♦ ❡❛❝❤ ♦t❤❡r✳

❙❝❡♥❛r✐♦ ■✿ ❋✐①❡❞ ◆✉♠❜❡r ♦❢ ◆♦❞❡s ❚❤❡ ✜rst ♣❡❛❦ ✐♥ t❤❡ ❛✈❡r❛❣❡ ❈P❯
✉t✐❧✐③❛t✐♦♥ ✐s ❝❛✉s❡❞ ❜② t❤❡ ✜rst ❝❛❧❧s t♦ ❏P❡t❙t♦r❡✳ ❚❤❡s❡ ❝❛❧❧s ❝♦♥s✉♠❡ s♦♠❡
✐♥✐t✐❛❧✐③❛t✐♦♥ t✐♠❡✳ ❚❤❡ ♦t❤❡r ✐♥❝r❡❛s❡s ❛♥❞ ❞❡❝r❡❛s❡s ✐♥ t❤❡ ❛✈❡r❛❣❡ ❈P❯ ✉t✐✲
❧✐③❛t✐♦♥ ❛❝❝♦♠♣❛♥② ✇✐t❤ t❤❡ ✐♥❝r❡❛s❡s ❛♥❞ ❞❡❝r❡❛s❡s ✐♥ t❤❡ ✇♦r❦❧♦❛❞ ✐♥t❡♥s✐t②✳

❋♦r t❤❡ ❛✈❡r❛❣❡ r❡s♣♦♥s❡ t✐♠❡s✱ t❤❡r❡ ✐s ❛ ❤✐❣❤ ♣❡❛❦ ❛t t❤❡ ❜❡❣✐♥♥✐♥❣✳ ❚❤✐s ✐s
❛❣❛✐♥ ❝❛✉s❡❞ ❜② t❤❡ ✜rst ❝❛❧❧s t♦ ❏P❡t❙t♦r❡✱ ✇❤✐❝❤ t❛❦❡ s♦♠❡ ✐♥✐t✐❛❧✐③❛t✐♦♥ t✐♠❡✳
❆❢t❡r ♠✐♥✉t❡ t✇♦✱ t❤❡ ❛✈❡r❛❣❡ r❡s♣♦♥s❡ t✐♠❡s ❛r❡ ❝♦♥st❛♥t❧② ❜❡❧♦✇ ✜✈❡ ♠s✱ ✇❤✐❝❤
✐s ❛♥ ❛❝❝❡♣t❛❜❧❡ ✈❛❧✉❡ ❢♦r ❛✈❡r❛❣❡ r❡s♣♦♥s❡ t✐♠❡s✳

(b) Average response times (Scenarios 1 and 2)

Average CPU Utilization with a Fixed Number of Nodes

Experiment time [minutes]

00 02 04 06 08 10 12 14 16 18 20 22 24 26

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

C
P

U
 U

ti
liz

a
ti
o

n
 [

p
e

rc
e

n
t]

0
1

2
3

4
5

6
7

8

N
u

m
b

e
r

o
f

a
llo

c
a

te
d

 n
o

d
e

s

Average CPU utilization of allocated nodes

Number of allocated nodes

✭❛✮ ❙❝❡♥❛r✐♦ ■✿ ❋✐①❡❞ ♥✉♠❜❡r ♦❢ ♥♦❞❡s

✭❜✮ ❙❝❡♥❛r✐♦ ■■✿ ❱❛r②✐♥❣ ♥✉♠❜❡r ♦❢ ♥♦❞❡s

❋✐❣✳ ✹✳ ❆✈❡r❛❣❡ ❈P❯ ✉t✐❧✐③❛t✐♦♥ ♦❢ ❛❧❧♦❝❛t❡❞ ♥♦❞❡

♥♦❞❡ ❛r❡ ❛❧❧♦❝❛t❡❞✳ ❚❤❡♥✱ t❤❡ ❛✈❡r❛❣❡ ❈P❯ ✉t✐❧✐③❛t✐♦♥ ✐♥❝r❡❛s❡s ✉♥t✐❧ ♠✐♥✉t❡ ✶✾✱
✇❤❡r❡ t❤❡ ✜❢t❤ ♥♦❞❡ ✐s ❛❧❧♦❝❛t❡❞✳ ■♥ ♠✐♥✉t❡ ✷✵ ✐s ❛♥♦t❤❡r ♣❡❛❦ ❛♥❞ t❤❡ s✐①t❤
♥♦❞❡ ✐s st❛rt❡❞✳ ❆❢t❡r✇❛r❞s✱ t❤❡ ❛✈❡r❛❣❡ ❈P❯ ✉t✐❧✐③❛t✐♦♥ ❞❡❝r❡❛s❡s ✉♥t✐❧ ♠✐♥✉t❡

(c) Average CPU utilization (Scenario 1)

Average CPU Utilization with a Varying Number of Nodes

Experiment time [minutes]

00 02 04 06 08 10 12 14 16 18 20 22 24 26

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

C
P

U
 U

ti
liz

a
ti
o

n
 [

p
e

rc
e

n
t]

0
1

2
3

4
5

6
7

8

N
u

m
b

e
r

o
f

a
llo

c
a

te
d

 n
o

d
e

s

Average CPU utilization of allocated nodes

Number of allocated nodes

(d) Average CPU utilization (Scenario 2)

Figure 13.6. Selected performance measurements (Scenarios 1 and 2) [Fittkau, 2011]

Figure 13.7. Deployment Component dependency graph (Scenario 1)

13. Lab Experiments

during this time period. After the second experiment minute, the response
times are constantly below five milliseconds.

13.4.3 Scenario 2

Figure 13.6 includes the five points in time when additional application
instances are added to the system configuration, by executing the alloca-
tion and replication runtime reconfiguration operations. Remind that the
number of application instances is determined by the adaptation planner,
employing a rule-based strategy based on the measured workload intensity.
At least the impact of the changed configurations on the response times
(Figure 13.6b) is obvious in that peaks in the response time measurements
occur at the time of executing the reconfiguration operations. This effect
can again be explained by the initial calls to the newly allocated instances.
Also, peak values can be observed for the CPU utilization at these points in
time—even tough, these peaks are not that distinct. Due to the presentation
of average values, individual peaks have less impact when more instances
are already allocated.

Even though the same workload intensity curve is used in both scenarios,
the curves in Figure 13.6a particularly differ between experiment minutes
eight and thirteen. During this period, the first additional applications
instances are allocated. Compared to the arrival rate in Scenario 1, The curve
indicates that a number of arrivals occurring between experiment eight and
nine in Scenario 1 are shifted by one minute. This can be confirmed by the
information that the total number of arrivals is almost equal between both
scenarios. The total number of processed requests (corresponding to traces)
was slightly higher for Scenario 2 (328, 430 vs. 328, 260, i. e., ✓ +0.05%).
As a consequence, the same holds for the number of processed Kieker
monitoring records (1, 751, 412 vs. 1, 750, 855, i. e., ✓ +0.03%) and for the
number of monitored operation executions (1, 750, 638 vs. 1, 749, 414, i. e.,
✓ +0.07%). In this experiment, a closed (session-based) workload is used.
Hence, this actual workload intensity is the result of both the workload
specification used by the workload generator (Section 13.2.2) and by the
performance properties of the application, which (the latter) vary between
the scenarios due to the different capacities. As discussed before, right after
an executed reconfiguration, the performance properties like response times
need some time to stabilize after initial requests.

242

Figure 13.8. Deployment Component dependency graph (Scenario 2)

13. Lab Experiments

Costs

Experiment time [minutes]

00 02 04 06 08 10 12 14 16 18 20 22 24 26

2
4

6
8

C
o

s
ts

2
4

6
8

Scenario 1

Scenario 2

Figure 13.9. Costs for Scenarios 1 and 2

13.4.4 Quantification of Increased Efficiency

For this experiment, we were also interested in quantifying to what degree
the adaptive capacity management increases resource efficiency, e. g., w.r.t.
power. A common rule of thumb for power consumption of enterprise
servers is that the power consumption of an idle server is 50% of the
maximum amount of power it consumes when being 100% utilized, and
that the power consumption is proportional to the utilization (see, e. g.,
[Barroso and Hölzle, 2007]). Based on this, we define the cost cS of a server
S with utilization uS as 1 + uS, i. e., cS = 1 if the utilization is 0.0, cS = 1.5
if the utilization is 0.5, and so forth. For both scenarios, we computed the
values cS, based on the CPU utilization values and the number of allocated
servers depicted in Figures 13.6c and 13.6d. Figure 13.9 depicts the resulting
costs for both scenarios over the whole experiment duration. The total
costs for Scenario 1 sum up to 736, while the total costs for Scenario 2
are 365. Hence, it can be concluded the adaptive capacity management in
Scenario 2 saves 50% of the costs caused by the static capacity management
in Scenario 1.

244

13.5. Summary of Results

13.5 Summary of Results

In this experiment, we employed the SLAstic framework for architecture-
based adaptive capacity management of a sample Java EE application de-
ployed to a Eucalyptus-based IaaS infrastructure. Different extensions for
the SLAstic framework have been developed for this purpose, including
technology-specific implementations of SLAstic runtime reconfiguration
operations, as well as a rule-based Adaptation Planner. A quantitative anal-
ysis revealed that the adaptive capacity management increased the resource
efficiency by comparing two experiment scenarios under varying workload
intensity—one with and a second without adaptive capacity management.

With respect to the addressed evaluation questions EQ1 (Is the overall
approach applicable to realistic scenarios?) and EQ2 (Does the approach have the
desired properties?) we come to the following conclusions:

• EQ1: The goal of the experiment was not to perform a systematic quan-
titative evaluation of the imposed monitoring overhead. However, it
can be concluded that the Kieker-based monitoring did not show a per-
ceivable perturbation (EM1.2) in both scenarios, particularly employing
the distributed JMS-based monitoring log in Scenario 2. The SLAstic
meta-model (EM1.3) was suitable in this approach in that it could be used
as the basis for architecture-based online adaptation and no extensions
were required. The SLAstic approach could successfully be integrated
with the Java EE-based and IaaS-based cloud infrastructure, constituting
a representative and environment for EASs (EM1.4).

• EQ2: The integration with the IaaS-based Eucalyptus infrastructure re-
quired framework extensions (EM2.1) to be developed. First, these exten-
sions include the tailored Reconfiguration Manager with the implementa-
tion of technology-specific implementations of the selected SLAstic run-
time reconfiguration operations via the developed cloud API (EM2.1.4).
Second, this includes the developed rule-based Adaptation Planner. For
the monitoring part (EM2.1.2), no extensions were required (EM2.1.3). As
for the case study, most parts of the framework could be reused (EM2.2),
particularly including the architectural modeling (EM2.2.1) and the mon-
itoring (EM2.2.2) parts. The newly developed extensions for analysis

245

13. Lab Experiments

(EM2.2.3) and reconfiguration EM2.2.4) may be reused in further environ-
ments (cf. [Fittkau, 2012]). For this experiment, it could be shown that the
runtime reconfiguration operations are suitable (EM2.3) in that they can
be used to control capacity aiming for increased efficiency (EM2.3.1), and
that all requests were also successful under reconfiguration (EM2.3.2).
The MDSE-based techniques were successfully used in the framework to
learn and update the SLAstic model of the sample application at runtime
(EM2.4).

Threats to Validity External threats particularly include the representa-
tiveness of the sample application and the varying workload intensity curve
used in the experiment scenarios. We are aware that the chosen application
is considerably less complex than real industrial EAS. However, this is
the reason why we decided to combine different types of experiments in
this thesis—including the industrial case study in Chapter 12. The chosen
sample application is a common (external) sample application used for
performance evaluation experiments. It serves to demonstrate the appli-
cability of our approach in a controlled lab experiment environment and
builds on a representative Java EE-based technology stack. Arguing about
workloads used in performance experiments has always been one of the
performance analysis rat holes [Jain, 1991]. The workload intensity curve used
in the experiment is based on the usage profile observed in a production
EAS. Remind that similar curves have been observed in the workload
characterization in Section 12.6.1 as well. But we are aware that the chosen
workload intensity curve has a considerable impact when arguing about
increased resource efficiency gained by our approach. The major internal
threat in our experiment concerns the problem with failed reconfiguration
operations, namely de-replication and de-allocation, at the end of the ex-
periment, as well as the associated adjustment of CPU measurements. We
already provided a discussion of the impact on the results. Moreover, the
conducted reconfigurations were on a coarse-grained level, namely one
application per server node. The main reason for this is that the technology-
specific implementation of runtime reconfiguration requires a lot of effort.
A component-level runtime reconfiguration operation for Java EE has been
implemented and evaluated in the context of this thesis by Bunge [2008].

246

Chapter 14

Simulation-Based Evaluation

This chapter describes a simulation-based evaluation of the SLAstic ap-
proach. The SLAstic framework is used for online capacity management
of an example system simulated by the SLAstic.SIM discrete-event simu-
lator for runtime reconfigurable component-based software systems (Sec-
tion 11.3).

This chapter is structured as follows. Section 14.1 details the conducted
evaluation methodology. Sections 14.2 and 14.3 present the experimen-
tal setting and results. Section 14.4 provides a summary of results for
the simulation-based evaluation. This chapter contains parts of a joint
publication [von Massow et al., 2011] (cf. Section 5.3).

14.1 Evaluation Methodology

In this simulation-based evaluation, SLAstic.SIM and the SLAstic framework
are used in three different scenarios, employing the Bookstore application
that is used as a running example in this thesis. In Scenario 1, the simu-
lated application is exposed to a constant workload intensity. A varying
workload intensity curve is used in Scenarios 2—without adaptive capacity
management—and in Scenario 3—with adaptive capacity management.
Scenario 1 serves as a back-to-back test and basic runtime comparison with
PCM’s reference simulator SimuCom. Scenarios 2 and 3 serve to demon-
strate the impact of a time-based adaptive capacity management employing
the SLAstic framework.

The simulation-based evaluation primarily serves to address the ques-
tions EQ1 (Is the overall approach applicable to realistic scenarios?), EQ2 (Does the
approach have the desired properties?), and EQ3 (How does the approach compare
to other approaches?), as introduced in Section 5.2.5.

247

14. Simulation-Based Evaluation

• With respect to EQ1, we cover the following evaluation measures:

• EM1.3 (Suitability of modeling language): We evaluate whether the pro-
posed SLAstic meta-model is able to provide an abstract view on the
simulated system’s architecture.

• EM1.4 (Suitability of separating architecture and technology): We evaluate
whether the separation of architecture and technology is suitable for
the simulation-based environment.

• With respect to EQ2, we cover the following measures:

• EM2.1 (Extensibility of framework for specific purposes and technologies): In
order to use the Kieker and SLAstic frameworks for this experiment,
extensions for monitoring (EM2.1.2), analysis (EM2.1.3), and reconfig-
uration (EM2.1.4) need to developed. By doing this, we evaluate the
extensibility of our frameworks.

• EM2.2 (Reusability of framework): We investigate to what degree existing
parts of our frameworks can be reused for the simulation-based envi-
ronment, particularly in terms of modeling languages (EM2.2.1), moni-
toring (EM2.2.2), analysis (EM2.2.3), and reconfiguration (EM2.2.4).

• EM2.3 (Suitability of reconfiguration operations): Comparing the results
of Scenarios 2 and 3, the impact of the reconfiguration operations on
response times and CPU utilization are analyzed (EM2.3.1), and the
degree of transparency is investigated (EM2.3.2).

• EM2.4 (Suitability of MDSE techniques): By applying the developed
MDSE techniques for model extraction to the simulated system, we
evaluate their suitability.

• With respect to EQ3, we cover the following measure:

• Scenario 1 serves to evaluate SLAstic.SIM’s simulation results and the
simulation time with SimuCom (EM3.2 (Validity and performance)).

Again, many of the measures are evaluated on a qualitative scale by demon-
strating the applicability of the developed approaches based on the im-
plemented (proof-of-concept) implementations as part of the Kieker and
SLAstic frameworks.

248

14.2. Experimental Setting

14.2 Experimental Setting

This section describes the simulated example system (Section 14.2.1), the ex-
ecuted workload and adaptation scenarios (Section 14.2.2), and the software
and hardware environment (Section 14.2.3).

14.2.1 Bookstore Application

The example system used for the simulation is the Bookstore application that
we use as a running example in this thesis (e. g., Sections 4.5.2, 7.2 and 11.1
and Chapter 9) and in other publications (e. g., [Kieker Project, 2014a]).
SLAstic.SIM simulates a PCM instance of the Bookstore system, parts of
which have been described in Section 4.5.2 already.

To recapture, the Bookstore application consists of three software compo-
nents, namely Bookstore, Catalog, and CRM (customer relationship management).
The Bookstore component provides a service searchBook that allows to search
for books in a catalog. The Catalog and CRM components provide the services
getBook and getOffers respectively. A call to the searchBook service results in a
deterministic trace shown in the sequence diagram in Figure 7.6 (page 114).

The entities and relationships in the PCM instance for the Bookstore are
described below—based on PCM’s four complementary models capturing
a system’s performance-relevant architectural details (cf. Section 4.5.2).

• Repository. The PCM repository contains component types as well as cor-
responding interfaces for the three Bookstore components, and respective
provides and requires relationships, as depicted in Figure 4.8a (page 68).
The RDSEFF of searchBook consists of external calls to the getBook and
getOffers services, followed by a resource demand of 50 CPU units (Fig-
ure 4.8b on page 68). The RDSEFF of getOffers consists of an external call
to getBook, followed by a resource demand of 20 CPU units. The service
getBook simply contains a resource demand of 15 CPU units. The total
resource demand of an execution of searchBook is 100 CPU units.

• System. The Bookstore system consists of three assembly contexts—one
for each repository component. The only externally provided interface
is the IBookstore interface. Hence, the only service that is available for
external requests is searchBook. A PCM system diagram for the Bookstore
application is shown in Figure 4.9 (page 69).

249

14. Simulation-Based Evaluation

• Resource environment. The resource environment consists of two resource
containers: Server1 and Server2. Each of them has a single CPU. The CPU’s
processing rate varies between the evaluation scenarios, as detailed in
Section 14.2.2.

• Allocation. Initially, each assembly context is mapped to resource container
Server 2. Server 1 is empty, i. e., no assembly context is mapped to it.
In the scenario with reconfiguration (Section 14.2.2), the allocation is
changed duration the simulation.

14.2.2 Scenarios

This chapter details the three scenarios, namely a) constant workload inten-
sity, and varying workload intensity b) without and c) with reconfiguration.
In each scenario, the simulated performance measurements for operation
executions, CPU utilization, and active users are written to a Kieker monitor-
ing log, employing SLAstic.SIM’s monitoring facility, described on page 192.

Scenario 1: Constant Workload Intensity

The goal of this scenario is to compare the duration of simulation runs
executed by SLAstic.SIM and SimuCom—using the same PCM instance of
the Bookstore application. Moreover, this scenario serves as a basic back-
to-back test for SLAstic.SIM’s validity by comparing it with the simulation
results provided by SimuCom, which is the reference simulator for PCM
instances (without reconfiguration).

In both cases, the simulated system is exposed to a constant workload
intensity, namely an open workload of requests to the searchBook service
with an inter-arrival time of 0.1 time units. The aim is to provide a
workload which does not overload the system with an increasing number
of running transactions. In order to produce a reasonable CPU utilization,
the CPUs’ processing rate is set to 1, 000 ticks (CPU units) per simulated
time unit.

• The input workload for SimuCom is specified using the PCM work-
load specification, whose structure corresponds to the one shown in
Figure 11.6 (page 185). For SimuCom, the maximum simulation time is
set to 1, 000 time units.

250

14.2. Experimental Setting

• For SLAstic.SIM, the workload specification is given by a synthetically
created Kieker file system monitoring log with 10, 000 executions of the
searchBook method with 0.1 time units between each execution. Note
that Kieker is using nano time units (by default), i. e., 100, 000, 000 nano
units in the monitoring log refer to the inter-arrival rate of 0.1 time units.
Hence, the first execution starts at time unit 0.0 and the last one at time
unit 999.9.

In the experiment, we only measure the duration of the simulation. Particu-
larly, for SimuCom we exclude the time required for code generation and
compilation; for SLAstic.SIM we omit the static initialization overhead.

Scenario 2: Varying Workload without Reconfiguration

This scenario demonstrates the performance simulation driven by a trace
of varying workload intensity without online capacity management, i. e.,
without executing runtime reconfigurations.

The input workload function for this scenario resembles one week of
workload—with a seasonal pattern and a peak intensity on the weekend.
Figure 14.1 (on page 252) shows the request inter-arrival time function and
the corresponding arrival rates as reciprocals. Note that in the diagrams in
this chapter, a time unit corresponds to a second. Such workload patterns
can be observed in many real-world web-based systems (cf. Section 12.6.1).
In total, the workload specification comprises 68, 653 requests with a total
duration of 360 time units. Opposed to the previous scenario we set the
CPUs’ processing rate to 100, 000 ticks per simulated time unit.

As for the previous scenario, the workload specification for SLAstic.SIM
is a synthetic Kieker monitoring log with respective executions of the
Bookstore’s entry-level service searchBook. The monitoring log was gen-
erated using the popular workload generator Apache JMeter along with
our function timer plugin developed for this purpose.1 The plugin takes a
mathematical function of time as input and writes respective timestamps to
an output file. This output file is transformed into a Kieker monitoring log.

1JMeter Function Timer: http://code.google.com/p/delayfunction/

251

http://code.google.com/p/delayfunction/

14. Simulation-Based Evaluation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350
 0

 5000

 10000

 15000

 20000

 25000

 30000

Tue Wed Thu Fri Sat Sun Mon

In
te

r-
a

rr
iv

a
l
ti
m

e
 [

m
s
]

A
rr

iv
a

l
ra

te
 [

re
q

u
e

s
ts

/s
e

c
]

Experiment time [s]

Emulated day of week

Inter-arrival time (per thread)
Arrival rate (90 threads)

Figure 14.1. Workload intensity (Scenarios 2 and 3)

Scenario 3: Varying Workload with Reconfiguration

This scenario demonstrates the performance simulation driven by a trace of
varying workload intensity and employing adaptive online capacity man-
agement controlled by the SLAstic framework. The Kieker and SLAstic
(including SLAstic.SIM) frameworks are employed in the framework deploy-
ment 3. (offline/simulation) described in Section 8.6.2 (depicted in Figure 8.6c).

The same varying workload specification as in Scenario 2, which is
depicted in Figure 14.1, is used. During the time period with high workload
intensity—which is supposed to be the week end—the SLAstic runtime
reconfigurations from Chapter 10 are used to increase system capacity
and responsiveness. We implemented SLAstic.Control components that re-
quested the following two runtime reconfiguration plans at fixed simulation
times:

1. The reconfiguration plan requested after 200 time units consists of an
allocation of Server1 followed by a subsequent replication and migration
of the components CRM and Catalog respectively. Both the replication
and migration have the newly allocated resource container Server1 as its
destination.

252

14.3. Experimental Results

2. The inverse reconfiguration plan, requested after 300 time units, consists
of the migration of component Catalog back to Server2, the de-replication
of component CRM, and the subsequent de-allocation of Server1.

14.2.3 Software and Hardware Environment

All simulations are executed on a standard laptop with Ubuntu Linux. The
software and hardware environment used for the experiment is listed in
Table 14.1. The JVM heap space is set to 1 GB for the simulations with
SLAstic.SIM and to to 2 GB for the simulations with SimuCom. The reason
for devoting a larger amount of heap space to SimuCom is that it is executed
inside Eclipse, which itself already requires a considerable amount of more
memory.

Table 14.1. Hardware and software setup used to run the evaluation

CPU Intel Core i5, hyper-threading enabled

RAM 4 GB

OS Ubuntu Generic Linux kernel 2.6.32-22 SMP

Java Sun Java Version 1.6.0 20

Heap space 1GB for SLAstic.SIM, 2GB for SimuCom 3.0

14.3 Experimental Results

The following Sections 14.3.1 to 14.3.3 describe the results of the three
simulation scenarios.

14.3.1 Scenario 1: Constant Workload Intensity

Figure 14.2 shows an operation dependency graph extracted by Kieker from
the monitoring log produced by SLAstic while executing Scenario 1. The
included execution container name is the technical identifier of Server2 in
the PCM instance. It can be observed that the shown response time of the
searchBook is 100 ms, which refers to 0.1 simulated time units. This is the
expected response time value, having a constant workload intensity with
inter-arrival rate of 0.1 time units, a CPU resource demand of 100 units, as
well as a CPU processing rate of 1, 000 ticks per simulated time units. Also

253

14. Simulation-Based Evaluation

<<execution container>>
_f_REkaKiEd6HO68P--FvMQ

<<deployment component>>
@1:.<Catalog>:Catalog

<<deployment component>>
@2:.<CRM>:CRM

<<deployment component>>
@3:.<Bookstore>:Bookstore

'Entry' searchBook()
min: 99ms, avg: 100.00ms, max: 100ms

10000 getBook()
min: 14ms, avg: 15.00ms, max: 15ms

getOffers()
min: 35ms, avg: 35.00ms, max: 35ms

10000

10000

10000

Figure 14.2. Dependency graph with response times reconstructed from Scenario 1

the simulated results of a constant CPU utilization of 100% and the constant
number of a single concurrent user are as expected. These simulation results
are also produced by SimuCom.

With respect to the second goal of this scenario, i. e., comparing the
duration of simulation runs between SimuCom and SLAstic.SIM when
executing the Bookstore model, Table 14.2 lists statistics for the duration
in (milliseconds) of 50 simulation runs. Given this PCM instance, we can
see that SLAstic.SIM and SimuCom are comparable regarding the overall
duration of the simulation (SLAstic.SIM being slightly faster).

Table 14.2. Statistics for the duration (ms) of 50 simulation runs

min median mean max sd

SimuCom 6,434 7,179 7,199 7,873 287.24

SLAstic.SIM 4,864 5,325 5,333 5,833 161.25

14.3.2 Scenario 2: Varying Workload w/o Reconfiguration

Figures 14.3a and 14.3c and show the simulated performance results pro-
duced by SLAstic for Scenario 2, namely response times (searchBook method),
CPU utilization, and the number of concurrent transactions. It can be
observed that the varying workload intensity highly influences these per-
formance measures in that a seasonal pattern over the simulated days of
the week can be detected. During periods with low workload intensity, the

254

14.3. Experimental Results

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

R
e

s
p

o
n

s
e

 t
im

e
 [

x
 1

/1
0

0
0

]

C
P

U
 u

ti
liz

a
ti
o

n

Simulation time

Response time (searchBook)
CPU utilization (Server 2)

(a) Scenario 2 (no reconfiguration)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

R
e

s
p

o
n

s
e

 t
im

e
 [

x
 1

/1
0

0
0

]

C
P

U
 u

ti
liz

a
ti
o

n

Simulation time

Response time (searchBook)
CPU utilization (Server 2)
CPU utilization (Server 1)
Reconfiguration requests

(b) Scenario 3 (reconfiguration)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350
 0

 5

 10

 15

 20

C
o

n
c
u

rr
e

n
t

s
e

rv
ic

e
 r

e
q

u
e

s
ts

Simulation time

(c) Scenario 2 (no reconfiguration)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350
 0

 5

 10

 15

 20

C
o

n
c
u

rr
e

n
t

s
e

rv
ic

e
 r

e
q

u
e

s
ts

Simulation time

(d) Scenario 3 (reconfiguration)

Figure 14.3. Response times, CPU utilization, and number of concurrent transactions
for Scenarios 2 and 3

CPU utilization is between five and ten percent, and the response times
are around 0.002 simulated time units. Note that for this scenario and the
following scenario, the simulated CPUs’ clock rate is 100 times higher than
in Scenario 1, which results in a response time of 0.001 time units for the
searchBook methods assuming no resource contention. During periods of
hight workload intensity, the number of concurrently processed transac-
tions increases, leading to increased CPU utilization and increased service
response times. A peak is reached at a simulation time of approximately
270 with a CPU load of 70% and a response time of nearly 0.018 time units.

255

14. Simulation-Based Evaluation

<<execution container>>

Server1

<<deployment component>>

catalog <Catalog>

<<deployment component>>

crm <CRM>

<<execution container>>

Server2

<<deployment component>>

bookstore <Bookstore>

<<deployment component>>

catalog <Catalog>

<<deployment component>>

crm <CRM>

getBook()getOffers()
15567

searchBook()

31015

15567

getBook()
37638

getOffers()
53086

15448

37638

$
68653

Figure 14.4. Operation dependency graph with calling frequencies (Scenario 3)

The resulting Kieker monitoring log includes 68, 653 valid traces—one for
each generated request. The average duration of 10 simulation runs with
SLAstic.SIM was 18.6 seconds (with a standard deviation of 0.9 seconds).

14.3.3 Scenario 3: Varying Workload with Reconfiguration

Figures 14.3b and 14.3d show the simulation results for the performance
measures of Scenario 3, namely response time (searchBook method), CPU
utilization, and number of concurrent transactions. Figure 14.3b addition-
ally includes the two points in time when the reconfiguration requests
were issued. During the time period of the simulated weekend, the CPU
utilization of the additionally allocated node Server1 is shown. We can see
that due to the reconfiguration both, response times and CPU utilization,
can be reduced on the simulated weekend.

Figure 14.4 depicts the calling dependency graph extracted from the
simulated control flow information. The diagram shows that all 68, 653
requests were successfully processed, i. e., no transactions were broken. The
calls to the software components and operations deployed to Server1 result
from the reconfiguration executed for the weekend. During this period, calls
to the getOffers are distributed among the two deployment components of
CRM. Note that the Catalog component is migrated to Server1, which explains
the large number of calls to this deployment component on that server

256

14.4. Summary of Results

compared to the number of calls to the CRM component on that server (being
a replicate).

The average duration of 10 simulation runs was 18.1 seconds (with a
standard deviation of 0.4 seconds).

14.4 Summary of Results

In this experiment, we employed SLAstic.SIM for simulating the Bookstore
application, which is used as a running example in this thesis, in three
scenarios: first, exposing it to constant workload intensity (Scenario 1);
second, exposing it to varying workload intensity (Scenario 2); and finally,
exposing it to varying workload intensity and controlling its capacity with
the SLAstic framework (Scenario 3).

With respect to the addressed evaluation questions EQ1 (Is the overall
approach applicable to realistic scenarios?), EQ2 (Does the approach have the
desired properties?), and EQ4 (How do we assess our work?) we come to the
following conclusions:

• EQ1: Even though this has not been been the main focus of this experi-
ment and it is the running example that has been used as the application,
it can be concluded that the chosen meta-model approach was suitable
for this setting as well (EM1.3). Also, the intended separation of ar-
chitecture and technology—in this case an application simulated with
SLAstic.SIM—served useful (EM1.4).

• EQ2: Extensions were needed for the time-based Adaptation Planner
(EM2.1.3). As SLAstic.SIM already provides the required components
for monitoring and reconfiguration, no extension were required for these
purposes (EM2.1, EM2.1.4). Hence, large parts of the remaining infrastruc-
ture could simply be reused (EM2.2–EM2.2.4). Comparing the results of
Scenarios 2 and 3, it can be concluded the reconfiguration operations have
the desired properties (EM2.3) w.r.t. their impact on system capacity—
in this case decreasing response times during peak workload periods
(EM2.3.1)—and no transactions were lost during periods of reconfigura-
tion (EM2.3.2). The MDSE-based techniques (EM2.4) were employed for
extracting the SLAstic models used at runtime.

257

14. Simulation-Based Evaluation

• EQ4: The basic comparison with SimuCom in Scenario 1 showed that
SLAstic.SIM simulation results are valid and that its runtime is compara-
ble to that of SimuCom (EM3.2).

Threats to Validity The major external threat is the application used for
this simulation-based evaluation, particularly w.r.t. its limited size and the
PCM modeling constructs used. Hence, this evaluation serves more as
a proof of concept for SLAstic.SIM and its integration with the SLAstic
framework rather than as a proof about its correctness and performance.
Consider that additional theoretical and experimental evaluations of SLAs-
tic.SIM were conducted by von Massow [2010] in the context of this thesis.
As for the lab experiment, the used workload intensity curve is another
threat to external validity (cf. Section 13.5). Again, we aimed to choose a
curve with typical characteristics of production EASs. One major threat to
internal validity is the use of an old version of SimuCom.

258

Chapter 15

Reviewing Kieker’s History,
Development, and Impact

The Kieker approach and the corresponding tool support, both described
in Chapter 7, form one of the key contributions of this thesis. First, Kieker
serves as the basis for our SLAstic framework (Chapter 8), including model-
driven instrumentation (Chapter 9), model extraction based on dynamic
analysis (Chapter 9), and its experiment infrastructure (Section 8.6.2). Sec-
ond, Kieker has been and is being used by ourselves and others in many
academic, industrial, and collaborative contexts.

During the course of the thesis project, I played a major role in driving
the Kieker project, e. g., in terms of framework design and implementation,
as well as project coordination, presentation, and release management. How-
ever, it cannot be emphasized enough that many others have contributed to
Kieker in various forms.

This chapter reviews the past years of Kieker development and gives
some indication of the impact in terms of where and by whom Kieker
has been used. Section 15.1 provides some insights into Kieker’s history
in terms of its origin and further evolution to the time of writing this
thesis. Section 15.2 describes the development process and the tool-based
development infrastructure. Section 15.3 describes contexts in which Kieker
has been used by us and others.

15.1 History

This section provides a review of Kieker’s history starting from its origin
in 2006 to the end of 2013. We roughly divided the past years of evolution
into five phases. The timeline in Figure 15.1 depicts the durations of each

259

15. Reviewing Kieker’s History, Development, and Impact

2013

May Sept.

1.7 1.8

Kieker/Palladio

Days '13

Kieker

Days '12

TrustSoft

(DFG GRK)

PubFlow

[Rohr et al., 2008][Focke, 2006] [van Hoorn et al., 2009]

b+m Dataport HSH NordbankNOKIA SIEMENS
NETWORKS

[van Hoorn et al., 2012]

iObserve
Ensure

SPEC RG

DynaMod

developer meetings

Git

regular meetings

issue tracking

code quality tools

continuous integration

XING

20122006 2007 2008 2009 2010 2011

May Sept. May Sept. May Sept. May Sept. May Sept. May Sept. May Sept.

P
u
b
li-

c
a
ti
o
n
s
In
d
u
s
tr
ia
l

c
o
lla
b
o
r.

R
e
s
e
a
rc
h

p
ro
je
c
ts

V
e
rs
.

D
e
v
e
lo
p
m
e
n
t

in
fr
a
s
tr
u
c
tu
re

Phase 2Phase 1 Phase 2 Phase 2Phase 3 Phase 2Phase 4 Phase 5

NovaTec

E
v
e
n
ts

JUnit

EWE TELEWE TEL

0.5 0.6 0.91 0.95a 1.0 1.1 1.2 1.3 1.4 1.5 1.6

CEWE COLOR

MENGES

Subversion SourceForge

Figure 15.1. The timeline depicts durations of associated research projects, industrial
collaborations, publications describing the framework, development tools, and
released versions.

of these phases along with important events in the context of the Kieker
project, which will be discussed in the remainder of this chapter.

15.1.1 Evolution Phases

Phase 1: 2006

Kieker originates from Focke [2006]’s Diploma thesis on performance moni-
toring of middleware-based applications. The thesis was conducted at the
University of Oldenburg (Software Engineering Group), in collaboration
with the EWE TEL GmbH, Oldenburg. As part of his work, Focke devel-
oped a performance monitoring component for Java EE applications, called
Tpmon. Via JMX, AspectJ-based probes provided aggregated performance
measures for Java methods: invocation counts as well as average, maximum,
and minimum response times.

260

15.1. History

<<Component>>
M

M

Software System with

Monitoring Instrumentation

DatabaseM

M

M

M

M

:Tpan

:TpmonControl

:Tpmon

<<Component>>

<<Component>>

Timing
Diagrams

Markov Chains

Dependency
Graphs

Sequence
Diagrams

:SequenceAnalysis

<<Component>>

:DependencyAnalysis

<<Component>>

:TimingAnalysis

<<Component>>

:ExecutionModelAnalysis

<<Component>>

Figure 15.2. Overview of Kieker’s architecture in 2007 [Rohr et al., 2008]

Phase 2: 2007–2009

Tpmon has been developed further by Matthias Rohr—who co-supervised
Focke’s thesis—for experimental evaluation in his PhD research on timing
behavior anomaly detection [Rohr, 2014].

In the context of that research, I got in touch with Tpmon in 2007 during
the course of my Diploma thesis [van Hoorn, 2007]: I used Tpmon for
operation response time measurements in the experimental evaluation.
At that time, Tpmon was tailored to measure information of operation
executions (corresponding to the OperationExecutionRecord now included in
Kieker) and log these to either the file system or a SQL database (both
supporting a synchronous and an asynchronous mode).

In 2007, Kieker received its name when we prepared a first publication
on the tool’s architecture, and its trace extraction and visualization fea-
tures [Rohr et al., 2008]. Figure 15.2 shows the visualization of Kieker’s
architecture from that publication. The analysis component including the
trace reconstruction and visualization functionality was called Tpan.

We released first open-source versions of Kieker in 2008 (version 0.5 in
May, version 0.6 in July).1 These versions included only the monitoring
component Tpmon with the afore-mentioned variants of the file system and
database writers. The total number of Java classes was 12; two AspectJ-
based probes were included. As part of our collaborations with CEWE
COLOR and EWE TEL (detailed below), Kieker was used for monitoring
production systems.

1A detailed overview of all releases is listed in Table 15.1 and discussed in Section 15.2.2.

261

15. Reviewing Kieker’s History, Development, and Impact

In 2009, we included support for distributed tracing for Java systems that
employ SOAP-based web service technology for remote communication
(version 0.91). This feature was a result of our collaboration with EWE TEL
as part of the case study for this thesis (Chapter 12).

During this phase, only few documentation for Kieker existed. Students
needed a lot of assistance to use the tool as a basis for their work. To our
knowledge, Kieker was only used by ourselves as part of our research in
the DFG Graduate School on Trustworthy Software Systems (TrustSoft) and
the Software Engineering Group at the University of Oldenburg.

Phase 3: 2009–2010

In 2009, we considerably restructured Kieker towards the generalized and
extensible framework architecture with records, writers, readers, and analy-
sis plugins that it has today. The restructured architecture along with results
on systematic overhead benchmarks were published in our 2009 technical
report [van Hoorn et al., 2009c]. Figure 15.3, showing the restructured archi-
tecture in terms of the core components and their interconnection, is taken
from that report. Kieker’s new architecture was released with versions
0.95a (July 2009) and 1.0 (November 2009)—the first versions containing
parts of the analysis component. That year, colleagues from Kiel University
(Software Engineering Group) started to join the development.

Kieker.Tpmon

<<component>>

TpmonController

<<component>> <<component>>

<<storage>>

Kieker.Tpan
<<component>> <<component>>

<<component>>
Monitoring Probe

<<component>>
Monitoring Record

Consumer

Monitoring Log

Monitoring Log
Reader

Monitoring Log
Writer

IKiekerMonitoring
RecordConsumer

IKiekerMonitoring
LogReader

IKiekerMonitoring
LogWriter

IKiekerMonitoring
Probe

<<component>>

TpanInstance

Figure 15.3. Overview of Kieker’s restructured architecture [van Hoorn et al., 2009c]

262

15.1. History

In 2010, we added the system meta-model and the online trace recon-
struction to the trace analysis tool. A major improvement to the documen-
tation was made by creating the user guide with examples. Tpmon and
Tpan were renamed to Kieker.Monitoring and Kieker.Analysis. We released the
versions 1.1 (March) and 1.2 (September) that year.

Major results of this phase were the new framework architecture, im-
proved documentation, and benchmarks. By the end of this phase, Kieker
development moved completely to Kiel University.

Phase 4: 2011–2012

In 2011, we started to use a number of additional development tools for
continuous integration, issue tracking, and improving code quality (detailed
below). This was mainly driven by the successful application process
for acceptance in the SPEC RG’s repository of peer-reviewed tools for
quantitative system evaluation and analysis—one of the core results of this
phase. Version 1.3 (released in May 2011), the initial version submitted to the
SPEC RG, included many new features. In version 1.4 (October 2011), which
got accepted by the SPEC RG, the code quality was improved considerably
based on the afore-mentioned development tool support.

In 2012, we reworked Kieker’s pipes-and-filters framework, introduced
event-based tracing, and released a first version of the web-based UI for
configuring and executing analysis configurations. Versions 1.5 (April) and
1.6 (October) were released in this year.

Major achievements during this phase were extensions to the feature
set (including monitoring support for additional programming platforms),
improvements to the code quality, and a number of additional case studies.
The number of externals users grew (Section 15.3). In November 2012 we
welcomed 50 participants from academia and industry to our first Kieker
Days (KoSSE Symposium on Application Performance Management).

Phase 5: 2013–today

In this phase, the University of Stuttgart joined the Kieker development, due
to my move to there. Since ad-hoc meetings in person between developers
in Kiel and Stuttgart became more difficult, we scheduled weekly developer

263

15. Reviewing Kieker’s History, Development, and Impact

Lines of Code (branch 'master')
Release number

0.6 0.91 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Month of year (from Aug 2008 to Dec 2013)

09 01 05 09 01 05 09 01 05 09 01 05 09 01 05 09
2009 2010 2011 2012

0

20

40

60

80

K
L
O

C
 (

L
O

C
 i
n
 t
h
o
u
s
a
n
d
s
)

LOC (sources + tests)

LOC (tests only)

(a) lines of code

Number of Java files (branch 'master')
Release number

0.6 0.91 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Month of year (from Aug 2008 to Dec 2013)

09 01 05 09 01 05 09 01 05 09 01 05 09 01 05 09
2009 2010 2011 2012

1
0
0

3
0
0

5
0
0

N
u
m

b
e
r

o
f
J
a
va

 f
ile

s source + test files

test files only

(b) Java file count

Figure 15.4. Kieker’s (a) LOC and (b) Java file count over time. The total numbers
of these two metrics are closely correlated (0.995).

meetings via a web conference system to discuss technical topics. This
system has since then also been used for the monthly regular meetings.

As a follow-up event of our first Kieker Days in 2012, we organized a
joint Kieker/Palladio community meeting in Karlsruhe in 2013—again with
around 50 participants.

15.1.2 Evolution of Code Size

Expressing Kieker’s code size at the end of 2013 in two common metrics, it
consists of 616 Java source files and more than 83,000 lines of codes (LOCs)

264

15.2. Development Process and Infrastructure

(83.0 KLOCs), including 183 test files with 22.6 KLOCs.2 Taking the values
from the end of September 2009 (right after version 1.0) as reference (81 files
including 25 test classes; 9.0 KLOCs including 1.6 KLOCs of tests), it can
be observed that since then, the number of files increased by a factor of 6.6
(factor 6.3 for tests); the LOCs increased by a factor of 8.2 (factor 13.1 for
tests). The evolution of Kieker’s code size with respect to these metrics is
shown in Figure 15.4 and Table 15.1.

15.2 Development Process and Infrastructure

This sections provides an overview about the project meetings (Section 15.2.1),
releases (Section 15.2.2), research and teaching context (Section 15.2.3), con-
tributors (Section 15.2.4), and technical infrastructure (Section 15.2.5).

15.2.1 Project Meetings

Since March 2011, we are holding monthly meetings, referred to as regular
Kieker meetings, to discuss topics in the Kieker context. The meeting agendas
include items such as presentations and informal updates on preliminary
or completed results, proposals for future activities, status updates from
related research and teaching projects, release planning.3 Proposal talks
and defenses of Kieker-related study theses are integrated into the meetings.
The meetings are open to everybody interested in the Kieker project. The
list of attendees typically includes research staff from the involved research
groups (particularly, PhD students), Kieker’s student assistants, student
working on a thesis in the Kieker contexts, as well external partners from
collaborative research projects. As mentioned in the previous section, we
are also holding weekly meetings among the Kieker developers since May
2013.

2LOCs are expressed as physical lines of code including comments etc. and were measured
with the wc tool available on UNIX-like systems.

3The meeting agendas are available at http://trac.kieker-monitoring.net/wiki/Meetings.

265

http://trac.kieker-monitoring.net/wiki/Meetings

Table 15.1. Published Kieker releases with the respective version numbers, release
dates, numbers of class files, and a summary of major changes. A detailed list of
changes is included in each release (HISTORY file).

Number of source files

Vers. Date Functionality Tests Tests : functionality

Major changes

1.8 2014/10/16 431 182 0.42

Data bridge

1.7 2013/04/17 396 164 0.41

Extended adaptive monitoring; redesigned web site with live demo

1.6 2012/10/17 375 147 0.40

Adaptive monitoring; many additional unit tests; web-based UI (beta)

1.5 2012/04/13 284 92 0.33

Reworked pipes-and-filters framework; various new features (new writers, read-

ers, and filters); event-based tracing; many additional unit tests.

1.4 2011/10/14 199 44 0.22

Integration of static analysis tools; Major improvements to sources, documenta-

tion, and examples.

1.3 2011/05/19 205 42 0.20

Various new features: e. g., periodic sampling, monitoring of system-level mea-

sures, support for custom time sources, improved configuration management

1.2 2010/09/08 166 30 0.18

Further improvements to the trace analysis (assembly/deployment views);

Renaming of Tpmon/Tpan to Kieker.Monitoring/Kieker.Analysis; User guide.

1.1 2010/03/04 141 25 0.18

Improvements to the trace analysis: system meta-model, on-the-fly trace

reconstruction, hierarchical calling dependency graphs, call trees.

1.0 2009/11/18 81 28 0.35

Minor changes and refactorings to version 0.95a.

0.95a 2009/07/09 75 25 0.33

Introduced extensible framework architecture (records, writers, readers, con-

sumers, etc.); First release including core parts of Tpan (trace reconstruction,

generation of dependency graphs and sequence diagrams, log replayer, etc.).

0.91 2009/04/27 36 22 0.61

Added support for distributed tracing based on eoi and ess information; Added

probes for Spring web framework and CXF web services.

0.6 2008/07/30 12 12 1.00

Added (manual) tests for AspectJ-based instrumentation.

0.5 2008/05/08 12 2 0.17

First release of monitoring component Tpmon with AspectJ-based probes.

15.2. Development Process and Infrastructure

15.2.2 Release Cycle and Release Preparation Schedule

Table 15.1 lists all published Kieker releases along with their version num-
bers, release dates, the number of class files (separated by source files and
test files), as well as a summary of the major changes introduced with the
respective releases. This section briefly describes Kieker’s release cycle and
the process for finalizing releases.

Towards a Six-Monthly Release Cycle

The release dates for the versions 0.5 to 1.2 were scheduled rather in an
ad-hoc manner—mainly driven by new features and a report of these.
As mentioned in Section 15.1, Kieker was mainly used by ourselves that
time. Version 0.95a (a feature preview) was released as part of two talks
on the Kieker’s restructured extensible framework architecture, given at
Kiel University.4 The subsequent stable version 1.0 was released as part
of the framework documentation in our 2009 technical report [van Hoorn
et al., 2009c].

Starting with version 1.1, we have a release cycle with two Kieker
versions per year. After version 1.3, we agreed on a fixed release cycle with
a new version every six months. Along with the release of a version, the
exact date of the next release is publicly announced on the web site. The
only exception made to this so far, has been the release date for version 1.4,
which has been released after five month in order to push the acceptance
process for the SPEC RG tool repository.

Release Finalization Process

For the finalization of Kieker releases, we set up a five-phase process, which
is instantiated five weeks before a scheduled release date. Table 15.2 lists
these phases along with their (relative) start and end dates. The activities
and results of each phase are as follows:5

4A. van Hoorn: “Continuous Monitoring, Analysis, and Visualization, of Java Software
Behavior with the Kieker framework”, presented at Kiel University (PhD seminar on July 06,
2009; Lecture on July 15, 2009).

5See http://trac.kieker-monitoring.net/wiki/releases for details.

267

http://trac.kieker-monitoring.net/wiki/releases

15. Reviewing Kieker’s History, Development, and Impact

• Phase 1: For each incomplete issue (features, bug fixes, etc.) associated
with the current release milestone, a decision is made whether or not to
resolve it for the upcoming release. In case the decision is to resolve it,
a developer is assigned to the corresponding ticket in the ticket system.
Other tickets must be moved to a future milestone.

• Phase 2: This is the last phase were code changes related to the implemen-
tation and completion of new features are allowed. No changes to the
API and to external libraries must be made after this phase. A draft for
the release notes can be created.

• Phase 3: The user guide is to be completed. This involves the finalization
of the associated example projects and testing them on different platforms.

• Phase 4: This phase involves (manual) testing of the release archives
available via the continuous integration system and the finalization of
bug fixes.

• Phase 5: A branch for the release is created in the VCS. A release can-
didate is created and made available for thorough testing by the Kieker
developers. The final release is being published and announced.

15.2.3 Research and Teaching Context

Kieker has been and is being developed in the context of different re-
search and teaching activities. In most cases, Kieker is being employed for
proof-of-concept implementations and quantitative evaluations of devel-
oped approaches. Kieker benefits from these activities in different forms

Table 15.2. Phases of the release finalization process with start and end times
relative to the scheduled release date t.

Phase title Start date End date

1. Identification of issues to be resolved t-5 weeks t-4 weeks

2. API freeze and feature completion t-5 weeks t-3 weeks

3. Complete user guide and examples t-4 weeks t-2 weeks

4. Testing and bug fixing t-4 weeks t-1 week

5. Create, test, publish, and announce release t-1 week t

268

15.2. Development Process and Infrastructure

of contributions and to different degrees of extent. Typical contributions
include:

• feedback with respect to documentation, framework usability and matu-
rity, bug reports, etc.,

• new application scenarios and case studies,

• refined or newly introduced features, as well as

• resources, e. g., in terms of technical infrastructure and funding for techni-
cal and academic staff and student assistants working for related research
projects.

The remainder of this section provides some insights into Kieker’s research
and teaching contexts. The research projects, including their start and end
times (applying to completed projects), are also listed in the timeline in
Figure 15.1.

Research

Initially, Kieker has been developed at the University of Oldenburg in the
Software Engineering Group as part of the DFG-funded Graduate School
on Trustworthy Software Systems (TrustSoft). In 2008, Kiel University’s Soft-
ware Engineering Group joined development along with Prof. Hasselbring’s
move to Kiel. In 2011, Kieker development moved to Kiel completely. Since
then, a number of Kieker-related third-party projects have been and are
being conducted there, e. g., DynaMod (2011–2012), PubFlow (since 2011),
and iObserve (since 2012). Since 2013, the University of Stuttgart’s Reli-
able Software Systems Group joined Kieker development along with my
move to Stuttgart. Several Kieker-related PhD theses, each of it being a
research project for itself, have been and are being conducted both as part
of the afore-mentioned third-party projects and the basic funding from the
involved universities.

Teaching

Kieker has been and is being used in different teaching courses conducted
at the involved universities. Examples include student assignments and

269

15. Reviewing Kieker’s History, Development, and Impact

guest presentations as part of lectures on software engineering and paral-
lel/distributed systems, development projects of groups of students, and
theses (Bachelor’s, Master’s, and Diploma).

15.2.4 Contributors

It needs to be emphasized that during the past years, many additional
people contributed to Kieker in different ways and intensities. Note that we
do not only consider contributions to source code. The group of contributors
can be divided into researchers and students affiliated with the involved
universities, as well as externals, i. e., members from other academic or
industrial institutions. The contributing researchers are usually involved
because they are working on a Kieker-related research projects (including
PhD theses). Students usually contribute to Kieker as part of their work
on Kieker-related study theses or their employment as student assistants.
Externals usually contribute to Kieker during the course of collaborative
projects (including papers).

15.2.5 Technical Infrastructure

This section provides some details on selected infrastructure components—
namely version control, continuous integration, issue tracking, tests, code
quality, and the use of the open-source hosting platform SourceForge.

Version Control

From the very beginning (at least with the beginning of phase 2), a version
control system (VCS) was used to manage Kieker’s source code and other
documents. In the beginning, Subversion was used; in November 2011 we
migrated the source code contained in the Subversion repository, including
the history, to a Git repository. Since then, Git is used as the VCS technology
of choice. A number of repositories exist in addition to the core repository
containing the framework’s sources, e. g., for web UI, examples, additional
resources like talks and poster, as well as for archival of Kieker releases.
The first commit to the core source code repository originates back to
August 2008, i. e., after release 0.6.

270

15.2. Development Process and Infrastructure

Version Control System Commit Activity (branch 'master')
Release number

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

C
o
m

m
it
s
 p

e
r

y
e
a
r

Month of year (from Aug 2008 to Dec 2013)

09 01 05 09 01 05 09 01 05 09 01 05 09 01 05 09
2009 2010 2011 2012

0
5
0

1
0
0

1
5
0

2
0
0

C
o
m

m
it
s
 p

e
r

m
o
n
th

per month

per year

0.6 0.91 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Figure 15.5. VCS activity in terms of the number of commits (per month/year)

Figure 15.5 shows the activity in Kieker’s core VCS repository in terms
of the number of monthly and yearly commits to the master branch. It
can be observed that there has been an overall increasing trend of activity
over the past years. A major yearly increase can be observed from 2009 to
2010. Within each year, the most obvious—and probably not so surprising—
pattern is that peaks of activity can be observed right before a release. An
observation that can be made from looking at the VCS commit messages
is that they improved considerably since the migration to Git and the
introduction of an issue tracking system (detailed below). Also, since the
introduction of Git, new features are developed in dedicated branches,
which are then merged back to the master branch as soon as the features
are completed and appropriate tests exist.

Continuous Integration

In regular intervals (at least once a day but usually much more frequent),
the continuous integration (CI) server retrieves Kieker’s source code from
the VCS, compiles it, executes the configured regression tests and static
analyses, and creates and publishes snapshot versions of the release archives.
The CI integrates with the unit test and static analysis tools by collecting
their analysis results and visualizing them in a dashboard view. In case
a build fails, e. g., due to compilation errors, failing tests, or exceeding

271

15. Reviewing Kieker’s History, Development, and Impact

thresholds defined for outputs produced by the static analysis tools, the
developers are informed via e-mail.

The introduction of CI for Kieker in 2011 has helped a lot to improve
Kieker’s product quality for several reasons, e. g., problems and their caus-
ing commits to the VCS can be pinpointed much faster; more sophisticated
tests and checks have been developed since they are executed automatically
and in regular intervals; the creation and basic testing of release archives
has received a very high degree of automation.

Issue Tracking

The issue tracking system provides integrated software development ser-
vices like a ticket system, an interface to VCSs, and a wiki. The ticket
systems allows to report issues like bugs or feature wishes, to assign them
to developers, as well as to document and keep track of their progress. In
addition to a web-based browser for the VCS contents, the VCS integration
allows to link from tickets to VCS changesets and vice versa.

The issue tracking system has become the most important and most
heavily used technical communication channel among the developers. Par-
ticularly the ticket system is used a lot by the developers to report, monitor,
and discuss Kieker-related issues, including those not directly related to
the software (e. g., web site and technical infrastructure). Figure 15.6 shows
the activity in the issue tracking system—in terms of ticket creations and
updates—since its introduction in March 2011. Peak periods of activity can
be observed before a release date, e. g., for release 1.4 when we were in the
acceptance process for the SPEC RG tool repository and resolved a lot of
issues uncovered by the static analysis tools, which we had just introduced
to the development infrastructure.

The wiki is used to publish meeting agendas and minutes, and to
document reoccurring processes like setting up the infrastructure for (new)
Kieker developers, planning and creating releases, etc.

Tests

For quite a long time—all versions including 1.1—no automated tests for
Kieker existed. Instead, the basic functionality was tested with variants of
a small Java application (namely the Bookstore being used as the running

272

15.2. Development Process and Infrastructure

Ticket Creations
Release number

1.3 1.4 1.5 1.6 1.7 1.8

Month of year (from Mar 2011 to Dec 2013)

02 04 06 08 10 12 02 04 06 08 10 12 02 04 06 08 10 12
2011 2012 2013

0

50

100

150

C
o
u
n
t

(a) ticket creations

Ticket Updates
Release number

1.3 1.4 1.5 1.6 1.7 1.8

Month of year (from Mar 2011 to Dec 2013)

02 04 06 08 10 12 02 04 06 08 10 12 02 04 06 08 10 12
2011 2012 2013

0

200

400

600

800

1000

1200

1400

C
o
u
n
t

(b) ticket updates

Figure 15.6. Issue tracking activity in terms of (a) ticket creations and (b) ticket
updates

example in this thesis), which needed to be executed manually and whose
output was to be inspected manually. This kind of testing was feasible
while the (small number of) developers knew every part of the code and
could estimate possible impacts of changes to it. However, as the number
of contributors and the amount of source code increased this approach
more and more became a problem: for instance, changes accidentally had a
negative impact on less frequently used functionality, which was uncovered
only right before (or even after) a release when additional manual tests
were performed and the cause of the problems was hard to pinpoint.

Table 15.1 (page 266) and Figure 15.4 (page 264) include the evolution
of existing tests along with the amount of functionality. With the code size
increase, the fraction of tests vs. functionality shows a decreasing trend

273

15. Reviewing Kieker’s History, Development, and Impact

until version 1.1. Version 1.2 was the first to include tests implemented with
the JUnit testing framework. Since then, the number and the quality of tests
was enhanced considerably; especially with versions 1.5 and 1.6. Very much
effort was put in the development of regression tests for existing features in
terms of framework functionality and concrete implementations, including
record (de)serialization, controllers, writers, readers, etc. As mentioned
above, new features are not included in the master branch until appropriate
(automatic) tests exist. Note that the JUnit tests include both unit tests and
more integration-like tests.

In addition to the tests based on the JUnit framework, we developed a
test script that replaced the manual inspection of the release archives. The
script decompresses the release archives, inspects its contents with respect
to files to be included and not to be included, and executes integration tests
like executing Kieker tools from the binary release archive and comparing
outputs with reference results, or builds the Kieker sources from the source
release archive including the automated tests. Since the existence of this
test script, problems with release archives are visible much earlier—and not
close to a release date.

Code Quality

As part of the review process for the SPEC RG tool repository, we got
confronted with the reviewers’ results on applying static analysis tools
to the Kieker source code. In 2011 (September), we integrated the three
widely used static analysis tools Checkstyle, FindBugs, and PMD into our
development infrastructure, i. e., build tool, IDE, and CI.

• Checkstyle focuses on the enforcement of coding conventions, e. g., for-
matting, naming of types and members, threshold on certain source code
metrics (length of lines and classes, statement complexity, etc.), presence
of license headers, and documentation. Checkstyle includes more than
130 checks at the date of this writing.

• FindBugs focuses on the detection of typical bug patterns, e. g., inconsis-
tent overriding of methods, impossible casts, infinite loops, null pointer
dereferences, concurrency issues, unused members, etc. FindBugs in-
cludes more than 400 checks at the date of this writing.

274

15.3. Research and Industrial Impact

• PMD focuses on the detection of potential problems, e. g., possible bugs,
as well as inefficient, overcomplicated, unused, and duplicate code. PMD
includes more than 170 checks at the date of this writing.

We don’t want to miss these tools for many reasons: they helped to increase
the code quality, e. g., by uncovering existing and avoiding future problems,
establishing and automatically enforcing project-specific coding conventions,
and helping to keep the source code maintainable, which is a challenge
in many-developer projects. However, we had to invest a lot of effort to
come to a meaningful, project-specific configuration for each of the tools,
which is particularly required for Checkstyle and PMD, and to resolve the
reported problems in the source code. For instance, for PMD we excluded
40 rules. Additionally, we selectively marked a number of false alarms
reported for certain locations in the Kieker source code: more than 1,100 for
Checkstyle, more than 50 for FindBugs, and more than 1,200 for PMD. The
tools do have some overlaps with respect to the implemented checks, but it
definitely makes sense to use all of them in a complementary way.

SourceForge

In December 2007 we registered Kieker as a project at SourceForge, which is
a free web-based platform for open source projects, which provides typical
software development services such as VCS, issue tracking, web site, file
hosting, and mailing lists. However, from these services we only use mailing
lists and file hosting for publishing the Kieker release archives (including
download statistics) and the JavaDoc API in HTML format.

15.3 Research and Industrial Impact

This section gives an overview about industrial collaborations (Section 15.3.1),
Kieker’s external use (Section 15.3.2), as well as the acceptance process for
becoming a SPEC RG tool (Section 15.3.3).

15.3.1 Industrial Collaborations

During the past years, we had a number of industrial collaborations that
involved the application of Kieker for dynamic analysis of production

275

15. Reviewing Kieker’s History, Development, and Impact

systems and, as part of this, influenced the development of Kieker, e. g.,
by feature requests, feedback, and code contributions. We will briefly
discuss the industrial collaborations having most impact on the evolution
and evaluation of Kieker. These collaborations and case studies also served
as a qualitative evaluation of the Kieker approach, e. g., concerning fine-
grained continuous monitoring on application level and requirements for
production scenarios, e. g., w.r.t. logging.

The afore-mentioned work by Focke [2006] initiated a collaboration with
EWE TEL GmbH, Oldenburg—one of the largest regional telecommuni-
cation providers in the north of Germany. In 2008–2010, we continued
this collaboration that resulted in the case study described in Chapter 12
(see also [van Hoorn et al., 2009c]), involving the instrumentation of the
production Java EE-based customer web portal system with Kieker. An
EWE TEL developer contributed to Kieker’s distributed tracing functional-
ity, particularly via SOAP, and integrated Kieker in the production system,
where it was in use for more than half a year, as detailed in Chapter 12.

In 2008, we started a collaboration with CEWE COLOR AG & Co.
OHG, Oldenburg—Europe’s largest digital photo service provider. In a
case study, we instrumented one front-end server node of the Java EE-
based load-balanced production system—a web portal providing services,
such as ordering of photo prints and other photo products (see also [Rohr
et al., 2010]). A CEWE COLOR developer contributed to Kieker’s Servlet-
and Spring-based probes for collecting trace information, and integrated
Kieker in the production system, where it was in use for one week.

As part of Bielefeld’s Diploma thesis [2012], we collaborated with
XING AG, Hamburg—a social network for business contacts with more than
12 million registered members as of September 2012. XING’s core system,
http://xing.com, served as a case study to evaluate the Online Performance
Anomaly Detection (ΘPAD) approach developed in the thesis. ΘPAD is
implemented as a Kieker analysis plugin and has been integrated in XING’s
monitoring architecture (see also [Bielefeld, 2012]). This collaboration con-
tinued as part of the follow-up thesis by Frotscher [2013].

In the context of the DynaMod research project [van Hoorn et al., 2011a,
2013] (01/2011–12/2012), we collaborated with the companies a) b+m Infor-
matik AG, Melsdorf, b) Dataport AöR, Altenholz, and c) HSH Nordbank AG,
Kiel. b+m Informatik initiated the openArchitectureWare (oAW) frame-
work and is known for its pioneering role in developing and applying

276

http://xing.com

15.3. Research and Industrial Impact

MDE techniques and tools (also refer to Stahl and Völter [2006]). Dataport
provides ICT services for the public and tax administrations of several
German federal states. HSH Nordbank is a leading bank for corporate
and private clients in northern Germany. The Kieker monitoring adapters
for Visual Basic 6 (VB6) and .NET, which have been developed as part of
the DynaMod project, were employed to analyze the case study systems
AIDA-SH (Dataport) and Nordic Analytics (HSH Nordbank). For details
on the latter, please refer to Magedanz [2011]. In the DynaMod context and
beyond, b+m Informatik developers contributed to Kieker, e. g., in terms
of functionality and bug fixes already included in recent Kieker releases.
Since 2012, Kieker is integrated in b+m Informatik’s generative platform
b+m gear [Stahl and Völter, 2006]. Additional case studies were conducted
in the context of dynamic analysis of COBOL systems [Knoche et al., 2012;
Richter, 2012].

15.3.2 External Use

Kieker is not only used by us as the framework developers but also by
others. Particularly in the research context, this is indicated by respective
publications. Examples include the use of Kieker for research papers (e. g.,
Dąbrowski [2012], Markovets et al. [2013], Okanović et al. [2013], and Zheng
et al. [2011]), theses (e. g., Eberlein [2011], Heger [2012], Herbst [2012] Wert
[2012], and Zobel [2012]), and tools (e. g., Bartoszuk [2014], Becker et al.
[2009]). Some of these works have also been conducted in collaboration
with industrial partners such as SAP, Capgemini, and IBM.

15.3.3 Acceptance as SPEC RG Tool

In 2012, Kieker was one of the first two tools to pass the review process
for acceptance in the SPEC RG’s repository of peer-reviewed tools for
quantitative system evaluation and analysis [SPEC Research Group, 2014].
Similar to the peer-reviewing process for scientific publications, submitted
tools are thoroughly evaluated by a minimum number of three reviewers
based on the following criteria [SPEC Research Group, 2013]: a) relevance to
the system evaluation community, b) overall utility, c) originality or novelty,
d) tool maturity/user base, e) ease-of-use and quality of documentation.

277

15. Reviewing Kieker’s History, Development, and Impact

Details on the review process for the tool repository are provided in the
SPEC RG’s charter [SPEC Research Group, 2013].

For Kieker, the milestones of the review process were: a) submission
of a 1-page proposal (April 2011), b) submission of Kieker 1.3 (June 2011)
for review, c) the preliminary notification of acceptance with request to
submit a revised version and to provide answers to the questions raised by
the reviewers (September 2011), d) submission of Kieker 1.4 as a revised
version, along with detailed comments to the reviews (October 2011), e) final
notification of acceptance (November 2011), and f) public announcement
on the SPEC RG web site with the actual launch of the tool repository
(February 2012).
The review process and the final acceptance for the tool repository have been
a great success for Kieker for several reasons, e. g., the thorough reviews
from an external perspective were extremely useful as they triggered a lot
of activities in the Kieker project (including the infrastructure) and helped
to further improve Kieker’s product quality (including quality of code and
documentation); Kieker’s visibility was increased considerably.

278

Chapter 16

Related Work

This chapter discusses work that is related to the research that has been
conducted during the course of this dissertation. This discussion is struc-
tured according to the research plan that has been presented in Chapter 5.
Section 16.1 describes research that is related to our overall model-driven ap-
proach for architecture-based online capacity management for component-
based software systems (cf. Section 5.1). Section 16.2 discusses related
architectural modeling approaches (cf. Section 5.2.1). Section 16.3 focuses
on frameworks for self-adaptive software systems (cf. Section 5.2.2). Related
approaches for the use of model-driven techniques for SPE (cf. Section 5.2.3)
are discussed in Section 16.4. Section 16.5 focuses on related work on
architecture-based online QoS management (cf. Section 5.2.4). In each sec-
tion, we briefly summarize our core contributions, mention the related
research areas including references to relevant literature, before discussing
the relation to selected approaches. Note that the goals and a more com-
prehensive summary of results for each work package are provided in
Section 5.2.

16.1 Overall Approach

In this thesis, we propose a model-driven approach for architecture-based
online capacity management of component-based software systems (CBSSs)
via runtime reconfiguration (Section 5.1). Related research areas are model-
driven software engineering (MDSE), self-adaptive software systems (SASSs)
employing architecture-based runtime reconfiguration, as well as model-
based and measurement-based QoS evaluation (SPE). Basic concepts for
these areas, including important researchers and references in these fields,
have already been introduced in Chapters 2 to 4. In this section, we will

279

16. Related Work

discuss selected projects and approaches that are related to our overall
approach. Sections 16.2 to 16.5 focus on works specifically related to
the subareas of our work, namely architectural modeling, online capacity
management frameworks, model-driven techniques for SPE, and runtime
reconfiguration.

• Pioneering work in the area of architecture-based and style-based self-
adaptation has been conducted by three research groups, namely a) Kramer
and Magee [1985, 1990, 2007], b) Oreizy et al. [1998, 2008], and c) Gar-
lan et al. [2003, 2004] and Garlan and Schmerl [2004]—including other
publications by these research groups on this topic. These works were
the basis for the idea to follow an architecture-based approach in our
work. Particularly, the work on the MAPE-K-based Rainbow framework
([Garlan et al., 2004]) includes similar concepts (cf. [Cheng, 2008]), e. g.,
architectural modeling and architecture-based decision making; a transla-
tion infrastructure including implementation-level monitoring probes and
architecture-level gauges [ABLE group, CMU, 2009]; architecture discov-
ery based on dynamic analysis; a language (stitch) to express operations,
tactics, and strategies; and a customizable self-adaptation framework.
Model-driven aspects are not covered in this work.

• The Descartes research group [Kounev et al., 2010], investigates tech-
niques for self-adaptive online performance and resource management
that are closely related to our approach. Like SLAstic, the Descartes
project aims to provide support for the entire MAPE-K loop for self-
adaptation. The Descartes has a big focus on virtualized environments,
which is currently not primarily addressed by our approach. Common
research topics include architectural performance modeling and the use of
architectural performance models at runtime, automatic model extraction
and refinement [Brosig et al., 2011], performance model transformations
[Meier et al., 2011], modeling runtime reconfiguration [Huber et al., 2014],
as well as online analyses such as workload forecasting and performance
prediction. As mentioned in Section 5.3.2, we collaborated with this
group, e. g., as part of the S/T/A approach [Huber et al., 2014] and time
series analysis for online prediction of performance measures.

• Diaconescu et al. [2004; 2005; 2006] developed an approach for auto-
nomic QoS management of component-based enterprise software sys-

280

16.2. Architectural Modeling

tems. Based on the hypothesis that no single software component variant
yields optimal quality under all environmental conditions, adaptation
is performed by switching between alternate functionally equivalent
component variants at runtime. The approach is embedded into their
MAPE-K-based online adaptation framework AQuA (Automatic Quality
Assurance). Runtime data of the managed components (e. g., response
times) and the environment (e. g., workload) is continuously measured
and collected employing the COMPAS monitoring framework [Mos, 2004;
Mos and Murphy, 2004] (cf. Section 16.3.1), developed by the same re-
search group. Clustering techniques are used to learn and to update the
performance characteristics of the available component variants and to
group these by different environmental conditions based on the moni-
tored data. An anomaly detector identifies and signals violations of QoS
requirements and relevant variations of the environmental conditions.
The optimal component variant for the given environmental conditions
is selected based on the learned performance information. A rule-based
approach is used for anomaly detection and planning, i. e., to determine
the optimal component variant and decide on its activation. The authors
provide a proof-of-concept implementation for the Java EE platform and
evaluated the overall approach with a sample application in lab experi-
ments with generated workload. Note that the approach does not make
use of architectural models or model-driven techniques. Also, the AQuA
framework is tailored for the specific use case.

16.2 Architectural Modeling

Our core contributions with respect to the architectural modeling in WP1
(Section 5.2.1) are the SLAstic meta-model described in Chapter 6 and
the integration with the Palladio Component Model (PCM) described in
Chapter 11. The SLAstic meta-model allows to express relevant architectural
information about a component-based software system, which is used for
system instrumentation, framework initialization, and for architecture-based
online analysis and runtime reconfiguration. As a result of joint work
in the context of this thesis (Section 5.3), we developed the meta-model
agnostic approaches MAMBA (Section 4.1.4) and S/T/A (Section 3.4.3),
which are used to decorate SLAstic meta-model instances by information

281

16. Related Work

relevant to QoS as well as reconfiguration and adaptation. Related work
comes from the research areas of ADLs and component models, including
completions [Woodside et al., 2002] for QoS-relevant information, which
will be discussed below.

As mentioned in Section 3.1, comprehensive ADL classification frame-
works and surveys are provided by Medvidovic and Taylor [2000] and more
recently by Taylor et al. [2009]. According to Taylor et al. [2009], ADLs can
be classified into a) first generation (no longer active) (e. g., Darwin [Magee
et al., 1995], Rapide [Luckham and Vera, 1995], and and Wright [Allen and
Garlan, 1997]), b) domain- and style-specific (e. g., Koala [van Ommering
et al., 2000], Weaves [Gorlick and Razouk, 1991], and Architecture Analysis
and Design Language (AADL) [Feiler et al., 2003]), c) as well as extensible
(e. g., Acme [Garlan et al., 1997] and xADL [Dashofy et al., 2005]) lan-
guages. With respect to component models (Section 3.2), Crnković et al.
[2011] provide a recent survey, including CCM [Object Management Group,
Inc., 2006], COM [Box, 1998], Enterprise JavaBeans (EJB) (Section 3.3.1),
OSGi [OSGi Alliance, 2012], Koala [van Ommering et al., 2000], Frac-
tal [Bruneton et al., 2006], SOFA [Bureš et al., 2006], and Palladio Component
Model (PCM) [Becker et al., 2009]. Particularly, EJB and PCM focus on EASs.
Koziolek [2010] provides a survey on component performance modeling
languages (Section 4.5), including approaches based on a) proprietary or
profile-based UML extensions (e. g., building on the SPT [Object Manage-
ment Group, Inc., 2005] and its successor MARTE [Object Management
Group, Inc., 2011c], such as CB-SPE by Bertolino and Mirandola [2004]),
b) and proprietary meta-models (e. g., KLAPER [Grassi et al., 2007] and
PCM [Becker et al., 2009]). Selected approaches—even though not focusing
on component prediction—are also presented by Cortellessa et al. [2011].

The most related work with respect to architectural modeling of CBSSs
is the Palladio Component Model (PCM) [Becker et al., 2009] (see also
Section 4.5.2). Originally, PCM has been developed as a model-based
approach for design-time prediction of performance properties of CBSSs.
PCM includes both a component model and a corresponding ADL. Ac-
cording to Taylor et al.’s classification, PCM can be considered a domain-
(performance prediction) and style-specific (CBSSs) language. Our SLAstic
meta-model builds on PCM’s component model. However, we decided to
develop a meta-model that is tailored to the needs of our approach. One
reason was the use of SLAstic models at runtime for architecture-based

282

16.2. Architectural Modeling

runtime reconfiguration, requiring a less detailed modeling granularity,
e. g., with respect to composite components. Architectural modeling in
SLAstic is pretty similar to PCM. Readers familiar with PCM will have
recognized that a similar model partitioning can be found in PCM instances
as well. Note that our aim was not to develop a full-blown language for
architecture-based performance prediction but to model up to a level that is
sufficient for architecture-based online capacity management. A bridge to
the PCM-based tooling infrastructure is given by the development of the
M2M transformation and decoration concept described in Chapter 11. The
development of a custom meta-model and supporting tools is eased by the
availability of today’s MDSE technologies (Chapter 2). Both SLAstic and
PCM build on the EMF-based MDSE technologies. An alternative would
have been to extend PCM. So far, PCM’s abilities for extensibility, e. g.,
using a UML-like profile mechanism, are limited. However, current efforts
in this direction exist [Strittmatter et al., 2013].

Certain architectural aspects have not been integrated into the SLAstic
meta-model directly. Instead, we decided to develop meta-model agnos-
tic modeling languages in collaborations with other researchers work-
ing on similar problems. Resulting from this, we came up with the
MAMBA approach that builds on the OMG’s SMM [Object Management
Group, Inc., 2012b] specification, and the S/T/A language. We used
SMM/MAMBA to augment SLAstic models by QoS measures, e. g., as
QoS properties and requirements. Related to this are QoS modeling lan-
guages (e. g., the UML QFTP profile [Object Management Group, Inc., 2008])
and SLA languages as described in Section 4.1.3 (e. g., WSLA [IBM, 2003;
Keller and Ludwig, 2003], WSOL [Tosic et al., 2002; Tosic, 2004], WS-
Agreement [Open Grid Forum, 2011], SLA✝ [Kearney et al., 2010], and
SLAng [Skene, 2007; Skene et al., 2010]). Note that our goal is not to provide
a new SLA language. Rather, future work includes the integration with one
or more SLA language, using M2M transformations. A more detailed dis-
cussion of related work with respect to MAMBA and S/T/A are provided
in our respective publications [Frey et al., 2011; Huber et al., 2014].

283

16. Related Work

16.3 Online Capacity Management Framework

Our core contributions with respect to the online capacity management
framework as part of WP2 (Section 5.2.2) are the Kieker and SLAstic frame-
works described in Chapters 7 and 8. Kieker provides an extensible platform
for creating dynamic analysis, including implementation-level instrumen-
tation, continuous monitoring, and evaluation of application-level perfor-
mance measures. Building on Kieker, the SLAstic framework provides a
reusable and extensible platform for architecture-based online capacity man-
agement. Related work comes from the areas of application measurement
infrastructures and self-adaptation frameworks, which will be summarized
in the following two sections.

16.3.1 Application Performance Measurement

Infrastructures for performance measurement (Section 4.2), ranging from
proof-of-concept research approaches to established commercial tools for
production use, have been proposed throughout the past decades. Clas-
sic approaches, focusing on C/C++, include UNIX’s prof [Bell Labora-
tories, 1979] and gprof [Graham et al., 2004] tools, for analyzing pro-
gram profiles, as well as ATOM [Srivastava and Eustace, 1994] and Pin
[Luk et al., 2005] for static and dynamic program instrumentation. The
Application Response Management (ARM) [Johnson, 1998], maintained
by The Open Group [2013], defines an API for monitoring performance
information about business transactions, e. g., response times.

As mentioned in Section 4.2.2 already, performance measurement ap-
proaches for Java are typically based on the JVM-provided JVMPI/JVMTI
[Oracle, 2004, 2011] infrastructure, on direct or indirect byte code manipula-
tion, or on higher level instrumentation languages including AOP-based
libraries (e. g., AspectJ [Kiczales et al., 2001]) and instrumentation DSLs
(e. g., DiSL [Marek et al., 2012]). For Kieker, we make no specific assumption
about the techniques and technologies used for instrumenting a system.
Rather than that, it typically makes sense to use, for instance, the aforemen-
tioned approaches in a complementary way.

The COMPAS framework [Mos and Murphy, 2004] focuses on adaptive
monitoring of J2EE applications. Instrumentation is conducted by adding
a proxy layer around EJBs. Like Kieker, COMPAS provides extension

284

16.3. Online Capacity Management Framework

points for custom extensions, e. g., with respect to instrumentation and data
processing. The COMPAS JEEM extension for control flow tracing was
developed by Parsons et al. [2006], based on the work by Chen et al. [2002]
on the Pinpoint approach. Like Kieker, COMPAS JEEM records a trace
identifier, a sequence number, and call depth for observations within a trace.
Magpie [Barham et al., 2003, 2004] is a tool for monitoring system-internal
control flows, including requests to hardware resources, in order to extract
probabilistic usage models.

Under the term application performance management (APM)
[Menascé, 2002], various tools for continuously monitoring heterogeneous
EAS landscapes are available. Gartner regularly analyzes the market of APM
tools and publishes a report including the so-called “Magic Quadrant for
Application Performance Monitoring” [Kowall and Cappelli, 2013]. As de-
tailed by Kowall and Cappelli [2013], Gartner sees the following functional
dimensions as a requirement for achieving APM objectives: a) end-user
experience monitoring, b) application topology discovery and visualization,
c) user-defined transaction profiling, d) application component deep-dive,
and e) IT operations analytics. The Gartner report includes only a set of
commercial tools, e. g., by companies like CA Technologies, IBM, HP, Com-
puware (DynaTrace), New Relic, and AppDynamics. These tools provide a
rich set of features and support monitoring of system infrastructures com-
prises different technologies. Kieker can be seen as a platform to build an
APM tool and it already includes selected APM features, e. g., with respect
to discovery and visualization of distributed architectures. However, it is
not the goal to compete with commercial APM tools. Kieker’s strength is its
flexibility and extensibility, which is usually not provided by commercial
tools.

Overviews of Java profiling and monitoring tools have recently been
developed in two study theses by Flaig et al. [2013], and Tel et al. [2013]
respectively, who were supervised by me.

16.3.2 Self-Adaptation Frameworks

This section discusses related work on MAPE-K frameworks in research,
(self-)adaptation provided by cloud infrastructures, and simulation-based
performance evaluation.

285

16. Related Work

MAPE-K Frameworks in Research

A number of self-adaptation frameworks and approaches have been pro-
posed in research. Salehie and Tahvildari [2009] provide a survey compris-
ing a taxonomy (e. g., proactive vs. reactive, model-based vs. measurement-
based, level of adaptation, internal vs. external loop) as well as a description
and classification of selected approaches based on the taxonomy. Note that
no general-purpose framework for self-adaptation exists, as requirements
and strategies for SASSs are specific to (a class of) approaches and the
associated domain (see also Sections 16.1 and 16.5). However, the MAPE-
K control loop [Kephart and Chess, 2003] (cf. Section 3.4.1) serves as a
common blueprint for SASSs and self-adaptation frameworks. Our goal
was to develop a MAPE-K-based framework for architecture-based online
capacity management, for which to the best of our knowledge no suitable
framework exists. Similar MAPE-K-based self-adaptation frameworks for
QoS management are the aforementioned Rainbow [Garlan et al., 2003, 2004;
Cheng, 2008] and AQuA [Diaconescu et al., 2004; Diaconescu and Mur-
phy, 2005; Diaconescu, 2006] frameworks, as well as the Adaptive Server
Framework (ASF) presented by Gorton et al. [2008]. Like SLAstic, Rainbow
supports system adaptation based on architectural models. As opposed to
this, AQuA and ASF focus on a specific technology, namely Java EE. AQuA
is not designed for extensibility. ASF aims to extend existing applications
by self-adaptation support.

(Self-)Adaptation Provided by Cloud Infrastructures

A major goal of cloud computing infrastructures (Section 3.3.2) is elastic-
ity, i. e., aiming to adapt the amount of provided resources to the amount
of demanded resources (cf. Definition 4.6). Therefore, today’s IaaS cloud
providers, such as AWS [Amazon Web Services, Inc., 2014] and Windows
Azure [Microsoft, Inc., 2014], offer automatic mechanisms for adaptation
as an alternative to manual control, e. g., AWS’s auto scaling service. For
example, virtual machines can be allocated and released based on rules de-
fined on performance measures; load balancers are configured accordingly.
First of all, we consider cloud services as technology-specific effectors in
our architecture-based framework architecture, which communicate with
a corresponding SLAstic Reconfiguration Manager. For Eucalyptus, this is

286

16.3. Online Capacity Management Framework

demonstrated in Chapter 13. With respect to the automatic mechanisms
offered by the cloud providers, it could be possible to use predicted QoS
measures or adaptation plans computed by the SLAstic framework as input
to the rule-based adaptation.

Simulation-Based Performance Evaluation

Part of the SLAstic framework is the SLAstic discrete-even simulator SLAs-
tic.SIM.1 Performance evaluation of computer systems is a classical and
well-studied domain for simulation [Banks, 1998; Page and Kreutzer, 2005],
e. g., based on variants of queueing (network) models [Jain, 1991; Bertoli
et al., 2009; Kounev et al., 2012]. For example, Java Modeling Tools
(JMT) [Bertoli et al., 2009] is a tool suite for modeling and analyzing ex-
tended queueing networks. JMT includes the discrete-event simulator
JSIMengine. In addition to probabilistic (multi-class) open and closed
workloads, simulations can be driven by workload traces provided as log
files. Like SLAstic.SIM, it is possible to use JSIMengine within external
applications.

In our work, we focus on the performance simulation of software sys-
tems using performance meta-models. Simulation approaches exist for
different kinds of architectural styles and corresponding models. Exam-
ples of approaches based on SPT [Object Management Group, Inc., 2005]
are ArgoSPE [Gomez-Martinez and Merseguer, 2005], CB-SPE [Bertolino
and Mirandola, 2004]. Cortellessa et al. [2008] proposed an approach for
the simulation-based performance analysis of UML 2 models. Bause et al.
[2008] proposed an approach for simulating models of service-oriented
architectures (SOAs) using process chain models and the OMNeT++2 net-
work simulation framework.

The work most related to SLAstic.SIM is SimuCom, the simulator for
PCM instances of CBSAs without runtime reconfiguration capabilities.
SimuCom is integrated into the PCM modeling environment Palladio-
Bench [Becker et al., 2009]. In terms of simulation correctness and simulator
performance—for simulations without reconfiguration and restricted to

1Note that the discussion of related work on SLAstic.SIM is largely based on our SLAs-
tic.SIM publication [von Massow et al., 2011].

2OMNeT++ web site: http://www.omnetpp.org/

287

http://www.omnetpp.org/

16. Related Work

the PCM modeling features supported by SLAstic.SIM—we consider Simu-
Com the reference implementation. Simulations with SimuCom are driven
by PCM usage models of closed or open workloads, as described in Sec-
tion 4.5.2. SLAstic.SIM could be easily extended to allow these kinds of
workload models. In Section 14.3.1, we have used a generated workload
trace equivalent to a PCM open workload usage model.

16.4 Model-Driven Online Capacity Management

Our core contributions with respect to model-driven online capacity man-
agement as part of WP3 (Section 5.2.3) are the model-driven techniques for
the SLAstic framework described in Chapter 9 and the PCM integration de-
scribed in Chapter 11. With respect to the results for the SLAstic framework,
these comprise a) the model-driven generation of Kieker instrumentation,
b) the transformation of implementation-level Kieker records into architec-
tural SLAstic events, and c) the extraction and updates of SLAstic models
from runtime observations. The PCM integration comprises the a) the
transformation from SLAstic models to PCM instances and b) the decora-
tion of PCM instances. Related work comes from the research areas of
model-driven instrumentation and analysis, model extraction, as well as
transformations between different performance modeling languages. The
following Sections 16.4.1 and 16.4.2 discuss related work from the latter
two areas. With respect to model-driven instrumentation and analysis,
Boskovic and Hasselbring [2009] proposed the MoDePeMART, which com-
prises a DSL for annotating models by directives for QoS instrumentation
and measures, automatic generation of measurement and measurement
processing code, and the incorporation of a relational DBMS for storing
measurements. As related work on architecture-based monitoring, we
have already mentioned the gauge infrastructure included in the Rainbow
approach (Section 16.1).

16.4.1 Model Extraction

Automatic model extraction, which can be seen as a reverse engineering
and architecture discovery activity [Chikofsky and Cross, 1990; Canfora
et al., 2011], is typically performed using static or dynamic analysis—or in

288

16.4. Model-Driven Online Capacity Management

a hybrid form, i. e., as a combination of both. Static analysis techniques ex-
tract models from software artifacts—e. g., source or binary code—without
executing them, while dynamic analysis techniques use observations from
the executing software system. Note that models may also be obtained by
transformations from other models, as discussed in Section 16.4.2.

Briand et al. [2006] present an approach for reverse engineering UML
sequence diagrams obtained from Java systems using AspectJ. Relevant to
this thesis is the extraction of architectural models including performance-
relevant information, particularly based on dynamic analysis. Approaches
for extracting LQNs from execution traces have been developed by Hrischuk
et al. [1999] as well as Israr et al. [2007]. For PCM, model extraction ap-
proaches based on static and dynamic analysis have been proposed. Krog-
mann [2010] contributes the SoMoX and Beagle approaches for extracting
PCM instances, including PCM’s structural and behavioral views, combin-
ing static and dynamic analysis. Support for PCM extraction from sources
code, based on SoMoX, is also included in the Archimetrix approach [Plate-
nius et al., 2012]. Brosig et al. [2011] extract PCM instances from monitoring
data.

16.4.2 Model Transformations

Model transformations are a core component of model-driven performance
prediction approaches in SPE [Di Marco and Mirandola, 2006; Cortel-
lessa et al., 2011]. Particularly, this concerns M2M transformations from
design-level models—including performance-relevant completions [Wood-
side et al., 2002]—into analytical performance models (Section 4.5). Various
such transformations have been proposed, e. g., from UML SPT and Use
Case Maps (UCMs) to LQN [Petriu and Shen, 2002; Petriu and Wood-
side, 2002]. Also for PCM, which is the performance modeling languages
focused on in our work, a number of transformations have been devel-
oped, e. g., from PCM to LQN [Koziolek and Reussner, 2008], from PCM
to QPN [Meier et al., 2011], and from Use Case Maps (UCMs) to PCM [Vo-
gel et al., 2013]. Note that for PCM, the reference solver for predictions is
SimuCom, for which Java code is generated based on a M2T transformation.

The reason for having developed the transformation from SLAstic to
PCM models was that no such transformation existed. With respect to
the aforementioned existing transformations from PCM to analytic perfor-

289

16. Related Work

mance models, it would be interesting to use them for online performance
predictions in the future as an alternative to the simulation-based prediction.

16.5 Runtime Reconfiguration for Controlling Ca-

pacity

Our SLAstic approach employs architectural runtime reconfiguration to
apply change to a controlled software system, in order to influence its QoS
properties. The SLAstic meta-model and the framework provide extension
mechanisms for custom reconfiguration operations. We defined and inte-
grated five architectural reconfiguration operations with an impact on the
capacity of CBSSs, namely execution container allocation and deallocation,
as well as component replication, dereplication, and migration of software
components.

Different types of runtime reconfiguration operations have been applied
in research approaches to influence QoS properties of software systems.
The following list gives selected examples:

• Software rejuvenation approaches (e. g., [Huang et al., 1995; Candea
et al., 2004; Avritzer et al., 2007; Wang et al., 2007]) aim to resolve or
prevent software aging effects at runtime by system or component restarts.

• Matevska [2009] investigates the redeployment of software components
at runtime. An architecture-based approach is employed to optimize the
point in time when to initiate a reconfiguration while minimizing system
availability. The approach builds on the work by Kramer and Magee [1985,
1990] on transactional runtime reconfiguration of distributed systems and
uses PCM’s RDSEFF formalisms.

• As mentioned above, the aforementioned AQuA approach [Diaconescu
and Murphy, 2005; Diaconescu, 2006] also employs runtime redeployment
of software components to switch between alternative implementations
at runtime.

• Motivated by the fact that EASs comprise a number of configuration
parameters, the approach by Menascé et al. [2005] employs runtime
changes of configuration parameters at runtime to impact the system’s
QoS.

290

Part IV

Conclusions & Future Work

Chapter 17

Conclusions

In this thesis, we presented our model-driven SLAstic approach for archi-
tecture-based online capacity management of component-based software
systems. In addition to the overall approach, the core contributions of this
thesis were made in the following categories (cf. summary of results in
Chapter 5).

➍ Architectural Modeling

Architectural modeling is performed by a combination of the following
three complementary modeling languages:

1. The SLAstic meta-model, described in Chapter 6, provides concepts
to represent architectural information about distributed component-
based software systems with respect to system structure, behavior,
and usage, as well as adaptation.

2. For augmenting SLAstic models with quality of service (QoS) mea-
sures (Section 6.5), we employ the meta-model agnostic
MAMBA/SMM approach (Section 4.1.4), which is the result of joint
work in the context of this thesis.

3. For expressing reconfiguration plans (Section 6.4), we employ the
meta-model agnostic meta-model approach S/T/A (Section 3.4.3),
which is the result of joint work in the context of this thesis.

The results on architectural modeling provide answers to our research
questions RQ1 (Which aspects need to be modeled?) and RQ2 (What is a
suitable modeling language?).

295

17. Conclusions

➍ Kieker Framework

The Kieker framework, described in Chapter 7, provides an extensible
and reusable platform for instrumenting, monitoring, and analyzing
software systems. As detailed in Chapter 15, Kieker already gained
considerable impact during the course of this thesis, by being used in
other contexts of research, teaching, and industry. It became one of the
first tools to be accepted for the SPEC RG’s repository of peer-reviewed
tools for quantitative system evaluation and analysis. It needs to be
emphasized (again) that the current state of Kieker is the result of joint
work with many colleagues.

The results on the Kieker framework provide answers to the research
questions RQ3 (What are relevant QoS measures to be monitored?) and RQ5
(What is a framework that supports the SLAstic approach?).

➍ SLAstic Framework

The SLAstic framework, described in Chapter 8, provides an extensible
and reusable self-adaptation platform for architecture-based online ca-
pacity management. According to the common MAPE-K control loop
architecture, it is structured into components for monitoring, analysis,
planning, and execution. A model manager maintains an architectural
runtime model of the controlled software system. The analysis activities
comprise performance evaluation, workload forecasting, performance
prediction, and adaptation planning. A technology/architecture transla-
tion layer serves to abstract from concrete technologies employed by the
controlled system.

This results on the SLAstic framework provide answers to the research
questions RQ3 (What are relevant QoS measures to be monitored?), RQ4
(What are basic analyses for online capacity management?), and RQ5 (What is
a framework that supports the SLAstic approach?).

➍ Model-Driven Online Capacity Management

In order to improve the automation of reoccurring, schematic tasks within
the SLAstic approach, we developed a set of model-driven techniques to
generate Kieker-based instrumentation, transform low-level monitoring
data into architectural monitoring events, and to extract SLAstic models
from monitoring data. These results are described in Chapter 9.

296

The results on this topic provide answers to the research questions RQ6
(Where and how can MDSE techniques support the approach?).

➍ Runtime Reconfiguration for Controlling Capacity

We defined and integrated a set of five architectural runtime reconfigu-
ration operations that can be employed to control a software system’s
capacity at runtime. These operations are described in Chapter 10.

The results on this topic provide answers to the research question RQ7
(What are suitable reconfiguration operations to control system capacity?).

➍ Integration of PCM

Orthogonal to the previous categories, we used and integrated the Pal-
ladio Component Model (PCM) in our approach. This comprises a
transformation from SLAstic models to PCM instances, a concept to dec-
orate PCM instances by SLAstic models, a PCM-specific implementation
of the previously mentioned runtime reconfiguration operations, as well
as a simulator for runtime reconfigurable PCM instances.

Proof-of-concept implementations have been developed for most of the
concepts proposed in this thesis. These implementations also served as
the basis for an experimental evaluation in form of an industrial case
study, a lab experiment, and simulations (Chapters 12 to 14). Based on
defined evaluation questions and measures (quantitative and quantitative),
the evaluation particularly demonstrates the applicability of the approach
to realistic scenarios and the degree to which the desired properties are
fulfilled.

Supplementary material for this thesis—comprising software (SLAstic,
MAMBA, S/T/A), (meta-)models, examples, data, etc.—is publicly available
online [van Hoorn, 2014].

297

Chapter 18

Future Work

This chapter outlines possible directions for future work—again, grouped
according to the structure of this thesis, i. e., architectural modeling (Sec-
tion 18.1), online capacity management framework (Section 18.2), model-
driven online capacity management (Section 18.3), runtime reconfiguration
for controlling capacity (Section 18.4), as well as the cross-cutting topic on
integrating the Palladio Component Model (PCM) (Section 18.5).

18.1 Architectural Modeling

Possible future work with respect to architectural modeling includes exten-
sions of the SLAstic meta-model and improved tool support:

• The developed SLAstic meta-model, including the S/T/A and MAMBA
integration, suits the requirements with respect to the scope of this
thesis. Of course, various options exist on how the meta-model could be
extended for additional purposes, e. g., other quality characteristics such
as reliability. Moreover, some aspects in the meta-model are modeled
only very rudimentary for the sake of completeness. These aspects could
be detailed in future work, e. g., with respect to more detailed modeling
of connectors and network links, as well as a more powerful usage model
including, for instance, time series. Reconfiguration-specific modeling
could be extended to properties of reconfiguration, e. g., the time it takes
for an execution container to become available.

• Currently, tool support for creating and editing instances of the SLAstic
meta-model is limited to the generic tooling infrastructure provided by
the Eclipse Modeling Framework (EMF). Possible future work is the
development of a graphical and/or textual modeling environment for

299

18. Future Work

SLAstic models, including support for the used S/T/A and MAMBA
concepts. Related to this, currently no explicit textual concrete syntax
or graphical concrete syntax exists—even though we used a concrete
syntax similar to the one used by PCM and UML. With respect to the
latter, possible future work could be the definition of a UML profile
for SLAstic including the development of a bidirectional transformation
between the two meta-models. Also PCM extension or customization
mechanisms could be exploited—as soon as they are available in PCM (cf.
[Strittmatter et al., 2013]). Both, UML and PCM extensions, would enable
the visualization and editing of SLAstic models in respective tools.

18.2 Online Capacity Management Framework

Future work with respect to the online capacity management framework
concerns both the Kieker and the SLAstic framework.

• The SLAstic framework developed as part of this thesis allows the in-
tegration of analysis algorithms for performance analysis, workload
characterization, performance prediction, and adaptation planning. As
part of the evaluation, we developed selected analyses. Possible future
work includes the development and integration of additional analysis
algorithms. For instance search-based software engineering approaches
could be integrated to find suitable adaptation plans, tactics, forecast-
ing algorithms, etc. The SLAstic framework including the simulation
infrastructure provide a suitable experiment infrastructure. With respect
to workload characterization and forecasting, future work includes the
integration of the approaches by Bielefeld [2012], Frotscher [2013], and
Herbst et al. [2013a].

• Cloud platforms, such as Amazon Web Services and Microsoft’s Azure,
include facilities for integrating custom measures for rule-based triggering
of change actions to be executed by the platform, e. g., allocation of
additional server instances or other cloud services. Possible future work
includes the integration of the SLAstic framework in these environments.

• Both Kieker and the SLAstic are currently mainly usable via their Java
APIs. An early version of a web-based UI for Kieker has been released
recently [Ehmke, 2013], which will be extended in future work. The

300

18.3. Model-Driven Online Capacity Management

web-based UI currently aims to be a general-purpose interface for editing
and executing Kieker’s pipes-and-filters configurations, as well as for
displaying analysis results. Interesting future work could be to develop
tailored versions of the UI, e. g., for APM. For SLAstic, a graphical UI
would be desired as well, e. g., building on the aforementioned web-based
KiekerUI and in combination with the desired modeling environment
mentioned in Section 18.1. We have already published some ideas on this
[Fittkau et al., 2014] and some first prototypes are being developed.

• During the course of this thesis, instrumentation support for selected
technologies has been developed, e. g., monitoring probes for distributed
tracing using AOP-like mechanisms for plain Java (based on AspectJ),
Spring, CXF, etc. Possible future work includes the development of
support for additional technologies. Also, the instrumentation is currently
rather static in that adaptive monitoring is only possible for instrumented
methods. Possible future works includes the investigation of dynamic
instrumentation methods for Kieker (e. g., building on the work by Wert
[2012]).

18.3 Model-Driven Online Capacity Management

The developed model-driven techniques supporting automation in the
SLAstic approach focused on model-driven instrumentation, transformation
of monitoring events, as well as model extraction based on dynamic analysis.
Possible future work includes the development of model-driven techniques
to further enhance the degree of automation and interoperability with
common technologies and standards:

• CEP queries, for instance for analyzing performance measures w.r.t. SLAs,
currently need to be defined manually. Possible future work includes the
automatic generation of CEP queries from SLAstic models—including
MAMBA annotations—to be used inside the SLAstic framework’s analy-
sis components. The same holds for the components and their configura-
tions itself, which currently need to be defined manually. A generative
approach, for instance based on state machines or another DSL, is desir-
able.

301

18. Future Work

• Currently, SLAs are modeled directly in SLAstic models. Possible future
work includes the integration with existing SLA languages (cf. Okanović
et al. [2013]) including automatic M2M transformations.

• A thorough integration of the SLAstic approach into an existing gener-
ative MDSD platform would be desirable. Kieker-based model-driven
instrumentation has already been integrated in an industrial architecture-
centric generative platform following Stahl and Völter [2006].

• The automatic model extraction approach could be further improved, for
example by integrating approaches for component discovery combining
static, dynamic, and hybrid analysis (e. g., by Krogmann [2010]), as well
as by providing tool support for refactoring and/or refining extracted
models. The latter includes the tracking of the architecture/technology
mapping.

• Measurement data is currently volatile in that it is only used as long as
the data is needed to update the model and to answer registered CEP
queries. Collected measurement data is currently not explicitly included
in the SLAstic meta-model—even though this is already supported by
SMM/MAMBA. Future work in this area mainly includes the extension
of the model query mechanism, e. g., as part of the Model Manager.
Preliminary work has already been conducted in a Master’s project at the
University of Stuttgart [Kuhn et al., 2013].

18.4 Runtime Reconfiguration

Possible future work in this area includes the integration of additional
runtime reconfiguration operations and technologies, as well as additional
quantitative evaluations.

• In this work, we focused on five architectural runtime reconfiguration for
controlling the capacity of component-based software systems (CBSSs).
These operations have been integrated into the meta-model and the
framework, and technology-specific implementations have been devel-
oped, e. g., for PCM (as part of SLAstic.SIM), and Eucalyptus. Additional
reconfiguration operations and technologies could be integrated as part
of future work. An example reconfiguration operation is the change of

302

18.5. Integration of PCM

a component implementation at runtime as proposed and implemented
by Matevska [2009], Bunge [2008], and Diaconescu [2006]. Moreover,
runtime reconfiguration operations could be integrated based on the
capabilities provided by current cloud platforms.

• The thesis includes quantitative evaluations of the impact of runtime
reconfiguration on system capacity. However, a further investigation
of quantitative aspects in this area could be conducted, e. g., to answer
questions like Which analysis models and solution techniques (analytic/simu-
lation) provide feasible adaptation decisions at runtime? or What is a feasible
time-granularity for adaptation?

18.5 Integration of PCM

Possible future work concerning the integration of PCM includes the fol-
lowing topics:

• Various transformations from PCM to other performance models exist,
e. g., to LQN [Koziolek and Reussner, 2008] and QPN [Meier et al., 2011].
These approaches could be exploited to transform SLAstic models into
other performance models, e. g., for online performance prediction.

• The descriptions of the SLAstic2PCM transformation and the SLAstic.SIM
simulator in Sections 11.1 and 11.3 include summaries of current limita-
tions, which may serve as a basis for future work.

• Further work could be conducted in the extraction of PCM models based
on Kieker and SLAstic. This includes the investigation of the validity of
the extracted models.

Additional topics for future work in this area are also listed by von Massow
[2010] and Günther [2011] as part of their theses.

303

List of Acronyms

AADL Architecture Analysis and Design Language (originally:
Avionics Architecture Description Language)

ADL architecture description language
ADM Architecture-Driven Modernization
AMI Amazon Machine Image
AOP aspect-oriented programming
API application programming interface
APM application performance management
ARIMA autoregressive integrated moving average
ARM Application Response Management
AS Application Server
ATL ATLAS Transformation Language
AWS Amazon Web Services
Bash Bourne-again shell
BNF Backus–Naur Form
BPMN2 Business Process Model and Notation, version 2.0
CBMG Customer Behavior Model Graph
CBSA component-based software architecture
CBSE component-based software engineering
CB-SPE Component-Based Software Performance Engineering
CBSS component-based software system
CCM CORBA Component Model
CDN content delivery network
CDO Connected Data Objects
CEP complex event processing
CEST Central European Summer Time
CET Central European Time
CI continuous integration
CLI command-line interface
CMOF Complete MOF
COBOL Common Business-Oriented Language

305

List of Acronyms

CoCoME Common Component Modeling Example
COM Component Object Model
CORBA Common Object Request Broker Architecture
CPU central processing unit
CRM customer relationship management
CRUD create, read, update, and delete
CSM Core Scenario Model
CSV comma-separated values
DBMS database management system
DFG Deutsche Forschungsgemeinschaft (German Research

Foundation)
DNS Domain Name System
DSL domain-specific language
DTMC discrete-time Markov chain
EAS enterprise application system
EBS Elastic Block Store
EC2 Elastic Compute Cloud
Eclipse Eclipse IDE and RCP
Ecore meta-meta-model included in EMF
EJB Enterprise JavaBeans
EMF Eclipse Modeling Framework
EMI Eucalyptus Machine Image
EMOF Essential MOF
EMP Eclipse Modeling Project
EPL Event Processing Language
ERP enterprise resource planning
FP7 Seventh Framework Programme by the European Union
GCS graphical concrete syntax
GPL general purpose language
GQM Goal Question Metric
HDD hard disk drive
HOT higher order transformation
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
HUTN Human-Usable Textual Notation
IaaS infrastructure as a service
ICAC International Conference on Autonomic Computing

306

List of Acronyms

ICT information and communication technology
IDE integrated development environment
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
ISO International Organization for Standardization
IT information technology
J2EE Java 2 Platform, Enterprise Edition
Java Java programming language
JavaEE Java Platform, Enterprise Edition
JavaSE Java Platform, Standard Edition
JCP Java Community Process
JDBC Java Database Connectivity
JMS Java Message Service
JMT Java Modeling Tools
JMX Java Management Extensions
JNDI Java Naming and Directory Interface
JPA Java Java Persistence API
JRE Java Runtime Environment
JSF JavaServer Faces
JSP JavaServer Pages
JSR Java Specification Request
JTA Java Transaction API
JVM Java Virtual Machine
JVMPI JVM Profiler Interface
JVMTI JVM Tool Interface
KDM Knowledge Discovery Meta-Model
KIT Karlsruhe Institute of Technology
KLOC LOCs in thousands
KM3 Kernel Meta Meta Model
KoSSE Kompetenzverbund Software Systems Engineering
LAN local area network
LOC lines of code
LQN Layered Queueing Network
M2M model-to-model
M2T model-to-text
MAMBA Measurement Architecture for Model-Based Analysis

307

List of Acronyms

MAPE-K Modeling, Analysis, Planning, Execution, Knowledge
MARTE UML Profile for MARTE: Modeling and Analysis of

Real-Time Embedded Systems
MDA Model-Driven Architecture
MDD model-driven development
MDE model-driven engineering
MDSD model-driven software development
MDSE model-driven software engineering
MOF Meta Object Facility
MOM message-oriented middleware
MTTF mean time to failure
MTTR mean time to repair
NATO North Atlantic Treaty Organization
NIST National Institute of Standards and Technology
NTP Network Time Protocol
oAW openArchitectureWare
OCL Object Constraint Language
OGF Open Grid Forum
OMG Object Management Group
ΘPAD Online Performance Anomaly Detection
OSGi A Java component model (originally, OSGi was an

acronym for Open Services Gateway initiative)
Object-Z Object-Z Specification Language
PaaS platform as a service
PCM Palladio Component Model
PN Petri Net
QFTP UML Profile for Modeling Quality of Service and Fault

Tolerance Characteristics and Mechanisms
QM Queueing Model
QN Queueing Network
QoS quality of service
QPN Queueing Petri Net
QVT Query/View/Transformation
RCP rich client platform
RDS Relational Database Service
RDSEFF Resource Demanding SEFF
REST Representational State Transfer

308

List of Acronyms

RMI Remote Method Invocation
RPC remote procedure call
RRA Round Robin Archive
RRD Round Robin Database
RRDtool Round Robin Database tool
RSA Rational Software Architect
S3 Simple Storage Service
SaaS software as a service
SASS self-adaptive software system
SCP Secure Copy
SEAMS Symposium on Software Engineering for Adaptive and

Self-Managing Systems
SEFF Service Effect Specification
SEI Carnegie Mellon Software Engineering Institute
SLA service level agreement
SLA✝ a language for specifying SLAs
SLAng a language for specifying SLAs
SLAstic name of the approach developed in this thesis
SLO service level objective
SMM Structured Metrics Meta-Model
SOA service-oriented architecture
SOAP protocol for exchanging structured information in

computer networks (originally: Simple Object Access
Protocol)

SPE software performance engineering
SPEC Standard Performance Evaluation Corporation
SPEC RG SPEC Research Group
SPEL Software Performance Engineering Lab
SPT UML Profile for Schedulability, Performance, and Time
SQL Structured Query Language
SSH Secure Shell
SVN Subversion
SWaP Space, Watts and Performance
T2M text-to-model
TCO total cost of ownership
TCP/IP Transmission Control Protocol/Internet Protocol
TCS textual concrete syntax

309

List of Acronyms

UC University of California
UCM Use Case Map
UI user interface
UML Unified Modeling Language
UML2 UML, version 2
URL Uniform Resource Locator (originally: Universal Resource

Locator)
UTC Coordinated Universal Time
VB6 Visual Basic 6
VCS version control system
WCOP Workshop on Component-Oriented Programming
WS-Agreement Web Service Agreement
WSDL Web Services Description Language
WSLA Web Service Level Agreement
WSOI Web Service Offerings Infrastructure
WSOL Web Service Offerings Language
XMI XML Metadata Interchange
XML eXtensible Markup Language
Xtend a programming language on top of Xtext
Xtext framework for development of programming languages

and DSLs
Z Z Specification Language

310

List of Figures

2.1 Four-layered meta-modeling stack 12
2.2 Model transformation schema 14
2.3 Equivalent representations for EMF models 18

3.1 Context and conceptual model of an architecture description
according to the ISO/IEC/IEEE Standard 42010:2011(E) . . . 23

3.2 S/T/A meta-model . 36

4.1 Example SLA✝ (template) specification 48
4.2 Core SMM meta-model concepts 50
4.3 MAMBA extension mechanism for aggregate functions as

well as collective and periodic measures 53
4.4 MAMBA framework with measurement providers 54
4.5 Capacity planning methodology by Menascé and Almeida . . 59
4.6 Closed Queueing Network . 66
4.7 UML SPT sequence and deployment diagrams 66
4.8 PCM repository contents of the Bookstore example application 68
4.9 PCM system diagram of the Bookstore application 69

5.1 Model-driven instrumentation and analysis in the DynaMod
approach . 82

6.1 Object-Z specification of the SystemModel meta-class 93
6.2 Subset of the meta-classes for the type repository 93
6.3 Object-Z specification of the ComponentType meta-class . . . 94
6.4 Object-Z specifications of meta-classes for resource types and

resource specifications . 96
6.5 Meta-model excerpts of the component assembly model . . . 97
6.6 Core meta-classes and relations for the execution environ-

ment model . 98

311

List of Figures

6.7 Component deployment model containing deployment com-
ponents . 98

6.8 Meta-classes for operation execution and resource usage events 99
6.9 Meta-classes and relationships for representing traces 100
6.10 Usage model . 101
6.11 Reconfiguration plan including reconfiguration actions 103
6.12 Reconfiguration model including reconfiguration capabilities

and properties . 104
6.13 Annotations for QoS measures and instrumentation 105

7.1 Kieker’s core components, assembly, and interactions 108
7.2 Abstract and example Monitoring Record meta-classes 109
7.3 Example file system representation of Monitoring Records . . 110
7.4 Core entities of the Kieker monitoring and analysis framework111
7.5 Core classes of the meta-model for representing component-

based software systems, which is used by Kieker’s trace analysis114
7.6 Tracing-related terminology in Kieker 114
7.7 Meta-model used by Kieker for representing reconstructed

traces. 115
7.8 Selected visualizations generated by Kieker based on recon-

structed trace information . 118
7.9 Kieker’s core components, extension points, and features . . . 120

8.1 Top-level views on the SLAstic framework architecture 126
8.2 Decomposition of the Model Manager into subcomponents . 128
8.3 Composite structure of the Adaptation Controller and the

Analyzer . 132
8.4 EPL statement to periodically collect the number of operation

executions for each Assembly Component observed within
the past 10 seconds every 5 seconds. 133

8.5 Activity diagram of the (proactive) analysis phase 134
8.6 Framework uses and integrations for online and offline analyses139
8.7 Components for online analysis via JMS 141

9.1 Overview and examples of model-driven instrumentation
approach . 145

9.2 Transformation result for CPUUtilizationRecord 147

312

List of Figures

9.3 Transformation result for OperationExecutionRecord 149
9.4 EPL statement to collect operation executions of a trace 151
9.5 Transformation results for CPUUtilizationRecord and Opera-

tionExecutionRecord in architecture discovery mode 154

10.1 SLAstic reconfiguration operations 162
10.2 S/T/A actions corresponding to the SLAstic runtime adapta-

tion operations . 167

11.1 Diagram of the PCM repository for the Bookstore created by
SLAstic2PCM . 175

11.2 Diagram for an RDSEFF created by SLAstic2PCM 178
11.3 Diagram of the PCM system model for Bookstore created by

SLAstic2PCM . 180
11.4 PCM resource environment model created by SLAstic2PCM

(Bookstore system) . 182
11.5 Diagram of the PCM allocation model created by SLAstic2PCM183
11.6 Diagram for the pcm::UsageScenario created by SLAstic2PCM . 185
11.7 Implementation of the SLAstic transformation SLAstic2PCM 185
11.8 Example SLAstic2PCM rule for transforming a SLAstic exe-

cution container into a PCM resource container 186
11.9 PCM decoration example for component types 188
11.10High-level architecture and integration of SLAstic.SIM 191
11.11SLAstic.SIM reconfiguration plan and operations 193
11.12Activity diagram for the component de-replication operation 194

12.1 Architecture of the case study system 203
12.2 Number of invalid traces (per day) during the observation

period . 210
12.3 Number of valid traces and average maximum execution

stack sizes during the observation period 211
12.4 Visualizations of selected architectural models reconstructed

by Kieker . 212
12.5 Distribution of calling frequencies from the doFilter operation

to the handleMessage operation 215
12.6 Arrival rates of the Servlet entry (assembly-level) over one

week . 216

313

List of Figures

12.7 Arrival rates and correlations for selected assembly components217
12.8 CPU utilization (5 minute intervals) of the four servers over

one week and for over a selected day 220
12.9 Statistics and probability density functions for CPU utilization221

13.1 Overview of the experiment infrastructure 227
13.2 Varying workload intensity specification for the experiment . 231
13.3 SLAstic framework extensions for the lab experiment 233
13.4 Cloud API and Eucalyptus-specific implementation 234
13.5 CEP query to compute invocation counts for an Assembly-

Component . 237
13.6 Average CPU utilization of allocated nodes 240
13.7 Deployment Component dependency graph (Scenario 1) . . . 241
13.8 Deployment Component dependency graph (Scenario 2) . . . 243
13.9 Costs for Scenarios 1 and 2 . 244

14.1 Workload intensity (Scenarios 2 and 3) 252
14.2 Dependency graph with response times reconstructed from

Scenario 1 . 254
14.3 Response times, CPU utilization, and number of concurrent

transactions for Scenarios 2 and 3 255
14.4 Operation dependency graph with calling frequencies (Sce-

nario 3) . 256

15.1 Kieker timeline . 260
15.2 Overview of Kieker’s architecture in 2007 261
15.3 Overview of Kieker’s restructured architecture 262
15.4 Kieker’s LOC and Java file count over time 264
15.5 VCS activity in terms of the number of commits 271
15.6 Issue tracking activity . 273

314

List of Tables

2.1 Important OMG modeling specifications 16

3.1 Selected Java SE and Java EE technologies 30

4.1 Comparison of pure SMM and MAMBA 52

5.1 Evaluation questions, measures, methods, and scales of mea-
surement . 85

8.1 Implementation classes for conceptual framework components138

9.1 Kieker record types and corresponding SLAstic meta-classes 146
9.2 Example results of type and operation signature name ab-

straction . 158

10.1 Model Manager’s reconfiguration operation signatures 169

11.1 High-level mapping between the SLAstic and PCM meta-
model partitions . 174

12.1 Configuration for each of the RRDs and the contained RRAs . 206
12.2 Assignment of values to CPUUtilizationRecord fields 206
12.3 Basic statistics about the (raw) Kieker monitoring logs with

operation executions . 208

13.1 Baselines used for rule-based adaptation planning 233

14.1 Hardware and software setup used to run the evaluation . . . 253
14.2 Statistics for the duration (ms) of 50 simulation runs 254

15.1 Published Kieker releases . 266
15.2 Phases of the release finalization process 268

315

Bibliography

[ABLE group, CMU 2009] ABLE group, CMU. Dasada Gauge Infrastruc-
ture. http://www.cs.cmu.edu/~able/research/rainbow/gaugeinf.html, 2009. (cited on
page 280)

[ACM SIGMETRICS 2009] ACM SIGMETRICS. SIGMETRICS Performance
Evaluation Review, 36(4), 2009. Special issue on tools for computer perfor-
mance modeling and reliability analysis. (cited on page 66)

[Allen and Garlan 1997] R. Allen and D. Garlan. A formal basis for
architectural connection. ACM Transactions on Software Engineering and
Methodology (TOSEM), 6(3):213–249, 1997. (cited on pages 27 and 282)

[Allspaw 2008] J. Allspaw. The Art of Capacity Planning. O’Reilly, 2008.
(cited on page 58)

[Amazon Web Services, Inc. 2014] Amazon Web Services, Inc. Amazon
Web Services. http://aws.amazon.com/, 2014. (cited on pages 2, 32, and 286)

[Arlitt et al. 2001] M. F. Arlitt, D. Krishnamurthy, and J. Rolia. Char-
acterizing the scalability of a large web-based shopping system. ACM
Transactions on Internet Technology (TOIT), 1(1):44–69, 2001. (cited on
pages 1, 63, and 64)

[Armbrust et al. 2009] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia. Above the clouds: A Berkeley view of cloud computing.
Technical Report UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, 2009. (cited on pages 2 and 31)

[Avritzer et al. 2007] A. Avritzer, A. B. Bondi, and E. J. Weyuker. Ensuring
system performance for cluster and single server systems. Journal of
Systems and Software, 80(4):441–454, 2007. (cited on page 290)

317

http://www.cs.cmu.edu/~able/research/rainbow/gaugeinf.html
http://aws.amazon.com/

Bibliography

[Balbo 2007] G. Balbo. Introduction to generalized stochastic petri nets. In
Proceedings of the 7th International School on Formal Methods for the Design
of Computer, Communication, and Software System (SFM ’07), LNCS, pages
83–131. Springer, 2007. (cited on page 65)

[Balsamo and Marin 2007] S. Balsamo and A. Marin. Queueing networks.
In Proceedings of the 7th International School on Formal Methods for the Design
of Computer, Communication, and Software System (SFM ’07), volume 4486
of LNCS, pages 34–82. Springer, 2007. (cited on pages 41 and 65)

[Balsamo et al. 2004] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni.
Model-based performance prediction in software development: A survey.
IEEE Transactions on Software Engineering (TSE), 30(5):295–310, 2004. (cited
on page 65)

[Banks 1998] J. Banks, editor. Handbook of Simulation: Modelling, Estimation
and Control. Wiley & Sons, 1998. (cited on pages 189 and 287)

[Banks et al. 2009] J. Banks, J. S. Carson, II, and B. L. Nelson. Discrete-Event
System Simulation. Prentice Hall, 5 edition, 2009. (cited on page 189)

[Barham et al. 2003] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan.
Magpie: Online modelling and performance-aware systems. In Proceedings
of the 9th Conference on Hot Topics in Operating Systems (HOTOS ’03), pages
85–90. USENIX Association, 2003. (cited on page 285)

[Barham et al. 2004] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using Magpie for request extraction and workload modelling. In Proceed-
ings of the 6th Symposium on Operating Systems Design & Implementation
(OSDI ’04), pages 259–272. USENIX Association, 2004. (cited on page 285)

[Barroso and Hölzle 2007] L. A. Barroso and U. Hölzle. The case for
energy-proportional computing. IEEE Computer, 40(12):33–37, 2007. (cited
on pages 2 and 244)

[Bartoszuk 2014] C. Bartoszuk. Callcount project. https://github.com/cbart/

fly/tree/master/Callcount, 2014. (cited on page 277)

[Basili et al. 1994] V. R. Basili, G. Caldiera, and H. D. Rombach. Goal Ques-
tion Metric paradigm. In Encyclopedia of Software Engineering, volume 1,
pages 528–532. John Wiley & Sons, 1994. (cited on page 84)

318

https://github.com/cbart/fly/tree/master/Callcount
https://github.com/cbart/fly/tree/master/Callcount

Bibliography

[Bause and Buchholz 1998] F. Bause and P. Buchholz. Queueing Petri nets
with product form solution. Elsevier Performance Evaluation, 32(4):265–299,
1998. (cited on page 65)

[Bause and Kritzinger 2002] F. Bause and P. S. Kritzinger. Stochastic Petri
Nets – An Introduction to the Theory. Vieweg Verlag, 2nd edition, 2002.
(cited on page 65)

[Bause et al. 2008] F. Bause, P. Buchholz, J. Kriege, and S. Vastag. A frame-
work for simulation models of service-oriented architectures. In Proceed-
ingsof the SPEC International Performance Evaluation Workshop (SIPEW ’08),
volume 5119 of LNCS, pages 208–227. Springer, 2008. (cited on page 287)

[Becker et al. 2006a] S. Becker, L. Grunske, R. Mirandola, and S. Overhage.
Performance prediction of component-based systems: A survey from an
engineering perspective. In Architecting Systems with Trustworthy Compo-
nents, volume 3938 of LNCS, pages 169–192. Springer, 2006a. (cited on
page 65)

[Becker et al. 2006b] S. Becker, W. Hasselbring, A. Paul, M. Boskovic,
H. Koziolek, J. Ploski, A. Dhama, H. Lipskoch, M. Rohr, D. Winteler,
S. Giesecke, R. Meyer, M. Swaminathan, J. Happe, M. Muhle, and T. Warns.
Trustworthy software systems: A discussion of basic concepts and ter-
minology. SIGSOFT Software Engineering Notes (SEN), 31(6):1–18, 2006b.
(cited on pages 1 and 39)

[Becker et al. 2009] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance prediction. Elsevier
Journal of Systems and Software (JSS), 82(1):3–22, 2009. (cited on pages 2, 3,
5, 29, 67, 173, 174, 277, 282, and 287)

[Bell Laboratories 1979] Bell Laboratories. Unix Programmer’s Manual,
volume 1. 7th edition, 1979. (cited on page 284)

[Berkhin 2002] P. Berkhin. Survey of clustering data mining techniques.
Technical report, Accrue Software, San Jose, CA, 2002. (cited on page 64)

[Bertoli et al. 2009] M. Bertoli, G. Casale, and G. Serazzi. JMT: Perfor-
mance engineering tools for system modeling. SIGMETRICS Performance
Evaluation Review, 36(4):10–15, 2009. (cited on pages 61 and 287)

319

Bibliography

[Bertolino and Mirandola 2004] A. Bertolino and R. Mirandola. CB-SPE
tool: Putting component-based performance engineering into practice. In
Proceedings of the 7th International Symposium on Component-Based Software
Engineering (CBSE 04), volume 3054 of LNCS, pages 233–248. Springer,
2004. (cited on pages 2, 67, 282, and 287)

[Bielefeld 2012] T. C. Bielefeld. Online performance anomaly detection
for large-scale software systems, 2012. Diploma Thesis, Kiel University.
(cited on pages 65, 81, 88, 89, 276, and 300)

[Boskovic and Hasselbring 2009] M. Boskovic and W. Hasselbring. Model-
driven performance measurement and assessment with MoDePeMART.
In Proceedings of the 12th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS ’09), volume 5795 of LNCS, pages
62–76. Springer, 2009. (cited on page 288)

[Box 1998] D. Box. Essential COM. Addison-Wesley Professional, 1998.
(cited on pages 29 and 282)

[Brambilla et al. 2012] M. Brambilla, J. Cabot, and M. Wimmer. Model-
Driven Software Engineering in Practice. Synthesis Lectures on Software
Engineering. Morgan & Claypool, 2012. (cited on pages 3, 11, and 12)

[Briand et al. 2006] L. C. Briand, Y. Labiche, and J. Leduc. Toward the
reverse engineering of UML sequence diagrams for distributed Java
software. IEEE Transactions on Software Engineering (TSE), 32(9):642–663,
2006. (cited on page 289)

[Brosig et al. 2011] F. Brosig, N. Huber, and S. Kounev. Automated extrac-
tion of architecture-level performance models of distributed component-
based systems. In Proceedings of the 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE ’11), pages 183–192, 2011. (cited
on pages 280 and 289)

[Bruneton et al. 2006] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. The Fractal component model and its support in Java.
Software: Practice and Experience (SPE), 36:1257–1284, 2006. (cited on
pages 29 and 282)

320

Bibliography

[Bunge 2008] S. Bunge. Transparentes Redeployment in komponenten-
basierten Softwaresystemen (“Transparent redeployment in component-
based software systems”, in German), 2008. Diploma Thesis, University
of Oldenburg. (cited on pages 84, 87, 89, 246, and 303)

[Bureš et al. 2006] T. Bureš, P. Hnětynka, and F. Plášil. SOFA 2.0: Balancing
advanced features in a hierarchical component model. In 4th International
Conference on Software Engineering Research, Management and Applications
(SERA ’06), pages 40–48. IEEE, 2006. (cited on pages 29 and 282)

[Candea et al. 2004] G. Candea, J. Cutler, and A. Fox. Improving availability
with recursive microreboots: A soft-state system case study. Performance
Evaluation, 56(1-4):213–248, 2004. (cited on page 290)

[Canfora et al. 2011] G. Canfora, M. Di Penta, and L. Cerulo. Achievements
and challenges in software reverse engineering. Communications of the
ACM (CACM), 54:142–151, 2011. (cited on page 288)

[Chen et al. 2002] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. A.
Brewer. Pinpoint: Problem determination in large, dynamic internet
services. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN ’02), pages 595–604. IEEE, 2002. (cited on pages 229
and 285)

[Cheng et al. 2009] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi,
J. Magee, J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. D. M.
Serugendo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi,
G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola,
H. A. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and
J. Whittle. Software engineering for self-adaptive systems: A research
roadmap. In B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, and
J. Magee, editors, Software Engineering for Self-Adaptive Systems, volume
5525 of LNCS, pages 1–26. Spinger, 2009. (cited on page 34)

[Cheng 2008] S.-W. Cheng. Rainbow: Cost-Effective Software Architecture-
Based Self-Adaptation. PhD thesis, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, USA, 2008. (cited on pages 280 and 286)

321

Bibliography

[Chikofsky and Cross 1990] E. Chikofsky and I. Cross, J.H. Reverse
engineering and design recovery: A taxonomy. IEEE Software, 7(1):13–17,
1990. (cited on page 288)

[Clark et al. 2007] A. Clark, S. Gilmore, J. Hillston, and M. Tribastone.
Stochastic process algebras. In M. Bernardo and J. Hillston, editors,
Proceedings of the 7th International School on Formal Methods for the Design of
Computer, Communication, and Software System (SFM ’07), volume 4486 of
LNCS, pages 132–179. Springer, 2007. (cited on page 65)

[Clements et al. 2002] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford. Documenting Software Architectures:
Views and Beyond. Addison-Wesley / Pearson Education, 2002. (cited on
pages 22 and 26)

[Community Z Tools Project 2014] Community Z Tools Project. CZT:
Community Z Tools — Tools for developing and reasoning about Z
specifications. http://czt.sourceforge.net/, 2014. (cited on page 92)

[Cortellessa et al. 2008] V. Cortellessa, P. Pierini, R. Spalazzese, and
A. Vianale. MOSES: MOdeling Software and platform architecture in
UML 2 for Simulation-based performance analysis. In Proceedings of the
4th International Conference on Quality of Software Architectures (QoSA ’08),
volume 5281 of LNCS, pages 86–102. Springer, 2008. (cited on page 287)

[Cortellessa et al. 2011] V. Cortellessa, A. Di Marco, and P. Inverardi. Model-
based software performance analysis. Springer, 2011. (cited on pages 3, 11,
65, 282, and 289)

[Crnković et al. 2011] I. Crnković, S. Sentilles, A. Vulgarakis, and M. R.
Chaudron. A classification framework for software component models.
IEEE Transactions on Software Engineering (TSE), 37(5):593–615, 2011. (cited
on pages 28 and 282)

[Crovella and Bestavros 1997] M. E. Crovella and A. Bestavros. Self-
similarity in World Wide Web traffic: Evidence and possible causes.
IEEE/ACM Transactions on Networking (TON), 5(6):835–846, 1997. (cited on
page 63)

322

http://czt.sourceforge.net/

Bibliography

[Cugola and Margara 2012] G. Cugola and A. Margara. Processing flows
of information: From data stream to complex event processing. ACM
Computing Surveys (CSUR), 44(3):15:1–15:62, 2012. (cited on page 132)

[Czarnecki and Helsen 2006] K. Czarnecki and S. Helsen. Feature-based
survey of model transformation approaches. IBM Systems Journal, 45(3):
621–645, 2006. (cited on page 14)

[Dashofy et al. 2005] E. M. Dashofy, A. v. d. Hoek, and R. N. Taylor. A
comprehensive approach for the development of modular software archi-
tecture description languages. ACM Transactions on Software Engineering
and Methodology (TOSEM), 14(2):199–245, 2005. (cited on pages 27 and 282)

[de Lemos et al. 2013] R. de Lemos, H. Giese, H. A. Müller, M. Shaw,
J. Andersson, M. Litoiu, B. Schmerl, G. Tamura, N. M. Villegas, T. Vogel,
et al. Software engineering for self-adaptive systems: A second research
roadmap. In Software Engineering for Self-Adaptive Systems II, volume 7475
of LNCS, pages 1–32. Springer, 2013. (cited on page 34)

[Denning and Buzen 1978] P. J. Denning and J. P. Buzen. The operational
analysis of queueing network models. ACM Computing Surveys (CSUR),
10(3):225–261, 1978. (cited on page 66)

[Di Marco and Mirandola 2006] A. Di Marco and R. Mirandola. Model
transformation in software performance engineering. In Proceedings of
the 2nd International Conference on the Quality of Software Architectures
(QoSA 06), volume 4214 of LNCS, pages 95–110. Springer, 2006. (cited on
pages 67 and 289)

[Diaconescu 2006] A. Diaconescu. Automatic Performance Optimisation of
Component-Based Enterprise Systems via Redundancy. PhD thesis, Dublin
City University, Ireland, 2006. (cited on pages 280, 286, 290, and 303)

[Diaconescu and Murphy 2005] A. Diaconescu and J. Murphy. Automating
the performance management of component-based enterprise systems
through the use of redundancy. In Proceedings of the IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 05), pages 44–53.
ACM, 2005. (cited on pages 280, 286, and 290)

323

Bibliography

[Diaconescu et al. 2004] A. Diaconescu, A. Mos, and J. Murphy. Automatic
performance management in component based software systems. In
Proceedings of the International Conference on Autonomic Computing (ICAC
2004), pages 214–221, 2004. (cited on pages 280 and 286)

[Dąbrowski 2012] R. Dąbrowski. On architecture warehouses and software
intelligence. In Proceedings of the 4th International Mega-Conference on Future
Generation Information Technology (FGIT 2012), volume 7709 of LNCS, pages
251–262. Springer, 2012. (cited on page 277)

[Duboc et al. 2007] L. Duboc, D. Rosenblum, and T. Wicks. A framework for
characterization and analysis of software system scalability. In Proceedings
of the 6th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC-FSE ’07), pages 375–384. ACM, 2007. (cited on page 44)

[Eberlein 2011] S. Eberlein. Erhebung und Analyse von Kennzahlen aus
dem fachlichen Performance-Monitoring, 2011. Diploma Thesis, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany. (cited on
page 277)

[Eclipse Foundation 2014] Eclipse Foundation. Eclipse Modeling Project.
http://www.eclipse.org/modeling/, 2014. (cited on page 16)

[Efftinge et al. 2012] S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow,
R. von Massow, W. Hasselbring, and M. Hanus. Xbase: Implementing
domain-specific languages for Java. In Proceedings of the 11th Interna-
tional Conference on Generative Programming and Component Engineering
(GPCE ’12), pages 112–121. ACM, 2012. (cited on page 17)

[Ehmke 2013] N. C. Ehmke. Everything in sight: Kieker’s WebGUI in
action (tutorial). In Proceedings of the Symposium on Software Performance:
Joint Kieker/Palladio Days (KPDAYS ’13), volume 1083 of CEUR Workshop
Proceedings. CEUR-WS.org, 2013. (cited on page 300)

[Esper Team and EsperTech, Inc. 2014] Esper Team and EsperTech,
Inc. Esper 5.0.0 reference documentation. http://esper.codehaus.org/esper/

documentation, 2014. (cited on pages 133, 138, and 152)

324

http://www.eclipse.org/modeling/
http://esper.codehaus.org/esper/documentation
http://esper.codehaus.org/esper/documentation

Bibliography

[Eucalyptus Systems, Inc. 2014] Eucalyptus Systems, Inc. Eucalyptus.
http://www.eucalyptus.com/, 2014. (cited on pages 2, 32, and 33)

[Feiler et al. 2003] P. H. Feiler, B. Lewis, and S. Vestal. The SAE Avionics
Architecture Description Language (AADL) standard: A basis for model-
based architecture-driven embedded systems engineering. In Proceedings
of the RTAS 2003 Workshop on Model-Driven Embedded Systems (MDES ’03),
2003. (cited on pages 27 and 282)

[Field and Hole 2012] A. Field and G. J. Hole. How to Design and Report
Experiments. Sage Publications Ltd., 2012. (cited on page 84)

[Fielding 2000] R. T. Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California, Irvine,
CA, USA, 2000. (cited on pages 25 and 26)

[Fielding and Taylor 2002] R. T. Fielding and R. N. Taylor. Principled
design of the modern web architecture. ACM Transactions on Internet
Technology (TOIT), 2(2):115–150, 2002. (cited on page 26)

[Fittkau 2011] F. Fittkau. Infrastructure-as-a-Service (IaaS) with Ama-
zon EC2/Eucalyptus. In Seminar Software Performance Engineering WiSe
2010/2011, Department of Computer Science, Kiel University, Germany, 2011.
(cited on pages 88, 225, and 240)

[Fittkau 2012] F. Fittkau. Simulating cloud deployment options for software
migration support, 2012. Master’s Thesis, Kiel University. (cited on
pages 88 and 246)

[Fittkau et al. 2013] F. Fittkau, J. Waller, P. Brauer, and W. Hasselbring.
Scalable and live trace processing with kieker utilizing cloud computing.
In Proceedings of the Symposium on Software Performance: Joint Kieker/Palladio
Days (KPDAYS ’13), volume 1083 of CEUR Workshop Proceedings, pages
89–98. CEUR-WS.org, 2013. (cited on page 223)

[Fittkau et al. 2014] F. Fittkau, A. van Hoorn, and W. Hasselbring. Towards
a dependability control center for large software landscapes. In Proceedings
of the 10th European Dependable Computing Conference (EDCC ’14), pages
58–61, 2014. (cited on page 301)

325

http://www.eucalyptus.com/

Bibliography

[Flaig et al. 2013] A. Flaig, D. Hertl, and F. Krüger. Evaluation of java
profiler tools, 2013. Special Research Software Engineering (Fachstudie),
University of Stuttgart, Institute of Software Technology, Stuttgart, Ger-
many. (cited on page 285)

[Focke 2006] T. Focke. Performance Monitoring von Middleware-basierten
Applikationen. Diplomarbeit, University Oldenburg, 2006. (cited on
pages 80, 260, 261, and 276)

[Fowler 2002] M. Fowler. Patterns of Enterprise Application Architecture.
Addison Wesley, Reading, Massachusetts, 2002. (cited on page 30)

[Franks et al. 2009] G. Franks, T. Al-Omari, M. Woodside, O. Das, and
S. Derisavi. Enhanced modeling and solution of layered queueing net-
works. IEEE Transactions on Software Engineering (TSE), 35(2):148–161, 2009.
(cited on pages 61 and 65)

[Frey et al. 2011] S. Frey, A. van Hoorn, R. Jung, W. Hasselbring, and
B. Kiel. MAMBA: A measurement architecture for model-based analysis.
Technical Report TR-1112, Department of Computer Science, University
of Kiel, Germany, 2011. (cited on pages 49, 50, 52, 53, 89, and 283)

[Frey et al. 2012] S. Frey, A. van Hoorn, R. Jung, B. Kiel, and W. Hasselbring.
MAMBA: Model-based analysis utilizing OMG’s SMM. In Proceedings
of the 14th Workshop Software-Reengineering (WSR ’12), pages 37–38, 2012.
(cited on pages 49 and 89)

[Frotscher 2013] T. Frotscher. Architecture-based multivariate anomaly
detection for software systems, 2013. Master’s Thesis, Kiel University.
(cited on pages 81, 88, 276, and 300)

[Gamma et al. 1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995. (cited on page 170)

[Garlan and Schmerl 2004] D. Garlan and B. Schmerl. Using architectural
models at runtime: Research challenges. In Proceedings of the 1st European
Workshop on Software Architecture (EWSA ’04), volume 3047 of LNCS.
Springer, 2004. (cited on page 280)

326

Bibliography

[Garlan et al. 1997] D. Garlan, R. Monroe, and D. Wile. Acme: An architec-
ture description interchange language. In Proceedings of the 1997 Conference
of the Centre for Advanced Studies on Collaborative Research (CASCON ’97),
page 7. IBM Press, 1997. (cited on pages 27 and 282)

[Garlan et al. 2003] D. Garlan, S.-W. Cheng, and B. R. Schmerl. Increasing
system dependability through architecture-based self-repair. In Architect-
ing Dependable Systems, volume 2677 of LNCS, pages 61–89. Springer, 2003.
(cited on pages 35, 280, and 286)

[Garlan et al. 2004] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based self-adaptation with reusable
infrastructure. IEEE Computer, 37(10):46–54, 2004. (cited on pages 280
and 286)

[Gmach et al. 2007] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper.
Workload analysis and demand prediction of enterprise data center appli-
cations. In Proceedings of the 2007 IEEE International Symposium on Workload
Characterization (IISWC ’07), pages 171–180, 2007. (cited on page 1)

[Gomez-Martinez and Merseguer 2005] E. Gomez-Martinez and
J. Merseguer. A software performance engineering tool based on the
UML-SPT. In Proceedings of the 2nd International Conference on the Quan-
titative Evaluation of Systems (QEST ’05), page 247. IEEE, 2005. (cited on
page 287)

[Gorlick and Razouk 1991] M. M. Gorlick and R. R. Razouk. Using
Weaves for software construction and analysis. In Proceedings of the 13th
International Conference on Software Engineering (ICSE ’91), pages 23–34.
IEEE, 1991. (cited on pages 27 and 282)

[Gorton et al. 2008] I. Gorton, Y. Liu, and N. Trivedi. An extensible and
lightweight architecture for adaptive server applications. Wiley Software:
Practice and Experience, 38(8):853–883, 2008. (cited on page 286)

[Goševa-Popstojanova et al. 2006] K. Goševa-Popstojanova, A. D. Singh,
S. Mazimdar, and F. Li. Empirical characterization of session-based
workload and reliability for web servers. Springer Empirical Software
Engineering, 11(1):71–117, 2006. (cited on pages 1, 62, and 63)

327

Bibliography

[Graham et al. 2004] S. L. Graham, P. B. Kessler, and M. K. McKusick.
Gprof: A call graph execution profiler. ACM SIGPLAN Notices, 39(4):
49–57, 2004. (cited on page 284)

[Grassi et al. 2007] V. Grassi, R. Mirandola, and A. Sabetta. Filling the gap
between design and performance/reliability models of component-based
systems: A model-driven approach. Elsevier Journal of Systems and Software
(JSS), 80(4):528–558, 2007. (cited on pages 67 and 282)

[Gualtieri et al. 2009] M. Gualtieri, J. R. Rymer, R. Heffner, and W. Yu. The
forrester wave™: Complex event processing (CEP) platforms. Technical
report, Forrester Research, 2009. (cited on page 138)

[Gul et al. 2008] I. A. Gul, N. Sommer, M. Rohr, A. van Hoorn, and W. Has-
selbring. Evaluation of control flow traces in software applications for
intrusion detection. In Proceedings of the 12th IEEE International Multi-
topic Conference (IEEE INMIC 2008), pages 373–378. IEEE, 2008. (cited on
page 229)

[Günther 2011] N. Günther. Modellbasierte Laufzeit-Performance-
Vorhersage für komponentenbasierte Softwarearchitekturen (“Model-
based online performance prediction for component-based software ar-
chitectures”, in German), 2011. Diploma Thesis, Kiel University. (cited
on pages 19, 88, 174, 177, 185, and 303)

[Heger 2012] C. Heger. Automatische Problemdiagnose in Performance-
Unit-Tests, 2012. Master’s Thesis, Karlsruhe Institute of Technology. (cited
on page 277)

[Heineman and Councill 2001] G. T. Heineman and W. T. Councill, editors.
Component-based software engineering: Putting the pieces together. Addison-
Wesley Longman Publishing Co., Inc., 2001. (cited on page 28)

[Herbst 2012] N. R. Herbst. Workload classification and forecasting, 2012.
Diploma Thesis, Karlsruhe Institute of Technology. (cited on pages 89
and 277)

[Herbst et al. 2013a] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn.
Self-adaptive workload classification and forecasting for proactive re-
source provisioning. In Proceedings of the 4th ACM/SPEC International

328

Bibliography

Conference on Performance Engineering (ICPE ’13), pages 187–198. ACM,
2013a. (cited on pages 64, 89, and 300)

[Herbst et al. 2013b] N. R. Herbst, S. Kounev, and R. Reussner. Elasticity
in cloud computing: What it is, and what it is not. In Proceedings of the
10th International Conference on Autonomic Computing (ICAC ’13). USENIX,
2013b. (cited on page 45)

[Hofmeister 1993] C. Hofmeister. Dynamic Reconfiguration of Distributed
Applications. PhD thesis, University of Maryland, 1993. (cited on page 35)

[Hrischuk et al. 1999] C. E. Hrischuk, C. M. Woodside, J. A. Rolia, and
R. Iversen. Trace-based load characterization for generating performance
software models. IEEE Transactions on Software Engineering (TSE), 25(1):
122–135, 1999. (cited on page 289)

[Huang et al. 1995] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton.
Software rejuvenation: Analysis, module and applications. In Proceedings
of the 25th International Symposium on Fault-Tolerant Computing (FTCS ’95),
pages 381–390. IEEE, 1995. (cited on page 290)

[Huber et al. 2012] N. Huber, A. van Hoorn, A. Koziolek, F. Brosig, and
S. Kounev. S/T/A: Meta-modeling run-time adaptation in component-
based system architectures. In Proceedings of the 9th IEEE International
Conference on e-Business Engineering (ICEBE 2012), pages 70–77. IEEE, 2012.
(cited on pages 89 and 225)

[Huber et al. 2014] N. Huber, A. van Hoorn, A. Koziolek, F. Brosig, and
S. Kounev. Modeling run-time adaptation at the system architecture
level in dynamic service-oriented environments. Springer Service Oriented
Computing and Applications (SOCA), 8(1):73–89, 2014. (cited on pages 36,
89, 161, 167, 225, 280, and 283)

[Huebscher and McCann 2008] M. C. Huebscher and J. A. McCann. A
survey of autonomic computing—degrees, models, and applications.
ACM Computing Surveys (CSUR), 40(3):1–28, 2008. (cited on page 34)

[IBM 2003] IBM. Web Service Level Agreement (WSLA) language specifi-
cation, version 1.0, revision: wsla-2003/01/28. http://www.research.ibm.com/

wsla/, 2003. (cited on pages 1, 46, and 283)

329

http://www.research.ibm.com/wsla/
http://www.research.ibm.com/wsla/

Bibliography

[IEEE 2000] IEEE. IEEE recommended practice for architectural description
of software-intensive systems—std. 1471-2000, 2000. (cited on page 22)

[ISO/IEC 2001] ISO/IEC. ISO/IEC 9126: Software engineering – product
quality – part 1: Quality model, 2001. (cited on page 40)

[ISO/IEC 2003a] ISO/IEC. ISO/IEC 9126: Software engineering – product
quality – part 2: External metrics, 2003a. (cited on page 40)

[ISO/IEC 2003b] ISO/IEC. ISO/IEC 9126: Software engineering – product
quality – part 3: Internal metrics, 2003b. (cited on page 40)

[ISO/IEC 2004] ISO/IEC. ISO/IEC 9126: Software engineering – product
quality – part 4: Quality in use metrics, 2004. (cited on page 40)

[ISO/IEC 2005a] ISO/IEC. ISO/IEC 20000-1: Information technology –
service management – part 1: Specification, 2005a. (cited on pages 1
and 59)

[ISO/IEC 2005b] ISO/IEC. ISO/IEC 20000-1: Information technology –
service management – part 2: Code of practice, 2005b. (cited on page 59)

[ISO/IEC/IEEE 2011] ISO/IEC/IEEE. ISO/IEC/IEEE 42010:2011(E): Sys-
tems and software engineering — Architecture description, international
standard, 2011. (cited on pages 21, 22, 23, and 24)

[Israr et al. 2007] T. Israr, M. Woodside, and G. Franks. Interaction tree
algorithms to extract effective architecture and layered performance mod-
els from traces. Elsevier Journal of Systems and Software (JSS), 80(4):474–492,
2007. (cited on page 289)

[Jain 1991] R. Jain. The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991. (cited on pages 1, 39, 41, 42, 43, 55, 56, 57, 61, 65, 246,
and 287)

[Johnson 1998] M. W. Johnson. Monitoring and diagnosing application
response time with ARM. In Proceedings of the IEEE 3rd International
Workshop on Systems Management (SMW ’98), pages 4–13. IEEE, 1998.
(cited on page 284)

330

Bibliography

[Joint Committee for Guides in Metrology (JCGM) 2008] Joint Committee
for Guides in Metrology (JCGM). International vocabulary of metrology
— Basic and general concepts and associated terms (VIM), JCGM 200:2008.
http://www.iso.org/sites/JCGM/VIM-JCGM200.htm, 2008. (cited on page 55)

[Jouault and Bézivin 2006] F. Jouault and J. Bézivin. KM3: A DSL for meta-
model specification. In Proceedings of the 8th IFIP International Conference
on Formal Methods for Open Object-based Distributed Systems (FMOODS ’06),
volume 4037 of LNCS. Springer, 2006. (cited on page 19)

[Jouault et al. 2008] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A
model transformation tool. Elsevier Science of Computer Programming, 72
(1-2):31–39, 2008. (cited on page 19)

[Juse et al. 2003] K. S. Juse, S. Kounev, and A. P. Buchmann. PetStore-WS:
Measuring the performance implications of web services. In Proceedings
of the 29th International Computer Measurement Group Conference (CMG ’03),
pages 113–123. Computer Measurement Group, 2003. (cited on page 229)

[Kearney et al. 2010] K. Kearney, F. Torelli, and C. Kotsokalis. SLA✝: An
abstract syntax for service level agreements. In Proceedings of the 11th
IEEE/ACM International Conference on Grid Computing (GRID ’10), pages
217–224. IEEE, 2010. (cited on pages 47, 48, and 283)

[Keller and Ludwig 2003] A. Keller and H. Ludwig. The WSLA framework:
Specifying and monitoring service level agreements for web services.
Journal of Network and Systems Management, 11(1):57–81, 2003. (cited on
pages 46 and 283)

[Kephart and Chess 2003] J. Kephart and D. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41–50, 2003. (cited on pages 33, 34,
and 286)

[Kephart and Walsh 2004] J. O. Kephart and W. E. Walsh. An artificial
intelligence perspective on autonomic computing policies. In Proceedings
of the 5th IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY ’04), pages 3–12. IEEE, 2004. (cited on page 34)

[Kiczales et al. 1996] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier,
C. Lopes, C. Maeda, and A. Mendhekar. Aspect-oriented programming.

331

http://www.iso.org/sites/JCGM/VIM-JCGM200.htm

Bibliography

Position paper from the Xerox PARC Aspect-Oriented Programming
project, Xerox Paolo Alto Research Center, 1996. (cited on page 57)

[Kiczales et al. 2001] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of AspectJ. In Proceedings of
the 2001 European Conference on Object-Oriented Programming (ECOOP ’01),
volume 2072 of LNCS, pages 327–354. Springer, 2001. (cited on pages 57,
146, and 284)

[Kieker Project 2014a] Kieker Project. Kieker 1.9 user guide. http:

//kieker-monitoring.net/documentation/, 2014a. (cited on pages 107, 118, 119,
120, 146, 210, 229, and 249)

[Kieker Project 2014b] Kieker Project. Kieker web site. http://

kieker-monitoring.net/, 2014b. (cited on pages 107 and 119)

[Kiel 2013] B. Kiel. Investigating the use of graph databases for large model
repositories, 2013. Master’s Thesis, Kiel University. (cited on pages 13,
81, 89, and 130)

[Knoche et al. 2012] H. Knoche, A. van Hoorn, W. Goerigk, and W. Hassel-
bring. Automated source-level instrumentation for dynamic dependency
analysis of COBOL systems. In Proceedings of the 14th Workshop Software-
Reengineering (WSR ’12), pages 33–34, 2012. (cited on pages 113, 124,
and 277)

[Kounev et al. 2010] S. Kounev, F. Brosig, N. Huber, and R. Reussner.
Towards self-aware performance and resource management in modern
service-oriented systems. In Proceedings of the 7th IEEE International Con-
ference on Services Computing (SCC ’10), pages 621–624. IEEE, 2010. (cited
on pages 59 and 280)

[Kounev et al. 2012] S. Kounev, S. Spinner, and P. Meier. Introduction
to Queueing Petri Nets: Modeling formalism, tool support and case
studies (tutorial paper). In Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering (ICPE ’12), pages 9–18. ACM, 2012.
(cited on pages 65 and 287)

[Kowall and Cappelli 2013] J. Kowall and W. Cappelli. Gartner’s magic
quadrant for application performance monitoring, 2013. (cited on pages 58
and 285)

332

http://kieker-monitoring.net/documentation/
http://kieker-monitoring.net/documentation/
http://kieker-monitoring.net/
http://kieker-monitoring.net/

Bibliography

[Koziolek 2010] H. Koziolek. Performance evaluation of component-based
software systems: A survey. Elsevier Performance Evaluation, 67(8):634–658,
2010. (cited on pages 2, 65, and 282)

[Koziolek and Reussner 2008] H. Koziolek and R. Reussner. A model
transformation from the Palladio Component Model to Layered Queueing
Networks. In Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of LNCS, pages 58–78. Springer,
2008. (cited on pages 289 and 303)

[Kramer and Magee 1985] J. Kramer and J. Magee. Dynamic configuration
for distributed systems. IEEE Transactions on Software Engineering (TSE),
11(4):424–436, 1985. (cited on pages 36, 280, and 290)

[Kramer and Magee 1990] J. Kramer and J. Magee. The evolving philoso-
phers problem: Dynamic change management. IEEE Transactions on
Software Engineering (TSE), 16(11):1293–1306, 1990. (cited on pages 36, 280,
and 290)

[Kramer and Magee 2007] J. Kramer and J. Magee. Self-managed sys-
tems: An architectural challenge. In 2007 Future of Software Engineering
(FOSE ’07), pages 259–268. IEEE, 2007. (cited on pages 34 and 280)

[Krogmann 2010] K. Krogmann. Reconstruction of software component archi-
tectures and behaviour models using static and dynamic analysis, volume 4.
KIT Scientific Publishing, 2010. (cited on pages 289 and 302)

[Kruchten et al. 2006] P. Kruchten, H. Obbink, and J. Stafford. The past,
present, and future for software architecture. IEEE Software, 23(2):22–30,
2006. (cited on page 21)

[Kuhn et al. 2013] T. Kuhn, H. V. Le, P. Scheide, P. Strobel, C. Waldvogel,
K. Wenz, and N. Wolter. KARMA: Kieker Analysis Repository Metamodel
Application, 2013. Master’s development project. University of Stuttgart,
Institute of Software Technology, Germany. (cited on page 302)

[Kühne 2006] T. Kühne. Matters of (meta-) modeling. Springer Software &
Systems Modeling (SoSyM), 5(4):369–385, 2006. (cited on page 13)

333

Bibliography

[Liggesmeyer 2002] P. Liggesmeyer. Software-Qualität: Testen, Analysieren
und Verifizieren von Software. Spektrum Akademischer Verlag, 2002. (cited
on page 40)

[Lilja 2005] D. J. Lilja. Measuring Computer Performance: A Practitioner’s
Guide. Cambridge University Press, 2005. (cited on pages 39, 41, 55, 56,
and 57)

[Luckham and Vera 1995] D. C. Luckham and J. Vera. An event-based
architecture definition language. IEEE Transactions on Software Engineering
(TSE), 21(9):717–734, 1995. (cited on pages 27 and 282)

[Ludewig 2003] J. Ludewig. Models in software engineering—An intro-
duction. Springer Software and Systems Modeling (SoSyM), 2(1):5–14, 2003.
(cited on page 11)

[Ludewig and Lichter 2010] J. Ludewig and H. Lichter. Software Engineering
— Grundlagen, Menschen, Prozesse, Techniken. dpunkt.verlag, 2nd edition,
2010. (cited on page 11)

[Luk et al. 2005] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Build-
ing customized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’05), pages 190–200. ACM, 2005. (cited
on page 284)

[Magedanz 2011] F. Magedanz. Dynamic analysis of .NET applications for
architecture-based model extraction and test generation, 2011. Diploma
Thesis, Kiel University. (cited on pages 88, 124, and 277)

[Magee et al. 1995] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Speci-
fying distributed software architectures. In Proceedings of the 5th European
Software Engineering Conference (ESEC ’95), pages 137–153. Springer, 1995.
(cited on pages 27 and 282)

[Marek et al. 2012] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder,
and Z. Qi. DiSL: A domain-specific language for bytecode instrumenta-
tion. In Proceedings of the 11th Annual International Conference on Aspect-
Oriented Software Development (AOSD ’12), pages 239–250. ACM, 2012.
(cited on pages 57 and 284)

334

Bibliography

[Markovets et al. 2013] V. Markovets, R. Dabrowski, G. Timoszuk, and
K. Stencel. Know thy source code. In Proceedings of the 6th Balkan Conference
in Informatics (BCI ’13), volume 1036, pages 128–131. CEUR-WS.org, 2013.
(cited on page 277)

[Marwede et al. 2009] N. S. Marwede, M. Rohr, A. van Hoorn, and W. Has-
selbring. Automatic failure diagnosis support in distributed large-scale
software systems based on timing behavior anomaly correlation. In
Proceedings of the 13th European Conference on Software Maintenance and
Reengineering (CSMR ’09), pages 47–57. IEEE, 2009. (cited on page 229)

[Matevska 2009] J. Matevska. Architekturbasierte erreichbarkeitsoptimierte
Rekonfiguration komponentenbasierter Softwaresysteme zur Laufzeit. PhD
thesis, Department of Computer Science, University of Oldenburg, Old-
enburg, Germany, 2009. (cited on pages 36, 83, 84, 89, 163, 164, 290,
and 303)

[Mcilroy 1969] D. Mcilroy. Mass-produced software components. In
Proceedings of Software Engineering Concepts and Techniques, pages 138–155.
NATO Science Committee, 1969. (cited on page 27)

[Medvidovic and Taylor 2000] N. Medvidovic and R. N. Taylor. A classifi-
cation and comparison framework for software architecture description
languages. IEEE Transactions on Software Engineering (TSE), 26(1):70–93,
2000. (cited on pages 26, 27, and 282)

[Meier et al. 2011] P. Meier, S. Kounev, and H. Koziolek. Automated trans-
formation of component-based software architecture models to Queueing
Petri Nets. In Proceedings of the 2011 IEEE 19th International Symposium on
Modeling, Analysis Simulation of Computer and Telecommunication Systems
(MASCOTS 2011), pages 339–348. IEEE, 2011. (cited on pages 280, 289,
and 303)

[Mell and Grance 2011] P. Mell and T. Grance. The NIST definition of
cloud computing. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.

pdf, 2011. Special Publication 800-145. (cited on pages 2 and 31)

[Menascé 2002] D. A. Menascé. Load testing, benchmarking, and ap-
plication performance management for the web. In Proceedings of the

335

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Bibliography

2002 International Computer Measurement Group (CMG) Conference, pages
271–282. Computer Measurement Group, 2002. (cited on page 285)

[Menascé and Almeida 2002] D. A. Menascé and V. A. Almeida. Capacity
Planning for Web Services: Metrics, Models, and Methods. Prentice Hall, 2002.
(cited on pages 1, 39, 41, 43, 55, 56, 57, 59, 63, 64, 162, and 311)

[Menascé et al. 1999] D. A. Menascé, V. A. F. Almeida, R. Fonseca, and M. A.
Mendes. A methodology for workload characterization of e-commerce
sites. In Proceedings of the 1st ACM Conference on Electronic Commerce (EC
’99), pages 119–128. ACM, 1999. (cited on pages 62, 63, and 64)

[Menascé et al. 2004] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy.
Performance by Design: Computer Capacity Planning By Example. Prentice
Hall, 2004. (cited on page 65)

[Menascé et al. 2005] D. A. Menascé, M. N. Bennani, and H. Ruan. On
the use of online analytic performance models in self-managing and self-
organizing computer systems. In Self-Star Properties in Complex Information
Systems, volume 3460 of LNCS, pages 128–142. Springer, 2005. (cited on
page 290)

[Mens and Van Gorp 2006] T. Mens and P. Van Gorp. A taxonomy of
model transformation. Elsevier Electronic Notes in Theoretical Computer
Science (ENTCS), 152:125–142, 2006. (cited on page 13)

[Microsoft, Inc. 2014] Microsoft, Inc. Windows Azure. http://www.windowsazure.

com, 2014. (cited on pages 2, 32, and 286)

[Mos 2004] A. Mos. A Framework for Adaptive Monitoring and Performance
Management of Component-Based Enterprise Applications. PhD thesis, Dublin
City University, Ireland, 2004. (cited on page 281)

[Mos and Murphy 2004] A. Mos and J. Murphy. COMPAS: Adaptive
performance monitoring of component-based systems. In Proceedings
of the 2nd ICSE Workshop on Remote Analysis and Measurement of Software
Systems (RAMSS ’04), 2004. (cited on pages 281 and 284)

[Musa 1993] J. D. Musa. Operational profiles in software-reliability engi-
neering. IEEE Software, 10(2):14–32, 1993. (cited on pages 2 and 41)

336

http://www.windowsazure.com
http://www.windowsazure.com

Bibliography

[Nurmi et al. 2009] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,
S. Soman, L. Youseff, and D. Zagorodnov. The Eucalyptus open-source
cloud-computing system. In Proceedings of the 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID ’09), pages 124–131.
IEEE, 2009. (cited on pages 2 and 32)

[Object Management Group, Inc. 2003] Object Management Group, Inc.
MDA Guide Version 1.0.1. http://www.omg.org/cgi-bin/doc?omg/03-06-01, 2003.
(cited on page 15)

[Object Management Group, Inc. 2004] Object Management Group, Inc.
Human-Usable Textual Notation (HUTN), version 1.0. http://www.omg.org/

spec/HUTN/1.0/, 2004. (cited on page 16)

[Object Management Group, Inc. 2005] Object Management Group, Inc.
UML Profile for Schedulability, Performance, and Time (SPT), version
1.1. http://www.omg.org/spec/SPTP/1.1/, 2005. (cited on pages 16, 61, 66, 67, 117,
282, and 287)

[Object Management Group, Inc. 2006] Object Management Group, Inc.
CORBA Component Model Specification, version 4.0. http://www.omg.org/

spec/CCM/4.0/, 2006. (cited on pages 28 and 282)

[Object Management Group, Inc. 2008] Object Management Group, Inc.
UML Profile for Modeling Quality of Service and Fault Tolerance Charac-
teristics and Mechanisms, version 1.1. http://www.omg.org/spec/QFTP/1.1/, 2008.
(cited on page 283)

[Object Management Group, Inc. 2011a] Object Management Group, Inc.
Meta Object Facility (MOF), version 2.4.1. http://www.omg.org/spec/MOF/2.4.1/,
2011a. (cited on page 16)

[Object Management Group, Inc. 2011b] Object Management Group, Inc.
Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT), ver-
sion 1.1. http://www.omg.org/spec/QVT/1.1/, 2011b. (cited on page 16)

[Object Management Group, Inc. 2011c] Object Management Group, Inc.
UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems, version 1.1. http://www.omg.org/spec/MARTE/1.1/, 2011c. (cited on
pages 16, 62, 67, 117, and 282)

337

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/spec/HUTN/1.0/
http://www.omg.org/spec/HUTN/1.0/
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/CCM/4.0/
http://www.omg.org/spec/CCM/4.0/
http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/MARTE/1.1/

Bibliography

[Object Management Group, Inc. 2011d] Object Management Group, Inc.
Business Process Model and Notation (BPMN), version 2.0.1. http://www.

omg.org/spec/BPMN/2.0.1/, 2011d. (cited on page 17)

[Object Management Group, Inc. 2012a] Object Management Group, Inc.
Object Constraint Language (OCL), version 2.3.1. http://www.omg.org/spec/

OCL/2.3.1/, 2012a. (cited on pages 13 and 16)

[Object Management Group, Inc. 2012b] Object Management Group, Inc.
Architecture-Driven Modernization (ADM): Structured Metrics Meta-
Model (SMM), version 1.0. http://www.omg.org/spec/SMM/1.0/, 2012b. (cited on
pages 3, 16, 48, 49, and 283)

[Object Management Group, Inc. 2013a] Object Management Group, Inc.
MOF 2 XMI Mapping (XMI), version 2.4.1. http://www.omg.org/spec/XMI/2.4.1/,
2013a. (cited on page 16)

[Object Management Group, Inc. 2013b] Object Management Group, Inc.
Unified Modeling Language (UML), version 2.5. http://www.omg.org/spec/UML/

2.5/Beta2/, 2013b. (cited on pages 13, 16, 24, 29, 68, 91, and 117)

[Object Management Group, Inc. 2013c] Object Management Group, Inc.
Architecture-Driven Modernization (ADM) Task Force. http://adm.omg.org/,
2013c. (cited on pages 15 and 48)

[Object Management Group, Inc. 2013d] Object Management Group, Inc.
Model Driven Architecture (MDA). http://www.omg.org/mda/, 2013d. (cited
on page 15)

[Okanović et al. 2013] D. Okanović, A. van Hoorn, Z. Konjović, and
M. Vidaković. SLA-driven adaptive monitoring of distributed applications
for performance problem localization. Computer Science and Information
Systems (ComSIS), 10(10):26–51, 2013. (cited on pages 277 and 302)

[Open Grid Forum 2011] Open Grid Forum. Web Services Agreement Spec-
ification (WS-Agreement). http://ogf.org/documents/GFD.192.pdf, 2011. (cited
on pages 47 and 283)

[OpenStack Foundation 2014] OpenStack Foundation. OpenStack: The
open source cloud operating system. http://www.openstack.org/, 2014. (cited
on pages 2 and 32)

338

http://www.omg.org/spec/BPMN/2.0.1/
http://www.omg.org/spec/BPMN/2.0.1/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/SMM/1.0/
http://www.omg.org/spec/XMI/2.4.1/
http://www.omg.org/spec/UML/2.5/Beta2/
http://www.omg.org/spec/UML/2.5/Beta2/
http://adm.omg.org/
http://www.omg.org/mda/
http://ogf.org/documents/GFD.192.pdf
http://www.openstack.org/

Bibliography

[Oracle 2004] Oracle. Java Virtual Machine Profiler Interface (JVMPI).
http://docs.oracle.com/javase/1.5.0/docs/guide/jvmpi/jvmpi.html, 2004. (cited on
page 284)

[Oracle 2011] Oracle. Java Virtual Machine Tool Interface (JVMTI).
http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/, 2011. (cited on
pages 57 and 284)

[Oracle 2014a] Oracle. Java Servlet Technology. http://www.oracle.com/

technetwork/java/index-jsp-135475.html, 2014a. (cited on page 122)

[Oracle 2014b] Oracle. Java Platform, Enterprise Edition (Java EE). http:

//www.oracle.com/technetwork/java/javaee/, 2014b. (cited on page 30)

[Oracle 2014c] Oracle. Java Platform, Standard Edition (Java SE). http:

//www.oracle.com/technetwork/java/javase/, 2014c. (cited on page 30)

[Oreizy et al. 1998] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-
based runtime software evolution. In Proceedings of the 20th International
Conference on Software Engineering (ICSE ’98), pages 177–186. IEEE, 1998.
(cited on pages 35 and 280)

[Oreizy et al. 1999] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf.
An architecture-based approach to self-adaptive software. IEEE Intelligent
Systems, 14(3):54–62, 1999. (cited on pages 33 and 35)

[Oreizy et al. 2008] P. Oreizy, N. Medvidovic, and R. N. Taylor. Runtime
software adaptation: Framework, approaches, and styles. In Companion
of the 30th International Conference on Software Engineering (ICSE Compan-
ion ’08), pages 899–910. ACM, 2008. (cited on pages 35 and 280)

[OSGi Alliance 2012] OSGi Alliance. OSGi Core Release 5. http://www.osgi.

org/Specifications/, 2012. (cited on pages 29, 190, and 282)

[Page and Kreutzer 2005] B. Page and W. Kreutzer, editors. The Java
Simulation Handbook: Simulating Discrete Event Systems with UML and Java.
Shaker Verlag, 1st edition, 2005. (cited on pages 189, 191, 195, and 287)

339

http://docs.oracle.com/javase/1.5.0/docs/guide/jvmpi/jvmpi.html
http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.oracle.com/technetwork/java/javaee/
http://www.oracle.com/technetwork/java/javaee/
http://www.oracle.com/technetwork/java/javase/
http://www.oracle.com/technetwork/java/javase/
http://www.osgi.org/Specifications/
http://www.osgi.org/Specifications/

Bibliography

[Parsons et al. 2006] T. Parsons, A. Mos, and J. Murphy. Non-intrusive end-
to-end runtime path tracing for J2EE systems. IEE Proceedings – Software,
153(4):149–161, 2006. (cited on page 285)

[Petriu and Woodside 2007] D. B. Petriu and C. M. Woodside. An interme-
diate metamodel with scenarios and resources for generating performance
models from UML designs. Springer Software and System Modeling (SoSym),
6(2):163–184, 2007. (cited on pages 62 and 67)

[Petriu and Shen 2002] D. C. Petriu and H. Shen. Applying the UML
performance profile: Graph grammar-based derivation of LQN models
from UML specifications. In Proceedings of the 12th International Confer-
ence on Computer Performance Evaluation, Modelling Techniques and Tools
(TOOLS ’02), volume 2324 of LNCS, pages 159–177. Springer, 2002. (cited
on page 289)

[Petriu and Woodside 2002] D. C. Petriu and C. M. Woodside. Software
performance models from system scenarios in use case maps. In Proceed-
ings of the 12th International Conference on Modelling Tools and Techniques for
Computer and Communication System Performance Evaluation (TOOLS ’02),
volume 2324 of LNCS, pages 141–158. Springer, 2002. (cited on page 289)

[Platenius et al. 2012] M. C. Platenius, M. von Detten, and S. Becker.
Archimetrix: Improved software architecture recovery in the presence
of design deficiencies. In Proceedings of the 16th European Conference on
Software Maintenance and Reengineering (CSMR ’12), pages 255–264, 2012.
(cited on page 289)

[R Development Core Team 2014] R Development Core Team. R: A Lan-
guage and Environment for Statistical Computing. Vienna: R Foundation for
Statistical Computing, 2014. (cited on page 208)

[Rausch et al. 2008] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil.
The Common Component Modeling Example: Comparing Software Component
Models, volume 5153 of LNCS. Springer, 2008. (cited on page 29)

[Reussner et al. 2011] R. Reussner, S. Becker, E. Burger, J. Happe, M. Hauck,
A. Koziolek, H. Koziolek, K. Krogmann, and M. Kuperberg. The Palladio
Component Model. Technical Report Karlsruhe Reports in Informatics

340

Bibliography

2011,14, Karlsruhe Institute of Technology, Faculty of Informatics, 2011.
(cited on page 67)

[Richter 2012] B. Richter. Dynamische Analyse von COBOL-
Systemarchitekturen zum modellbasierten Testen (“Dynamic analysis
of cobol system architectures for model-based testing”, in German), 2012.
Diploma Thesis, Kiel University. (cited on pages 88, 124, and 277)

[Rohr 2014] M. Rohr. Workload-sensitive Timing Behavior Analysis for Fault
Localisation in Software Systems. PhD thesis, Department of Computer
Science, Kiel University, Germany, 2014. To appear. (cited on page 261)

[Rohr et al. 2008] M. Rohr, A. van Hoorn, J. Matevska, N. Sommer, L. Stöver,
S. Giesecke, and W. Hasselbring. Kieker: Continuous monitoring and
on demand visualization of Java software behavior. In Proceedings of
the IASTED International Conference on Software Engineering 2008 (SE ’08),
pages 80–85. ACTA Press, 2008. (cited on pages 80, 89, 107, 117, and 261)

[Rohr et al. 2010] M. Rohr, A. van Hoorn, W. Hasselbring, M. Lübcke,
and S. Alekseev. Workload-intensity-sensitive timing behavior analysis
for distributed multi-user software systems. In 1st Joint WOSP/SIPEW
International Conference on Performance Engineering (WOSP/SIPEW ’10),
pages 87–92. ACM, 2010. (cited on pages 229, 232, and 276)

[Rolia and Sevcik 1995] J. Rolia and K. Sevcik. The method of layers. IEEE
Transactions on Software Engineering (TSE), 21(8):689–700, 1995. (cited on
page 65)

[Salehie and Tahvildari 2009] M. Salehie and L. Tahvildari. Self-adaptive
software: Landscape and research challenges. ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS), 4(2):1–42, 2009. (cited on pages 3,
34, and 286)

[Schulz et al. 2014] E. Schulz, W. Goerigk, W. Hasselbring, A. van Hoorn,
and H. Knoche. Model-driven load and performance test engineering in
DynaMod. In Proceedings of the Workshop on Model-based and Model-driven
Software Modernization (MMSM ’14), pages 10–11, 2014. (cited on page 140)

[Shams et al. 2006] M. Shams, D. Krishnamurthy, and B. Far. A model-
based approach for testing the performance of web applications. In

341

Bibliography

Proceedings of the 3rd International Workshop on Software Quality Assurance
(SOQUA ’06), pages 54–61. ACM, 2006. (cited on page 229)

[Shaw and Clements 1997] M. Shaw and P. C. Clements. A field guide to
boxology: Preliminary classification of architectural styles for software
systems. In Proceedings of the 21st International Computer Software and
Applications Conference (COMPSAC ’97), pages 6–13. IEEE, 1997. (cited on
page 25)

[Shumway and Stoffer 2006] R. H. Shumway and D. S. Stoffer. Time Series
Analysis and Its Applications – With R Examples. Springer, 2nd edition, 2006.
(cited on page 65)

[Skene 2007] J. Skene. Language support for service-level agreements for
application-service provision. PhD thesis, University College London, 2007.
(cited on pages 48 and 283)

[Skene 2014] J. Skene. The SLAng SLA language—A language for ASP
SLAs. http://uclslang.sourceforge.net/, 2014. (cited on page 48)

[Skene et al. 2004] J. Skene, D. D. Lamanna, and W. Emmerich. Precise
service level agreements. In Proceedings of the 26th International Conference
on Software Engineering (ICSE ’04), pages 179–188. IEEE, 2004. (cited on
page 48)

[Skene et al. 2010] J. Skene, F. Raimondi, and W. Emmerich. Service-
level agreements for electronic services. IEEE Transactions on Software
Engineering (TSE), 36(2):288–304, 2010. (cited on pages 48 and 283)

[Smith and Williams 2002] C. U. Smith and L. G. Williams. Performance So-
lutions: A Practical Guide to Creating Responsive, Scalable Software. Addison-
Wesley, 2002. (cited on pages 41, 42, 44, 61, and 67)

[Smith et al. 2005] C. U. Smith, C. M. Lladó, V. Cortellessa, A. Di Marco,
and L. G. Williams. From UML models to software performance results:
An SPE process based on XML interchange formats. In Proceedings of the
5th International Workshop on Software and Performance (WOSP ’05), pages
87–98. ACM, 2005. (cited on page 67)

342

http://uclslang.sourceforge.net/

Bibliography

[Smith 2000] G. Smith. The Object-Z Specification Language. Advances in
Formal Methods Series. Kluwer Academic Publishers, 2000. (cited on
pages 91 and 92)

[SPEC Research Group 2013] SPEC Research Group. SPEC Research Group
Charter, rev. 2.9. http://research.spec.org/mission-and-charter/, 2013. (cited on
pages 277 and 278)

[SPEC Research Group 2014] SPEC Research Group. Repository of peer-
reviewed tools for quantitative system evaluation and analysis. http:

//research.spec.org/projects/tools/, 2014. (cited on page 277)

[Spivey 2001] J. M. Spivey. The Z notation: A reference manual. online,
2001. (cited on page 92)

[SpringSource 2014] SpringSource. Spring. http://www.springsource.org/, 2014.
(cited on page 122)

[Srivastava and Eustace 1994] A. Srivastava and A. Eustace. ATOM: A
system for building customized program analysis tools. In Proceedings of
the ACM SIGPLAN 1994 Conference on Programming Language Design and
Implementation (PLDI ’94), pages 196–205. ACM, 1994. (cited on page 284)

[Stachowiak 1973] H. Stachowiak. Allgemeine Modelltheorie. Springer, 1973.
(cited on page 11)

[Stahl and Völter 2006] T. Stahl and M. Völter. Model-Driven Software
Development – Technology, Engineering, Management. Wiley & Sons, 2006.
(cited on pages 3, 11, 12, 143, 144, 223, 277, and 302)

[Steinberg et al. 2009] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework. Addison-Wesley, 2nd edition,
2009. (cited on pages 17, 18, and 19)

[Stöver 2009] L. Stöver. Ein Laufzeit-Analyse-Framework zur Unter-
stützung architekturbasierter, dynamischer Adaption von Software-
Systemen (“An online analysis framework supporting architecture-based
runtime adaptation of software systems”, in German), 2009. Diploma
Thesis, University of Oldenburg. (cited on pages 79, 81, 88, and 142)

343

http://research.spec.org/mission-and-charter/
http://research.spec.org/projects/tools/
http://research.spec.org/projects/tools/
http://www.springsource.org/

Bibliography

[Strittmatter et al. 2013] M. Strittmatter, P. Merkle, A. Rentschler, and
M. Langhammer. Towards a modular Palladio Component Model. In
Proceedings of the Symposium on Software Performance: Joint Kieker/Palladio
Days 2013, volume 1083 of CEUR Workshop Proceedings, pages 49–58.
CEUR-WS.org, 2013. (cited on pages 283 and 300)

[Sun Microsystems 2009] Sun Microsystems. SWaP (Space, Watts and
Performance) Metric. http://www.sun.com/servers/coolthreads/swap/, 2009. Last
retrieved February 12, 2009. (cited on page 44)

[Szyperski et al. 2002] C. Szyperski, D. Gruntz, and S. Murer. Compo-
nent Software: Beyond Object-Oriented Programming. Addison-Wesley, 2nd
edition, 2002. (cited on page 28)

[Tanenbaum and van Steen 2008] A. S. Tanenbaum and M. van Steen.
Distributed Systems – Principles and Paradigms. Prentice Hall, 2nd edition,
2008. (cited on page 30)

[Taylor et al. 2009] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software
Architecture: Foundations, Theory and Practice. John Wiley & Sons, Inc.,
2009. (cited on pages 3, 21, 22, 24, 25, 26, 27, 34, 39, 43, and 282)

[Tel et al. 2013] T. Tel, T. Freiberg, and Z. Ünsür. Evaluation of Java
monitoring tools, 2013. Special Research Software Engineering (Fach-
studie), University of Stuttgart, Institute of Software Technology, Stuttgart,
Germany. (cited on page 285)

[The Apache Foundation 2014] The Apache Foundation. Apache CXF.
http://cxf.apache.org/, 2014. (cited on page 123)

[The Eclipse Foundation 2014] The Eclipse Foundation. The AspectJ Project.
http://www.eclipse.org/aspectj/, 2014. (cited on page 122)

[The Open Group 2013] The Open Group. Application Response Mea-
surement (ARM). http://www.opengroup.org/tech/management/arm/, 2013. (cited
on page 284)

[Tosic 2004] V. Tosic. Service offerings for XML web services and their man-
agement applications. PhD thesis, Carleton University, Ottawa, Ontario,
Canada, 2004. (cited on pages 1, 46, and 283)

344

http://www.sun.com/servers/coolthreads/swap/
http://cxf.apache.org/
http://www.eclipse.org/aspectj/
http://www.opengroup.org/tech/management/arm/

Bibliography

[Tosic et al. 2002] V. Tosic, K. Patel, and B. Pagurek. WSOL—Web Service
Offerings Language. In Revised Papers from the CAiSE International Work-
shop on Web Services, E-Business, and the Semantic Web (WES ’02), volume
2512 of LNCS, pages 57–67. Springer, 2002. (cited on pages 46 and 283)

[van Hoorn 2007] A. van Hoorn. Workload-sensitive timing behavior
anomaly detection in large software systems, 2007. Master’s thesis (Diplo-
marbeit), Department of Computer Science, University of Oldenburg,
Germany. 125 pages. (cited on pages 80, 228, and 261)

[van Hoorn 2009a] A. van Hoorn. Adaptive capacity management for
resource-efficient, continuously operating software systems (research
abstract). In Proceedings of the 2009 DFG Research Training Groups Workshop,
pages 30–31, 2009a. (cited on page 77)

[van Hoorn 2009b] A. van Hoorn. Adaptive capacity management for the
resource-efficient operation of component-based software systems. In Pro-
ceedings of the 2008 Dependability Metrics Research Workshop, Technical Report
TR-2009-002, pages 7–11. Department of Computer Science, University of
Mannheim, Germany, 2009b. (cited on page 77)

[van Hoorn 2014] A. van Hoorn. Supplementary material for dissertation.
http://kieker-monitoring.net/research/projects/slastic/, 2014. (cited on pages 3,
7, 91, 92, 137, 173, 174, 185, 234, and 297)

[van Hoorn et al. 2008] A. van Hoorn, M. Rohr, and W. Hasselbring.
Generating probabilistic and intensity-varying workload for web-based
software systems. In Proceedings of the SPEC International Performance
Evaluation Workshop 2008 (SIPEW ’08), volume 5119 of LNCS, pages 124–
143. Springer, 2008. (cited on pages 62, 140, 228, and 230)

[van Hoorn et al. 2009a] A. van Hoorn, W. Hasselbring, and M. Rohr.
Engineering and continuously operating self-adaptive software systems:
Required design decisions. In Design for Future 2009: Proceedings of the 1st
Workshop of the GI Working Group „Long-Living Software Systems (L2S2)”,
volume 537 of CEUR Workshop Proceedings, pages 52–63, 2009a. (cited on
pages 77 and 161)

[van Hoorn et al. 2009b] A. van Hoorn, M. Rohr, A. Gul, and W. Hassel-
bring. An adaptation framework enabling resource-efficient operation

345

http://kieker-monitoring.net/research/projects/slastic/

Bibliography

of software systems. In Proceedings of the 2nd Warm-Up Workshop for
ACM/IEEE ICSE 2010 (WUP ’09), pages 41–44. ACM, 2009b. (cited on
pages 77 and 161)

[van Hoorn et al. 2009c] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller,
J. Ehlers, S. Frey, and D. Kieselhorst. Continuous monitoring of software
services: Design and application of the Kieker framework. Technical
Report TR-0921, Department of Computer Science, University of Kiel,
Germany, 2009c. (cited on pages 89, 107, 114, 117, 201, 203, 262, 267,
and 276)

[van Hoorn et al. 2011a] A. van Hoorn, S. Frey, W. Goerigk, W. Hasselbring,
H. Knoche, S. Köster, H. Krause, M. Porembski, T. Stahl, M. Steinkamp,
and N. Wittmüss. DynaMod project: Dynamic analysis for model-driven
software modernization. In Joint Proceedings of the 1st International Work-
shop on Model-Driven Software Migration (MDSM 2011) and the 5th Interna-
tional Workshop on Software Quality and Maintainability (SQM 2011), volume
708 of CEUR Workshop Proceedings, pages 12–13, 2011a. (cited on pages 82,
83, and 276)

[van Hoorn et al. 2011b] A. van Hoorn, H. Knoche, W. Goerigk, and
W. Hasselbring. Model-driven instrumentation for dynamic analysis of
legacy software systems. In Proceedings of the 13th Workshop Software-
Reengineering (WSR ’11), pages 26–27, 2011b. (cited on pages 83 and 124)

[van Hoorn et al. 2012] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker:
A framework for application performance monitoring and dynamic soft-
ware analysis. In Proceedings of the 3rd ACM/SPEC International Conference
on Performance Engineering (ICPE ’12), pages 247–248. ACM, 2012. (cited
on pages 89 and 107)

[van Hoorn et al. 2013] A. van Hoorn, S. Frey, W. Goerigk, W. Hasselbring,
H. Knoche, S. Köster, H. Krause, M. Porembski, T. Stahl, M. Steinkamp,
and N. Wittmüss. DynaMod: Dynamische Analyse für modellgetriebene
Software-Modernisierung. Technical Report TR-1305, Department of
Computer Science, Kiel University, Germany, 2013. (cited on page 276)

[van Ommering et al. 2000] R. van Ommering, F. van der Linden, J. Kramer,
and J. Magee. The Koala component model for consumer electronics

346

Bibliography

software. IEEE Computer, 33(3):78–85, 2000. (cited on pages 27, 29,
and 282)

[van Solingen and Berghout 1999] R. van Solingen and E. Berghout. The
Goal/Question/Metric Method: A practical guide for quality improvement of
software development. McGraw-Hill, 1999. (cited on page 84)

[Vogel et al. 2013] C. Vogel, H. Koziolek, T. Goldschmidt, and E. Burger.
Rapid performance modeling by transforming Use Case Maps to Palladio
Component Models. In Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering (ICPE ’13), pages 101–112. ACM,
2013. (cited on page 289)

[von Massow 2010] R. von Massow. Performance simulation of runtime
reconfigurable software architectures, 2010. Diploma Thesis, University
of Oldenburg. (cited on pages 81, 88, 189, 193, 194, 258, and 303)

[von Massow et al. 2011] R. von Massow, A. van Hoorn, and W. Hasselbring.
Performance simulation of runtime reconfigurable component-based soft-
ware architectures. In Proceedings of the 5th European Conference on Software
Architecture (ECSA ’11), volume 6903 of LNCS, pages 43–58. Springer, 2011.
(cited on pages 67, 161, 162, 189, 191, 193, 247, and 287)

[Wang et al. 2007] D. Wang, W. Xie, and K. S. Trivedi. Performability
analysis of clustered systems with rejuvenation under varying workload.
Performance Evaluation, 64(3):247–265, 2007. (cited on page 290)

[Weinstock and Goodenough 2006] C. B. Weinstock and J. B. Goodenough.
On system scalability. Technical Note CMU/SEI-2006-TN-012, Software
Engineering Institute, 2006. (cited on page 44)

[Wert 2012] A. Wert. Uncovering performance antipatterns by systematic
experiments, 2012. Master’s Thesis, Karlsruhe Institute of Technology.
(cited on pages 277 and 301)

[Woodcock and Davies 1996] J. Woodcock and J. Davies. Using Z: Specifica-
tion, Refinement, and Proof. Prentice Hall International Series in Computer
Science, 1996. (cited on page 92)

347

Bibliography

[Woodside et al. 2002] M. Woodside, D. Petriu, and K. Siddiqui.
Performance-related completions for software specifications. In Proceed-
ings of the 24th International Conference on Software Engineering (ICSE ’02),
pages 22–32. ACM, 2002. (cited on pages 67, 282, and 289)

[Woodside et al. 2007] M. Woodside, G. Franks, and D. C. Petriu. The
future of software performance engineering. In 2007 Future of Software
Engineering (FOSE ’07), pages 171–187. IEEE, 2007. (cited on pages 3, 42,
and 65)

[World Wide Web Consortium (W3C) 2007a] World Wide Web Consortium
(W3C). SOAP, version 1.2. http://www.w3.org/TR/soap/, 2007a. (cited on
page 31)

[World Wide Web Consortium (W3C) 2007b] World Wide Web Consortium
(W3C). Web Services Description Language (WSDL), version 2.0. http:

//www.w3.org/TR/wsdl20/, 2007b. (cited on pages 31 and 46)

[Zheng et al. 2011] Q. Zheng, Z. Ou, L. Liu, and T. Liu. A novel method on
software structure evaluation. In Proceedings of the 2nd IEEE International
Conference on Software Engineering and Service (ICSESS ’11), pages 251–254.
IEEE, 2011. (cited on page 277)

[Zobel 2012] C. Zobel. Monitoring komplexer verteilter Softwaresysteme,
2012. Master’s Thesis, Hochschule Mannheim, University of Applied
Sciences. (cited on pages 123 and 277)

[Zuse 1998] H. Zuse. A Framework for Software Measurement. Walter de
Gruyter, 1998. (cited on pages 40 and 84)

348

http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20/

	Abstract
	Preface
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Overview of Approach and Contributions
	1.2.1 Architectural Modeling
	1.2.2 Online Capacity Management Framework
	1.2.3 Model-Driven Online Capacity Management
	1.2.4 Runtime Reconfiguration for Controlling Capacity
	1.2.5 Integration of PCM
	1.2.6 Evaluation

	1.3 Document Structure

	I Foundations
	2 Model-Driven Software Engineering
	2.1 Modeling Languages
	2.2 Model Transformations
	2.3 Technologies
	2.3.1 Specifications by the OMG
	2.3.2 Eclipse Modeling Project
	EMF
	ATLAS Transformation Language

	3 Software System Architecture: Description and Reconfiguration
	3.1 Describing Software System Architectures
	3.1.1 Architecture Description in ISO/IEC/IEEE Std. 42010
	3.1.2 Component, Connector, and Configuration
	3.1.3 Architectural Style
	3.1.4 Architecture Description Languages

	3.2 Component-Based Software Architectures
	3.3 Enterprise Application System Technologies
	3.3.1 Java Technologies
	3.3.2 Cloud Computing Technologies
	AWS
	Eucalyptus

	3.4 Self-Adaptive Software Systems
	3.4.1 SASS Architecture and MAPE-K Control Loop
	3.4.2 Architectural and Architecture-Based Adaptation
	3.4.3 Modeling Runtime Adaptation Processes with S/T/A

	4 Quality of Service Evaluation and Capacity Management
	4.1 Quality of Service
	4.1.1 Terminology
	4.1.2 Selected QoS Characteristics and Measures
	Workload
	Performance
	Capacity
	Efficiency
	Scalability
	Elasticity

	4.1.3 Specification of Service Level Agreements
	WSLA
	WSOL
	WS-Agreement
	SLA*
	SLAng

	4.1.4 SMM and MAMBA
	SMM Overview
	SMM Shortcomings
	MAMBA Meta-Model Extensions to SMM
	Tool Support—MAMBA Framework

	4.2 Performance Measurement
	4.2.1 Trigger Mechanisms
	4.2.2 Monitors and Instrumentation
	4.2.3 Perturbation
	4.2.4 Monitoring of EAS

	4.3 Capacity Management
	4.4 Workload Characterization and Forecasting
	4.4.1 Workload Modeling
	4.4.2 Workload Characterization
	4.4.3 Workload Characterization and Forecasting Based on Time Series Analysis

	4.5 Performance Modeling and Prediction
	4.5.1 Overview of Approaches
	4.5.2 PCM
	Repository
	System
	Resource Environment
	Allocation
	Usage model

	II SLAstic Approach
	5 Research Design
	5.1 Scope, Vision, and Research Questions
	5.1.1 Scope and Vision
	5.1.2 Research Questions

	5.2 Research Plan and Summary of Results
	5.2.1 WP1: Architectural Modeling
	Goals
	Summary of Results

	5.2.2 WP2: Online Capacity Management Framework
	Goals
	Summary of Results

	5.2.3 WP3: Model-Driven Online Capacity Management
	Goals
	Summary of Results

	5.2.4 WP4: Runtime Reconfiguration for Controlling Capacity
	Goals
	Summary of Results

	5.2.5 WP5: Evaluation

	5.3 Collaborations in the Context of this Research
	5.3.1 Students
	5.3.2 Researchers and Industry

	6 Architectural Modeling
	6.1 Specification Languages and Implementation
	6.2 System Structure
	6.2.1 Type Repository
	6.2.2 Component Assembly
	6.2.3 Execution Environment
	6.2.4 Component Deployment

	6.3 System Behavior and Usage
	6.3.1 Monitoring Events
	6.3.2 Traces
	6.3.3 Usage

	6.4 Reconfiguration
	6.4.1 Reconfiguration Plan and Reconfiguration Actions
	6.4.2 Reconfiguration Capabilities and Properties

	6.5 QoS Measures and Instrumentation

	7 Kieker Framework
	7.1 Overview of Framework Architecture
	7.1.1 Monitoring Records and Monitoring Log/Stream
	7.1.2 Monitoring Part
	7.1.3 Analysis Part

	7.2 Control Flow Tracing and Analysis
	7.2.1 System and Trace Meta-Model
	7.2.2 Logging and Reconstructing Trace Information
	7.2.3 Reconstructing Architectural Views
	Sequence Diagrams
	Dependency Graphs

	7.3 Framework Implementation
	7.3.1 Extensible Framework Architecture
	Non-Replaceable Monitoring and Analysis Controllers
	Extension Points

	7.3.2 Framework Components
	Monitoring Records
	Monitoring
	Analysis

	7.3.3 Monitoring Adapters for Other Platforms

	8 SLAstic Framework
	8.1 Overview of Framework Architecture
	8.2 Model Manager
	8.2.1 Type Repository Model Manager
	8.2.2 Component Assembly Model Manager
	8.2.3 Execution Environment Model Manager
	8.2.4 Component Deployment Model Manager
	8.2.5 Usage Model Manager
	8.2.6 Constraint Validation Manager
	8.2.7 Reconfiguration Model Manager
	8.2.8 Arch2Technology Mapping Manager
	8.2.9 Model Repository Service Manager

	8.3 Monitoring Manager
	8.4 Adaptation Controller
	8.4.1 Complex Event Processing (CEP) Engine and Timer
	8.4.2 Model Updater
	8.4.3 Analyzer
	Performance Evaluator
	Workload Forecaster
	Performance Predictor
	Adaptation Planner

	8.5 Reconfiguration Manager
	8.6 Framework Implementation
	8.6.1 Overview
	8.6.2 Framework Deployments
	8.6.3 Configuration and Startup
	8.6.4 Kieker-based SLAstic Configurations
	8.6.5 Concrete Framework Components

	9 Model-Driven Online Capacity Management
	9.1 Model-Driven Instrumentation
	9.2 Transformation of Monitoring Events
	9.2.1 Resource Usage
	CPU Utilization
	Generic Resource Utilization
	Memory Usage

	9.2.2 Operation Executions

	9.3 Model Extraction via Dynamic Analysis
	9.3.1 Trace and Usage Model Extraction
	Trace Reconstruction
	Trace Processing for Usage Model Updates

	9.3.2 On-Demand Creation and Refinement of Architectural Entities
	9.3.3 Type and Operation Signature Name Abstraction
	Name Abstraction Based on Package Hierarchy
	Abstraction Modes

	10 Runtime Reconfiguration for Controlling Capacity
	10.1 Overview of Operations
	10.1.1 Software Component Replication
	10.1.2 Software Component De-Replication
	10.1.3 Software Component Migration
	10.1.4 Execution Container Allocation
	10.1.5 Execution Container De-Allocation

	10.2 Framework Integration
	10.2.1 Meta-Model Extensions
	10.2.2 Model Manager Extensions
	10.2.3 Reconfiguration Manager Extensions

	11 Utilizing the Palladio Component Model in SLAstic
	11.1 Transformation from SLAstic to PCM
	11.1.1 Generation of the PCM Resource Repository
	11.1.2 Generation of the PCM Repository Model
	Interfaces
	Component Types
	RDSEFFs

	11.1.3 Generation of the PCM System Model
	Components and Connectors
	Roles and Delegation Connectors

	11.1.4 Generation of the PCM Resource Environment Model
	11.1.5 Generation of the PCM Allocation Model
	11.1.6 Generation of the PCM Usage Model
	11.1.7 Implementation of SLAstic2PCM
	11.1.8 Current Limitations

	11.2 Decoration of PCM Instances
	11.3 Simulation of Runtime Reconfigurable PCM Instances
	11.3.1 Overview
	11.3.2 Architecture and Framework Integration
	Workload
	Monitoring
	Reconfiguration

	11.3.3 PCM-Specific Runtime Reconfiguration Operations
	11.3.4 Simulation
	Control Flow Generation
	Execution of Control Flow Chains

	III Evaluation
	12 Industrial Case Study
	12.1 Evaluation Methodology
	12.2 Case Study System
	12.3 Monitoring and Analysis Infrastructure
	12.3.1 Monitoring of CPU Utilization
	RRDtool Configuration
	Data Import into Kieker

	12.3.2 Monitoring of Trace Information
	12.3.3 Offline Analysis

	12.4 Data Preprocessing
	12.5 Model Extraction
	12.5.1 Kieker Model
	12.5.2 SLAstic Model
	System Model
	Usage Model

	12.6 Performance Characterization
	12.6.1 Workload Characterization
	12.6.2 Characterization of CPU Utilization

	12.7 Summary of Results

	13 Lab Experiments
	13.1 Evaluation Methodology
	13.2 Experimental Setting
	13.2.1 Software and Hardware Environment
	13.2.2 Workload Curve and Scenarios
	Workload Intensity Curve
	Scenario 1 (Fixed Number of Nodes)
	Scenario 2 (Varying Number of Nodes)

	13.3 Framework Extensions
	13.3.1 Cloud API
	13.3.2 Reconfiguration Manager
	13.3.3 Adaptation Planner

	13.4 Experimental Results
	13.4.1 Initial Description of Performance Results
	13.4.2 Scenario 1
	13.4.3 Scenario 2
	13.4.4 Quantification of Increased Efficiency

	13.5 Summary of Results

	14 Simulation-Based Evaluation
	14.1 Evaluation Methodology
	14.2 Experimental Setting
	14.2.1 Bookstore Application
	14.2.2 Scenarios
	Scenario 1: Constant Workload Intensity
	Scenario 2: Varying Workload without Reconfiguration
	Scenario 3: Varying Workload with Reconfiguration

	14.2.3 Software and Hardware Environment

	14.3 Experimental Results
	14.3.1 Scenario 1: Constant Workload Intensity
	14.3.2 Scenario 2: Varying Workload w/o Reconfiguration
	14.3.3 Scenario 3: Varying Workload with Reconfiguration

	14.4 Summary of Results

	15 Reviewing Kieker's History, Development, and Impact
	15.1 History
	15.1.1 Evolution Phases
	15.1.2 Evolution of Code Size

	15.2 Development Process and Infrastructure
	15.2.1 Project Meetings
	15.2.2 Release Cycle and Release Preparation Schedule
	15.2.3 Research and Teaching Context
	15.2.4 Contributors
	15.2.5 Technical Infrastructure
	Version Control
	Continuous Integration
	Issue Tracking
	Tests
	Code Quality
	SourceForge

	15.3 Research and Industrial Impact
	15.3.1 Industrial Collaborations
	15.3.2 External Use
	15.3.3 Acceptance as SPEC RG Tool

	16 Related Work
	16.1 Overall Approach
	16.2 Architectural Modeling
	16.3 Online Capacity Management Framework
	16.3.1 Application Performance Measurement
	16.3.2 Self-Adaptation Frameworks

	16.4 Model-Driven Online Capacity Management
	16.4.1 Model Extraction
	16.4.2 Model Transformations

	16.5 Runtime Reconfiguration for Controlling Capacity

	IV Conclusions & Future Work
	17 Conclusions
	18 Future Work
	18.1 Architectural Modeling
	18.2 Online Capacity Management Framework
	18.3 Model-Driven Online Capacity Management
	18.4 Runtime Reconfiguration
	18.5 Integration of PCM

	List of Acronyms
	List of Figures
	List of Tables
	Bibliography

