
Model-Driven Semantic
Integration of Service-Oriented
Applications

Stanislav Vassilev Pokraev

Enschede, The Netherlands, 2009

Novay PhD Research Series, No. 025 (Novay/PRS/025)
CTIT Ph.D.-Thesis Series, No. 09-151
SIKS Dissertation Series, No 2009-29

Cover Design: Morskieft Ontwerpers, Enter
Book Design: Lidwien van de Wijngaert and Henri ter Hofte
Printing: Universal Press, Veenendaal, The Netherlands
Cover photo: “Atomium”. Photo by Marc Lankhorst, 2008

Graduation committee:
Chairman, secretary: prof.dr.ir. A.J. Mouthaan (University of Twente)
Promotor: prof.dr.ir. R.J. Wieringa (University of Twente)
Co-promotor: prof.dr. M. Reichert (University of Ulm)
Assistant Promotor: dr.ir. M.W.A. Steen (Novay)
Members: prof.dr. C. Atkinson (University of Mannheim)
 prof.dr.ir. G.J. Houben (Delft University of Technology)
 prof.dr. M. Aiello (Rijksuniversiteit Groningen)
 prof.dr. J. van Hillegersberg (University of Twente)
 dr.ir. M.J. van Sinderen (University of Twente)

Novay PhD Research Series, No. 025 (Novay/PRS/025)
ISSN (print) 1877-8739; No. 025
ISSN (online) 1877-8747
ISBN 978-90-75176-49-0
Novay, P.O. Box 589, 7500 AN Enschede, The Netherlands
E-mail: info@novay.nl; Internet: http://www.novay.nl
Telephone: +31 (0)53-4850485; Fax: +31 (0)53-4850400

CTIT Ph.D.-Thesis Series, No. 09-151
ISSN 1381-3617; No 09-151
Centre for Telematics and Information Technology, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

SIKS Dissertation Series, No. 2009-29
The research reported in this thesis has been carried out under the auspices of SIKS, the Dutch Research
School for Information and Knowledge Systems.

 © 2009, Novay, The Netherlands

Some rights reserved. Except where otherwise noted "Model-Driven Semantic Integration of Service-Oriented
Applications" by Stanislav Vassilev Pokraev is licensed under the Creative Commons Attribution-Non-Commercial-
Share Alike 3.0 Netherlands License. To view a copy of this license, visit http://creativecommons.org/licenses/by-
nc-sa/3.0/nl/deed.en Permissions beyond the scope of this license may be available at copyright@novay.nl

Digital and hard copies of this work could be obtained at www.novay.nl/dissertations

MODEL-DRIVEN SEMANTIC INTEGRATION
 OF SERVICE-ORIENTED APPLICATIONS

PROEFSCHRIFT

ter verkrijging van

de graad van doctor aan de Universiteit Twente,
op gezag van de rector magnificus,

prof.dr. H. Brinksma,
volgens besluit van het College voor Promoties

in het openbaar te verdedigen
op donderdag 22 oktober 2009 om 15.00 uur

door
Stanislav Vassilev Pokraev

geboren op 06 januari 1972
te Sliven, Bulgarije

Dit proefschrift is goedgekeurd door:
prof.dr.ir. R.J. Wieringa (promotor), prof.dr. M. Reichert (co-promotor) en
dr.ir. M.W.A. Steen (assistant promotor)

Acknowledgements

This thesis is the result of research carried out over a period of five years.
During this period, many people supported my work and helped me to
bring it to a successful conclusion, and here I would like to express my
gratitude.

First of all, I would like to thank my family and especially my wife Vania,
for their unconditional support and outstanding belief in my success.
Without you, it would not have been possible for me to go this far.

I present my words of gratitude to my promotor Roel Wieringa, my co-
promotor Manfred Reichert and my assistant promotor Maarten Steen.
Your continuous support played an essential role in helping to evolve my
ideas and improve the quality of this dissertation. My special thanks go to
Maarten for being such a great mentor and a very good friend. Maarten, you
helped me through many crises and convinced me to keep going. I deeply
appreciate your valuable advice on both professional and personal matters.

Two people played especially important roles in my development as a
researcher: Rogier Brussee and Dick Quartel. Rogier, thank you for being
my supervisor in the first year of my research. You did a tough job of
convincing me that I should start from the problem and not from the
solution. Dick, you helped me enormously in the last four years. I learnt a
lot from you and I am deeply grateful for your unconditional support in
both writing scientific articles and implementing proof-of-concepts
demonstrators.

I would like to extend my gratitude to all my present and past colleagues
from Novay, especially the ones I have worked with: Johan, Mark, Peter,
Martin, Diederik, Henk, Mettina, and Willem. Special thanks to Bob
Koehoorn for providing me with the data for my second validation case. I
am also especially thankful to Ferial, Patrick and Marc - my people
managers - for believing in me and providing me with space to do my
research. Many thanks to the TAO group – Arjan, Cristian, Erwin, Ingrid,
Lilia, Luit, Margit, Mark, Niels, Robert and Ynze – for sharing both the joy

VIII ACKNOWLEDGEMENTS

and the frustration of being a PhD researcher. My deep gratitude to Maria
and Sorin Iacob for being such nice colleagues, neighbours, and friends. I
really enjoyed your company and support in all these years. Last but not
least, special thanks to Andrew Tokmakoff for reviewing some chapters of
this thesis and helping me to improve the written English.

I would like to thank the members of my defence committee: Professor
Colin Atkinson, Professor Geert-Jan Houben, Professor Marco Aiello,
Professor Jos van Hillegersberg, and Dr. Marten van Sinderen for devoting
time to read my thesis and to participate in my defence. It is an honour to
have you in this committee.

Finally, I would like to thank all my friends for supporting me outside
the office and making my life more pleasant: Nikolay Kavaldjiev, Nikolay
Diakov, Babbata, Emil Devedjiev, Ivan Kurtev, Chris, Zlatko, Andrew, Elfi,
Seema, Rene, Pusho, Judi, Ivaylo, Dano, Lora, Julia, Boriana, George,
Lilith, Sami, Lucy, Tony, Ina, Goran, Nikolay Dokovsky, Maya, Ivayla,
Ulrich, Andreas, Giancarlo, Renata, Joao-Paulo, Patricia, Gabriele, Natasa
and Teduh. I hope I have not forgotten anyone. Special thanks to my best
friend Nikolay Kavaldjiev, for all the fun we had during these years and for
making me so enthusiastic about digital photography.

Stanislav Pokraev
Enschede, July 2009

Contents

PART I. INTRODUCTION

CHAPTER 1. Introduction 3

1.1 Background and Motivation 3

1.2 Research Objective 8

1.3 Research Questions 10

1.4 Research Methodology 11

1.5 Contributions 12

1.6 Outline of the Thesis 13

PART II. STATE-OF-THE-ART AND PROBLEM ANALYSIS

CHAPTER 2. Interoperability and Interoperability Problems 17

2.1 Interoperability 17

2.2 Syntactic Interoperability 19

2.3 Semantic Interoperability 20

2.4 Pragmatic Interoperability 25

2.5 Conclusions 29

CHAPTER 3. State-of-the-Art 31

3.1 Enterprise Application Integration (EAI) Approaches 32

3.2 Service-oriented Architecture 35

3.3 Ontology Representation 39

3.4 Model-Driven Architecture 52

3.5 Conclusions 56

PART III. SOLUTION

CHAPTER 4. Conceptual Framework for Service Modelling 61

4.1 Introduction 62

X CONTENTS

4.2 The Service Concept 63

4.3 Structure of the Framework 66

4.4 Comparison 86

4.5 Conclusions 92

CHAPTER 5. Model-Driven Service Integration 95

5.1 Necessary Conditions for Interoperability 95

5.2 Integration Method 101

5.3 Method for Formal Verification of System Interoperability 122

5.4 Related Work 127

5.5 Conclusions 128

PART IV. VALIDATION

CHAPTER 6. Validation Goal and Claims 133

CHAPTER 7. The Semantic Web Service Challenge Case 137

7.1 The Semantic Web Service Challenge 137

7.2 Scenario 1 138

7.3 Scenario 2 163

7.4 Summary 167

CHAPTER 8. Railroad Operator Case 169

8.1 Introduction 169

8.2 Application of the Integration Method 171

8.3 Deriving the Service PSM of TIP in Terms of WS-BPEL 188

8.4 Summary 191

CHAPTER 9. Discussion 193

9.1 Validation Claims 193

9.2 Cross-case Analysis 195

9.3 Challenges and Lessons Learnt 196

9.4 Limitations 198

PART IV. CONCLUSIONS

CHAPTER 10. Conclusions 203

10.1 Summary 203

10.2 Research Contributions 205

10.3 Reflection 206

10.4 Future Work 208

APPENDIX A. Mapping COSMO to Petri Nets 211

 CONTENTS XI

APPENDIX B. The XML Schemata of SWS Challenge Case 223

APPENDIX C. The Information Models of Real-Road Operator Case 231

 References 235

 Summary 241

 Publications by the Author 243

 SIKS Dissertation Series 247

 Notes 257

PART I.
INTRODUCTION

Chapter 1

1. Introduction

In this thesis, we propose a method for the semantic integration of service oriented
applications. The distinctive feature of our method is that semantically enriched
service models are employed at different levels of abstraction to deliver flexible,
end-to-end integration solutions from business requirements to software
implementation.

This chapter is organised as follows: Section 1.1 provides background
and motivation for the research presented in this thesis. Section 1.2 defines
the objective of the research and requirements for the proposed solution.
Section 1.3 presents the research questions that guide this research. Section
1.4 present the adopted research methodology and the concrete research
methods used to achieve the objective of the research. Section 1.5
summarises the contributions of this research. Finally, Section 1.6 presents
the structure of the remainder of the thesis.

1.1 Background and Motivation

In the last decades, enterprises have been using an increasing number of
different software applications to support their business processes.
Nowadays, it is common, that a single enterprise uses hundreds of
applications, developed by different vendors, running on different operating
systems and using different databases. Examples of such applications are
Customer Relationship Management (CRM), Financial Accounting (FA), Enterprise
Resource Planning (ERP), Digital Asset Management (DAM) and Logistics
Information (LI) systems. Besides, very often, an enterprise develops custom
applications to support specific aspects of its product development or service
provisioning. In addition, especially after mergers or acquisitions, multiple
applications with the same or overlapping functionality are used in one enterprise.

4 CHAPTER 1 INTRODUCTION

1.1.1 Enterprise Application Integration

The need for Enterprise Application Integration (EAI) arose as enterprises
started to recognise that integration of systems could, among other things,
save time and money when developing a new product or service, increase
the flexibility and adaptability of their overall business processes and
improve the organization’s decision-making capabilities.

In general, an integrated system is a collection of subsystems that interact to
form a whole. It has properties that emerge due to the interaction of its sub-
systems. Enterprises integrate their applications because the emerging
properties of the integrated system have value for them. Examples of such
emerging properties are more efficient usage of the available enterprise
resources, flexibility and adaptability of business processes, and increased
market reach.

In general, we can distinguish two aspects of EAI – the information and
process aspects:

– Information aspect. In many cases, an enterprise uses different systems or

different instances of the same system to manage information about the
same entity or phenomenon in the real world, for example, information
about a particular customer or product. In this case, an EAI solution
should take care that the information about this entity or phenomenon
in all systems and instances is mutually consistent.

– Process aspect. Enterprises define their business as a sequence of activities
that concern a specific business case, for example, handling of a
purchase order. An EAI solution should ensure that all information
systems, supporting the business process, are updated in the correct
order as the business process progresses. This means, that the EAI
solution should implement the correct control and data flow across the
systems being integrated. Note that there is a duality between
information and process aspects. That is, changes in the first often
require changes in the second and vice versa. Therefore, an EAI solution
should be able to capture such a relation and deal with it.

EAI is an extremely complex process. The reason is that the applications
that have to be integrated have not been designed to work together, that is, they
are heterogeneous, autonomous and distributed (HAD). Heterogeneous systems use
different information models to capture the semantics of the business
domain. Autonomous systems exchange data following their own interaction
protocols independently from the interaction protocols of any other system.
Distributed systems do not share common state and use different means to

 BACKGROUND AND MOTIVATION 5

update or retrieve this state. EAI is about solving large-scale inter-disciplinary
problems enabling multiple HAD systems to interoperate.

The integration problem has three main aspects. The first aspect
concerns information integration of the systems which is necessary due to the
heterogeneous nature of the systems. The second aspect concerns process
integration of the systems which is necessary due to the autonomous and
distributed nature of the systems. Finally, the third aspect concerns the
complexity of the design, development and maintenance of the integrated
solution.

To address each problem aspect, three main approaches are proposed
and presented in the following sections. Since the problem aspects always occur
together, the solutions for them must be combined. In this thesis, we investigate
how and to what extent these solutions can be combined.

As this is an introductory chapter, we will only briefly sketch the
problem and the proposed solutions. For a more detailed presentation and
discussion, the reader is referred to Chapter 3.

In the reminder of Section 1.1, we briefly sketch currently available
solution directions that we consider to be relevant for solving (or
mitigating) the presented EAI problem. In this thesis, we argue for the need
of combining these solutions approaches and demonstrate how this can be
achieved.

1.1.2 Service Orientation

Service orientation is currently considered to be a promising architectural
approach for building EAI solutions. The service-orientation paradigm is
characterised by the explicit identification and description of the externally
observable properties of a system (e.g., a software application or a business
process). Different systems can then be linked, based on the description of
their external properties, without any knowledge of their internal implementation
details.

To support service orientation, a great deal of effort is currently being
invested in the standardization of service description languages known as
Web services (WS1) standards.

Currently, WS languages only standardise the syntax of service
descriptions. They do not provide means for defining the semantics of a
service. This means that although syntactically correct, a service description
still can define unintended, admissible state of affairs of the real world (cf.
Figure 1-1).

1 http://www.w3.org/2002/ws/

6 CHAPTER 1 INTRODUCTION

Indented admissible

state of affairs of the
service

Admissible state of
affairs according to

the service description
in language L Not indented admissible

state of affairs of the

service

Semantic service descriptions are even more important when integrating
different systems. Two systems can only interoperate if they exchange data
with compatible meaning. In addition, they can only achieve a desired effect if
they exchange these data following compatible interaction protocols. By
analyzing the service descriptions, a system integrator could conclude that
the systems are interoperable. However, in reality this might not be the case
(cf. Figure 1-2). The problem is known as the false agreement problem and is
discussed in (Guarino, 1998).

Intended admissible

state of affairs
System A

Admissible state of

affairs according to the
Service description of

System A

FALSE AGREEMENT
Intended admissible
state of affairs

System B

Admissible state of

affairs according to the
Service description of

System B

If a false agreement is not discovered early in an integration project (e.g.,
the design phase) it usually leads to the implementation of an incorrect
integration solution. This, in turn, unnecessarily increases the cost of the
integration project.

The lack of formal semantics in service descriptions makes it very
difficult (sometimes even impossible) to use automatic reasoners to
discover false agreements in the early phase of an integration project. In the
worst case, even after extensive testing, an incorrect integration solution is
completely implemented and deployed. This usually leads to very high costs
to then repair the solution, or in some cases, even to loss of business. Note
that in some cases, the cost of formalizing service descriptions can be higher
than the benefit of automatically checking the correctness of the integration
solution. However, domain standards can be formalised and used to build
service descriptions, which can help to justify the cost of their
formalization.

Figure 1-1
Service models and
descriptions

Figure 1-2
The false
agreement problem

 BACKGROUND AND MOTIVATION 7

1.1.3 Knowledge Representation

Knowledge Representation (KR) enables the formal specification of service
semantics. KR relies on ontologies - formal representation of consensual
knowledge about some domain of interest.

Ontologies can provide different degrees of formalization as shown in
Figure 1-3.

Controlled
vocabulary

Taxonomy Thesaurus

low high

Axiomatized
theory

Degree of formalization

Controlled vocabularies are the weakest form of ontology. A controlled
vocabulary is an exhaustive list of terms with unambiguous and accurate
definitions. The main objective of a controlled vocabulary is to prevent the
use of ambiguous, meaningless or misspelled terms in service descriptions
by defining them explicitly.

Taxonomies are subject-based classifications of the terms in some
controlled vocabularies. Taxonomies classify the terms into hierarchy
defining explicit “is subclass of” relationships between a term and other
terms.

Thesauri are networked collections of controlled vocabularies with richer
semantic relationships between terms. A thesaurus is an extension of a
taxonomy allowing stating not only “is subclass of” relationships among
terms but also, for instance, equivalence, similarity and homographic
relationships.

Axiomatized theories are the strongest form of ontology. Similar to
thesauri, an axiomatized theory allows specification of semantic relations
among terms in controlled vocabularies as well as formal rules on how to
construct complex terms and relationships. These formal rules enable
inferencing of new knowledge and formal reasoning.

In order to formally define the semantics of a service, we need a formal
ontology. This, in turn, enables the early discovery of false agreements and
the automatic verification of integration solutions.

1.1.4 Model-Driven Architecture

Building an integration solution is a process of building a system that
satisfies some integration requirements. Such a system is built by linking
existing systems and, if necessary, compensating the mismatches between
them by adding additional integration logic. Often, such integration logic is
hard-coded in the solution implementation. That is, the logic to
compensate the mismatches between the systems is deeply hidden in the

Figure 1-3
Degree of
formalization of
ontologies

8 CHAPTER 1 INTRODUCTION

application code. In turn, this substantially increases the cost to maintain
such integration solutions. For example, if the integration requirements
change, it will take time and resources to discover the corresponding code
and update it. The updated code must be re-tested which adds even more
additional cost and delays. Furthermore, domain experts are usually only
involved at the very early stages of an integration project, namely in the
requirements elicitation phase. This makes the gap between requirements
and the implementation wide and additionally complicates the integration
process. To simplify the process, a good integration method should allow
system integrators (both domain experts and software engineers) to address
only a limited set of concerns in a series of design steps. This principle is known as
separation of concerns.

Model Driven Architecture (MDA) has been proposed as a new paradigm for
software development. In MDA, the separation of concerns is achieved by
specifying models at different level of abstraction. Each of these models focuses on
the characteristics of an entity (or phenomenon) that are considered
essential for a certain purpose, while ignoring or discarding details that are
considered irrelevant for the same purpose.

MDA consists of three basic principles. First, in MDA the focus of
software development is shifted away from the technology domain to the
problem domain. In this way, the solution is described using a language that is
closer to the language used to describe the problem. This reduces the
semantic gap between the problem and solution and decouples the solution
from the problem enabling the reuse of the same solution for different
problems. Second, MDA enables automation by mapping domain concepts
to implementation technology by the means of (executable) model
transformations. In this way, the models produced in the design phase of the
project are not only used for documentation purpose but also for code
generation and requirements traceability. Finally, MDA is based on open
standards, which encourages the adoption of these standards by different
vendors and thus reduces the heterogeneity.

1.2 Research Objective

The objective of this thesis is to investigate to what extent and how SOA, KR
and MDA can be combined to improve existing EAI approaches. To the extent in
which they can be combined, we provide a method for the semantic integration
of service-oriented applications. More precisely, to address the shortcomings of
existing EAI approaches, we define a number of requirements for our
method. These requirements follow from the capabilities of the solution
approaches presented in Section 1.1, which, in turn, are motivated by the
stakeholders in the problem domain.

 RESEARCH OBJECTIVE 9

– Requirement R1. The method should provide for defining the integration
solutions in terms of the problem domain, rather than in terms of
solution technologies. This will enable the more active participation of
domain experts, e.g., they could be involved in specifying and verifying
the semantic relations among corresponding domain concepts and the
correct order of system interactions. In turn, this will simplify the
integration process and result in more correct solutions. The first reason
is that active participation of domain experts can relieve software
engineers from making decisions in domains beyond their competence.
The second reason is that the models produced by the domain experts
will reflect ‘the reality’ better since they are experts in the problem
domain.

– Requirement R2. The integration method should enable the semantic
integration of services. The current service description standards enable
only the syntactic integration of systems. These standards do not provide
means for semantic integration. Service descriptions specified using
existing service description standards are ambiguous and do not capture
the hidden assumptions made about systems. To enable different
systems to interoperate correctly, an integration solution should not
only compensate for mismatches in the data format of exchanged
messages between the integrated systems, but also enforce the uniform
interpretation and use of these messages.

– Requirement R3. The integration method should enable the formal
verification of the integration solution. Currently, the correctness of an
integration solution is verified at a very late stage by performing tests
after the integration solution is implemented. This is an expensive and
time-consuming process. A formal verification of a solution design will
reduce the costs and decrease the time required to verify the solution.
In addition, a formal verification could discover problems, which cannot
be discovered in the testing phase. Note, that in some cases formal
verification can be very difficult or not required. For that reason, this
requirement for the method is optional.

– Requirement R4. The integration method should allow for changes in the
implementation technology. This means that if the implementation
technology changes, it should be possible to reuse the same abstract
solution specification defined by the domain experts. This will reduce
the cost and decrease the time to implement a change. The requirement
R4 is universal, that is, it applies to all integration methods in general.
The reason is that all EAI solutions require change of implementation
technology at some point of time.

10 CHAPTER 1 INTRODUCTION

– Requirement R5: The integration method should allow for changes of the

business requirements. This means that if business requirements change,
only the abstract solution specification needs to be updated to reflect
the new business requirements. It should be possible to generate a
solution implementation from the updated abstract solution
specification. This is also a universal requirement for all integration
methods. To address constantly changing market demands and to stay
competitive, enterprises constantly integrate new systems or change
them. This, in turn, imposes new requirements on the existing
integration solutions.

1.3 Research Questions

To achieve the objective of this research, a number of research questions
need to be answered. Answering these questions will provide us with
knowledge about the problem domain and the capabilities of existing
solution approaches. This, in turn, will serve as an input to the design and
validation of our solution.

– Research question Q1: What does interoperability mean? What does it

mean for different systems to interoperate? Are there different levels of
interoperability? What interoperability problems exist?

– Research question Q2: What are the current system integration
approaches? What are their drawbacks? What technologies have been
proposed to address these drawbacks? How do these technologies
interact when used together?

– Research question Q3: How to model the semantics of a service? What
aspects of services should be modelled and how? At which abstraction
levels? How can we use these concepts to reason about a service?

– Research question Q4: What is necessary for two or more systems to
interoperate? How can we formally check if two or more systems are
interoperable?

– Research question Q5: How can two or more non-interoperable systems
be integrated and how can such integration be achieved in a systematic
way? Does such integration solve the drawbacks of existing integration
approaches?

 RESEARCH METHODOLOGY 11

These questions guide the research presented in this thesis. In Section 1.6,
we present the structure of this thesis and a table that relates the research
questions to the chapters in which we provide answers to the questions.

1.4 Research Methodology

In this research, we try to solve two types of problems: knowledge problems
and design problems (Wieringa, 2006).

Someone has a knowledge problem if there is a difference between his
current and desired knowledge states: that is, he wants to know something.
Someone has a design problem if there is a difference between the current
and desired state of the world that he wants to reduce: that is, he wants to
build something or change something in the real world.

Our research methodology consists of three phases - problem analysis,
solution design and solution validation.

In the first phase, we solve a knowledge problem, for example, we want
to understand what interoperability means, what are the interoperability
problems and what solutions there are for these problems. For that
purpose, we perform three literature studies. In the first study, we analyse
literature from different areas including artificial intelligence, database
research and process integration to discover possible interoperability
problems. In the second study, we analyse the problems of existing EAI
approaches. Finally, in the third study, we analyse the currently proposed
technologies for system integration.

In the second phase, the results from the first phase are used to design a
new solution. In this phase, we solve a design problem, that is, we define a
conceptual framework for service modelling and propose a method for the
semantic integration of service oriented applications. Our goal is to improve
existing EAI approaches.

Finally, in the third phase, we validate our solution by investigating its
suitability for the problems discovered in the first phase. This is a
knowledge problem since we want to gain knowledge about the properties
of our solution, and the relation between the solution and the problems.
Validation is achieved by applying our solution to solve two characteristic
integration problems. The knowledge we gain in the validation phase is fed
back to the solution design phase in order to improve the solution.

The research methodology is presented in Figure 1-4.

12 CHAPTER 1 INTRODUCTION

1. Problem
analysis

3. Solution
validation

Prototype

(SWS Challenge

case)

Lab experiment

(Railroad operator

case)

Literature study
Existing EAI

approaches

Literature study
Data and Process

mismatches

Literature study
SOA, KR

and MDA

feedback

2. Solution
design

Chapter 3 Chapter 3

Chapter 2

Chapter 4 and 5

Chapter 7 Chapter 8

1.5 Contributions

The research, presented in this thesis, contributes to the effort in the area
of enterprise application integration. Our main contributions are the following:

– We identify common characteristics of interoperability and give a definition of

interoperability. Next, we identify three different levels of interoperability,
namely, syntactic, semantic and pragmatic interoperability. At each of these
levels, we identify possible interoperability problems.

– We identify basic service properties and define a conceptual framework for
service modelling and reasoning. Our framework has a number of distinctive
features. First, it is constructed from a small number of basic concepts,
which are based on practice, but at the same time provide a powerful
conceptual basis for service modelling. Second, the framework is
language-independent, but at the same time, its basic concepts can be
related to many of the popular languages used in the context of service
design, analysis and implementation. Third, our framework is domain-
independent, that is, no assumptions are made with respect to the type of
services that should be modelled. Finally, the framework supports the
modelling of services at different abstraction levels. More precisely, we
identified three generic abstraction levels, namely, service effect,
choreography and orchestration.

– We identify necessary conditions for interoperability and propose a method
for verification whether a number of systems are interoperable. Our
method enables the early discovery of false agreements and the
automatic verification of integration solutions.

Figure 1-4
Research
methodology

 OUTLINE OF THE THESIS 13

– We propose a method for the semantic integration of service-oriented
applications. The key feature of our method is that semantically rich service
models at different abstraction levels are employed to develop flexible
integration solutions from business requirements to software
implementation. The integration method allows for changes of the
implementation technology as well as for changes of business
requirements.

1.6 Outline of the Thesis

This thesis is organised as follows: Part II presents the problem analysis. It
is organised in two chapters. In Chapter 2, we analyse the most cited
interoperability definitions and derive common characteristics of interoperability.
We use these common characteristics to define what interoperability means
and identify three different levels of interoperability, namely, syntactic,
semantic and pragmatic interoperability. Next, we study literature from
different areas and identify possible interoperability problems at each of the
interoperability levels.

In Chapter 3, we analyse existing EAI approaches and investigate their
problems. Next, we study SOA, KR and MDA as these technologies have
been proposed to solve the drawbacks of the current EAI approaches.

Part III presents our solution. It is organised into two chapters. In
Chapter 4, we define a conceptual framework for service modelling. The purpose
of the framework is to serve as a common semantic meta-model that enables the
description, integration and reasoning about (integrated) service-oriented
applications. Using the framework one can model the domain of a system, the
interactions among its components and their relations, and reason whether
these components are interoperable.

In Chapter 5, we present a method for the semantic integration of service-
oriented applications. First, we identify necessary conditions for semantic and
pragmatic interoperability of service-oriented applications. Next, we
propose a model-driven integration method that uses semantically enriched service
descriptions to deliver flexible integration solutions from business
requirements to software implementation. Finally, we present a method to
formally verify whether the proposed integration solution meets the
identified conditions for interoperability.

Part IV presents the validation of our research. It is organised into four
chapters. First, in Chapter 6, we provide falsifiable claims to prove whether
our integration method satisfies the requirements defined in Section 1.2.
Next, we provide arguments for validity of these claims by solving two
characteristic integration cases presented in Chapter 7 and 8. Finally, in
Chapter 9, we reflect upon both of the cases and present a cross-case analysis.

14 CHAPTER 1 INTRODUCTION

Finally, in Part V (Chapter 10) we summarise our contributions and list
known limitations. We also provide directions for future research.

Figure 1-5 presents the relation of the research questions and the
chapters of this thesis.

Research question Q1

Research question Q3

Research question Q2

Research question Q5

Research question Q4

C
h

a
p

te
r

1

C
h
a

p
te

r
2

C
h

a
p
te

r
4

C
h

a
p
te

r
3

C
h

a
p
te

r
5

C
h
a

p
te

r
6

C
h

a
p
te

r
8

C
h
a
p

te
r

9

C
h
a

p
te

r
7

x

x

x

x

x x x

x x

C
h

a
p

te
r

1
0

Part I Part II Part III Part IV Part V

x

x

Figure 1-5
Relation of the
research questions
and the chapters of
this thesis

PART II.
STATE-OF-THE-ART

AND PROBLEM

ANALYSIS

Chapter 2

2. Interoperability and Interoperability
Problems

The objective of this chapter is to give a definition of interoperability in the
context of SOA, to present what levels of interoperability exist and to identify
the possible interoperability problems at each of these levels. The chapter is
organised as follows: In Section 2.1 we present the most cited definitions of
interoperability and use them to derive some common characteristics of
interoperability. In addition, we identify three levels of interoperability,
namely syntactic, semantic and pragmatic interoperability. In Section 2.2, 2.3
and 2.4 we discus the problems that occur at each of these levels. Finally, in
Section 2.5 we present our conclusions.

2.1 Interoperability

There have been many attempts to define what interoperability means. Below
we present the most cited definitions and use them derive some common
characteristics of interoperability.

– the ability to operate in conjunction (Oxford Dictionary, 2003)

– the ability of two or more systems or components to exchange

information and to use the information that has been exchanged (IEEE,
1990)

– the capability to communicate, execute programs, or transfer data
among various functional units in a manner that requires the user to
have little or no knowledge of the unique characteristics of those units
(ISO, 2003)

18 CHAPTER 2 INTEROPERABILITY AND INTEROPERABILITY PROBLEMS

– the condition achieved among communications-electronics systems or
items of communications-electronics equipment when information or
services can be exchanged directly and satisfactorily between them
and/or their users (DoD, 2001)

– the ability to share and exchange information using common syntax and
semantics to meet an application-specific functional relationship (ISO,
2000)

– the ability of two or more systems or components to exchange and use
shared information (Open Group, 2000)

– the ability of systems to provide and receive services from other systems
and to use the services so interchanged to enable them to operate
effectively together (Open Group, 2000)

– the ability of information and communication technology (ICT) systems
and of the business processes they support to exchange data and to
enable the sharing of information and knowledge (EC-IDA, 2005).

According to the definitions given above, interoperability can be
characterised by the following properties:

– involves multiple (two or more) entities (e.g., systems, components, units,

forces, organizations)

– is ability to interact (e.g., to operate in conjunction, to communicate, to
transfer data, to exchange information or knowledge, to provide and to
accept services)

– requires little or no knowledge of the unique characteristics of the
interacting entities

– is about achieving some goal (to operate effectively together, to meet an
application-specific functional relationship, to exchange information or
services satisfactorily)

In the context of SOA, systems interact using each other’s services, that is, a
system provides services to and uses services from other systems. Thus, in case of
software systems, interoperability is the ability of the software systems to use each
other’s software services, i.e., to exchange data and use the exchanged data. In
case of business systems, interoperability is the ability of the systems to use
each other’s business services, i.e., to provide business functions to each

 SYNTACTIC INTEROPERABILITY 19

other’s and use the provided business functions. Services hide the unique
characteristics of the systems that provide them, e.g., a software service
hides the specific system implementation technology and a business service
hides the internal company structure and the internal business processes. In
addition, according to SOA paradigm, multiple systems can interact with
little or no knowledge of each other’s unique characteristics. Finally, using
each other’s services systems should be able to achieve some goal.

Based on the identified interoperability properties in the definitions
given above we give the following definition of interoperability in the
context of SOA:

Interoperability is the ability of multiple systems to use each other’s services effectively.

When building an information system, the creator of the system decides
what entities (or phenomena) from the real world should be represented in the
system and which of their properties are important for the purpose of the
system. Based on that, he or she defines a language to interact with the
system. A language, according to (Morris, 1938), comprises three parts:
syntax, semantics and pragmatics. Syntax is devoted to “the formal relations of
signs to one another”, semantics to “the relations of the signs to real world
entities they represent”, and pragmatics to “the relations of the signs to
(human) interpreters”. Using the distinction given by Morris, we define
three levels of interoperability, respectively syntactic, semantic and pragmatic
interoperability. In the following sub-sections, we elaborate upon each of
these interoperability levels.

2.2 Syntactic Interoperability

The syntax of a language defines a list of valid words in the language (called
vocabulary) and the rules that govern the way words combine into sentences
(called grammar). A parse tree is a tree that represents the structure of a
sentence according to some language grammar. The process of constructing
a parse tree is called parsing.

Syntactic interoperability is concerned with ensuring that systems, involved
in some communication use the same vocabulary and grammar to parse the
exchanged sentences. Syntactic interoperability problems arise when the systems
use incompatible vocabularies or grammars. This leads to inability to create
a correct parse tree (or to construction of an incorrect parse tree) and
inability to use the data in the exchanged sentences.

In Chapter 3, we present Web services as the most significant
standardization efforts towards syntactic interoperability of services. Dealing

20 CHAPTER 2 INTEROPERABILITY AND INTEROPERABILITY PROBLEMS

with syntactic interoperability problems is outside the scope of this thesis.
For that reason, we only focus on semantic and pragmatic interoperability
problems.

2.3 Semantic Interoperability

Semantics is concerned with the meaning of the syntactic constructs in a
language. According to (Wood, 1985) semantics is “the meaning and the
use of data”. For our purpose, this definition is too general and not
practical. Instead, in the context of information systems, semantics is
defined as “a mapping from an object in an information system and a real-
world object it represents”. This definition is well-supported by the
Ullmann’s meaning triangle (Ullmann, 1972) which derives from (Ogden &
Richards, 1923) and from (de Saussure, 1986) – the two most important
theories that are the basis of the modern science of language.

Thing
(realit y)

Concept

(thought)

Sym bol
(language)

represents abst racts

refers to

The meaning triangle distinguishes between things, concepts, and symbols. A
thing is any entity (or a relationship between two or more entities) in the
real world. During our lives we learn to classify such real-world things into
abstract classes, i.e., we derive concepts that abstract the real-world entities (or
relationships between two or more entities) with similar characteristics. A
concept is part of our “internal reality”, i.e., it is a thought that only exists
in our minds. In order to communicate, we need a symbol that represents the
concept by the means of language and thus refers to the thing in the real
world.

Concepts can be derived in two ways – by explicitly enumerating all the
things that a concept abstracts, or by stating some properties that must be
true for all things that a concept abstracts. In the first case, we say that a
concept is defined by extension. In the second case, we say that a concept is
defined by intention. A concept can be defined by extension if it abstracts a
finite set of things. Infinite sets of things are always abstracted by
intentional concept or by combining previously defined concepts.

Figure 2-6
The semantic
triangle

 SEMANTIC INTEROPERABILITY 21

Semantic interoperability is concerned with ensuring that a symbol has the
same meaning, (i.e., refers to the same thing in the real world) for all
systems that use this symbol in their languages. Semantic interoperability
problems arise when different systems use different symbols to refer to the same
things in the real world or use the same symbol to refer to different things in the
real world. As explained earlier, a symbol refers to a thing in the real world
indirectly, i.e., the symbol represents a concept that abstract the real-world
thing. This means that semantic interoperability problems are either caused
by different abstraction of the same real-world entities (or the relationships
among them) or by different representations of the same concepts.

When integrating information systems, the system integrator cannot
change the way in which the system creator has abstracted the real world
entities. However, in some cases the system integrator can build a mediator
that “translates” the symbols, exchanged between the systems. By translation
we mean the process of interpreting a sentence sent by one system
(according to the language of that system), and the production of a sentence
(according to the language of the other system).

The semantic interoperability problems have been studied extensively in
the context of databases, information systems and agent systems. Good
classifications of the semantic problems can be found in (Sheth and
Kashyap, 1992; Naiman and Ouksel, 1995; Goh, 1997; Visser, 1997; Klein,
2001). Using the knowledge built in the aforementioned areas, we present
the possible semantic representation problems illustrated by simple
examples.

Problem IP1. Different systems use the same symbol to represent concepts with disjoint
meanings.

For example, one system uses the symbol “name” to represent the concept
“a name of a place”, whereas other system uses the same symbol to
represent the concept “a name of a person” (cf. Figure 2-7).

a name of a place

name

a name of a person

represents represents

concept concept

symbol

a name of a place

name

a name of a person

represents represents

concept concept

symbol

Problem IP2. Different systems use the same symbol to represent concepts with
overlapping meanings.

Figure 2-7
Same symbol,
different concepts

22 CHAPTER 2 INTEROPERABILITY AND INTEROPERABILITY PROBLEMS

For example, one system uses the symbol “account” to represent the
concept “personal account”, whereas the other system uses the same
symbol to represent the concept “checking account”. Since not all personal
accounts are checking accounts and not all checking accounts are personal
accounts, in some cases the symbol “account” can refer to different entities
in the real world (cf. Figure 2-8).

represents represents

concept concept

personal account checking account

account

symbol

Problem IP3. Different systems use the same symbol to represent concepts with more
general (or more specific) meanings

For example, one system uses the concept “address” to represent the
concept “an address in the Netherlands”, whereas other system uses the
same symbol to represent the concept “an address in Europe” (including all
addresses in the Netherlands)(cf. Figure 2-9).

address in Europe

address in the
Netherlands

address

representsrepresents

concept

concept

symbol

Problem IP4. Different systems use different symbols to represent the same concept

For example, one system uses the symbol “customer” to represent the
concept “someone that purchases goods or services” whereas other system
uses the symbol “client” to represent the same concept (cf. Figure 2-10).

Figure 2-8
Same symbol,
overlapping
concepts

Figure 2-9
Same symbol,
more general
(specific) concepts

 SEMANTIC INTEROPERABILITY 23

someone that
purchases goods or

services

customer

represents represents

concept

symbol

client

symbol

Problem IP5. Different systems use different symbols to represent concepts with
overlapping meanings

For example, one system uses the symbol “employee” to represent the
concept of “someone that works for a company” whereas other system uses
the symbol “customer” to represent the concept of “someone that buys
from a company” (cf. Figure 2-11). Since a customer can be an employee
and an employee can be a customer, in some cases both symbols
“employee” and “customers” can refer to the same entity in the real world.

represents
represents

concept concept

symbol

employee customer

symbol

someone that works

for the company

someone that buys

from the company

Problem IP6. Different systems use the different symbols to represent concepts with
more general (or more specific) meanings

For example, one system may use the symbol “buyer” to represent the
concept “buyer” whereas the other system may use the symbol “partner” to
represent the concept “buyer or seller” (cf. Figure 2-12).

Figure 2-10
Different symbols,
same concept

Figure 2-11
Different symbols,
concepts with
overlapping
concepts

24 CHAPTER 2 INTEROPERABILITY AND INTEROPERABILITY PROBLEMS

partner (buyer or seller)

buyer

buyer

representsrepresents

concept

concept

symbol

partner

symbol

Besides differences in representing a single concept, sometimes there are
differences in representing the relationships between two or more
concepts.

Problem IP7. Different definition of the same concept (also known as confounding
conflicts)

As said earlier a concept can be defined using already defined concepts. For
example, if we have a concept of “person”, “gender” and “male” we can
define new concepts such as “man” (a person with male gender). Knowing
the concept “parent”, we can define the concept “father” (a parent and a
man). Confounding semantic problems arise when concepts that abstract
the same real-world things are defined differently. For example, one system may
define “employee” as “a person who works for a company”, whereas other
system may define the same concept as “a person who is paid by a
company” (cf. Figure 2-13).

concept
Person

concept
Company

works for

concept

Person

concept

Company

is paid by

The awareness of the presented semantic mismatches is required to
understand what semantic problems can arise when integrating different
systems. In turn, this enables the systematic approach for resolving the
problems which leads to building of interoperable integrated systems.

Figure 2-12
Different symbols,
more general
(specific) concepts

Figure 2-13
Confounding
semantic problems

 PRAGMATIC INTEROPERABILITY 25

2.4 Pragmatic Interoperability

Systems interact by exchanging messages that contain data about some
entity in the real world. When a system receives message it changes its state,
sends message back, or both (Wieringa, 2003). In most cases, messages sent to
the system change or request the system state, and messages sent from the
system change or request the state of the system’s environment2.

Pragmatic interoperability is concerned with ensuring that a message sent
by a system causes the effect intended by that system. This means that a
number of systems are pragmatically interoperable when they share the
same expectations about of the effect of the messages they exchange. Often,
an effect is achieved by sending and receiving multiple messages in specific
order, defined in an interaction protocol.

Pragmatic interoperability problems arise when there are differences in the
meaning the data in the exchanged messages (e.g., semantic problems) or
there are differences in the interaction protocols of the systems that exchange
these messages. We have presented the most common semantic
interoperability problems in Section 2.3. In this section, we present the
most common mismatches in the interaction protocols.

Problem BP1: Unexpected message mismatches arise when one system tries to send a
message to other system, but the other system does not expect this message.

For example, System A intends to send first message M1 and then message
M2 to System B whereas System B expect only the message M2 (cf. Figure 2-
14).

System A System B

M1

M2 M2

Problem BP2: Insufficient message mismatches arise when one system expects a message
that is never sent by the other system.

2 By environment of a system we mean all systems that are able to communicate with that
system

Figure 2-14
Unexpected
message mismatch

26 CHAPTER 2 INTEROPERABILITY AND INTEROPERABILITY PROBLEMS

For example, System B expects message M1 but System A never sends message
M1 (cf. Figure 2-15). Consequently, a deadlock might occur.

System A System B

M2

M1

M2

Problem BP3: Message order mismatches arise when one system sends messages in a
different order than expected by the other system.

For example, System A intends to send first message M1 and then M2 to
System B whereas System B expects first the message M2 and then M1 (cf.
Figure 2-16).

System A System B

M1

M2

M2

M1

Problem BP4: Unexpected acknowledgement mismatches arise when one system sends a
message to acknowledge the receiving of another message but the other system does not
expect such an acknowledgement.

For example, System B receives a message M1 and intends to send message
Ack (e.g., to acknowledge the receiving of M1) whereas System A does not
expect such a message (cf. Figure 2-17).

Figure 2-15
Insufficient
message mismatch

Figure 2-16
Message order
mismatch

 PRAGMATIC INTEROPERABILITY 27

System A System B

M1 M1

Ack

Problem BP5: Insufficient acknowledgement mismatches arise when one system expects
an acknowledgement for receiving a message but the other system does not send such
an acknowledgement.

For example, System A sends message M1 and then expects a message Ack
(e.g., an acknowledgement for the receiving of the message M1), whereas
System B does not intend to send such a message (cf. Figure 2-18).
Consequently, a deadlock might occur.

System A System B

M1

Ack

M1

Problem BP6: Message aggregation mismatches arise when one system sends separate
messages containing the same data that the other system expects in a single message.

For example, System A intends to send message M1 and then M2 whereas
System B expects only one message that aggregates the data in M1 and M2 (cf.
Figure 2-19).

Figure 2-17
Unexpected
acknowledgement
mismatch

Figure 2-18
Insufficient
acknowledgement
mismatch

28 CHAPTER 2 INTEROPERABILITY AND INTEROPERABILITY PROBLEMS

System A System B

M1

M2

M1 + М2

Problem BP7: A more specific case of this mismatch is when one system sends a number
of messages of type m but the other system expects one message that contains a
collection of all the messages (message M) (cf. Figure 2-20).

System A System B

m M

Problem BP8: Message splitting mismatches arise when one system sends a
message containing the same data that the other system expects in multiple
separate messages.

For example, System A intends to send one message with some data whereas
the System B expects the same data in two separate messages (M1 and M2)
(cf. Figure 2-21).

System A System B

M1

M2

M1 + М2

Figure 2-19
Message
aggregation
mismatch

Figure 2-20
Message
aggregation
mismatch
(collection of
messages)

Figure 2-21
Message splitting
mismatch

 CONCLUSIONS 29

Problem BP9: A more specific case of this mismatch is when one system sends one
message M that contains a collection of messages m but the other system expects
separate messages m (cf. Figure 2-22).

System A System B

М m

2.5 Conclusions

In this chapter, we answered the Research question Q1: “What does
interoperability mean? What does it mean for different systems to
interoperate? Are there different levels of interoperability? What
interoperability problems exist?”.

There have been many attempts to define what interoperability means.
We have studied existing definitions and identified the common
characteristics of interoperability. First, interoperability involves multiple
systems, that is, we cannot talk about interoperability of one system. Second,
interoperability is the ability of multiple systems to interact. Further, this
interaction requires little or no knowledge of the internal implementation of the
system. Finally, interoperability is about achieving some common goal. Based on
the identified properties, we have defined interoperability in the context of
SOA, namely as "the ability of multiple systems to use each other’s services
effectively".

Systems interact (i.e., they use each other services) by the means of a
language. Using the distinction given by (Morris, 1938) we define three
levels of interoperability, respectively syntactic, semantic and pragmatic
interoperability. Syntactic interoperability is outside the scope of this thesis.
For that reason, we focus only on semantic and pragmatic interoperability,
defining what it means and what problems arise at these levels.

Semantic interoperability is concerned with ensuring that a symbol has the
same meaning for all systems that use this symbol in their languages. Symbols
are real world entities indirectly (i.e., through the concept they represent).
Therefore, the semantic interoperability problems are caused either by

Figure 2-22
Message splitting
mismatch
(collection of
messages)

30 CHAPTER 2 INTEROPERABILITY AND INTEROPERABILITY PROBLEMS

different abstraction of the same real-world entities or by different representations of
the same concepts. In this chapter, we presented the most common semantic
interoperability problems.

Pragmatic interoperability is concerned with ensuring that the exchanged
messages cause their intended effect. Often, the intended effect is achieved by
sending and receiving multiple messages in specific order, defined in an
interaction protocol. Pragmatic interoperability problems arise when there
are differences in the meaning of data in the exchanged messages (e.g., semantic
problems) or there are differences in the interaction protocols of the systems that
exchange these messages. In this chapter, we presented the most common
differences in the interaction protocols.

Awareness of the possible interoperability problems enables system
integrators to make more informed and carefully thought-out design
decisions. In addition, the presented problem classification serves as an
input when designing our service integration method. In Chapter 5, we
analyse the problems presented in this chapter and provide solution for
each of these problems.

Chapter 3

3. State-of-the-Art

Enterprise Application Integration (EAI) is an extremely complex process. The
reason is that the systems that have to be integrated have not been designed
to work together, i.e., they are heterogeneous, autonomous and distributed
(HAD). Heterogeneous systems use different information models to capture the
semantics of the business domain. Autonomous systems exchange data
following their own interaction protocols independently from the interaction
protocols of any other system. Distributed systems do not share common state
and use different means to update or retrieve this state. EAI is about enabling
such HAD systems to interoperate.

In Chapter 1, we briefly introduced the EAI problem and the proposed
solutions to deal with it. In this chapter, we present a short history of the
EAI approaches, discuss their shortcomings, and argue what is required to
address these shortcomings. The chapter is organised as follows: In Section
3.1, we present the most prominent EAI approaches and identify three
main aspects of the EAI problem. The first aspect concerns the difference
in the information models of the systems that have to be integrated. The
second aspect concerns the difference in the interaction protocols of the
systems. Finally, the third aspect concerns the complexity of building EAI
solutions. In Sections 3.2, 3.3 and 3.4 we present Service-Oriented Architecture
(SOA), Knowledge Representation (KR), and Model-Driven Architecture (MDA),
respectively, as approaches to deal with each problem aspect. Finally, in
Section 3.5, we argue that, since the problem aspects of current EAI
approaches always occur together, SOA, KR, and MDA should be combined
to deal with the problem as a whole.

32 CHAPTER 3 STATE-OF-THE-ART

3.1 Enterprise Application Integration (EAI) Approaches

EAI has developed over time in different phases. At the beginning,
enterprises had to implement integration solutions themselves (so called
homegrown integration (Busler, 2003)). The reason was that there were no
integration products available on the market at that time. Enterprises
started integrating their systems by modifying their systems in two different
ways (cf. Figure 3-23):

System A

Business and

Integration logic

System C

Business and

Integration logic

System B

Business and

Integration logic

– The systems have been modified to call each other synchronously and
exchange data at the right moment of processing.

– The systems have been modified to use an intermediate storage, such as a
file system or a dedicated database, to store and retrieve data that
needed to be exchanged.

Over time, it became clear that these approaches have two main
disadvantages. First, the system sending the data had to know about the
system receiving the data. This means, that every time when a new system
had to be added to or removed from the integration, the system sending the
data had to be modified. Second, since systems have not been designed to
interoperate, they had to implement data transformation logic themselves.
For example, either the system that sends the data (or stores it at some
location) had to transform the data in a format expected by the recipient or
the recipient had to transform the data to its format. In this way, the
systems had not only to implement the business logic but also to implement
and mange the integration logic themselves. Ultimately, such tightly-
coupled integration solutions, with no clear separation between business
and integration logic became very difficult and expensive to maintain. This
created market opportunity for integration products that did not require
enterprise information systems to be aware of the integration. In the
following, we present the most prominent integration approaches.

Figure 3-23
Homegrown
integration

 ENTERPRISE APPLICATION INTEGRATION (EAI) APPROACHES 33

3.1.1 Point-to-Point Integration

In the point-to-point (P2P (Bussler, 2003)), a direct connection has been
established between each pair of systems that needed to be integrated (cf.
Figure 3-24).

Integration logic

System A System C

System B

In
te

gr
at

io
n

lo
gi

c Integration logic

Business

logic

Business

logic

Business

logic

The software, implementing the connection, is responsible for extracting
data from the first system, transporting them and inserting data into the
second system. When necessary, the integration software performs all
required data transformations before inserting the data into the recipient
system.

While providing basic integration functionality, the P2P approaches have
some limitations that are unacceptable in more complex integration
scenarios. First, for each new system that needs to be integrated, a new
connection has to be added to each existing system part of the integration.
In addition, logic that transforms data from (to) the new system and
existing systems has to be specified. Second, more complex data exchange
sequences cannot be defined. The reason for that is that connections
between the systems are unaware of each other. For example, it is not
possible to extract data from two different systems, combine it and then
insert it into third system.

3.1.2 Hub-and-spoke

In the hub-and-spoke approach (Bussler, 2003), the communication between
different systems has been implemented in a central system, called hub. The
hub is responsible for receiving data from every system (called spoke),
transforming it in the right format of a recipient system, and then inserting
it into it (cf. Figure 3-25).

Figure 3-24
P2P integration

34 CHAPTER 3 STATE-OF-THE-ART

System A
(spoke)

System C
(spoke)

System B
(spoke)

Hub

Business

logic

Business

logic

Business

logic

Integration

logic

With this approach, the effort to maintain several different connections
between enterprise information systems has been notably reduced.

Using a publish/subscribe mechanism, each spoke can provide its
requirements to receive specific data. The hub matches the received data
against these requirements, identifies the right spoke, transforms the data in
the right format, and inserts it into the recipient system. Using
publish/subscribe mechanism data from one system can be inserted into
multiple destination systems.

The main advantage of hub-and-spoke approach is that adding a new
system only requires adding one new connection between the system and
the hub. The other systems, that have been already integrated, are not
affected by the addition. In addition, new routing rules can be dynamically
added to the hub enabling data to be correctly routed to the new system.

While improving on P2P integration approach, hub-and-spoke has some
(major) drawbacks. First, it is not possible to implement multistep integration.
For example, the following scenario cannot be achieved by P2P integration
approach: a system sends a message to another system; the second system
returns a message that has to be forwarded to a third system based on the
content of the first message. The reason is that the data in the first message
is no longer available. Second, hub-and-spoke provides only a one-way
integration. For example, if a system sends a message to request date from
another system and the second system responds, the hub does not know
that the two messages are related. In this way, implementing even a simple
request/response pattern requires definition of complex routing rules.
Finally, the hub-and-spoke approach did not allow for adding additional
business logic (such as notification or authorization) between the extraction
and inserting of the data.

3.1.3 Process-based Integration

To address the limitations of hub-and-spoke integration approach, the
process-based integration approach (Bussler, 2003) has been proposed. This
approach extends the hub-and-spoke by adding process management

Figure 3-25
Hub-and-spoke
integration

 SERVICE-ORIENTED ARCHITECTURE 35

functionalities using a workflow management system (WFMS) (cf. Figure 3-
26).

Hub

WFMS
Integration

logic

System A
(spoke)

System C
(spoke)

System B
(spoke)

Business

logic

Business

logic

Business
logic

Business

logic

In this way, instead of directly inserting the data into a recipient system, the
hub inserts data into a workflow instance that determines the right way to
process the message itself, together with other related messages.

The process-based integration approach supports both multistep
integration and addition of custom steps between the extraction/insertion
of the data. In fact, the process-based integration solutions are stateful, i.e.,
each instance of an workflow keeps all received and sent messages and can
use this information to construct new messages or execute some processing
logic. In this way, more complex business scenarios can be supported. In
addition, the integration logic can be specified in a workflow definition,
using constructs such as a conditional branching or a parallel execution.

Service-orientation is a promising design paradigm for building process-
based integration solution. According to this paradigm different system has
knowledge only about how to request and consume services provided by
other systems, and has little (or no) knowledge about their internal data
structures and processing logic. In this way, integration solutions can be
specified using only service description (i.e., without knowledge about the
internal implementation of these services) at higher level of abstraction.

3.2 Service-oriented Architecture

Service-oriented architecture (SOA) is an architecture comprised of services and
service compositions designed and built in accordance with the service
orientation paradigm. According to (Erl, 2005) SOA should adhere to the
following principles:

– Loose coupling – systems maintain relationships that minimise

dependences among them and only require that they retain an awareness

Figure 3-26
Process-based
integration

36 CHAPTER 3 STATE-OF-THE-ART

of each other. That is, when two systems need to be connected, instead
of connecting them directly, a third system is used to mediate the
connection between them. Loose coupling may have many dimensions
such as loose coupling in time, location and version.

– Contracts – systems interact adhering to an agreement specified in a
service description. This means that having only a service description (a
contract) both service provider and service consumer should have
everything they need to interact.

– Autonomy – systems have full control over their underlying runtime
execution environment. That is, the only possible interaction with the
system is through the services it provides. In this way, it is possible to
change the implementation of the system without any effect on the
consumers of its services.

– Abstraction - service descriptions should only contain essential
information required to consume the service. A service description
should not reveal low-level details about internal system’s state and
processing logic. However, finding the “right” level of abstraction is
extremely difficult problem. For that reason, in Chapter 4, we define a
conceptual framework that allows a service to be described at different
levels of abstraction. In this way, different models of the same service
can be used for different purposes (e.g., for discovery, composition and
execution).

– Reusability – functions of a system should be exposed as services with the
intention of promoting reuse. To achieve this, services should be
independent units of logic. More complex business processes should be
broken down into series of services, each responsible for performing
independent portions of the business process.

– Discoverability – service descriptions should contain sufficient information
to enable service users to discover, assess and use the service. Examples
of such information are message formats, service endpoint and binding
information but also organizational units and service-level agreements.

– Composability – a number of systems can be coordinated or new
(compound) systems can be built from existing ones based entirely on
their service descriptions. Similar to the discoverability principle, a
service description should contain sufficient information to use a system
as a component of another system.

 SERVICE-ORIENTED ARCHITECTURE 37

– Statelessness – a service should minimise retaining information specific to
a particular activity. Statelessness is preferred condition for services
because it promotes reusability and scalability. It can be achieved by
adding more intelligence to the exchanged messages, i.e., each message
should convey all the necessary information for its processing.

To realise the principles of SOA a lot of effort is currently being invested in
standardizing XML3-based service description languages and protocols for
service interactions known as Web services. In the remainder of this
section, we will briefly present the most prominent ones. Since there are
many standards addressing different aspects of Web services such as WS-
Coordination4, WS-Policy5 and WS-Trust6, we limit ourselves only to the
standards that are relevant to the research presented in this thesis.

3.2.1 Simple Object Access Protocol

The Simple Object Access Protocol (SOAP7) is a protocol for exchanging
structured data. It uses XML as a data format and relies on other standards
(such as HTTP8) for the actual transmission of the data. SOAP provides a
basic messaging framework that is considered as foundation for building
Web services. A SOAP message is a XML document that consists of a body
and a header. The body contains the actual data that is used by the message
receiver. The header provides support for advanced message processing.
The information in the header is typically used by intermediate message
processors. SOAP is independent from programming language and
operational platform. I.e., it does not require a specific implementation
technology which makes it agnostic to vendors, platforms, and technologies.

3.2.2 Web Services Description Language

Web Services Description Language (WSDL9) provides a model and format to
describe a Web service. It allows service providers to describe both the
abstract functionality of their services as well as to provide concrete details
where to access a service and how. More specifically a WSDL description
consists of two parts. The abstract part describes a Web service in terms of
the messages it sends and receives through a type system. The cardinality
and the sequence of the messages are defined by Message Exchange Patterns

3 http://www.w3.org/XML/
4 http://www.ibm.com/developerworks/library/specification/ws-tx/
5 http://www.w3.org/Submission/WS-Policy/
6 http://docs.oasis-open.org/ws-sx/ws-trust/
7 http://www.w3.org/TR/soap/
8 http://www.w3.org/Protocols/Specs.html
9 http://www.w3.org/TR/wsdl

38 CHAPTER 3 STATE-OF-THE-ART

(MEPs). An operation associates a MEP to one more messages. Finally, a
number of operations are group into an interface. The concrete part
describes the implementation details necessary to access the Web service. A
binding specifies the concrete message format (e.g., SOAP) and
transmission protocol (e.g., HTTP). A service endpoint associates network
address with a binding. Finally, a service groups the endpoints that
implement a common interface.

3.2.3 Universal Description, Discovery and Integration

Universal Description, Discovery and Integration (UDDI10) is a standard that
defines a standard way of registering and looking up services. In a typical
UDDI scenario, a service provider registers a service in a UDDI registry.
Then, a service consumer can look up in the registry for a required service.
When the consumer request matches a service offer, a service description is
returned. The consumer uses the returned service description to bind
directly with the service provider and use the service.

3.2.4 Web Services Business Process Execution Language

The Web Services Business Process Execution Language (WS-BPEL11) is a standard
for describing service-oriented processes, i.e., processes in which each
action is performed by a Web service (including sending and receiving of a
message). WS-BPEL provides support for specification of both service
orchestration and choreography (from the single partner perspective). A
WS-BPEL orchestration specifies the internal behaviour of a composite
Web service in terms of its components (i.e., other Web services) and the
relations between their operations. A WS-BPEL choreography specifies the
external behaviour of a Web service by specifying the relations between the
service operations.

The orchestration can be seen as the private business process of the service
provider. It is controlled by the service provider and describes the steps of
its internal, executable workflow. The choreography can be seen as the
public business process from the perspective of the service provider. It is
describes the sequence of externally observable messages between the
service and its users.

A WS-BPEL process usually involves participation of different partners.
They interact through interfaces called port types. Port types are related by
partner links. A partner link specifies what port types must be supported by
each of the partners it connects. A partner link is an instance of a partner link

10 http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
11 http://www.oasis-open.org/apps/org/workgroup/wsbpel/

 ONTOLOGY REPRESENTATION 39

type which defines the roles of each partner. A WS-BPEL process exchanges
messages with its partners. These messages are defined in WSDL.

A WS-BPEL process uses variables to hold the data in the messages,
exchanged between the process and its partners, or internal process data. A
variable has a type, defined in the types section of a WSDL document, a type
of an element defined in apart XML Schema or XML Schema simple type.

A WS-BPEL process consists of activities and relations between them.
The activities can be split into two groups – basic activities and structured
activities. Examples of basic activities are receive (used to block the execution
of the process and to wait for a matching message to arrive), reply (allows
the process to send a message in reply to a message that was received by an
receive activity) and invoke (allows the process to invoke one-way or request-
response operation on a Web service offered by a partner). Examples of
structured activities are sequence (used to specify the execution of activities
in a sequence), if (used to specify a conditional behaviour), while (used to
specify a repetitive behaviour), flow (used to specify one or more activities to
be performed in parallel) and pick (used to block the process and wait for
the occurrence of exactly one event, specified in a set of events). For the
complete list of WS-BPEL activities and their detailed description, we refer
to the WS-BPEL standard.

Web service standards only standardise the syntax of service descriptions.
They do not provide means for defining their semantics. This means that
although syntactically correct, a service description still can be ambiguous
and therefore, misunderstood by its intended users. Knowledge
representation approaches enable the explicit and precise specification of
service semantics. In the next section, we present an overview of the most
prominent knowledge representation approaches. More specifically, we
focus on ontology representation languages.

3.3 Ontology Representation

The term “ontology” has been accepted by the IT community to describe
formal domain models. There are several ontology definitions. The most
accepted one is given in (Gruber, 1993): “an ontology an explicit
specification of a conceptualization”. (Borst, 1997) defines ontology as
“formal specification of a shared conceptualization”. In addition to the
definition given by Gruber, Borst requires that the conceptualization should
be shared between several parties and specified in a formal way. (Studer,
1998) combines the definitions of Gruber and Borst into “an ontology is a
formal, explicit specification of a shared conceptualization”. The shared
conceptualization captured in an ontology enhances the communication
between humans. The formal specification of this shared conceptualization

40 CHAPTER 3 STATE-OF-THE-ART

enhances the communication between machines. For these reasons,
ontologies are promising approach to automate information integration
tasks. In this thesis, we will use the ontology definition given by Studer.

There is no universally accepted language to represent ontologies.
Nowadays, there are many language specifications, graphical and natural
language notations to represent ontologies. However, when deciding on
which ontology representation language to use, some basic criteria should
be considered (Pollock and Hodgson, 2004):

– Processability – the ability of the representation language to be efficiently

processed by software

– Accessibility – the market penetration and familiarity of the representation
language in the industry and among professional that are going to use it

– Usability – the ease with which new users can learn and use the
representation language

– Expressiveness – the ability of the language to capture unambiguously the
semantics of the subject domain of a given systems

– Life cycle coverage – the scope of the representation language throughout
the development cycle (e.g., design, validation, implementation, testing)

In the rest of this section, we briefly present the most prominent candidate
languages for ontology representation and discuss their strengths and
weaknesses.

3.3.1 Resource Description Framework

Resource Description Framework (RDF12) is a language for representing
information about resources on the Web. Initially intended for representing
metadata about Web resources it has been generalised to represent also
information about entities (or phenomena) in the real world.

The basic RDF data model consists of three object types:

– Resources: All things described by RDF are called resources. A resource

may be an entire web page, part of a web page or a collection of web
pages. A resource may also be an object that is not directly accessible via

12 http://www.w3.org/RDF/

 ONTOLOGY REPRESENTATION 41

the web (e.g., a physical entity). All resources in RDF are identified by
Uniform Resource Identifiers (URIs13).

– Properties: A property is a specific aspect, characteristic, attribute, or
relation used to describe a resource. Each property has a specific
meaning, defines its permitted values, the types of resources it can
describe, and its relationship with other properties.

– Statements: A statement is a specific resource together with a named
property and the value of that property. These three individual parts are
called, respectively, the subject, the predicate, and the object of the
statement. The object of a statement (i.e., the value of the property) can
be another resource or a literal (e.g., a primitive data type defined by XML
Schema). In RDF terms, a literal may have content that is XML mark-up
but is no further evaluated by the RDF processor. The underlying
structure of any expression in RDF can be viewed as a directed labelled
graph, which consists of nodes and labelled directed arcs that link pairs
of nodes, as depicted in Figure 3-27.

Statement

Subject Object
Predicate

Statement

Resource Value
Property

or

The RDF graph is a set of statements. The direction of the arc is significant:
it always points toward the object of a statement. The meaning of an RDF
graph is the conjunction (i.e., logical and) of all statements that it contains.
Figure 3-28 shows an example of an RDF graph.

Person

Organization
“Blue

Company”

hasName

hasName

worksFor

hasPhone

Address
hasAddress

555-1234

“John Smith”

13 http://www.w3.org/Addressing/

Figure 3-27
RDF statement

Figure 3-28
RDF graph

42 CHAPTER 3 STATE-OF-THE-ART

Data types are used by RDF in the representation of values such as integers,
floating point numbers and dates. RDF uses the data types defined by XML
Schema14. It does not provide mechanism for defining new data types. XML
Schema data types provide an extensibility framework suitable for defining
new data types for use in RDF.

An RDF graph, as described by the RDF abstract syntax, can be
represented in various ways, using different concrete syntaxes but each
conveying a common RDF meaning. Only the XML syntax is normatively
specified and recommended for use to exchange information between
applications.

Resource description communities require the ability to state certain
things about certain kinds of resources. For describing bibliographic
resources, for example, descriptive attributes including "author", "title", and
"subject" are common. For describing business entities, attributes such as
"partner" and "purchase order" are required. In RDF, the declaration of
these properties (attributes) and their corresponding semantics are defined
by RDF Schema15.

RDF Schema is specified in terms of the basic RDF information model -
a graph structure describing resources and properties. All RDF vocabularies
share some basic common structure: they describe classes of resource and
types of relationships between resources. This commonality allows for a
finer grained mixing of machine-processable vocabularies, and addresses the
need to create metadata in which statements can draw upon multiple
vocabularies that are managed in a decentralised fashion by independent
communities (W3C, 2004c).

The RDF Schema approach to vocabulary description allows vocabulary
designers to represent descriptions of classes and properties, for example by
describing ways in which combinations of classes, properties and values can
be used together meaningfully.

The example depicted in Figure 3-29, illustrates the way in which RDF
can be used to describe real world things (e.g., people and companies), the
classes they fall into (such as Employee), and the properties that are used to
relate members of these classes - in this example the property worksFor. By
using a RDF Schema, we can describe the relationship between RDF
properties and these classes of resource. In this example, the RDF Schema
is used to say that the worksFor property relates Employees to Companies. The
example also shows that all Employees are considered to be Persons.

14 http://www.w3.org/XML/Schema
15 http://www.w3.org/TR/rdf-schema/

 ONTOLOGY REPRESENTATION 43

rdfs:Resource

Person rdf:Property

worksForEmployee

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf

Company

rdf:type

rdfs:domain

http://.../Bluehttp://.../John

rdf:type rdf:type

rdfs:range

worksFor

rdfs:subClassOf

RDF Schema consists of a collection of RDF resources that can be used to
describe properties of other RDF resources (including properties) which
define application-specific RDF vocabularies. The core vocabulary is
defined in the namespace “http://www.w3.org/2000/01/rdf-schema#”.

The RDF Schema class and property system is similar to the type
systems of object-oriented programming languages such as Java. However,
RDF differs from many such systems in that instead of defining a class in
terms of its properties, an RDF schema will define properties in terms of
the classes to which they apply. For example, we could define the worksFor
property to have domain of Emploee and a range of Company, whereas a
classical object-oriented system might typically define a class Person with an
attribute called worksFor of type Company. This example is depicted in Figure
3-30.

worksFor

Employee Company

rdfs:domain rdfs:range

Person: Class

+worksFor: Company

Company: Class

RDFS
Object-oriented system

By using the RDF approach, it is easy for others to define subsequently
additional properties with a domain Person or a range Company. This can
be done without the need to re-define the original description of these

Figure 3-29
An example of RDF
Schema instance

Figure 3-30
Example of RDF
Schema and
alternative OO
Class diagram

44 CHAPTER 3 STATE-OF-THE-ART

classes. One benefit of the RDF property-centric approach is that it is very
easy for anyone to say anything they want about existing resources, which is
one of the architectural principles of the Web (Berners-Lee, 1998).

RDF Schema provides a mechanism for describing information, but
does not say whether or how an application should use it. Different
applications will use this information in different ways. For example, a data-
checking tool might use RDFS to discover errors in some dataset, an
interactive editor might suggest appropriate values, and a reasoning
application might use it to infer additional information from instance data.

RDF Schemas can describe relationships between vocabulary items from
multiple independently developed schemas. Since URI references are used
to identify classes and properties in the Web, it is possible to create new
properties that have a domain or range whose value is a class defined in
another namespace. This makes RDF suitable as a language to represent
mappings between different resources.

3.3.2 Web Ontology Language

Web Ontology Language (OWL16 (Dean, 2004)) is a World Wide Web
consortium’s (W3C17) standard for representing ontologies. OWL builds
upon the RDF and RDF Schema. In this sub-section, we present OWL
semantics and discuss the supported reasoning tasks. We only focus on the
OWL semantics.

In OWL, individuals are RDFS resources and represent entities (or
phenomena) in some domain of interest. Logically, an individual is an
assertion of existence, e.g., by defining the individual John we assert the
existence of (a person) John in the real world.

Two individuals can be asserted to be the same or different. For example,
if we assert that the individuals John and Johnny are the same, we mean that
they both refer to the same entity in the real work, e.g., (the person) John.

Individuals can have properties and type. For example, we can state that
John is a Person.

In OWL, classes provide an abstraction mechanism for grouping
individuals with similar properties, for example, Persons, Cities, Countries or
Cars. A class has an intentional meaning, i.e., it is a membership criterion or
equivalently - a unary predicate. In OWL, two special classes Thing and
Nothing are defined by the membership criteria always true and always false,
respectively. This means that all individuals are members of the class Thing
and no individual is a member of the class Nothing.

The membership criterion point of view allows us to identify a class with
a unary predicate. For some classes this membership criterion is explicit

16 http://www.w3.org/TR/owl-ref/
17 http://www.w3.org/

 ONTOLOGY REPRESENTATION 45

(for example, having a red colour), but often that membership criterion is
axiomatic (e.g., by stating that the individual John is a Person). Every class is
associated with a set of individuals, called the class extension. For these
individuals it is asserted implicitly or explicitly that they satisfy the class
membership criterion. In particular, such an assertion claims the existence
of such individuals. Two classes may have the same class extension, but still
be different classes. For example, we often use classes for which we know
no members at all. It is often convenient to think of a class as a set with
some known but, potentially many more (unknown) individuals
characterised by some property.

A property is a binary relationship (i.e., a binary predicate) from one class to
another or from a class to a data type. We can assert that two individuals or
an individual and a data value are related through a property, for example,
worksFor(John, TelematicaInstituut) or hasAge(John, 35).

A property usually has a domain and range class. If not defined explicitly,
a property is assumed to have domain and range the class Thing. A useful
way to think about the domain and range is that P is a multi-valued function
defined on its domain with values in its range. If class A is the domain of
property P, and class B is the range of P, then every time when we explicitly
assert a triple x P y we implicitly assert that x ∈ A and y ∈ B.

For example if the class Person is the domain, and the class Organisation
the range of the property worksFor, we conclude from the existence of the
fact worksFor(John, TelematicaInstituut) that John ∈ Person and
TelematicaInstituut ∈ Organisation.

The properties are defined independently of the triples, just as classes
are defined independently of their members. A property is a binary
predicate and just like classes (unary predicates) has an intentional meaning.
A triple is an assertion that (subject, object) pair satisfies the binary
predicate corresponding to that property. Likewise, the assertion that an
individual is a member of a class is the assertion that the individual satisfies
the unary predicate corresponding to that class. Thus, the set of all triples
with a given property as predicate is completely analogous to the extension
of the class.

If we state the existence of individuals, properties or classes we do not
make a claim that these individuals, properties or classes are the only ones
that exist or could exist. We merely state that these are known and have to
be considered in the interpretation of the ontology they belong to. Such an
assumption is particularly suited for an environment like the Web where we
have to assume incomplete knowledge. However, in many applications the
situation is opposite. For example, if we have a database, then the database
records are all the individuals in the database, and a table’s columns define
all its properties. Moreover, the result of a query is an authorative answer
whether the returned records do or do not satisfy the query. These different

46 CHAPTER 3 STATE-OF-THE-ART

points of view are complementary. A database often contains incomplete
information, and the answer of a query is merely authorative for
information that has been stored in the database. Conversely, we can state
that a class consists exactly of a number of instances and no others.

OWL classes can be defined in different ways:

– axiomatically, by stating that the class exists, for example, the class
Human

– extensionally, by enumerating all individuals that belong to the class, for
example, the class {Belgium, Netherlands, Luxembourg}

– intentionally, by defining the membership criteria of the class, for
example, having a red colour.

– as the intersection of two or more classes, for example, Human ∩ Male. In
terms of membership criteria, this is the conjunction of the criteria of
the classes, e.g., Human and Male.

– as the union of two or more classes, for example, American ∪ Canadian.
In terms of membership criteria, this is disjunction of the criteria of the
classes, e.g., American or Canadian.

– as the complement of another class, for example, ¬Vegetarian. In terms of
membership criterion this is negation of the original criterion, e.g., not
Vegetarian.

Classes can be organised into a subclass-superclass hierarchy (i.e., taxonomy).
In terms of the membership criterion, a class C is a subclass of a class D if
the membership criterion for C implies the membership criterion for D. In
OWL the class Nothing is a subclass of all classes and no individual is a
member of Nothing. Likewise, Thing is a superclass of all classes and all indi-
viduals are member of Thing.

We usually just assert that one class is a subclass of another. For
example, we can define Father as a subclass of Man and Man as a subclass of
Human. An individual that is a member of a class is also a member of all its
superclasses.

Two classes are equivalent if they are subclasses of each other. Thus, a
necessary and sufficient condition to belong to a class is to belong to an
equivalent class.

Classes can be asserted to be disjoint. This means that the conjunction
(the logical and) of the corresponding membership criterion is always false,
which means that the classes cannot have common members. For example,

 ONTOLOGY REPRESENTATION 47

if we define Man and Woman to be disjoint classes, no individual can be
member of Man and Woman at the same time. The definition implies in
particularly that the members of the two disjoint classes are distinct.

A class can also be defined by a restriction on property values. An
existential (∃) restriction (from the existential quantifier ∃, which reads as
“for some,” “there exists,” or “for at least one”) has as membership
criterion that for some given property P there exists a value instance in
some given class C.

OWL provides useful variations of the existential restriction. The
simplest is the hasValue restriction which asserts the existence of a specific
property value. For example, Londoner is someone who livesIn the city
London.

Another variation is the cardinality restriction (or more precisely qualified
cardinality restriction). In this case, a necessary and sufficient membership
condition is that there is a more precisely defined number of property
values to other individuals or data values.

Negating the existential condition, we are led to the universal (∀)
restriction (coming from the universal quantifier ∀, which reads as “for
all”). The membership criterion for the universal restriction is that all (also
possibly zero) values from a property P are members of a class C.

Like classes, properties can be more or less specific which leads to
property hierarchies. A property R is a subproperty of a property P, denoted
R ⊆ P, if R implies P. It follows that each asserted fact R(x, y), implies a fact
P(x, y). For example, if John has a daughter, then in particular, John has a
child.

Some properties in OWL have special semantics. This allows an asserted
fact to imply other facts. Examples of OWL properties with a special
semantics are inverse, symmetric and transitive properties.

OWL is a set of three, increasingly complex languages:

– OWL Lite has been defined with the intention of creating a simple
language that will satisfy users, primarily needing a classification
hierarchy and simple constraint features. For example, OWL Lite
supports cardinality constraints but only permits cardinality values of
zero or one.

– OWL DL includes the complete OWL vocabulary, interpreted under a
number of simple constraints. Primary among these is that a class
cannot be a property or an individual simultaneously. Similarly,
properties cannot be individuals. OWL DL is so named after its
correspondence to Description Logics (Calvanese, 2003).

48 CHAPTER 3 STATE-OF-THE-ART

– OWL Full includes the complete OWL vocabulary, interpreted more
broadly than in OWL DL, with the freedom provided by RDF. In OWL
Full, a class can be treated simultaneously as a collection of individuals
(the class extension) and as an individual in its own.

As we have seen, the formal definitions of classes, properties and individuals
allow inferring new knowledge from knowledge that is already present. The
basic inferences can be combined, and allow us to do more complex
reasoning. It is useful to distinguish property-, class- and individual-level
reasoning.

Property-level reasoning means inferring implied triples from the asserted
ones. This is a closure process that constructs the implied (in the examples
above - the triples with a dotted line) triples. For example, for a transitive
property we have to create the transitive closure of the graph defined by the
triples with the transitive property as predicate.

Class-level reasoning means checking whether a class B is a subclass of class
A. This reasoning task is called a subsumption check. In other words,
subsumption is checking if the criteria for being member of class B imply
the criteria for being member of class A. If A and B subsume each other
they are equivalent and in particular have the same members. Checking
class satisfiability is a special case of subsumption reasoning. A class C is
called unsatisfiable if C ⊆ Nothing, hence (since Nothing ⊆ C by
definition), C is equivalent to Nothing, and cannot have any members.
Conversely, we can check the subsumption B ⊆ A by checking that the class
B ∩ ¬A is unsatisfiable. If we construct the full subsumption graph of all
classes in an ontology, we construct a class hierarchy. This reasoning task is
called classification.

Individual-level reasoning means checking if an individual can exist in some
model (called a consistency check) In particular if a class is unsatisfiable it
cannot have a individual as a member. Thus, to check if the class C is
satisfiable, it suffices to check that there is no model with a member x ∈ C.

A related task is to find the classes of which an individual is a member
(called realization). Since we can construct a class hierarchy, we can in
particular find the most specific class(es) to which an individual belongs. If
we do this for only one class (which is a membership criterion) and find all
the known instances that provably belong to the class we say we retrieve its
instances. Instance retrieval is of great practical importance because it
allows a logical model to be used as a database.

OWL has a number of strengths that make it very suitable for ontology
representation. First, it is an effective union of object-oriented and logic-
based systems. Second, OWL is decidable. This means that querying ontology
representation always terminates, i.e., the query always has an answer.
Third, OWL is very expressive language capable of describing real-world

 ONTOLOGY REPRESENTATION 49

entities and complex relationships among them. Finally, OWL has well-
studied computational properties and is highly optimised for efficient
processing by machines. However, OWL has also some weakness that
should be considered before using it. First, it is relatively new standard with
a little market penetration. Currently, there are only few tools available,
most of them implemented in the academic world. Second, OWL is a
logical formalism that requires different way of thinking than traditional
data modelling approaches. This makes it unintuitive for people that have
experience with object-oriented or relational modelling approaches.

3.3.3 Entity-Relationship Diagrams

Entity-relationship diagrams (ERDs (Chen, 1976)) are one of the most
popular approaches for representing knowledge about the subject domain
of a system.

An entity is a discrete thing that can exist independently from other
things and can be uniquely identified. An entity can be a physical object,
such as a person or a car, a non-physical object, such as a promise or an
obligation, or an event such as selling a house or performing a task.

Each entity is an instance of a concept and can be referred to using that
concept. In ERD, concepts are called entity types and graphically represented
by a named rectangle. All instances of a type share certain properties. For
example, a person has a name, a house has an owner, and a car has a colour.
These properties are called attributes. An attributes can be atomic or composed
of other attributes. In this way, more complex entity types can be defined.
In addition, attributes may have cardinalities stating whether an attribute is
optional or mandatory, or whether it is single- or multi-valued. An attribute
is represented as an oval connected to the respective entity type (or
composite attribute).

A relationship between entity types is a set of tuples of instances of these
types. The number of different entity types that are connected by a
relationship defines the arity of the relationship. A relationship is
represented by a diamond and lines connecting the diamond and the
respective entity-type rectangles. A relation has a name, which can be
optionally labelled by an arrow representing the direction of the
relationship. A role name can be added to each end of the line representing
the role played by the entity in the relationship. In addition, cardinality can
be added to each end of the line. Cardinality specifies how many instances
of that one entity type can exists for each existing instances of some other
entity type. Figure 3-31 illustrates an example ERD.

50 CHAPTER 3 STATE-OF-THE-ART

Person

nam e

Company

address

works for ►
1

at t r ibutest reet city

ent it y type

relat ionship

N cardinalit y

N

The example ERD describes a subject domain in which two types of entities
can exist, namely, Person and Company. Person has attribute name and
Company has attribute address. Address is a composite attribute: is consists
of two sub-attributes, namely street and address. Person and Company can be
related by the relationship works for. One Person works for one Company and
many Persons can work for the same Company.

A relationship can also have attributes. In this case, the relationship is
called association entity. This is represented by a diamond placed in a
containing rectangle. The difference between a “normal” entity and an
association entity is in the way we identify them. A “normal” entity has an
independent identity whereas an association entity is identified by the entities
that participate in the respective relationship. Figure 3-32 illustrates an
example of an association entity.

User Fileperm ission
M

at t r ibute

ent it y type

relat ionship

N

read write

N, M cardinalit y

associat ion

ent it y

Chen’s ERD does not support modelling organizing entity types into
generalization/specialization hierarchies. To address this issue, (Elmasri and
Navathe, 2000) have proposed Enchanced Entity Relationship (EER) diagrams.
In EER, instead of using specialization and generalization, subtype and
supertype are used. All instances of a subtype are also instances of all
supertypes of that type. This also means that all instances of a subtype also
have the properties of the respective supertypes. This is called inheritance.

Figure 3-31
Example ERD

Figure 3-32
Example of an
association entity

 ONTOLOGY REPRESENTATION 51

Person

Man Wom an

nam e at t r ibute

ent it y type

In this example, Person is a supertype of the types Man and Woman. Man and
Woman inherit all attributes of Person, i.e., they both have attribute name.

3.3.4 UML

Unified Modelling Language (UML18) is a general-purpose modelling language
standardised by Object Management Group (OMG19). UML provides
concepts and notation to model the structure and the behaviour of software
systems.

Structural diagrams represent the decomposition of a system in terms of
components, classes and objects as well as the relations among them.
Behaviour diagrams represent what activities are performed by the system and
how these activities change the state of the system. Interaction diagrams are
subset of the behaviour diagrams. They are used to model the flow of
control and data among the elements of the system.

Structural diagrams are similar to ERD, but they use different
terminology. (Wieringa, 2003) presents a comparison between terminology
used in UML structural diagrams and ERD. In table Figure 3-34, we
summarise the most important part of the comparison.

ERD UML structural diagrams

Entity type Class
Entity Object
Relationship Association
Association entity Association object
Association entity type Association class
Cardinality property Multiplicity property

The main difference between UML structural diagrams and ERDs is that
ERDs are used to model the entities in the subject domain of a system
whereas UML structural diagrams are used to model the software objects
that make up the system.

18 http://www.uml.org/
19 http://www.omg.org/

Figure 3-33
Example of a
specification/gener
alization

Figure 3-34
Comparison of
terminology in ERD
and UML structural
diagrams

52 CHAPTER 3 STATE-OF-THE-ART

UML has wide market penetration. There are many, mature tools
offered by different vendors. The main weakness of UML is that it is not
grounded with a formal semantics. For that reason, in some cases models
expressed in UML are ambiguous.

3.4 Model-Driven Architecture

System integration can be seen as the process of realizing an integrated
system that satisfies some user requirements while using some integration
methodology. The integrated system is built by linking existing systems and
compensating the mismatches between them by adding additional systems
called adaptors (Figure 3-35).

Integration
process

A

B

C

A

C

B

Existing systems

Integrated

system

yx

User requirements

Integrated

system

Realization

Integration
methodology

Since the gap between user requirements and the realization of the
integrated system can be wide, the integration process can become
extremely complex. To simplify this process a good integration
methodology should allow systems integrators to address only a limited set of
concerns in series of design steps. This principle is known as separation of
concerns.

To address the separation of concerns principle the OMG has proposed
the Model Driven Architecture (MDA20) approach for software development. In
MDA, the separation of concerns is achieved by specifying models at different
level of abstraction. Each of these models focuses on the characteristics of an
entity (or phenomenon) that are considered as being essential for a certain
purpose, while ignoring or discarding details that are considered as being

20 http://www.omg.org/mda/

Figure 3-35
Integration process

 MODEL-DRIVEN ARCHITECTURE 53

irrelevant for the same purpose. In MDA, models can be automatically
derived from other models by applying transformation activities.

MDA distinguishes four types of models: computation-independent models
(CIMs), platform-independent model (PIMs), platform-specific models (PSMs) and
transformation models (TMs).

A CIM defines the business problem to be solved by a software system,
e.g., the business goals to be achieved by the integrated system, its
organizational structure and the associated business processes.

A PIM defines a technology-independent solution of the business
problem as defined in a CIM. That is, a PIM is used to bridge the gap
between the problem and solution spaces. Business experts should be able
to review a PIM and check whether it captures the business problem as
defined in the CIM. IT experts should be able to review a PIM and check if
it matches their IT solution.

A PSM defines the realization of a system by means of a specific
technology, for example J2EE21 or .NET22. Note that often someone’s PSM
is someone else’s PIM. For example, for a software architect a PIM can be
specified in terms of the Business Process Modelling Notation (BPMN23) and
transformed to a PSM in terms of Web services and WS-BPEL. However,
for a Java developer the architect’s PSM is a PIM that can be transformed to
a PSM in terms of Java.

Finally, a TM defines how to transform elements from one model to
another. For example, a TM could specify how a PIM in terms of Web
services is realised by a specific set of implementation technology such as
Java.

The relationships between PIM and PSM models are illustrated in
Figure 3-36.

21 http://java.sun.com/javaee/
22 http://msdn.microsoft.com/netframework/
23 http://www.bpmn.org/

54 CHAPTER 3 STATE-OF-THE-ART

Architect

Java Developer

PIM (BPMN)

ТМ

PSM / PIM
(WS, BPEL)

ТМ

PSM
(Java)

In MDA, models are specified in well-defined languages, suitable for
automated processing by machines. These languages, in turn are defined by
models called meta-models. Since a meta-model is also a model, it must be
written in some language (sometimes called metalanguage). In theory, there
is an infinite number of layers of model-language-meta-model-
metalanguage. The OMG defines four such layers, denoted as M0, M1, M2
and M3.

Models at layer M0 describe instances that exist in some system, i.e., the
state of the system. For example, in a relational database management
system an instance can be a particular record in that database. In a business
system, an instance can be a concrete person or product.

Models at layer M1 define the kind of instances that can exist in layer
M0, their properties, and the types of relations among them. For example,
in case of a database system a model at layer M1 defines the tables
“Customer” and “Order”, their columns (e.g. “name”, “address” and
“orderId”), and the relationship between them.

Models at layer M2 define the kind of elements that can exist in M1,
i.e., models of M2 are the meta-models of the models at layer M1. For
example, in case of a database system a model at layer M2 defines the
concepts “Table”, “Column”, “Primary key” and “Foreign key”, as well as
the relationships among them (e.g. a Table has at least one Column).

Finally, models at layer M3 define the kind of elements that can exist at
layer M2, i.e., models of M3 are the meta-models of the models at layer
M2. To define the models at layer M3, OMG has standardised a special

Figure 3-36
Example of the
relations between
PIM and PSM in
MDA

 MODEL-DRIVEN ARCHITECTURE 55

language called Meta Object Facility (MOF24). All modelling languages within
MDA (e.g., UML) are instances of MOF.

In addition to MOF, the OMG has standardised a set of languages for
formally defining the transformation among models. The standard is called
Query, Views and Transformations (QVT25). The QVT specification has a hybrid
declarative and imperative nature.

Meta-modelling and transformations in MDA enable domain-specific
modelling (DSM) as well as definition of domain-specific languages (DSLs).
DSLs are languages tailored to a specific domain as opposed to general
purpose languages (GPLs) that are designed for any kind of application
domain. Compared with GPLs (e.g. UML and Java), DSLs offer only a
limited set of constructs. This increases the modelling or programming
productivity and enables more precise definition of concerns within a
particular domain.

The main advantages of using DSLs are discussed in (Mernik, 2006):

– A DSL has a syntax or graphical notation that is closer to the

terminology or the notation used by domain experts. This makes it
easier for them to learn the DSL and to use it to specify their
requirements in more formal and precise way. This, in turn, narrows the
gap between the problem and the solution spaces.

– A specification written in a GPL is difficult (or sometimes impossible) to
analyse, verify and optimise because the GPL constructs are too complex
or not well-defined. A DSL with formal reasoning capabilities enables
solution designers to analyse, verify and optimise their models and to
discover possible problems at early stage of the solution development
process.

– Finally, software programmers often spend significant time on tasks that
are tedious and follow the same pattern. In such cases, a single DSL
construct can be used to generate all the required code in the respective
GPL. This, in turn, improves the programmers’ productivity.

It is important to mention that developing a good DSL is a very hard task. It
requires very good understanding of the problem domain as well as very
good tool support (e.g., parser generators and code generators). In
addition, DSLs are only useful when the problem that has to be solved is

24 http://www.omg.org/technology/documents/formal/mof.htm
25 http://www.omg.org/docs/ptc/07-07-07.pdf

56 CHAPTER 3 STATE-OF-THE-ART

reoccurring. Otherwise, the cost to develop a DSL is higher than solving the
problem with a general-purpose language.

3.5 Conclusions

In this chapter, we answered Research question Q2: “What are the current
system integration approaches? What are their drawbacks? What
technologies have been proposed to address these drawbacks? How do
these technologies interact when used together?”.

In Section 3.1, we presented a brief history of EAI. We showed how
integration approaches have evolved addressing different issues of their
predecessors. Nevertheless, there are still some main issues that have to be
resolved.

First, to enable different systems to interoperate, system integrators
need to know the syntax and the semantics of the data requested and provided
by the systems. Only having this knowledge, they can specify the correct
data mappings to deal with the mismatches in the information models of
the different systems. Second, to achieve the goal of the integration, system
integrators also need to know the interaction protocols (i.e., the correct order
of data exchanges) of the systems that have to be integrated. Only having
this knowledge, they can specify the integration logic required to deal with
the mismatches in the interaction protocols of the different systems.

Third, the existing EAI approaches require system integrators to specify
executable integration logic. I.e., all steps of the integration logic and all
data transformations have to be fully specified in some language supported
by the respective EAI product. Usually, these languages are too technical for
business domain experts to understand and use. This limits their
participation in the integration process to simply defining integration
requirements in some informal way. E.g., current EAI approaches do not
allow domain experts to specify an abstract solution nor to review the
solution specification made by IT professionals. In addition, since the
integration solution is specified for a concrete EAI technology it is very
difficult to reuse it when the implementation technology changes.

As we can see, the EAI problem has three aspects that always occur
together. Therefore, the solutions to each of them should always be
combined. In this thesis, we propose SOA, KR and MDE to deal with
different problem aspect of the current EAI. Figure 3-37 presents the
relation of problem aspects and proposed solution approaches.

 CONCLUSIONS 57

Data aspect
• Explicit information models

• Mapping concepts

Process aspect
• Explicit interaction protocols

• Process integration concepts

Development aspect
• Abstraction

• Automation

Knowledge Representation

Service-Oriented Architecture

Model-Driven Engineering

Problem aspect Solution approach

In the remainder of thesis, we investigate to which extent and in which way
these three solutions approaches can be combined.

Figure 3-37
Relation of problem
aspects and
proposed solution
approaches

PART III.
SOLUTION

Chapter 4

4. Conceptual Framework for Service
Modelling

The objective of this chapter is to define a conceptual framework for service
modelling (COSMO). The purpose of the framework is to serve as common
semantic meta-model that enables the description, integration, verification and
simulation of (integrated) service-oriented applications. Using COSMO,
one can model the domain of a system, the interactions among its services
and their relations, and reason whether these services are interoperable.

This chapter is largely based on joint work with colleagues in the
Freeband A-Muse project26, which was, in turn, based on research on the
interaction systems design language (ISDL (Ferreira Pires, 1994)). ISDL has
a graphic notation and formal semantics defined in (Quartel, 1997). The
main contributions of COSMO with respect to ISDL are the following: first,
we extend ISDL with concepts from formal knowledge representation
languages. In this way, we enable the formal specification of the information
models associated with service-oriented systems. In turn, this enables the
automatic reasoning about the interoperability of systems. Second, we
structure the concepts of ISDL into different dimensions, enabling the
modelling of same services at different levels of abstraction and from
different perspectives. In this way, different models of the same service can
be used for different purposes such as discovery, integration and
implementation. Finally, we evaluate the framework by applying it to two
integration cases (presented in Chapter 7 and 8). Note, that ISDL was
designed to model the behaviour of distributed software systems whereas,
defining COSMO, we specifically focus on service modelling. In this way,
COSMO can be used to model not only software but also business services.

Although the author of this thesis has contributed to all aspects of the
conceptual framework, his main contributions have been in extending ISDL

26 http://a-muse.freeband.nl/

62 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

with formal knowledge representation concepts, contributing to the structuring of
the concepts and providing an integration method that uses COSMO. He also
contributed to the validation of the framework by applying it to the
integration cases presented in Chapter 7 and 8.

The remainder of this chapter is organised as follows: In Section 4.2, we
analyse a number of regularly encountered interpretations of the service
concept and use them to derive generic service properties. In Section 4.3,
we present concepts to model the identified service properties and
structure them into three dimensions – service aspects, abstraction levels and
perspectives. Further, each dimension is presented in details. In Section 4.4
we compare COSMO with two closely related conceptual frameworks – one
from academia and one from the industry. Finally, in Section 4.5 we
present our conclusions.

4.1 Introduction

Service-oriented Architecture (SOA) provides concepts for describing relevant
aspects of services and linking services of different systems. It reduces the
gap between the problem and the solution domain by providing shared
language for business domain experts and software developers to
communicate about the problem and its solution. Model-driven architecture
(MDA), in turn, enables specification of (service) models at different levels
of abstraction (using the SOA concepts). In this way, both domain experts
and software developers can address specific concerns at each design step
and express their choices using shared set of concepts. In addition, MDA
enables different models to be related by transformation activities. In this
way, the relation between the models becomes more explicit, which, in
turn, enables traceability from requirements to implementation.

The service concept has been used implicitly and explicitly in previous
paradigms like object- and component-orientation, but not to its full
potential. In addition, observing the different existing definitions of the
term “service”, we can conclude that a general definition and understanding
of the service concept is still missing.

The service concept should precisely define which system properties
have to be modelled, and which not. The selection of properties should be
based on the intended use of the service concept for building and
integrating (business and IT) systems. For example, one may want to
specify a new service by composing existing service specifications at design
time, and by using discovery and trading techniques at run-time to find
actual realization of these services. In order to support such a scenario,
service descriptions should define both the service interactions (to define

 THE SERVICE CONCEPT 63

service choreographies and orchestration) as well as the purpose and the
capabilities of the system (to facilitate discovery and trading).

The framework presented in this chapter defines the basic concepts
needed to describe the services of a system. Further, it defines how these
basic concepts can be combined to describe more complex service
properties.

4.2 The Service Concept

The service concept is widely used in both business and computer science.
However, the definition of the concept differs considerably in these areas
and even in different “schools of thought” within these areas. This section
presents a number of regularly encountered interpretations of the service
concept and uses them to derive generic service properties.

Service as value-adding interaction
In economics and business science, services are seen as the non-material
equivalent of goods. Service provisioning has been defined as an economic activity
that does not result in ownership, and this is what makes it different from providing
physical goods. Service provisioning is claimed to create benefits by facilitating a
change in customers, a change in their physical possessions, or a change in their
intangible assets. The IBM Services Research group defines a service as “a
provider/client interaction that creates and captures value”27. (Quartel, 1997) also
uses this interpretation and defines a service as the “common behaviour of some
system and its environment, which is defined in terms of common interactions, the
results established in these interactions, and the causal dependencies between them”.
(Wieringa, 2003) defines a service as “an interaction with a triggering event that
delivers an identifiable added value to the environment [of the system]”.

Service as capability
Often the service concept is connected to the system or entity providing it.
(Baida, 2004) defines a service as “the capability of a service provider to produce
some intangible benefits to its environment”. CBDI Forum applies a similar
interpretation to IT services: “a service is a type of capability described using
WSDL” (Sprott, 2004).

Service as operation
In object-oriented and component-based paradigms, each operation or
method defined on an object or component is usually seen as a service of
that object or component. A service is a part of the object’s behaviour,

27 http://www.research.ibm.com/ssme/services.shtml

64 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

which a client can invoke. In some object-oriented languages such as Java,
these operations can be bundled together in an interface specification.
Thus, an interface is a collection of service definitions. Confusingly, such a
collection of operations is called a service in WSDL. However, the current
state of practice in interface definition is that only the signature of each
operation is specified. The signature specifies the types of the inputs and
outputs of an operation, but not its effect or the relationships between the
different operations. Signatures of the addition and multiplication
operations on two numbers, for example, are equal, whereas the effects of
these operations are quite different. Some extensions that go beyond this
simplistic interface definition come from the Semantic Web services
community, e.g., OWL-S (Martin, 2004), and outside it, e.g., WS-
Agreement (Andrieux, 2005).

Service as application
Web services, but also services in general, are most commonly seen as
applications (pieces of software) that can be accessed over the Web. The
W3C, for example, uses the following definition (Booth, 2004): “A Web
service is a software system designed to support interoperable machine-to-machine
interaction over a network”. However, they also make a distinction between the
abstract concept of service and its concrete provider: “A Web service is an
abstract notion that must be implemented by a concrete agent. The agent is the
concrete piece of software or hardware that sends and receives messages, while the
service is the resource characterised by the abstract set of functionality that is provided”.
However, in practice, very often this distinction is not explicitly made.

Service as feature
In the telecommunications domain the term service is usually used to refer
to a feature that can be provided on top of the basic telephony service, such
as “call forwarding”, “call back when busy” and “calling line identification”.

Service as observable behaviour
In data communication, a service is traditionally defined as the observable (or
external) behaviour of a system. For example, (Vissers, 1986) defines a
service as “the behaviour of the [service] provider as it can be observed by the [service]
users”. In other words, the service of a system is the set of all possible
interactions between the system and its environment and their ordering in time.
Sometimes the external behaviour of a system is divided over more than
one interface, where each interface is a part of the system boundary. In this
case, a service is the behaviour of the system as it can be observed at a
particular interface. If you take this to the extreme and make each interface
as small as one operation, you get more or less the same interpretation of
“service as operation”.

 THE SERVICE CONCEPT 65

Based on the definitions above, we identify the following general service
properties:

Involves interaction
A service involves one or more interactions between two (or more systems) - a
system that uses the service (called service user) and a system that provides
the service (called service provider). These interactions can be described from
two different perspectives: a distributed and an integrated perspective.
From a distributed perspective, the participation of the service user
(respectively the service provider) is defined abstracting from the
participation of the service provider (respectively the service user). This
means that the distributed perspective defines the external behaviour that is
expected from the service user and the external observable behaviour of the
system that provides the service. The integrated perspective defines the
joint (integrated) behaviour of the user and provider, abstracting from how
the user and provider interact in using and providing the service.

The property that a service involves interaction can be found in all
definitions given above. The definitions of service as “interaction”,
“capability,” and “observable behaviour” consider this interaction from
both a user and a provider perspective. Furthermore, the integrated
perspective can also be found in the definition of a service as “interaction”.
The other definitions mainly focus on the provider perspective.

Provides some value
The execution of a service provides some value to the user and the provider.
In case of IT services, this value may only involve “intangible benefits”, such
as a change in possession of goods and money. For services in general, the
value may also involve “tangible things”, such as the actual exchange of
goods using a transportation service. In the latter example, the value of the
service may comprise the intangible change of the ownership of the parcel,
as well as the tangible exchange of the goods themselves.

The value of a service is established through the combination of the
possible results established in the interactions between the service user and
provider. Whether tangible or intangible, in information systems these
interaction results are represented using lexical objects (i.e., data types and
values).

The property that a service provides some value (or benefit) is made
explicit in the definitions of a service as “interaction” and “capability”. The
other definitions also contain this property, but in implicit form. E.g., they
refer to the inputs and outputs of operations, the functionality of some
application, a provided feature, or the behaviour (functionality) that can be
observed.

66 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

Unit of (de)composition
The property that a service forms a unit of (de)composition is inherent to the
service-oriented paradigm, which fosters the development of services by
composing other services. Each of the definitions above supports this
property. Business processes and supporting applications are composed
from or decomposed into services, which define smaller business process or
application pieces that may be reused when chosen properly. From a
user/provider perspective, such a (de)composition has the form of a set of
interacting services, where each service may act as a user, a provider or
both. From an integrated perspective, a (de)composition is described in
terms of dependencies between services, e.g. temporal or causal
relationships.

Based on the identified service properties above we give the following
definition of service concept:

Service is a set of related interactions between two or more systems that establishes some
identifiable effect which has value for the involved systems.

Usually one of the involved systems plays the role of service provider and the
others play the role of service user. Our service definition closely resembles
the ones found in (IBM; Wieringa, 2003; Quartel, 1997). We assume that
the established effects of the systems’ interactions have or create some
identifiable value for the involved systems.

4.3 Structure of the Framework

We structure the concepts of our framework in three axes as depicted in
Figure 4-38. We distinguish four aspects (i.e., communication, behaviour,
information and quality), representing service properties that need to be
modelled. This classification corresponds to aspects found in frameworks
for enterprise architectures like GRAAL (van Eck, 2004) and ArchiMate
(Jonkers, 2004). Further, we distinguish three abstraction levels (effect,
choreography, and orchestration) at which a service can be modelled. The
purpose of the abstraction levels is to enable the specification of different
models of the same service. In this way, different service models can be used for
different purpose (e.g., for service discovery, composition or implementation).
Finally, we distinguish two perspectives (integrated and distributed) which are
used to model the participation of the systems in a service (i.e., service
provider and user) (Quartel, 2004).

 STRUCTURE OF THE FRAMEWORK 67

Aspects

A
b

s
tra

c
tio

n
 le

v
e

ls

P
er

sp
ec

tiv
es

Effect

Communication Information Quality

Integrated

Distributed

Behavior

Choreography

Orchestration

The purpose of our framework is to provide concepts for modelling and reasoning
about services. In Chapter 5, we present an integration method that uses the
framework to provide complete integration solutions – from business
requirements to software implementation. In addition, the method provides
for verifying the correctness of the integration solution.

In the following sections, we present each dimension of the framework.

4.3.1 Service Aspects

We distinguish four service aspects, namely communication, behaviour,
information, and quality.

Communication aspect
The communication aspect is concerned with modelling the systems that
provide or use services, and their interconnection structure. The
interconnection structure comprises (amongst others) the interfaces at which
services are offered.

The entity concept models the existence of a logical or physical system.
Examples of entities are a university, a Customer Relationship Management
(CRM) system, a database management system and a hardware device. We
represent entities graphically as a rectangle with cut-off corners (Figure 4-
39).

CRM system

The concept interaction point models a shared mechanism that two or more
entities may use to interact. An example of an interaction point is a network

Figure 4-38
The dimensions of
COSMO

Figure 4-39
Entity

68 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

connection between two computer systems. We represent interaction point
graphically as a circle that overlaps the systems it connects (cf. Figure 4-40).

 I nteract ion point

According to Webster’s dictionary a system is “a regularly interacting or
interdependent group of items, components or parts, forming a unified whole”. This
definition distinguishes between two system perspectives: an internal
perspective, i.e., the “regularly interacting or interdependent group of items,
components or parts”, and an external one, i.e., the “unified whole”. Figure 4-41
illustrates the internal and external system perspectives.

System ASystem A

P1
P1 System A1

System A1 System A2
System A2

……

System A3
System A3

……

External system perspective Internal system perspective

A

P2
P2

P3
P3

P1
P1 P2

P2

P3
P3

From an external perspective, a system is modelled as a single entity (e.g.,
System A) having one or more interaction points (e.g., P1, P2 and P3), which
represent the interaction mechanisms it shares with its environment. The
environment of a system is defined as the collection of all systems that share
one or more interaction points with that system. From an internal
perspective, a system is modelled as a structure of interconnected system
parts (e.g., Systems A1, System A,, and System A3). In this way, the system can
be decomposed and its internal structure can be defined. In a similar way,
interaction points can be refined into multiple interaction points (Dijkman,
2006).

Behaviour aspect
The behaviour aspect is concerned with the activities that are performed by a
system as well as the relations among these activities.

The behaviour concept models a group of possibly related activities that a
system can perform alone or in cooperation with other systems. Examples
of such activities are retrieving customer data from a database, creating a
purchase order or transferring money from one bank account to another.
We represent behaviour graphically by a rounded rectangle (Figure 4-42).

Figure 4-40
Interaction point

Figure 4-41
Internal and
external system
perspective

 STRUCTURE OF THE FRAMEWORK 69

 Behaviour

The action concept models successful completion of some unit of activity
that is performed by a single system. Examples of actions are “selling a
product”, “sending an e-mail” or “retrieving a database record”. An action
is atomic, i.e., it represents an indivisible unit of activity. This means that an
action either occurs and has some result (i.e., effect) or it does not occur at
all and has no intermediate or partial results. In our approach, we model
what the result of an action is and abstract from how this result has been
established. An action is graphically represented by an ellipse with the
action name placed in the ellipse. The result of an action is defined in a text
box, which is connected to the associated action (cf. Figure 4-43). The
concept result is explained in detail in the Section “Information aspect”.

The causality relation concept models relationships between different
activities. A causality relation defined on action a defines the conditions that
must be satisfied to enable occurrence of that action. We distinguish three
basic causality conditions (cf. Figure 4-44):

 a

ab

ab

(i) start condition

(ii) enabling condition b

(iii) disabling condition b

Figure 4-42
Behaviour

Figure 4-43
Action with a result

Figure 4-44
Causality
conditions

70 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

– (i) start condition – defines that an activity is enabled and can occur
independently of any other activity.

– (ii) enabling condition - defines that the occurrence of an activity depends
on the occurrence of some other activity. For example, in Figure 4-
44(ii), b is an enabling condition of action a, i.e., action a can only occur
after action b has occurred.

– (iii) disabling condition – defines that the occurrence of an activity
depends on the non-occurrence of some other activity. For example, in
Figure 4-44(iii) ¬b is a disabling condition of action a, i.e., action a can
only occur if action b has not occurred before nor simultaneously with
action a.

Basic conditions can be combined into more complex ones using operators
 and , which define that a conjunction and disjunction of conditions must

be satisfied, respectively. For convenience, we also provide shortcuts to
represent and-split and (exclusive) or-split, and , respectively (cf.
Figure 4-45).

Figure 4-45
Representing the
workflow operators

 STRUCTURE OF THE FRAMEWORK 71

For example, the behaviour in Figure 4-46 defines that actions a, b, c and d
that are enabled and may occur independently from each other. Action e is
enabled if and only if both a and b have occurred or c has occurred and d
has not occurred.

a

b

e

c

d

A complex behaviour can be decomposed into smaller and simpler
behaviours. This can be done in two ways – a causality-based decomposition
and a constraint-based decomposition.

The causality-based decomposition assigns causality conditions of some
activity and the activity itself to separate sub-behaviour s (cf. Figure 4-47)

To support causality-based decomposition we introduce two syntactic
constructs, namely behaviour entry and behaviour exit. A behaviour entry
represents a causality condition involving causality conditions from one or
more other behaviours. A behaviour exit represents a causality condition
involving causality conditions only from the behaviour to which the exit

Figure 4-46
Example of
complex behaviour

Figure 4-47
Causality-based
decomposition

72 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

belongs. An exit of one behaviour can be connected to one or more entries
of other behaviours.

Constraint-oriented decomposition decomposes an action into interactions
and assigns interaction contributions to distinct sub-behaviour s.

An interaction concept models a successful completion of some unit of
activity that is performed by multiple systems in cooperation. An
interaction can only occur if all participating systems are willing to
contribute to the interaction.

An interaction either occurs for all participating systems, or does not
occur at all. In case the interaction occurs, all participating systems share
same result of the interaction. In case the interaction does not occur, none
of the participants can use any intermediate or final results of the
interaction. That is, similar to actions, interactions obey the atomicity
property.

An interaction contribution represents the participation of a system in an
interaction, by defining the constraints that this system has on the possible
results of the interaction. An interaction contribution is graphically
represented as ellipse segment and an interaction as line connecting the flat
sides of the involved interaction contributions. Similar to actions, the result
of an interaction is defined in text boxes, connected to the respective
interaction contributions.

Figure 4-48 depicts an example of an interaction between two systems.
The depicted interaction models the activity of selling something, which is
performed by the cooperation of two systems (e.g., buyer and seller). Each
system contributes to the interaction by the interaction contributions Sell
and Buy. Note that an interaction defines the possible results of the
interaction, while abstracting from how these results are established.

When decomposing an action into an interaction, the conjunction of the
causality conditions and result constraints of the interaction contributions
must be the same as the causality condition and result constraints of the
action. An example of constrained-based decomposition is shown in Figure
4-49.

Figure 4-48
Interaction

 STRUCTURE OF THE FRAMEWORK 73

The result of some activity may depend on the results of other activities.
This is modelled by allowing an activity to refer to the results of other
activities. For example, in Figure 4-50 the Shipment established as a result of
the activity Ship contains the same product that has been established as a
result of the activity Select. Analogously, the occurrence of some activity may
depend on the result of some other activities. This is modelled by allowing a
causal relation for some activity to refer to the results of other activities. For
example, in Figure 4-50 the action Ship can only occur if this specific
product is Available. Otherwise, action Notify customer occurs.

Figure 4-49
Constraint-based
decomposition

74 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

Some languages, such as WSDL, do not support the basic interaction
concept, i.e., they only provide support for modelling (the less expressive)
concept of message passing. Therefore, for convenience of system
integrators, we provide a new syntactic construct called operation (Quartel,
2007) defined as composition of three interactions: invoke-accept, reply-return
and fail-catch. Figure 4-51 depicts a shorthand notation for the operation
concept.

useruser

invoke

catch

return reply

accept

fail

operation
call

operation

execution

provideruser

invoke

return

catch

accept

reply

fail

operation concept shorthand operation concept

in terms of interactions

The reply-return part and the fail-catch part are optional, i.e., either one or
both parts can be omitted (e.g., to model a one-way operation).

Information aspect
The information aspect is concerned with modelling the information that is
managed and exchanged by a system. Each information system has a subject
domain. The subject domain comprises the entities (or phenomena) in the real
world that are represented (by the means of lexical entities) in the system.

Figure 4-50
References to
results in previous
actions

Figure 4-51
The operation
concept

 STRUCTURE OF THE FRAMEWORK 75

As discussed in Chapter 2, in order to communicate we abstract real-world
entities to concepts, and represent these concepts by the means of a language.
We call such a representation subject domain model. All messages that leave a
system are constructed in terms of the subject domain model of that
system, and all messages that enter the system are interpreted in terms of
the subject domain model (cf. Figure 4-52).

ComputerSystem CPU

hasCPU
name: String

Subject domain
Entities (or phenomena)

in the real world that are
identifiable by the system

Subject domain model
Representation of the
subject domain concepts by

the means of a language

Subject domain state

Concrete facts about the
subject domain entities and
their relations in terms of

the subject domain model

Subject domain concepts
Abstractions of subject domain

entities with similar
characteristics as well as

relationships among them

has

Computer
System CPU

frequencyGHz: Number

CS1:ComputerSystem cpu3GHz:CPU

hasCPU
name=“GamePC” frequencyGHz=3

Our conceptual framework does not prescribe a particular language to
model the entities (or phenomena) in the subject domain of a system. For
illustrative purpose, in this thesis, we use OWL. OWL has been presented
in Section 3.3.2. In this section, we recapitulate its main concepts and
illustrate how OWL can be used with our conceptual framework.

An individual models the existence of a discrete identifiable part of the
subject domain of the system. Examples are a concrete person, company or
computer system. Individuals represent discrete parts of the world. This means
that we can count them and define the minimum (or maximum) number of
individuals (of a certain type) that may exist in the subject domain of a
system. Individuals are identifiable. This means that counting the individuals
in the subject domain does not depend on their state. For example,

Figure 4-52
Subject Domain,
Subject Domain
Concepts, Subject
Domain Model and
Subject Domain
State

76 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

withdrawing money from a bank account changes the state of that bank
account, but does not change the number of the bank accounts in the bank
system.

We use owl:Class to represent an abstract type of entities (or phenomena)
that share some properties, i.e., an owl:Class represents a subject domain
concept. When an individual represents an entity that has a type
represented by an owl:Class we say that the individual is an instance of that
class. All instances of an owl:Class class share some properties. For example,
persons have name and age, companies have employees and computer systems
have CPU, HDD, memory and display. Some of the properties have data values
(e.g., age has value positive integer). We model such properties by the
means of owl:DatatypePropery. Likewise, some properties have as value an
individual (e.g., an employee of a company is a person). We model such
properties by means of owl:ObjectPropery.

To make a property mandatory (i.e., at least one value), to allow only a
specific number of values for that property, or to insist that a property must
not have any values, we use cardinality constraints. OWL provides means for
defining three types of cardinality constrains. owl:maxCardinality N defines a
class of all individuals that have at most N (semantically distinct) values
(individuals or data values) of a certain property. owl:minCardinality N defines
a class of all individuals that have at least N (semantically distinct) values
(individuals or data values) of a certain property. Finally, owl:cardinality N
defines a class of all individuals that have exactly N (semantically distinct)
values (individuals or data values) of a certain property.

OWL does not provide a graphical notation. However, tools exist like
Protégé (Protégé) and Swoop (Swoop) that provide means for building OWL
ontologies. Nevertheless, in this thesis we illustrate simple information
models by means of UML class diagrams as shown in Figure 4-53.

 Person

name: String

age: Number

Father

owl:Class

owl:ObjectProperty rdfs:subClassOf

owl:DatatypeProperty

Marry: Person

name = Marry
age = 10

individual

h
a
s
F

a
th

e
r

John: Father

name = John
age = 40

individual

h
a
s
F

a
th

e
r

n..m
owl:minCardinality n

owl:maxCardinality m

The result of an activity is represented in terms of the subject domain
models of the systems that participate in this activity.

Figure 4-54 depicts a simplified version of the subject domain model of
an online computer shop.

Figure 4-53
Using UML class
and object
diagrams to
represent simple
OWL models

 STRUCTURE OF THE FRAMEWORK 77

shipTo

hasCPU

paymentBy

1

1..*

1

price: Number

hasFrequencyGHz: Number hasSizeGB: Number

hasSizeGB: Number

hasResolution: Enumeration

1..*

1

street: String
city: String
country: String

ComputerSystem

CPU HDD

Memory

Display

Notebook Desktop

PurchaseOrder

Payment

CreditCard BankTransfer

Address

hasHDD
1..* 1..*

hasMemory

hasDisplay

article

The model defines class PurchaseOrder. Its instances have properties article (of
type ComputerSystem), paymentBy (of type Payment) and shipTo (of type Address).
Instances of class ComputerSystem have properties price (of type Number),
hasCPU (of type CPU), hasHDD (of type HDD), hasMemory (of type Memory)
and hasDisplay (of type Display). Likewise, instances of class Address have
properties street, city and country (all of type String). Instances of class CPU
have property hasFrequency (of type Number), instances of class HDD have
property hasSizeGB (of type Number), instances of class Memory have property
hasSizeGB (of type Number) and instances of class Display have property
hasResolution (of type Enumeration). In addition, our model defines two
different types of Payment, namely by BankTransfer (representing a direct
money transfer) and CreditCard (representing a payment by a credit card).

Each activity has a result. This result is defined using the subject domain
model of the system. When an activity occurs, its result is bound to a value
(e.g., an instance of a class or a data value).

In addition, a so-called result constraint can be defined on the result of an
activity. This constraint corresponds to a set of predicates that state what
properties of the result have to be satisfied by the result value. For example,
the interaction contribution buy in Figure 4-55 has a result of type
PurchaseOrder and a result constraint that further specialises possible values
of that result. The result constraint defines that the purchase order can only
have articles of type Notebook with price at most 1000 euro. Such a result
constraint can also be seen as the desired effect that a service user wants to
achieve when using a service.

Likewise, the interaction contribution sell in Figure 4-55 has a result of
type PurchaseOrder and a result constraint that further specialises the possible
values of that result. The result constraint defines that the purchase order
can have articles of type ComputerSystem and these articles can be shipped to

Figure 4-54
The Information
model of the online
computer shop

78 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

any city in the Netherlands. Such a result constraint can be seen as the effect
that a service provider is capable to achieve.

The user goal and the provider capabilities are discussed latter in Sections
4.3.2 and 4.3.3.

Quality aspect
The quality aspect is concerned with modelling non-functional characteristics of
services, which often play an important role in the selection of services.
Examples of quality aspects are the “value” that a service has for a user, the
“cost” associated with a service and the “response time” of a service. The
non-functional properties are outside the scope of this thesis.

The communication, behaviour, information and quality aspects represent
partially overlapping, i.e., non-orthogonal views on a service. They overlap,
because it is generally impossible to specify one aspect without referring to
the other ones. For example, to specify certain quality characteristics one
must refer to the behaviour, and in order to describe the behaviour, it is
necessary to refer to the subject domain model of the system.

4.3.2 Abstraction Levels

As said earlier, we distinguish the three generic abstraction levels at which a
service can be modelled, respectively effect, choreography and orchestration
level.

Service effect level
At this abstraction level, a service is modelled as single interaction between
two or more systems. The interaction represents an activity in which the
involved systems achieve some effect in cooperation. At this abstraction
level, we are only interested in what effect (i.e., result) can be achieved and
not in how it is achieved.

Figure 4-55
The effect model of
the online computer
shop

 STRUCTURE OF THE FRAMEWORK 79

Each system may have different expectations on the result of the
interaction, and therefore imposes different constraints on that result. As said
earlier, this is modelled by defining the interaction as composition of two (or
more) interaction contributions, each representing the participation of the
respective system in the interaction.

Figure 4-56 models the example of a computer e-shop service as single
interaction between a customer and a retailer. Interaction contributions buy
and sell represent the participation of the customer and retailer in this
interaction. The associated text boxes define the constraints they each have
on the interaction result. In this case, both the customer and retailer want
to establish a purchase order as result of the interaction. The customer
wants to order a notebook with a CPU with frequency of at least 2GHz, a
hard drive with a size of at least 200GB, a memory with a size of at least
1GB and a display with resolution at least 1024x768, whereas the retailer is
willing to sell any computer system. Furthermore, the customer wants to
pay with his credit card whereas the retailer accepts two payment options,
namely, by credit card or bank transfer. Finally, the customer wants the
notebook to be delivered to city Enschede (in the Netherlands) whereas the
retailer delivers to any city in the Netherlands.

The interaction can only occur if the constraints of both the customer and
the retailer can be satisfied. In case multiple results may satisfy the
constraints (e.g., multiple notebooks may have required properties), only a
single result is established. Since the interaction concept abstracts from how
to select the result, the latter is assumed to be selected non-
deterministically.

Figure 4-56
Service effect

80 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

Choreography level
At this level, a service is modelled as multiple related interactions between two
or more systems. The resulting service model defines the external behaviour
that is requested by the service user and that is offered by the service
provider. This model can be used, for example, to specify or analyse
interoperability between the service user and provider.

In general, a service cannot be implemented as single interaction and we
have to refine the abstract interaction into a structure of multiple smaller
more concrete interactions. Figure 4-57 depicts a possible refinement of
the example from Figure 4-56 into a number of interactions.

Interaction select represents the mechanism used by the customer to select
an article from the product catalogue of the retailer (e.g., a notebook).
Interaction checkout represents the mechanism used by the user to provide
his address and delivery preferences. Interaction pay represents the
mechanism used by the user to pay for the selected article. Interaction ship
represents the mechanism used by the retailer to notify the customer that
an article has been shipped. Interaction cancel represents the mechanism
used by the user to cancel an order. Finally, interaction refund represents the
mechanism used by the retailer to refund the customer in case the payment
has been made and the order has been cancelled. For the sake of simplicity,
we have omitted results and result constraints of the interaction
contributions of the involved systems.

In addition to interaction contributions, at this level of abstraction the
customer and retailer may specify the relations among these interaction
contributions. In the example from Figure 4-57, the customer has specified
the following relations

– select does not depend on any other activities and can occur from the

beginning of the behaviour

Figure 4-57
Service as a
choreography

 STRUCTURE OF THE FRAMEWORK 81

– checkout can only occur if select has already occurred

– cancel can only occur if checkout has already occurred

– pay can only occur if checkout has already occurred and cancel has not yet

occurred

– ship can only occur if checkout has already occurred and cancel has not yet
occurred

– refund can only occur if both pay and cancel have already occurred

Likewise, the retailer has specified the following relations

– select does not depend on any other activities and can occur from the
beginning of the behaviour

– checkout can only occur if select has already occurred

– cancel can only occur if checkout has already occurred and ship has not yet
occurred

– pay can only occur if checkout has already occurred and cancel has not yet
occurred

– ship can only occur if pay has already occurred and cancel has not yet
occurred

– refund can only occur if both pay and cancel have already occurred

A choreography can be structured into multiple smaller, related
choreographies representing groupings of interactions. Typically, such
structuring is based on grouping interactions that have strong functional
relationships, and separating interactions that have weaker relationships.
The aim of this structuring is to increase clarity and comprehensibility of
the service definition, to facilitate its mapping onto an implementation, and
to separate required from optional functionality. For example, identified
groupings may represent suitable units of functionality for searching and
selecting existing services or for defining new services that implement part
of the required service functionality.

Figure 4-58 depicts an example of a structured choreography. In this
example, each interaction from the example in Figure 4-57 is split into two

82 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

sub-interactions, a request (Req) followed by a response (Rsp), such that the
result of the response conforms to the result of the original interaction. For
example, payReq represents a request to perform a payment, and payRsp
represents the response that informs about the outcome of the payment
activity. This type of refinement is needed if one wants to implement the
payment interaction using one or more other services. In addition,
interaction select is further refined by introducing a preparatory interaction
catalog in which the user can request for a list of articles, followed by an
interaction pick in which a particular article is selected. Finally, interaction
checkout is refined to two interactions (login and register), which allow the
customer to login using an existing account or register a new account,
respectively.

Sub-choreographies are defined as separate behaviours. To represent
causal dependencies between these behaviours, we use behaviour entries and
behaviour exits. For brevity, in the example from Figure 4-58 we only present
the retailer’s choreography with omitted cancel and refund interactions.

We use the term interface to provide a perspective on a choreography.
Opposed to current practice, we believe that interfaces should also define
the relationships between interaction contributions (e.g., operations).
Furthermore, a service definition comprising multiple interfaces should also
define the relationships between (the interaction contributions from) these
interfaces.

Orchestration level
At this level, the service that is offered by some service provider is modelled
as composition of other services. Typically, the resulting service model defines
the service provider as coordinator (also called orchestrator), which interacts
with other service providers and combines the values obtained in these

Figure 4-58
Structured
choreography

 STRUCTURE OF THE FRAMEWORK 83

interactions to offer some added value to the user. This model can be used,
for example, to specify or analyse a possible implementation of the offered
service.

Besides the refinement of interactions, sometimes it becomes necessary
to refine a service into a composition of smaller services in order to obtain
an implementation of the service. Figure 4-59 depicts an example of the
refinement of the offered e-shop choreography from Figure 4-58 into a
number of services: Catalogue service that allows one to browse and select
articles, Customer profiles service that maintains the customers’ registrations,
Payment service that handles payments, a Shipping service that is used to
package and deliver articles, and Coordination service that coordinates the use
of aforementioned services to provide the e-shop service.

The Catalogue, Customer profiles, Payment and Shipping services are offered
services. The Coordination service refines the offered e-shop choreography by
inserting services that are requested between the procurement interaction
contributions. These requested services are used to implement parts of the
e-shop choreography. In principle, the Coordination service might implement
part of the e-shop functionality as well, e.g., order handling. However, in
many cases it is considered good practice to provide such functionality by
separate services, making the coordination service primarily responsible for
coordinating and combining the results of the requested services. This
coordination pattern helps to maintain loose coupling between the offered
services.

As said, the definition of service as a composition of smaller services,
including a coordination service, is called an orchestration. In the example
above, the orchestration is defined as composition of requested and offered
services. Observe that the e-shop interactions have been refined into
request and response interactions to model their implementation using
other services. By contrast, the interactions of the sub-services do not need
this refinement (yet), since the orchestration abstracts from their
implementation.

Behaviours in an orchestration can be related using constraint-oriented
composition or causality-oriented composition. Similar to constraint- and
causality-oriented decomposition, we define constraint- and causality-oriented
composition.

Figure 4-59
Service as an
orchestration

84 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

Constraint-oriented composition is used to define two or more interacting
behaviours. This composition technique is based on the interaction
concept, which decomposes an action into an interaction consisting of two
or more interaction contributions. These contributions define the
participation of different behaviours in the interaction, which may impose
different constraints on the possible interaction results. This allows for an
abstract style of service specification and design, i.e., in terms of
constraints, thereby abstracting from how these constraints are satisfied by
some implementation.

Causality-oriented composition is used to define causal dependencies
between behaviours. This composition technique is based on the
decomposition of a causality relation, such that an activity and its causality
condition can be defined in separate behaviours. For this purpose, entries
and exits are used, which represent causality conditions entering and exiting
a behaviour, respectively. Like a causality relation associates a causality
condition to an activity, an entry point dependency associates a causality
condition to an entry point.

During the development process, a service can be modeled successively
at the abstraction levels presented above, such that the choreography refines
the model of the service as a single interaction, and the orchestration
refines the choreography. Furthermore, these abstraction levels may be
applied recursively, since the composed services in an orchestration may at
first be modeled as a single interaction, and subsequently be refined into
choreographies and orchestrations.

The service models at each abstraction level are related through a so-
called refinement relation. For example, the orchestration in Figure 4-59 is
a refinement of the choreography in Figure 4-57, which is again a
refinement of the single interaction in Figure 4-56.

To assess the conformance between service models at the different
abstraction levels, we use the method presented in (Quartel, 2007). In this
section, we only sketch the main principles of the method. For the detailed
presentation of the method, we refer to (Quartel, 2007; Quartel, 1997).

A service model is considered a refinement of another service model, if
the former model defines additional properties of the service, while
preserving the properties defined in the latter model. The opposite of
refinement is abstraction, which constitutes the process of removing
properties.

The assessment method consists of two steps. The first one determines the
abstraction of the concrete service by abstracting from the service properties
that were added in the refinement step. The second step compares this
abstraction to the original abstract service by checking the equivalence
between both abstract models. The refinement is considered correct if both

 STRUCTURE OF THE FRAMEWORK 85

models are equivalent. Otherwise, the refinement is considered incorrect.
The method is illustrated in Figure 4-60.

To perform the abstraction and comparison step in Figure 4-60 the method
provides formal rules, which define how to abstract from service properties
and how to compare the abstract service with the abstraction of the
concrete service. For a detailed description of the assessment method and
the formal definition of the rules we refer to (Quartel, 1997).

4.3.3 Service Perspectives

We use the term ”system” in its general meaning, representing, for
example, people, organizations, software applications or hardware devices.
A system may be involved in multiple services, and may even act as user of
one service and as provider for another. Therefore, we cannot say that a
system is either service provider or service user. Furthermore, the specific
system that provides some service may not be known at design time or even
at discovery time. For these reasons, we currently do not model the
involved systems explicitly. Instead, we model the role of the system in a
service, where we distinguish two roles: the user role and the provider role.

The user and provider roles define a service from a distributed
perspective. The user role defines the participation of the user in the service,
representing the expectations the user has on the effect of the service. This
partial definition of the service is also called the requested service. The provider
role defines the participation of the provider, representing the expectations
it has on the user. This partial definition of the service is also called the
offered service. Finally, the integrated service perspective defines the joint
(integrated) behavior of the user and provider, abstracting from the
particular choice on how the user and provider participate and cooperate in
performing the interactions. The action concept is used to represent a joint
activity (integrated interaction) by abstracting from the distinction between
the user and provider roles.

Figure 4-61 summarises the different abstraction levels and perspectives.

Figure 4-60
Assessment
method

86 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

Service

Distributed

a

C
h

o
re

o
g

ra
p

h
y

E
ff

e
c

t
O

rc
h

e
s
tr

a
ti

o
n

Integrated

A
b

s
tr

a
c
ti

o
n

 L
e

v
e
ls

Perspectives

Effect

b c

Provider

a b c

d e f g

Provider

User

Provider

d

User

Provider

a b c

a b c

e

Provider

f g

d e f g

a b c

Desired effect

Intended effect

Provider

User

4.4 Comparison

There are some ongoing related efforts in creating a conceptual framework
for service modeling. The most prominent examples are the W3C’s Web
Services Architecture (WSA28), Colombo (Curbera, 2005), OWL-S
(Martin, 2004), Web Services Modeling Ontology (WSMO (Bruijn, 2005)),
OASIS’s SOA-RM29 (Estefan, 2008) and SoaML30.

In this section, we compare COSMO with two of these frameworks –
one from academia (WSMO) and one from industry (SOA-RM). For that
purpose, we use the feature comparison method (Siau and Rossi, 1998), i.e. we
define a number of evaluation criteria and analyse each conceptual framework
using these criteria. Note, that this comparison technique is subjective.
First, defining evaluation criteria is a very subjective task. Second,
interpreting the descriptions of the compared framework is also a subjective
task. The strength of this comparison approach is that it is relatively easy to
perform.

28 http://www.w3.org/TR/ws-arch/
29 http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
30 http://www.omg.org/docs/ad/08-08-04.pdf

Figure 4-61
Service levels and
perspectives

 COMPARISON 87

4.4.1 Evaluation Criteria

To evaluate a conceptual framework for service modeling, we need to
evaluate what aspects of services can be expressed using the framework, and
how easily this can be done. Besides, we need to evaluate how generic the
defined concepts are. For that purpose, we define an evaluation framework
that consists of three dimensions as shown in Figure 4-62. Our framework
is derived from the framework for evaluating business process modeling
languages and tools presented in (Janssen, 1997).

Functionality

Generality

Easy of use

The functionality dimension includes all (technical) capabilities of a service
modeling framework. When evaluating the functionality we consider the
following criteria:

– Expressiveness: Do the concepts enable to model all relevant service

aspects (e.g., structure, information, behavior, and value)?

– Structuring: Does the framework offer structuring techniques (e.g.
composition and decomposition, abstraction and refinement, and
modularity and encapsulation)?

– Formality: Do the concepts have a formal foundation?

– Analyzability: Which types of analysis can be performed on a model?

– Relevance: How appropriate are the modeling concepts in the context of
service modeling?

The “ease of use” dimension includes the following criteria:

– Accessibility: Are the concepts comprehensible?

– Usability: How easily can a service be modeled? Does the framework
offer pre-defined constructs and high-level concepts?

Figure 4-62
Dimensions of the
comparison
framework

88 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

– Adaptability: How easily can the concepts be adapted to individual needs?

– Openness: Can a language or tool based on these concepts be used in
combination with other languages and tools?

Finally, the “generality” dimension includes the following criteria:

– Domain independence: Are the concepts independent from any specific
business domain or application?

– Language independence: Can the concepts be related to existing (service)
modeling languages?

In the following sub-sections, we present the two most closely related
service modeling frameworks and use the presented evaluation criteria to
compare them with COSMO.

4.4.2 The Web Services Modeling Ontology

The Web Service Modeling Ontology (WSMO (Bruijn, 2005)) is a formal
ontology for describing several aspects of Semantic Web Services. It consists
of four main components – Ontologies, Goals, Web Services and Mediators.
Ontologies provide terminology and formal semantics of information that is
used by the other components. A goal is a specification of the objectives of a
service user. A Web service is a specification of the functionality of the service
provider. Mediators are used as connectors between ontologies, goals and
web services.

Both goals and web services are described in terms of used ontologies,
interfaces, desired capabilities, and non-functional properties. A capability specifies
what a service does. It is defined in terms of preconditions (state of the system
before the service execution), assumptions (state of the environment before
the service execution), postconditions (state of the system after the service
execution) and effects (state of the environment after the service execution).
An interface specifies how the functionality of the service can be used. It
defines the choreography and orchestration of a service. The choreography
describes the interactions between the service requestor and the service
provider. The orchestration describes how the service makes use of other
services to achieve its capability.

4.4.3 Reference Model for Service Oriented Architecture

The OASIS SOA-RM (Estefan, 2008) defines service as “a mechanism to
enable access to one or more capabilities, where the access is provided using a

 COMPARISON 89

prescribed interface and is exercised consistent with constraints and policies as specified
by the service description”.

SOA-RM is partitioned into three views:

– Business via Services - focuses on how people conduct their business using

SOA. This view includes Stakeholders and Participants Model, Needs and
Capabilities Model, the Resources Model, and the Social Structure Model.

– Realizing Service Oriented Architecture - focuses on the infrastructural
elements needed to support the construction of SOA-based systems.
This view includes Service Description Model, Service Visibility Model,
Interacting with Services Model, Realization of Policies Model, and Policies and
Contracts Model.

– Owning Service Oriented Architectures - focuses on aspects concerning
owning, managing and controlling a SOA.

Both COSMO and WSMO do not provide explicit concepts to define
models at Business via Services and Owning Service Oriented Architecture views. For
that reason, we skip the detailed presentation of these two views and focus
on the Realizing Service Oriented Architecture view.

A service description contains information about service reachability,
service interface, service functionality and all related policies, contracts and
metrics. Service reachability describes the endpoints of a service and the protocol
to be used for message exchange using a specific endpoint. Service interface
defines the means for interacting with a service. It describes the information
and behavioral model of the service. The information model defines the structure
and the semantics of the messages that can be exchanged with the service.
The behavioral model defines the actions that can be performed by the service
and the correct temporal order of their execution. Service functionality describes
what can be expected when interacting with a service. It is an unambiguous
expression of service functions, technical assumptions and the real world effects of
invoking the function. Policies prescribe the conditions and constraints for
interacting with a service. The differences between technical assumptions and
policies are that whereas technical assumptions are statements of physical facts,
policies are subjective assertions made by the service provider or from higher
authorities. Contracts are agreements among the service providers and service
users. A contract may reconcile inconsistent policies asserted by service
participants or may specify some further details of the interaction. For
example, service level agreements (SLAs) is one of the most commonly used
category of contracts. Policies and contracts are tracked in compliance records.
Metrics provide operational values for these compliance records. They identify

90 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

performance quantities that characterise the speed and quality of realizing
the real world effects by the service or non-performance metrics, such as
whether a license is in place to use the service.

4.4.4 Comparison

In this sub-section, we compare COSMO, WSMO and SOA-RM using the
evaluation criteria defined in Section 4.4.1.

With respect to expressiveness, all frameworks enable the modeling of
relevant service aspects as structure, information and behavior. COSMO uses
causality instead of the data flow to model the relationship between activities
performed by some service. In this way, it provides greater expressiveness
allowing one to model concurrency, independence, and disjunction which
is difficult or impossible using purely flow-based concepts. Besides,
COSMO does not prescribe a particular language for expressing an
information model of a service. In this way, COSMO can be used with all
popular knowledge representation languages such as ERD, UML or OWL,
providing a desired degree of expressiveness. However, neither COSMO
nor WSMO provide explicit concepts to model how people conduct their
business nor to express governance, security and service management
models.

With respect to structuring, COSMO provides better techniques
comparing to WSMO and SOA-RM. First, COSMO allows a behavior
model to be decomposed into sub-behaviors in two different ways: using a
causality-based and constraint-based decomposition. Second, providing the
behavior concept, COSMO allows for modularity and encapsulation. Finally,
COSMO enables the same service to be modeled at different levels of
abstraction and from different perspectives. Service models at different
abstraction levels can be used for different purposes such as service discovery
and composition. The integrated service perspective is useful to reason about the
service as whole, e.g., by abstracting from the participation of each system in
the service.

With respect to formality, both WSMO and COSMO provide concepts
having a formal foundation. WSMO uses F-Logic to provide formal
semantics for its information modeling concepts and Abstract State Machines
(ASM) for the behavior modeling concepts. COSMO has formally defined
behavior modeling concept (defined in (Quartel, 1997)). It does not
prescribe any particular knowledge representation language, i.e., the
information models can be specified using formal knowledge representation
techniques such as OWL or F-Logic.

With respect to analyzability, both COSMO and WSMO enable formal
reasoning about service models, i.e., they support reasoning task such as
consistency checking, detection of deadlocks and reachability analysis. In

 COMPARISON 91

Chapter 5, we define a method that uses the analyzability of COSMO
models to check formally whether a number of systems are interoperable.

With respect to relevance, all frameworks provide appropriate modeling
concepts. SOA-RM is stronger in modeling the social aspects (such as
service stakeholders and participants) as well as service management and
governance aspects.

With respect to accessibility, all frameworks provide concepts that are
comprehensible. COSMO has fewer number of concepts than the other
frameworks, but at the same time provides comparable expressive power.
WSMO provides an explicit concept for mediator, for example. In fact, this
is a merely syntactic construct. In COSMO, an interaction can be used to
represent a WSMO goal-to-goal mediator. Goal-to-web-service and web service-to-
web service mediators correspond to refinement steps in COSMO, where one
interaction is decomposed into a choreography. The advantage of COSMO
is that one can reason about the semantics of mediators, e.g., the matching
of goals in terms of interaction constraints, and the relationship between
goals and web-services in terms of conformance relations.

With respect to usability, COSMO has a graphical notation (adopted
from ISDL) which allows a service model to be expressed in a graphical
way. This is particularly useful when the structure of a service model needs
to be made explicit. In addition, COSMO has a formal metamodel. This
allows existing tools, such as Graphical Modeling Framework (GMF)31 or
openArchitectureWare (OWA)32, to be used to develop graphical or textual
domain specific languages (DSLs), which in turn, significantly increases the
usability and productivity of the service models. Finally, COSMO provides
predefined, higher-level concepts such as service operation that additionally
increase the usability.

With respect to adaptability, COSMO is stronger than WSMO and SOA-
RM. COSMO concepts can be easily adapted to individual needs. For
example, in the A-Muse project (A-Muse, 2008) COSMO concepts have
been adapted to create a DSL for modeling context-aware, mobile services.
For that purpose, COSMO concepts have been adapted to support
modeling of context events, user input and output.

With respect to openness, both COSMO and SOA-RM allow their
concepts to be mapped to existing service modeling languages such as
WSDL and WS-BPEL. In Chapter 7 and 8, we show how COSMO can be
used in combination with WS-BPEL and Java. WSMO also claims openness,
however, so far it has been used only in the context of Web Services.

Finally, all frameworks provide comparable domain and language
independence. Note, that WSMO prescribes F-Logic to express service

31 http://www.eclipse.org/modeling/gmf/
32 http://www.openarchitectureware.org/

92 CHAPTER 4 CONCEPTUAL FRAMEWORK FOR SERVICE MODELLING

models. In some cases, the formalization of service models may significantly
increase their complexity and unnecessarily decrease the usability. In
addition, WSMO assumes Web Services as implementation technology,
whereas COSMO and SOA-RM models can be implemented using any
programming language.

Figure 4-63 summarises the comparison of COSMO, WSMO and SOA-
RM.

Easе of use

++-+•Accessibility

+++-•Usability

++--•Adaptability

+++++•Openness

+++++•Language independence

+++++•Domain independence

Generality

++++++•Relevance

++-++•Analyzability

++-++•Formality

+++-•Structuring

++++•Expressiveness

Functionality

COSMOSOA-RMWSMO

Easе of use

++-+•Accessibility

+++-•Usability

++--•Adaptability

+++++•Openness

+++++•Language independence

+++++•Domain independence

Generality

++++++•Relevance

++-++•Analyzability

++-++•Formality

+++-•Structuring

++++•Expressiveness

Functionality

COSMOSOA-RMWSMO

- bad, + good, + + very good

We can conclude from the table that all frameworks provide comparable
functionality, ease of use and generality. COSMO is stronger structuring,
usability and adaptability.

4.5 Conclusions

Although service-orientation is widely recognised as a promising
approach to deal with the complexity of IT systems, so far, its central
concept “service” has not been used to its full potential due to the lack of a
comprehensive conceptual framework.

Based on an analysis of commonly found interpretations of the service
concept, we identified general service properties. Using a simple example, we
introduced and illustrated basic concepts that support the identified
properties and underlie the service concept. Moreover, these basic concepts
helped us to explain, relate and in fact formalise important notions, such as
service effect, choreography and orchestration.

Figure 4-63
Summary of the
comparison

 CONCLUSIONS 93

The key properties of our framework are:

– the framework is constructed from a small number of basic concepts, which
are based on practice, but at the same time provide a powerful conceptual
basis for service modeling;

– the framework is language-independent, but at the same time the basic
concepts of the framework can be related to many of the popular
languages used in the context of service design, analysis and
implementation;

– the framework is domain-independent, i.e., no assumption is made with
respect to the type of systems for which services should be modeled. We
expect that our framework will have a wide spectrum of application, for
example, it can be used to model services at a business, application and
component level, thus beyond the usual domain of web services;

– the framework is particularly strong in the modeling of services at
different abstraction levels. We identified three generic abstraction levels,
namely, service effect, choreography and orchestration.

By defining the framework, we answered Research question Q3: “How to
model the semantics of a service? What aspects of services should be
modelled and how? At which abstraction levels? How can we use these
concepts to reason about a service?”. In the following chapter, we propose
a method for service integration that uses the conceptual framework
presented in this chapter. The framework and the integration method are
validated in Part IV of this thesis.

Chapter 5

5. Model-Driven Service Integration

In this chapter, we present a method for the semantic integration of service-
oriented applications. The chapter is organised as follows: first, we identify
necessary conditions for semantic and pragmatic interoperability of service-
oriented applications. Next, we propose a model-driven integration method that
uses semantically enriched service descriptions to deliver end-to-end integration
solutions from business requirements to software implementation. Finally,
we present a method to verify formally whether the proposed integration
solution meets the identified conditions for interoperability.

5.1 Necessary Conditions for Interoperability

In Chapter 3, we have identified three levels of interoperability, namely
syntactic, semantic and pragmatic interoperability. We have further discussed
what interoperability problems can occur at each of these levels. In this
section, we continue this discussion and define necessary conditions for
interoperability. The identified necessary conditions are used later to check
whether a number of system to be integrated are interoperate.

5.1.1 Syntactic Interoperability

Syntactic interoperability is concerned with ensuring that systems, involved in
some interaction use the same vocabulary and grammar to construct and parse
the messages they exchange.

Web Service standards address syntactic interoperability by providing
XML-based standards such as SOAP, WSDL and WS-BPEL. XML is a
platform-independent mark-up language capable of describing both data
and data structure. This way, different systems can parse each other’s
messages, check whether these messages are well-formed, and validate
whether the messages adhere to a specific syntactic schema. In this thesis

96 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

we adopt XML-based standards to deal with the syntactic interoperability
problem and focus only on semantic and pragmatic interoperability.

5.1.2 Semantic Interoperability

Semantic interoperability is concerned with ensuring that a symbol has the
same meaning, (i.e., refers to the same thing in the real world) for all
systems that use this symbol in their languages.

Systems exchange messages that consist of property values of entities (or
phenomena) in their shared subject domain. Semantic interoperability problems
arise when different systems use different symbols to refer to same things in the
real world or use the same symbol to refer to different things in the real world.
Such systems can interoperate if the data in the exchanged messages is
translated in terms of the respective subject domain models. The translation
is captured by source-to-target mappings that specify what data from the sent
message should appear in the received message and how.

Let S be the information model of a system that sends a message. Let T
be the information model of a system that receives a message. Let M be a
set of source-to-target mappings defined as predicates on the elements of S
and T. Then: if x is a message sent by the first system and y is the respective
message received by the second system, the following condition has to be
met:

Necessary condition 1: A necessary condition for semantic interoperability of two
systems is that the sent message x is a valid instance of S, the received message y is a
valid instance of T and the sent and the received messages together satisfy the
predicates defined by the source-to-target mapping M.

Sender

a

Middleware

b

Receiver

a b

x x y= a.x y

Sender

a

Receiver

a

x yy= x

Message passing Message passing – shorthand notation

The systems will be interoperable per-se if no message translation is needed
to produce the received message from the sent message, i.e., the
middleware is only responsible for transporting the message (cf. Figure 5-
64). However, in many cases the sent message has to be translated such that
the systems can interoperate. In some cases, a message even has to be split
into multiple messages or be combined with other messages to form a new
message understandable by the receiving system. The translation functions
are performed by an intelligent middleware, called Mediator that is not only

Figure 5-64
Message passing

 NECESSARY CONDITIONS FOR INTEROPERABILITY 97

responsible for transporting messages but also for translating them, i.e.,
source-to-target mappings can be satisfied.

Sender

a

Mediator

b

Receiver

a b

x x M(a.x, y) y

Sender

a

Receiver

a

x yM(x, y)

Message t ransform at ion Message t ransform at ion

(shorthand notat ion)

For example, suppose two systems use different unit systems to construct
and interpret the messages they exchange, e.g., the first system measures
and reports the speed of a vehicle in miles per hour. The second system
takes the speed measurement assuming kilometers per hour and will issue a
warning if the speed exceeds the maximum allowed speed of the current
road segment. Let the message sent by the first system be

source:CurrentSpeed=55

and the maximum allowed speed for the current road be 80 km/h. Without
any translation of the message, the second system will not issue a warning
because the value 55 is less than 80. To compensate this problem the
mediator must translate the message in terms of the subject domain model
of the second system, e.g. from miles per hour to kilometres per hour. The
translation is captured in the following source-to-target mapping

∀x source:CurrentSpeed(x) ∧ ∀y target:CurrentSpeed(y) → y = x *1.609344

This way, when the first system reports a speed measurement of 55 miles
per hour the second system will receive the following message

target:CurrentSpeed=88.51392

Since the value 88.51392 is bigger than 80 (the maximum allowed speed
for the current road segment) the second system will issue a warning.

In Section 5.2, we present a method for building mediators.

5.1.3 Pragmatic Interoperability

Pragmatic interoperability is concerned with ensuring that message sender and
receiver share the same expectation about the effect of the exchanged
messages.

Figure 5-65
Message
transformation

98 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

When a system receives a message it changes its state, sends a message
back to the environment, or both (Wieringa, 2003). In most cases,
messages sent to the system change or request the system state, and
messages sent from the system change or request the state of the
environment. That is, the messages are always sent with some intention for
achieving some desired effect. In most cases, the effect is realised not only
by a single message, but by a number of messages sent in some order.
Pragmatic interoperability problems arise when the intended effect differs
from the actual one.

Our conceptual framework allows system designers to specify the
possible results of a system interaction by defining constraints on the result
of the interaction.

Necessary condition 2: A necessary condition for pragmatic interoperability of an
interaction is that at least one result that satisfies the constraints of all contributing
systems can be established.

To illustrate this condition we use the example of the online computer shop
presented in Chapter 4. The information model of the system is presented
in Figure 5-66.

shipTo

hasCPU

paymentBy

11..*

1

price: Number

hasFrequencyGHz: Number hasSizeGB: Number

hasSizeGB: Number

hasResolution: Enumeration

1..*

1

street: String
city: String
country: String

ComputerSystem

CPU HDD

Memory

Display

Notebook Desktop

PurchaseOrder

Payment

CreditCard BankTransfer

Address

hasHDD
1..* 1..*

hasMemory

hasDisplay

article

The interaction contributions buy and sell (cf. Figure 5-67) represent the
participation of the customer and retailer in this interaction. The
interaction contribution buy defines a class of acceptable purchase orders
for the consumer, and the interaction contribution sell defines a class of
acceptable purchase orders for the retailer. In this example, the systems can
interoperate because they can establish results that are instances of both
classes at the same time.

Figure 5-66
The information
model of the online
computer shop
system

 NECESSARY CONDITIONS FOR INTEROPERABILITY 99

In the example above the customer’s and retailer’s systems can interoperate
because the interaction buy-sell can establish a result (cf. Figure 5-68).

paymentBy

cc:CreditCard

nb:Notebook po:PurchaseOrder
article

shipTo

city = Enschede

addr:Address

hasSizeGB = 3

mem:Memory

dis:Display

hasMemory

hasDisplay
hasResolution = 1024x768

hasCPU

hasFrequencyGHz = 3.2 hasSizeGB = 320

cpu:CPU hdd:HDD

hasHDD

Very often, a service is not a single interaction but a set of related
interactions between the system and its environment.

Necessary condition 3: A necessary condition for pragmatic interoperability of a
service is the existence of at least one execution scenario that can establish all required
results.

Formulating this condition, we use the same online computer shop example
(cf. Figure 5-69)

Figure 5-67
Example of
necessary condition
2: possible results
of the interaction
buy-sell

Figure 5-68
Example of a
possible result of
the interaction buy-
sell

100 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

To recapitulate, in this the example, the Customer has specified the following
relations among its interaction contributions:

– select does not depend on any other activities and can occur from the

beginning of the behavior

– checkout can only occur if select has already occurred

– cancel can occur only if checkout has already occurred

– pay can only occur if checkout has already occurred and cancel has not yet
occurred

– ship can occur only if checkout has already occurred and cancel has not yet
occurred

– refund can occur only if both pay and cancel have already occurred

Likewise, the Retailer has specified the following relations among its
interaction contribution:

– select does not depend on any other activities and can occur from the

beginning of the behavior

– checkout can only occur if select has already occurred

– cancel can occur only if checkout has already occurred and ship has not yet
occurred

– pay can only occur if checkout has already occurred and cancel has not yet
occurred

– ship can occur only if pay has already occurred and cancel has not yet
occurred

Figure 5-69
Example of
Necessary
Condition 3

 INTEGRATION METHOD 101

– refund can occur only if both pay and cancel have already occurred

In this example, the retailer and the customer can interoperate because
there is an execution trace which is acceptable for both parties, for
example, select-checkout-pay-ship.

In Section 5.3, we present a method for verification of service
interoperability.

5.2 Integration Method

We approach the design of a mediator as a composition problem: each service
that is requested by some system has to be composed from one or more
services that are provided by the other systems and, possibly, by the same
system. Figure 5-70 illustrates this for the case of two systems. Mediator M
offers a mediation service that matches requested service S1 of System A by
composing services S3 and S4 offered by System B. The Mediator M should
provide such a mediation service for each service that is requested by Systems
A and B.

System A Mediator M System B

requested service provided service

S1

S2

S3

S4

S5

To support the design, implementation and verification of mediators we
have developed an integration method. Our method uses the COSMO
framework presented in Chapter 4 to model and reason about services. It
further defines a number of steps to build end-to-end integration solutions
and to verify their correctness. In this section we present the steps of the
integration method (cf. Figure 5-71). For the sake of readability, we
consider only two systems, but the same steps apply to the case of multiple
systems.

Figure 5-70
Mediation as
service composition

102 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

PIM PIM

1 1

3

System B
Integrat ion

solut ion

1 Abst ract ing service PSMs to service PIMs

2

4

2 2

Verificat ion of the integrat ion solut ion

Sem ant ic enrichm ent of the service PIMs

System A

4

3

3 Solving integrat ion problem at PIM level

PIM

PSM PSMPSM

5

5 Deriv ing the PSM of the integrat ion solut ion

Steps

In Step 1 of our method, we derive the platform-independent models of
the services being integrated by abstracting all technical details from their
descriptions. Next, in Step 2 we increase the coverage and precision of
these models by adding additional semantic information that cannot be
derived from the service descriptions. In Step 3, we solve the integration
problem at a technology-independent level which enables the more active
participation of the domain experts. In addition, the semantically enriched
service models allow some integration tasks to be fully or partially
automated. Besides, the abstract nature of the integration solution allows its
reuse for different implementation technologies. Next, in Step 4 we
formally verify the correctness of the integration solution using automatic
reasoning. Finally, in Step 5 the platform-independent service model of the
integration solution is transformed to a platform-specific solution by adding
technical details by the IT experts. The steps of the integration method are
presented in detail in following.

5.2.1 Step 1. Abstracting Platform-specific Service Models to
Platform-independent Service Models

In Step 1 (cf. Figure 5-72) of our method, we abstract the service
descriptions of the systems to be integrated from implementation-specific
information.

Figure 5-71
Steps of the
integration method

 INTEGRATION METHOD 103

PIM PIM

1 1

3

2 24

3

PIM

PSM PSMPSM

5

In general, the services of System A and B are described at implementation
(technology) level (e.g., using WSDL). The implementation details may
unnecessarily complicate the design of the mediator, and therefore hinder
the participation of business domain experts who do not (want to) know
how integration requirements are implemented by the means of some
specific technology. In terms of MDA, this means that we transform the
platform-specific service models (service PSMs) of the systems A and B to
their respective platform-independent service models (service PIMs). In
Chapter 6 we make this step more concrete by presenting a transformation
from service descriptions specified in WSDL to COSMO.

5.2.2 Step 2. Semantic Enrichment of the Platform-independent
Service Models

In step 2 (cf. Figure 5-73), the platform-independent service models may
be semantically enriched by adding information that cannot be derived
(automatically) from the platform-specific service models.

PIM PIM

1 1

3

2 24

3

PIM

PSM PSMPSM

5

The purpose of the semantic enrichment step is to make service models
more precise and increase their coverage, which in turn is a necessary
condition to reason about and (semi-) automatically derive the mediation
service.

The semantic enrichment step involves two activities – (i) semantic
enrichment of the service information models and (ii) semantic enrichment of
the behavior models of the systems to be integrated.

Figure 5-72
Step 1. Abstracting
service PSMs to
service PIMs

Figure 5-73
Step 2. Semantic
enrichment of the
service PIMs

104 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

Semantic enrichment of the service information models
A service description (e.g., in case of WSDL) usually defines the service
operations and the data types of the input and output messages of these
operations. In most of the cases, such a service description defines only the
syntax of the messages, but not their semantics. In addition, a service
description usually does not capture the implicit assumptions made about
the subject domain of a system. To allow for the correct definition of the
integration solution and the verification of its correctness, the information
models of the systems to be integrated have to be semantically enriched
using information from alternative sources. Such sources can be service
descriptions in natural language, interviews with business domain experts,
or even inspections of the implementations of the services and the databases
they use.

The semantic enrichment of the service information models is done by
defining new classes, properties and relations. Furthermore, the meaning of
some classes and their properties can be defined by mapping them onto
domain-specific standards such as Universal Data Element Framework (UDEF),
Global Individual Asset Identifier (GIAI), Global Location Number (GLN), Global
Trade Item Number (GTIN) and Serialised Shipping Container Code (SSCC).

The benefit of the semantic enrichment can be fully exploited when
using formal knowledge representation technologies that allow one to
formally model and reason about the semantics of classes and their
properties.

Semantic enrichment of the behavior models
In many cases, a service description does not define the interaction protocol
of the service provider, i.e., the ordering of interactions between the system
and its environment. Therefore, again, to derive the complete behavior of a
system, the system integrator has to use alternative sources of information.

The semantic enrichment of the behavior models is done by defining the
relations among service operations as well as by explicitly defining the
repetitive and conditional steps of service behaviors.

We illustrate the enrichment of the behavior models by a simple
example. Suppose that a service is defined by the means of its operations
and their input and output messages

 INTEGRATION METHOD 105

For the sake of simplicity, we have already abstracted from the technical
details in the service description (data encoding schemata, IP addresses and
transport protocols).

The service allows a customer to create a purchase order by providing
customer information and to receive the id of the newly created order.
Next, the customer may request a number of items and obtain their status
(e.g., available or not available). If an item is available, it will be
automatically added to the purchase order created in the previous step.
Finally, the user may close the order and receive an acknowledgement.

Using the service description above we derive the platform-independent
behavior model of the service (cf. Figure 5-74a). To make the behavior
model of the service more precise we define the possible ordering of service
operations (cf. Figure 5-74b) and explicitly define that the operation
AddItem can be invoked multiple times before the order is closed (cf. Figure
5-74c).

Purchase Order
Management

create

close

Purchase Order
Management

create

close

addItem

Purchase Order
Management

create

close

addItem

a. A service PIM derived
from service description

b. The same service PIM after

adding relations between

service interactions

c. The service PIM after defining
the repetitive behavior

addItem

Example 1
A service
description

Service PurchaseOrderManagementService

 Operation CreateOrder

 InputMessage CustomerInformation

 OutputMessage OrderId

 Operation AddItem

 InputMessage OrderId, Item

 OutputMessage Status (e.g., available or not-available)

 Operation CloseOrder

 InputMessage OrderId

 OutputMessage Acknowledgment

Figure 5-74
Semantic
enrichment of the
behavior models

106 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

5.2.3 Step 3. Solving the Integration Problem at PIM level

In Step 3 (cf. Figure 5-75), we perform the design of the integration
solution in a technology-independent manner, i.e., we define the platform-
independent service model of the mediator.

PIM PIM

1 1

3

2 24

3

PIM

PSM PSMPSM

5

This step can be split into two parts: (i) the definition of the information
model and (ii) the definition of the behavior model of the mediator. The
purpose of the information model is to enable the compensation of the data
mismatches by defining mappings between the elements of the information
models of the systems to be integrated. The purpose of the behavior model
is to enable the compensation of the mismatches in the interaction
protocols by defining mappings between the operations of the requested
and provided services of the systems to be integrated.

Definition of the information model of the mediator
The definition of the information model of the mediator is not different
from that of an information model which consists of the logically related
classes and properties from the information models of the systems to be
integrated. The definition process consists of three steps, namely discovery of
the relations among elements of the information models of the systems to
be integrated, representation of these relations, and their usage.

The discovery step is either manual or (semi) automatic. In most cases,
the relations among corresponding classes and properties of the
information models of the systems to be integrated are discovered by
interviewing business domain experts or interpreting domain standards.
Therefore, it is important to represent the information models and the
mapping relations in such a way that they can be understood and reviewed
by domain experts. In addition to the manual mapping discovery, there are
approaches that use heuristics and machine-learning techniques to discover
similarities among elements of the information models and suggest mapping
relations.

The semantic correspondence between elements of two information
models can be expressed as a function of subsumption. Subsumption
checking is the task of checking whether a concept A has more general

Figure 5-75
Step 3. Solving
integration problem
at PIM level

 INTEGRATION METHOD 107

meaning than a concept B. In other words, subsumption is checking
whether the criteria for being an individual of type B imply the criteria for
being an individual of type A. Concept A is then denoted as subsumer and the
concept B is denoted as subsumee. If B subsumes A and A subsumes B, then
we can conclude that the concepts A and B are equivalent (i.e., they have the
same meaning). In addition, two (or more) concepts can be checked to be
disjoint. This is done by checking whether the logical conjunction of their
membership criteria is subsumed by a concept that cannot have an
individual (i.e., the empty concept).

In our approach, we define a number of mapping relations expressed as
a function of subsumption. To state that a particular concept or property in
one information model has the same meaning as a concept (or property) in
a second information model we define the mapping relation equivalentClass
(equivalentProperty, respectively). To state that a particular concept (or a
property) in one information model has more specific meaning than a
concept (or a property) in the second information model we use the
relation subClassOf (subPropertyOf, respectively). Finally, to state that two
concepts (or properties) have disjoint meanings we use the mapping
relation DisjointWith. In the following we present how the mapping relations
can be used to address the interoperability problems from Chapter 2.

Problem IP1. Different systems use the same symbol to represent concepts
with disjoint meanings.

To address this problem we need to rename the symbol in the information
model of the mediator and map the resulting (renamed) symbols using the
relation disjointWith (cf. Figure 5-76).

Information model of Mediator

Information model of System BInformation model of System A

Name
(of a person)

Name
(of a place)

disjointWith

NameOfPerson NameOfPlace

equivalentClass equivalentClass

Problem IP2. Different systems use the same symbol to represent concepts
with overlapping meanings.

To address this problem we first specialise the concepts from the
information models of both systems into two (or more) disjoint concepts.
Next, we map the symbols of the corresponding specialised concepts using
the equivalentClass relation (cf. Figure 5-77).

Figure 5-76
Mapping symbols
of disjoint concepts

108 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

Information model of Mediator

Information model of System BInformation model of System A

subClassOf

Personal account Checking account

Personal saving

account

Personal checking

account

subClassOf

Personal checking

account

Company checking

account

subClassOf subClassOf

equivalentClasses

disjointWith disjointWith

Note that in some cases it is not necessary to specialise both corresponding
concepts. For example, if we are sure that only the first system sends
messages about “Personal account” then we will only need to specialise that
concept to “Personal checking account”. Instead of using equivalentClasses we
then use the relation subClassOf (cf. Figure 5-77).

Information model of Mediator

Information model of System B

Information model of System A

subClassOf

Personal account

Checking account
Personal saving

account

Personal checking

account

subClassOf

subClassOf

disjointWith

Problem IP3. Different systems use the same symbol to represent concepts
with more general (or more specific) meanings.

The solution of this problem is similar to the one of Problem IP2: we first
specialise the concept from the information model of the first system into
two (or more) disjoint concepts. Next, we map the symbol of the respective
specialised concept to the corresponding symbol of the second system using
equivalentClass relation (cf. Figure 5-79).

Information model of Mediator

Information model of System B

Information model of System A

disjointWith

Address
(in Europe)

Address
(in Netherlands)

Address outside
Netherlands

Address in
Netherlands

subClassOf subClassOf

equivalentClasss

Figure 5-77
Mapping symbols
of overlapping
concepts
(bidirectional)

Figure 5-78
Mapping symbols
of overlapping
concepts
(unidirectional)

Figure 5-79
Mapping symbols
of more
specific/general
concepts
(bidirectional)

 INTEGRATION METHOD 109

Similar to the solution of Problem IP2, if we are sure that only the first
system sends messages about “Address (in Netherlands)” to the second
system, we will simply map the corresponding symbols of the concepts
using the relation subClassOf (cf. Figure 5-80).

Information model of Mediator

Information model of System BInformation model of System A

subClassOf
Address

(in Netherlands)
Address

(in Europe)

Problem IP4. Different systems use different symbols to represent the same
concept.

To address this problem we simply use the mapping relation equivalentClass
(cf. Figure 5-81).

Information model of Mediator

Information model of System BInformation model of System A

equivalentClasss

Customer Client

Problem IP5. Different systems use different symbols to represent concepts
with overlapping meanings.

The solution of this problem is identical as the one of Problem IP2: we first
specialise the concepts from the information models of both systems into
two (or more) disjoint concepts. Next, we map the symbols of the
corresponding specialised concepts using equivalentClass relation (cf. Figure
5-82).

Figure 5-80
Mapping symbols
of more
specific/general
concepts
(unidirectional)

Figure 5-81
Mapping symbols
of equivalent
concepts

110 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

Information model of Mediator

Information model of System A Information model of System B

subClassOf

Employee Customer

Employee

Non-Customer

Employee

Customer

subClassOf

Customer

Employee

Customer

Non-Employee

subClassOf subClassOf

equivalentClasss

disjointWith disjointWith

Likewise, if we are sure that only the first system sends messages about
“Employee” then we will only need to specialise that concept to “Employee
Customer”. Instead of using equivalentClasses we then use the relation
subClassOf (cf. Figure 5-83).

Information model of Mediator

Information model of System A

Information model of System BsubClassOf

Employee

Customer
Employee

Non-Customer

Employee

Customer

subClassOf

subClassOf

disjointWith

Problem IP6. Different systems use the different symbols to represent
concepts with more general (or more specific) meanings.

The solution of this problem is identical as the one of Problem IP3: we first
specialise the concept from the information model of first system into two
(or more) disjoint concepts. Next, we map the symbol of the respective
specialised concept to the corresponding symbol of the second system using
the equivalentClass relation (cf. Figure 5-84).

Information model of Mediator

Information model of System B

Information model of System A

Buyer

subClassOf

Partner
(buyer or seller)

Buyer Seller

subClassOf

disjointWith

equivalentClasss

Figure 5-82
Mapping symbols
of overlapping
concepts
(bidirectional)

Figure 5-83
Mapping symbols
of overlapping
concepts
(unidirectional)

Figure 5-84
Mapping symbols
of more
specific/general
concepts
(bidirectional)

 INTEGRATION METHOD 111

Similar to the solution of Problem IP3, if we are sure that only the first
system sends messages about “Buyer” to the second system, we simply map
the corresponding symbols of the concepts using the relation subClassOf (cf.
Figure 5-85).

Information model of Mediator

Information model of System BInformation model of System A

subClassOf

Buyer
Partner

(buyer or seller)

Problem IP7. Different definition of the same concept (also known as
confounding conflicts).

To solution of this problem is no different than the solution of Problem IP4
- we simply use the mapping relations equivalentClass (cf. Figure 5-86).

Information model of Mediator

Information model of System BInformation model of System A

e.g., Worker

∀worksFor.Company

subClassOf

equivalentClass

Person

subClassOf

e.g., Employee

∀isPaidBy.Company

subClassOf

Person

subClassOf

The information mediation patterns are summarised in Figure 5-87.

Figure 5-85
Mapping symbols
of more
specific/general
concepts
(unidirectional)

Figure 5-86
Different definition
of the same
concept

112 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

A=B

a b

BAA=B

а=b a=b

BA

а b

a=b

≠

BA

a=b

B

a2 a1=b≠

A A1 B=A1 B=A2

b

BA

a2 a1=b1 b2

A2

B

a2 a1=b≠

A

B2A1 B1=A1 B1=

A1 B=A1 B=A2

a

ba

≠ ≠ a2 a1=b1 b2

A2
B2A1 B1=A1 B1=

≠ ≠

Same concept, different signs Different concepts, same sign

Overlapping concepts, different signs

More specific concept, different signs

Overlapping concepts, same sign

More specific concept, same sign

As said in Chapter 2, formal knowledge representation languages provide
means for defining new classes and properties from existing ones. A new
class can be defined as union, intersection or complement of other existing
classes. In addition, a new (specialised) class can be defined by restricting
the values of some property of an existing class. For example, class “Item”
can be specialised to class “Available Item” by restricting the values of the
property “status” to the value “available” (cf. Figure 5-88).

Item

name
status

Item

name
status

∀status.“available” AvailableItem

name
status

AvailableItem

name
status

As discussed earlier, the ability to define new (specialised) classes is crucial
to enable the mapping of concepts with overlapping or more
general/specific meaning.

Similar, formal knowledge representation languages provide means for
defining new properties from existing ones. For example, a new property
“partnerAddress” can be defined as a composition of the properties
“location” and “address”. Later, this property can be mapped to other
property (e.g., “customerAddress”) using the equivalentProperty relation (cf.
Figure 5-89).

Figure 5-87
Summary of the
solutions for the
information
problems

Figure 5-88
Specializing the
class “Item” using
its property “status”

 INTEGRATION METHOD 113

Information model of Mediator

Information model of System BInformation model of System A

PartnerDescription

PhysicalLocation

PhysicalAddress

location

address

p
a
rt

n
e
rA

d
d
re

s
s

=
 a

d
d
re

s
s
 o

lo
c
a

ti
o
n

Customer

Address

equivalentProperty
customerAddress

The use of a formal knowledge representation language allows for automatic
discovery of the equivalentClass, subClassOf and disjointWith relations. This can
be done by merging the information models of the systems to be integrated
and testing each pair of concepts and properties for subsumption. For
example, suppose that we have one information model defining classes
“Business”, “Person” and “SmallBusiness“ as a “Business that employs at
most 3 “Persons”, and a second ontology introducing classes “Company”,
“Employee” and “SME” as a “Company” that has at most 10 employees.

Information model of Mediator

Information model of System BInformation model of System A

Business

SmallBusiness

Person

employs

subClassOf

employs≤3.Person

Company

Employee

employs

SME

employs≤10. Employee

subClassOf

equivalentClass

equivalentClass

subClassOf

«asserted»

«implied»

subClassOf

«implied»

«asserted»

equivalentClass

If we know that all employees are persons and we have already defined that
Business is equivalent to Company, we can deduce that a SmallBusiness is a
SME.

Figure 5-89
Example of
composite property
mapping

Figure 5-90
Example of
composite property
mapping

114 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

Definition of the behavior al model of the Mediator
The behavioral problems can be associated with specific solutions for each
problem. Based on these solutions the aim is to select only the relevant ones
and compose them to form the behavior of the mediator. In our approach,
we consider the partial solutions as simple behaviors and use them to
compose more complex behaviors. The composition is recursively applied
until the composed behavior solves the integration problem.

In Chapter 2, we identified possible behavior problems. In this section, we
define solutions for these problems.

Problem BP1: Unexpected message. System A intends to send two messages, first
M1 and then M2, whereas System B expects only message M2.

To address this problem we define the mediation behavior M presented in
Figure 5-91. Mediator M receives message M1 and ignores it. Next, it
receives message M2 and sends it to System B.

Mediator MSystem A M1
System B

M2

M2

Problem BP2: Insufficient message. System B expects two messages, M1 and M2,
whereas System A intends to send only message M2.

To address this problem we define the mediation behavior M presented in
Figure 5-92. Mediator M receives message M2 from System A. Next, it uses
additional information (either provided by another system or derived from
the execution history) to construct and send message M1 to System B.
Finally, the Mediator sends message M2 to system B. Note, that this mismatch
can only be compensated if Mediator M has all information necessary to
construct message M1.

Mediator MSystem A System B

M1

M1

M2

Problem BP3: Message order. System A intends to send message M1 first and
then M2, whereas System B expects first message M2 and then M1.

Figure 5-91
Unexpected
message problem

Figure 5-92
Insufficient
message problem

 INTEGRATION METHOD 115

To address this problem we define the mediation behavior M presented in
Figure 5-93. Mediator M receives first message M1 and then message M2.
Next, it sends message M2 first and then message M1.

Mediator MSystem A System B

M1

M2

M1

M2

Problem BP4: Unexpected acknowledgement. System A sends message M1 to System
B and continues without expecting an acknowledgement, whereas System B
intends to send message Mack to acknowledge the reception of message M1.

To address this problem we define the mediation behavior M presented in
Figure 5-94. Mediator M receives message M1 from System A, sends it to
System B, and then receives the acknowledgement Mack on behalf of System A.

Mediator MSystem A System B

M1

M1

MAck

Problem BP5: Insufficient acknowledgement. System A sends message M1 and
expects acknowledgement Mack whereas System B does not intend to send
such an acknowledgement.

To address this problem we define the mediation behavior M presented in
Figure 5-95. Mediator M receives message M1, sends it to System B, and then
sends an acknowledgement (Mack) to System A on behalf of System B.

MAck

Mediator MSystem A System B
M1

M1

Problem BP6: Message aggregation. System A sends messages M1 and M2 whereas
System B expects one message M12 that aggregates M1 and M2.

To address this problem we define the mediation behavior M presented in
Figure 5-96. Mediator M receives both messages M1 and M2. Then it uses the

Figure 5-93
Message order
problem

Figure 5-94
Unexpected
acknowledgement
problem

Figure 5-95
Insufficient
acknowledgement
problem

116 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

information from these two messages to construct M12. Finally, the
mediator sends M12 to System B.

Mediator MSystem A System B

M1

M2

M12

Problem BP7: Aggregation of multiple messages of the same type. System A sends
message Mi n times whereas System B expects one single message M that
aggregates all n messages Mi.

To address this problem we define the mediation behavior M presented in
Figure 5-97. Mediator M starts a process of receiving messages Mi until some
condition evaluates to true. Next, it uses the information in the received
messages to construct M and then sends M to System B.

System A System B
Mediator M

MMi

Problem BP8: Message splitting. System B expects two messages M1 and M2
whereas System A intends to send only one message M12 that contains both
M1 and M2.

To address this problem we define the mediation behavior M presented in
Figure 5-98. First, Mediator M receives message M12. Then, it constructs M1
and M2 using the information from M12. Finally, the mediator sends M1 and
M2 in the order expected by System B.

Mediator MSystem A System B

M12

M1

M2

Problem BP9: Splitting to multiple messages of the same type. System B expects n
times message Mi whereas System A intends to send only one message M that
contains all n messages Mi.

Figure 5-96
Message
aggregation

Figure 5-97
Aggregation of
multiple message s
of the same type

Figure 5-98
Message splitting
problem

 INTEGRATION METHOD 117

To address this problem we define the mediation behavior M presented in
Figure 5-99. Mediator M first receives message M. Then it starts a process of
constructing Mi from the information in M and sending Mi to System B. This
process is repeated until some condition evaluates to true.

System A

M

System B

Mi

Mediator M

The behavior mediation patterns are summarised in Figure 5-100.

Unexpected message Insufficient message Message order

Unexpected acknowledgement Message splitting (different types)

Message aggregation (different types) Message aggregation (same type) Message splitting (same types)

Mediator MM1

M2

M2

Mediator M

M1

M1

M2

Mediator M

M1

M2

M1

M2

Insufficient acknowledgement

Mediator M

M1

M1

MAck MAck

Mediator M
M1

M1

Mediator M

M1

M2

M12

Mediator M

M12

M1

M2

Mediator M

МMi

Mediator M

М Mi

The definition of the behavior model of the Mediator requires the definition
of the services (i) provided and (ii) requested by the Mediator and the
composition of these services by relating their operations. This is done by
inspecting the mapping relation in the information model of the Mediator
and defining relations among respective interaction contributions. For
example, suppose that System A sends a message M1 that contains the values
of the properties name and address. Suppose that System B expects two
messages M2 and M3 that contain the elements customerName and
customerAddress respectively (cf. Figure 5-106).

5.2.4 Step 4. Verification of the Integration Solution

This step (cf. Figure 5-101) of our integration method analyses whether the
proposed integration solution really enables interoperability between the
systems to be integrated.

Figure 5-99
Splitting to multiple
messages of the
same type

Figure 5-100
Summary of the
solutions for the
behavior problems

118 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

PIM PIM

1 1

3

2 24

3

PIM

PSM PSMPSM

5

For that reason, we use the necessary conditions identified in Section 5.1.
First, we check whether all defined interactions between the mediator and
the systems to be integrated can establish results. Next, we verify whether
the integrated behavior of the mediator and the systems to be integrated
can be performed. The verification method is omitted here and explained
in detail in Section 5.3.

5.2.5 Step 5. Deriving the PSM of the Integration Solution

In this final step (cf. Figure 5-102), the platform-independent service
model of the mediator is transformed into a platform-specific model in
terms of some implementation technology.

PIM PIM

1 1

3

2 24

3

PIM

PSM PSMPSM

5

In our approach, we do not assume a particular execution platform. For
example, the platform-specific service model of the mediator can be
transformed to a WS-BPEL specification, EJB, or .Net application. In this
section, we only present an abstract architecture of possible execution
platforms (cf. Figure 5-103).

Figure 5-101
Step 4. Verification
of the integration
solution

Figure 5-102
Step 5. Deriving the
PSM of the
integration solution

 INTEGRATION METHOD 119

Mediator

Data Flow Manager

Inbound

message

Outbound
message

Control Flow
Manager

Message
receiver

Message
sender

State manager

Coordinator

Reasoner

Data

Model

Data
transformer

Constraint

checker

The architecture of the Mediator consists of two main components – Control
Flow Manager and Data Flow Manager. The Control Flow Manager is responsible
for sending and receiving messages in a particular order as well as for
querying and updating the state of the Mediator. The Data Flow Manager in
turn, is responsible for managing the state of the Mediator and for
performing the necessary data transformations and constraint checking.

The Control Flow Manager consists of three subcomponents – Message
receiver, Message sender and Coordinator. The Message receiver is responsible for
receiving all inbound messages and the Message sender for sending all
outbound messages. The Coordinator executes the behavior specified in the
behavior al model of the Mediator, i.e., based on the current state it activates
and deactivates the Message receiver and Message sender. When a message is
received, the Coordinator interacts with the Data Flow Manager to update the
state of the Mediator. When a message is to be sent, the Coordinator interacts
with the Data Flow Manager to obtain the data required to construct the
outbound message.

To derive the Control Flow Manager we use the approach described in
(Dirgahayu, 2007). The proposed approach is divided into three steps:
pattern recognition, pattern realization and activity transformation (cf. Figure 5-
104).

Figure 5-103
Abstract
architecture of the
Mediator

120 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

Platform-

independent
service model

TA

activity transformation

TP1

Platform-

specific
service model

Intermediate
Model in CBPL
Intermediate

Model in CBPL
TP2

pattern transformation

To decouple the pattern recognition and pattern realization (and this way
provide support for building reusable transformations), the authors define
Common Behavior al Patterns Language (CBPL). Each CBPL pattern is
represented as sequence, concurrence, selection and iteration (cf. Figure 5-105).
A sequence contains one or more activities to be executed in succession. A
concurrence contains two or more activities that can be executed
independently. An iteration contains an activity to be executed repeatedly as
long as its condition holds. A selection contains one or more cases to be
selected. A case contains an activity to be executed when its condition holds.
The basic CBPL patterns are illustrated in Figure 5-105.

a b

a

a

b

a

b

sequence iteration concurrence selection

condition А

condition B
condition А

The Data Flow Manager consists of two components – State manager and
Reasoner. The State manager is responsible for updating the state of the
Mediator (after receiving a message) and for querying that state (before
sending a message or when checking a constraint). In some cases, data in
the received message may have to be transformed before updating the state.
For that purpose the State manager uses the Data transformer component.
Likewise, in some cases the State manager uses the Data transformer to
construct new messages. The Data transformer is in fact the component that
implements the mapping relations specified in the information model of the
mediator. Similar to Data transformer, the Constraint checker queries the state
of the mediator and provides an answer whether a constraint holds or not.

To take full advantage of the formal specification of the information
model of the Mediator the Data Flow Manager may contain a Reasoner
component. The Reasoner uses the formal knowledge specified in the
information model of the Mediator in conjunction with the facts about the
current state of the Mediator to infer new state information, i.e., it makes all
implicit knowledge about the state more explicit. In addition, the Reasoner can

Figure 5-104
Transforming the
platform-
independent
service model of
the mediator to a
platform-specific
model

Figure 5-105
Sequence,
concurrence,
selection and
iteration

 INTEGRATION METHOD 121

be used by the Data transformer and the Constraint checker as an intelligent
query engine and constraint solver.

A platform-specific service model contains information that is not
present in the platform-independent service model. Examples of such
information are the XML namespaces of the exchanged messages or the
types of the service operation (e.g., in case of WS-BPEL - invoke, receive or
reply). To provide the required platform-specific information we annotate
the elements of the platform-specific service model.

M2 (customerName)

System A System B

M1

M2

M3

M1 (name, address)

M3 (customerAddress)

First, we define a Mediator behavior that matches the receiving of M1 and
sending of M2 and M3. In addition, we add the relation between M1 and M2.

Mediator M

M1

M2

M3

M3 (customerAddress)

M2 (customerName)

System A System B

M1 (name, address)

Suppose that the information model contains the mappings

∀x:∃name(M1, x) ∧ ∀y:∃customerName(M2, y) → y = x

∀x:∃address(M1, x) ∧ ∀y:∃customerAddress(M3, y) → y = x

Analyzing the mappings, we discover that we need information from M1 to
construct M2 and M3. Therefore, we add message-splitting behavior to the
Mediator (cf. Figure 5-108)

Figure 5-106
Example of two
systems to be
integrated

Figure 5-107
Defining a mediator
that matches the
send and received
messages by the
systems to be
integrated

122 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

Mediator M

M1

M1

M2

M3 (customerAddress)

M2 (customerName)

System A System B

M1 (name, address)

In some cases, the information mappings are not sufficient to define the
complete behavior of the Mediator. For example, different messages could
provide the same type of information used to produce another message. In
such cases the designer of the Mediator has to decide which input message to
use. In some other cases, the behavior model of the Mediator can define
custom processing logic. For example, the Mediator could wait for a message
from some system for a certain period of time. If it does not receive such a
message, it has to send a timeout message to another system. Such a custom
processing logic has to be defined manually.

5.3 Method for Formal Verification of System
Interoperability

After defining the information and behavior al model of the Mediator (step
3) we use the identified requirements in Section 5.1 to verify whether the
mediator and the systems to be integrated form an interoperable integrated
system (step 4).

Necessary conditions 1 and 2 can be verified by satisfiability reasoning.
Satisfiability reasoning is a special case of subsumption reasoning. In this case
the subsumer is the empty class (i.e., a class that cannot have any instances).
If a concept A is subsumed by the empty class, we will say that the class A is
unsatisfiable. This means that no individual can be of type A.

5.3.1 Verifying Condition 1

To verify the Condition 1 we check the consistency of the information model
of the mediator. We define a model to be consistent if all classes and
mappings in that model are satisfiable. To illustrate an inconsistent model
we use the following example (cf. Figure 5-109).

Suppose that the information model of System A defines the class
“Homeworker” as subclass of “Worker” whose home address is the same as

Figure 5-108
Adding message
splitting behavior to
the mediator

 METHOD FOR FORMAL VERIFICATION OF SYSTEM INTEROPERABILITY 123

its office address. Suppose that System B defines the class
“EligibleForTravelAllowance” as a subclass of “Employee” whose home
address is at least 20 km from his office address. In addition, suppose that
there exist a fact defining that the distance between two same addresses is
0. When a system integrator defines equivalentClass mapping between the
classes “Homeworker” and “EligibleForTravelAllowance” the model of the
mediator becomes inconsistent. This is because the mapped classes become
unsatisfiable, i.e., it is not possible to have distance between the home and
office address 0 and at least 20 at the same time. Using a reasoner such an
inconsistency can be immediately discovered and the system integrator can
be warned.

Information model of Mediator

Information model of System BInformation model of System A

equivalentClass

equivalentClass

o
ff

ic
e

A
d

d
re

s
s

equivalentClass

homeAddress(x) from(d, x)

officeAddress(y) to(d, y)

valueOf(d, v) v

EligibleForTravelAllowance

Address

Distance

ToFrom

Employee

5.3.2 Verifying Condition 2

To verify Condition 2, we define a class that represents the possible results
of an interaction and check whether this class is satisfiable. The class of
possible results of an interaction is defined as the conjunction of the
constraints on the results of all participating interaction contributions. To
illustrate an unsatisfiable class we use the following example (cf. Figure 5-
110).

Figure 5-109
Verifying
Necessary
Condition 1

124 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

Suppose that the service model of System A defines an interaction
contribution buy which establishes a Purchase order containing article of
type Notebook and shipping address in the city Enschede. Suppose that the
service model of System B defines an interaction contribution sell which
establishes a purchase order containing article of type Computer system and
a shipping address to any city in the USA. Suppose that there exist facts
defining that USA and Europe are disjoint classes, Enschede is located in
the Netherlands and Netherlands is located in Europe. The interaction sell-
buy cannot happen because its result (defined as a logical conjunction of the
constraints of the participating systems) is unsatisfiable. This is because the
one system requires shipping address in USA, the other system requires
shipping address in Europe and USA and Europe are disjoint classes, i.e.,
they cannot share an address. Using a reasoner such unsatisfiability can be
immediately discovered and the system integrator can be warned.

5.3.3 Verifying Condition 3

To verify Condition 3, we need to check whether the integrated service
behavior satisfies the constraints of the participating systems on the possible
ordering of interactions among them. For that purpose, we first abstract
from the participation of each systems in a service and construct the
behavior of the integrated system. This is an operation supported by the
COSMO framework. Next, we abstract the repetitive behaviors to non-
repetitive behaviors, i.e., we only consider one iteration of each repetitive
behavior. Finally, we transform the integrated behavior to a formalism that
allows for constructing the state space of the integrated system and
performing reachability analysis. Reachability analysis is deciding whether or
not there exists a path from a distinguished node s to a distinguished node t
in a directed graph. In our case, the nodes in the graph represent the
possible states of the integrated system (i.e., results established in
interactions among systems), and the directed arcs between nodes represent

Figure 5-110
Verifying
Necessary
Condition 2

 METHOD FOR FORMAL VERIFICATION OF SYSTEM INTEROPERABILITY 125

the order of the establishments of these results. The steps of the verification
method are illustrated in Figure 5-111 and Figure 5-112.

Mediator MSystem A

a a

System B
b b

c c

d d

Mediator MSyst em A System B

a

b

c

d

a

b

c

d

a. Distributed perspective

b. Integrated perspective

c. Integrated perspective after removing all redundant relations

The resulting state space graph of the behavior presented in Figure 5-111 is
presented in Figure 5-112.

a b

c

d

c

b

b

d

b, c

b, d

We can perform reachability analysis by querying the graph. For example,
we can check whether the results of a, b and d can be established in the
order a → b → d.

Suppose that we modify the example from Figure 5-111 by adding a
constraint in the behavior of System B, defining that d can only occur after c
has occurred (cf. Figure 5-113).

Figure 5-111
Verifying
Necessary
Condition 3

Figure 5-112
State space of the
behavior in Figure
5-111

126 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

Mediator MSystem A

a a

System B
b b

c c

d d

Mediator MSyst em A System B

a

b

c

d

a

b

c

d

a. Distributed perspective

b. Integrated perspective

c. Integrated perspective after removing all redundant relations

The state space graph of the integrated behavior from Figure 5-113 is
depicted in Figure 5-114.

a b

c c

b

b, c

As we can see, the execution scenario a → b → d is no longer possible. In
fact, d can never occur since it depends on both the occurrence and non-
occurrence of c.

In the table, presented in Figure 5-115, we summarise the necessary
conditions and the methods to verify them.

Figure 5-113
Verifying
Necessary
Condition 3 after
modifying the
behavior of System
B

Figure 5-114
State space of the
behavior in Figure
5-113

 RELATED WORK 127

Necessary
condition 1

Necessary
condition 2

Necessary
condition 3

A necessary condition for semantic interoperability

of two systems is that the sent message x is a valid
instance of S, the received message y is a valid

instance of T and the sent and the received
messages together satisfy the predicates defined
by the source-to-target mapping M.

A necessary condition for pragmatic interoperability

of an interaction is that at least one result that
satisfies the constraints of all contributing systems
can be established.

A necessary condition for pragmatic interoperability

of a service is the existence of at least one
execution scenario that can establish all required
results.

Description Verified by

Checking the consistency of the

information model of the
integration solution

Title

Checking the satisfiability of the

class defining the possible
results of the interaction

Constructing the state space of

the integrated system and
performing a reachability

analysis

5.4 Related Work

The Web Services Modeling Ontology (WSMO) consists of four main
components – ontologies, goals, web services and mediators. Data mediation is
achieved through the design and implementation of adapters specifying
mapping rules between ontologies. During runtime, the approach considers
specific mediator services, which perform data transformations at instance
level. The mediator interaction behavior is described by means of Abstract
State Machines (AST), consisting of states and guarded transitions. A state is
described within an ontology and the guarded transitions are used to express
changes of states by means of transition rules. However, this implicit
behavior specification may be neither intuitive nor trivial to make sure that
the expectations implied by the designed transition rules match the
expected operation message exchange patterns.
 The jABC approach (Steffen, 2006) uses Service Logic Graphs as
choreography models, allowing the designer to model the mediator
graphically, in high-level modeling language by combining reusable building
blocks into (flow-)graph structures. These basic building blocks are called
Service Independent Building Blocks (SIB) and have one or more edges
(branches), which depend on the different outcomes of the execution of the
functionality represented by the SIB. The provided model-driven design
tools allow the modeling of the mediator in a graphical high-level modeling
language and support the derivation of an executable mediator from these
models. More recently (Margaria, 2008), the approach has focused on how
to apply a tableau-based software composition technique to generate
automatically the mediator’s interaction behavior. This uses a Linear Time
Logic (LTL) planning algorithm originally embedded in the jABC platform.
However, the applicability of automated synthesis of the mediator’s

Figure 5-115
The summary of
the necessary
conditions and the
methods to verify
them

128 CHAPTER 5 MODEL-DRIVEN SERVICE INTEGRATION

business logic is still limited considering the kind of assumptions being
made. In comparison with the jABC approach, our approach does not cover
automated synthesis of the mediator logic as it intentionally leaves the
planning task to the business domain experts.
 The core concept of the FOKUS (Barnickel, 2008) approach is the
integration of ontology mappings into WS-BPEL processes. The approach
addresses the data mediation by applying semantic bridges to mediate between
different information models and representations. Semantic bridges are
described as a set of description logic-based axioms relating entities in
business information models that are defined in different ontologies but
have a similar meaning. The description logic-based data model provided by
ontologies in conjunction with semantic bridges allows for applying
automatic semantic matching and reasoning mechanisms based on
polymorph representations of service parameters. The interaction behavior
of the mediator has been manually designed and addressed by using a WS-
BPEL engine as the coordinating entity. Some WS-BPEL enhancements
were developed to integrate semantic bridges and to support data flow
specifications in terms of rules. These enhancements were implemented as
external functions that can be plugged into WS-BPEL engines. Thus, in
contrast to our approach, the presented approach designs the mediation
solution at technology level. It relies strongly on WS-BPEL and cannot
easily be used with alternative technologies.

5.5 Conclusions

In this chapter, we presented a method for the semantic integration of
service-oriented applications. The key feature of the proposed method is
that semantically enriched service models are employed at different levels of
abstraction to develop end-to-end integration solutions from business
requirements to software realization. This way, the integration problem is
solved at a higher level of abstraction by business domain experts and then
(semi-)automatically transformed to a software solution by adding technical
details by the IT experts.

First, using the interoperability levels identified in Chapter 2, we
answered Research question Q4: “What is necessary for two or more systems
to interoperate? How can we formally check if two or more systems are
interoperable?”. Second, by providing integration method, we answered
Research question Q5: ” How can two or more non-interoperable systems be
integrated and how can such integration be achieved in a systematic way?
Does such integration solve the drawbacks of existing integration
approaches?”. Our method uses the interoperability problems identified in
Chapter 2 and provides solutions for each of them. In addition, the method

 CONCLUSIONS 129

defines all steps for building end-to-end integration solutions from business
requirements to software realization.

To achieve our objectives we used MDA and formal KR.
KR provides mechanisms to define new classes by restricting properties

of existing ones. This allows service integrators to refine the information
models of the systems to be integrated and solve integration problems
related to concepts with overlapping (or more general/specific) meaning.
Second, KR provides mapping relations to express equivalence,
subsumption and disjointness between concepts. These mapping relations
become part of the information model of the mediator which allows this
model to be automatically checked for consistency. As we showed earlier,
checking model consistency is required to verify the necessary condition 1.
Third, KR provides mechanism to define new classes as intersection, union
or complement of existing classes. Such defined classes can be automatically
checked for satisfiability. As we showed earlier, this is required to verify
condition 2. Fourth, when using KR in combination with a reasoner the
system integrators can get immediate feedback whether a model is still
consistent after adding new information to it as a part of the semantic
enrichment step. Finally, KR provides means for run-time data
transformations. Class definitions can be used to define source-to-target
mappings and can be executed at run-time by a reasoner to transform data
in the messages exchanged among the systems to be integrated.

Similar to KR, MDA also plays an important role in our approach. First,
MDA provides a means to insulate integration solutions at business level
from the implementation technologies. In this way, the same business
integration solution can be reused to implement different IT integration
solutions using different implementation technologies. In addition, when
the implementation technology evolves, the same business integration
solution can be reused to generate IT integration solution that takes
advantages of the new features of that technology. Second, MDA provides a
means to define domain-specific languages (DSLs). This way, business
domain experts can solve integration problems using concepts that are
closer to their domain. In addition, a DSL shields business experts from the
formal knowledge representation techniques and the syntax of data
transformation definitions while at the same time enable them to analyse,
verify and optimise their integration solutions and discover possible
problems at an early stage. Finally, MDA consists of standards and best
practices across a range of software engineering disciplines. Because of the
standardization, there are already many tools available.

In Chapter 6 and 7, we validate our integration and verification methods
in two case studies.

PART IV.
VALIDATION

Chapter 6

6. Validation Goal and Claims

The main contribution of this thesis is the provisioning of a method for the
semantic integration of service-oriented applications. The key feature of the
proposed method is that semantically enriched service models are be employed at
different levels of abstraction to develop flexible, end-to-end integration solutions
from business requirements to software realization.

In Chapter 1, we identified requirements for integration methods in
general. To validate whether or not the solution proposed in Chapter 5
meets these requirements, in the following, we make a number of claims and
provide arguments for their validity. This is done by applying our integration
method in a particular context (i.e., solving two characteristic integration
problems presented in Chapter 7 and 8, respectively). When applying our
integration method we observed a number of effects. Chapter 9 analyses
these observations and argues to what extent our integration method meets
the requirements defined in Chapter 1. In particular, our analysis provides
more insight into the following issues:

– What effects did we observe when applying our integration method in a

particular context?

– Did these observations show that the proposed integration method
really meets the requirements defined in Chapter 1? To what extent?

– How similar are the presented cases? Can we generalise the observations
made to a broader context? What did we learn when applying our
integration method to the cases presented in Chapter 7 and 8 that is
relevant for other cases?

In the following, we present the validation claims. Each claim corresponds
to a particular requirement.

134 CHAPTER 6 VALIDATION GOAL AND CLAIMS

Claim 1: Service PIMs can be derived from their respective PSMs. This claim is to
validate whether our method meets Requirement R1. We verify it in Chapter
7 by providing a concrete model transformation that abstracts a service
specification in terms of WSDL to service PIMs in terms of COSMO. In
addition, Chapter 8 shows how a service PIM can be obtained if no explicit
service PSM is available.

Claim 2: COSMO provides all required concepts to model platform-independent
integration solutions. This claim is to validate whether our method meets
Requirement R1. We verify it in Chapter 7 and 8 by specifying the PIM of the
integration solution using COSMO. In Chapter 7, we focus on the concepts
for modeling service aspects whereas in Chapter 8 we also show the usefulness
of COMSO perspectives and abstraction levels.

Claim 3: The service models of the systems to be integrated can be semantically
enriched. This claim is to validate whether our method meets Requirement R2.
We verify it in Chapter 7 by defining additional service interactions and
causality relations in the behavior models of the systems to be integrated. In
addition, we demonstrate how an information model can be mapped to a
domain-specific ontology, namely Universal Data Element Framework (UDEF
(UDEF, 2006)).

Claim 4: The necessary conditions for interoperability can be formally checked. This
claim is to validate whether our method meets Requirement R3. We verify it
in Chapter 7 and 8 by providing concrete mappings from COSMO to OWL
and Petri Nets and verifying the necessary conditions for interoperability
(defined in Chapter 5) using logical reasoners.

Claim 5: The same solution PIM can be used to derive different solution PSMs. This
claim is to validate whether our method meets Requirement R4. To verify it,
we present a hypothetic scenario in which the requirements for the
implementation technology of the case, presented in Chapter 8, change. To
address the new requirements we specify a new model transformation from
PIM to PSM and show how the same service PIM of the integration solution
can be reused to derive new service PSM (in terms of the new technology).

Claim 6. The same model transformations can be used to solve different integration
problems. This claim is to validate whether our method meets Requirement R5.
To verify the claim, we present a variation of the case, presented in Chapter
7, in which the business requirements change. To address the new business
requirements we update the service PIM of the existing integration solution
and then reuse the same model transformations to derive the new service
PSM.

 VALIDATION GOAL AND CLAIMS 135

The table below presents the correspondence between method properties
and claims. In addition, we give references to sections, in which the claims
are validated.

Requirement Claim Validated in

Claim C1: Service PIMs can
be derived from their
respective PSMs.

Chapter 7, Section
7.2.1 and 7.3.1,
and Chapter 8,
Section 8.2.1

Requirement R1: The method
should provide for defining
the integration solutions in
terms of the problem domain,
rather than in terms of
solution technologies. Claim C2: COSMO provides

all required concepts to model
platform-independent
integration solutions.

Chapter 7, Section
7.2.3 and 7.3.3,
and Chapter 8,
Section 8.2.2

Requirement R2: The
integration method should
enable the semantic
integration of services.

Claim C3: The service models
of the systems to be
integrated can be
semantically enriched.

Chapter 7, Section
7.2.2, and Chapter
8, Section 8.2.1

Requirement R3: The
integration method should
enable the formal verification
of the integration solution.

Claim C4: The necessary
conditions for interoperability
can be formally checked.

Chapter 7, Section
7.2.4 and 7.3.4,
and Chapter 8,
Section 8.2.3

Requirement R4: The
integration method should
allow for changes in the
implementation technology.

Claim C5: The same solution
PIM can be used to derive
different solution PSMs.

Chapter 8, Section
8.3

Requirement R5: The
integration method should
allow for changes of the
business requirements.

Claim C6. The same model
transformations can be used
to solve different integration
problems.

Chapter 7, Section
7.3

The remainder of this validation part of the thesis is organised as follows: In
Chapter 7 we apply our integration method to solve a reference integration
problem, defined in the Semantic Web Service Challenge (SWSC). SWSC
provides an infrastructure for testing semantic web service technologies and
a forum for discussion based on a common application base. In Chapter 8,
we apply our integration method to solve a real-world integration problem

136 CHAPTER 6 VALIDATION GOAL AND CLAIMS

from the travel domain. More precisely, we perform a lab experiment, i.e.,
we apply our integration method using real-world data in a lab setting.
Finally, Chapter 9 analyses the cases presented in Chapter 7 and 8, and
identifies similarities and differences. By doing this, we want to provide
further insight into the applicability of our integration method in more
general context. In addition, we present a number of challenges we faced
when solving the integration problems in Chapter 7 and 8. Finally, we
summarise important lessons learnt.

Chapter 7

7. The Semantic Web Service
Challenge Case

In this chapter, we validate our integration method presented in Chapter 5.
The chapter is organised as follows: In Section 7.1, we introduce the
Semantic Web Service Challenge initiative. Section 7.2 applies our
integration method to solve a reference integration problem described in
the Scenario 1 of SWSC. Section 7.3 demonstrates how our method
supports the change of integration requirements by applying it to an
integration problem described in the Scenario 2 of SWSC. Finally, in
Section 7.4, we provide a short summary of the presented case. A detailed
discussion about the applicability of our integration method is presented in
Chapter 9.

7.1 The Semantic Web Service Challenge

To validate our integration method we use a reference integration problem,
defined in the Semantic Web Service Challenge (SWSC)33. SWSC provides and
infrastructure for testing semantic web service technologies and a discussion
forum based on a common application base. In a series of workshops, the
participants have to solve a set of integration problems using their methods
and tools. For example, the participants must build software that invokes
the right web services with the right sequence of correct messages in order
to satisfy a certain scenario.
 The scenarios are described in a Wiki provided by the SWSC.
Corresponding to each scenario there is a set of working web services that
SWSC participants can access. The SWSC organisers maintain these
services and evaluate whether a participant has "passed" a scenario problem

33 http://sws-challenge.org

138 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

or sub-problem by examining the log of web service messages exchanged, or
by using dedicated software.
 In addition to the provided infrastructure, SWSC organises a series of
workshops. Workshops are held to provide consensus verification and to
evaluate claims made by the participants. In these workshops, the
participants present papers, that went through a review process, in which
they present their claims. The organisers of SWSC verify whether or not the
claimed problems have actually been solved. Finally, the workshop
participants, either in teams or as a whole, evaluate claims of ease of
response to a problem change by evaluating the actual code. Evaluation
results are publicly posted on the website and certified by the consensus of
the workshop in which they were made.
 The SWSC evaluation methodology is evolving in the W3C Semantic
Web Services (SWS) Testbed Incubator34. The mission of the W3C SWS Testbed
Incubator Group is to develop a standard methodology for evaluating
semantic web services based upon a standard set of problems as well as to
develop a public repository of such problems.

Currently the SWSC includes members from both academia (Stanford
University, University of Postdam, University of Stuttgartt, University of
Southampton, University of Georgia, University of Karlsruhe, Politecnico di
Milano, Trinity College, Universidad Politecnica de Madrid, University of
Bolzano, Open University UK, University of Trento, Italy, Ulm University,
Free University Berlin, and STI Innsbruck) and from the industry (HP Palo
Alto USA, SAP Germany, IBM Research USA, Semagix, USA).

7.2 Scenario 1

To validate our integration method we start with Scenario 1 defined in the
SWSC.

A manufacturing company called Moon uses two back-end systems to
manage its order processing: a Customer Relation Management (CRM) and a
Stock Management (SM) system. Moon signs an agreement with a customer,
called Blue, to exchange purchase order messages in RosettaNet PIP 3A4
format. Currently, the back-end systems of Moon use proprietary data
models and interaction protocols that differ from those of RosettaNet. The
objective is to build a Mediator – a system that compensates the differences
and enables Blue and Moon to interoperate (cf. Figure 7-116).

34 http://www.w3.org/2005/Incubator/swsc/

 SCENARIO 1 139

Add
line it em

Close
Order

Create new
Order

Search

custom er

Blue Mediator Moon CRM

PIP 3A4 POR (M1)

Ack (M2)

Search string (M3)

Customer object (M4)

CustomerId (M5)

Confirmation (M8)

OrderId (M9)

Line item confirmation (M10)

OrderId, ArticleId, Qty (M7)

OrderId (M6)

Moon SM

Send
POR

PIP 3A4 POC (M11)

Ack (M12)

Confirm /
Rej ect

line it em

Receive

POC

?

The interaction between systems is initiated by customer Blue who sends a
PIP 3A4 Purchase Order Request (message M1)

35. RosettaNet PIP 3A4 enables a
buyer to issue a purchase order and to obtain a quick response (message
M11) from a seller acknowledging which of the purchase order product line
items are accepted, rejected, or pending. Both messages M1 and M11 must be
synchronously confirmed by an Acknowledgement of Receipt (messages M2 and
M12, respectively).

RosettaNet messages do not contain specific information about
products, but only global unique product identifiers. For that purpose
RosettaNet uses the Global Trade Identification Number (GTIN). GTIN is the
EAN.UCC System identifier for trade items, which defines both products
and services. GTINs provide the capability to deliver unique identification
worldwide. An example of GTINs is given in Table 7-1.

35 The XML schemata of all messages are presented in Appendix B.

Figure 7-116
Blue’s and Moon’s
systems

140 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

Description Item Packaging GTIN

Dell W5001C 50" High Definition
Plasma TV

1 Unit Consumer 0061414100001
2

SANDISK 1 GB Secure Digital
Card

96 Units Case 0061414100002
9

Dell Laser 1710 6 Pack Consumer 0061414100088
3

DELL 512 MB High Speed USB
2.0 Memory Key

8x12 Pack Case 5061414100099
4

Blue sends a Purchase Order Request message containing customer information
and multiple line items. In order for Moon to process this message, several
steps have to be performed.

First, a Search string has to be sent to the CRM system (message M3) to
check whether a customer is known to Moon. If this is the case, the CRM
system will reply with a message (M4) containing a Customer object that
matches the search string. Next, a message (M5) has to be sent to the SM
system to create a new order to which the SM system replies synchronously
with a message (M6) containing the OrderId of the newly created order. Once
a new order is created, all line items have to be added one by one to that
order by sending multiple messages (M7). These messages are confirmed
synchronously by the SM system (message M8). After all line items are added
to the order, a message (M9) has to be sent to the SM system to close the
order. Upon receiving this message the SM system starts sending multiple
messages (M10) to confirm the status of each line item. Once all order lines are
processed by Moon, a RosettaNet PIP3A4 Purchase Order Confirmation message
(M11) has to be sent to the customer Blue and be confirmed synchronously
by an Acknowledgement of Receipt message (M12).
 In the remainder of this section, we apply each step of our integration
method to solve the integration problem described above. To do this, we
apply the steps of our integration method using concrete technologies, i.e.,
WSDL and WS-BPEL (for modeling the service PSMs) and COSMO in
conjunction with OWL-DL (for modeling the service PIMs).

First, we start with the WSDL descriptions of the Blue and Moon services
and derive their service PIMs. Note that the information within a WSDL
description only defines the messages accepted by a system, but does not
define the messages sent by that system. In addition, a WSDL description
does not define the order of the exchanged messages (i.e., the interaction
protocol of the system). Therefore, to derive the complete PIMs of Blue and
Moon we use the provided textual description of the integration problem
and consult the RosettaNet specification. Once, we have derived the service

Table 7-1
Example of GTINs

 SCENARIO 1 141

PIMs of Blue and Moon, we enrich these models with additional semantics,
making implicit knowledge about the systems more explicit. Next, we solve
the integration problem by specifying the information and behavior PIMs of
the Mediator. The PIM allows the same solution to be implemented using
different software technologies (i.e., the same abstract solution is reused to
implement different concrete solutions). Once we have specified the service
PIM of the Mediator, we check whether the integrated systems (consisting of
Blue, Moon and the Mediator) meets the necessary conditions for semantic
and pragmatic interoperability (as defined in Chapter 5). Finally, we
automatically derive the service PSM of the Mediator by transforming its
service PIM to executable specification (in terms of WS-BPEL an additional
data transformation web service).

7.2.1 Step 1. Abstracting WSDL descriptions of Blue and Moon to
COSMO

In Step 1 (cf. Figure 7-117), we perform two activities, namely, (i) we
derive the information PIMs and (ii) the behavior PIMs of Blue and Moon using
the WSDL descriptions of their services.

PIM PIM

1 1

3

2 24

3

PIM

PSM PSMPSM

5

Deriving the Information PIMs
We derive the information PIMs of Blue and Moon from the types sections of
the WSDL descriptions of their services. We do this by adopting and
extending the rules defined in (Battle, 2006; García, 2005). The mapping
rules are summarised in the table below:

Figure 7-117
Step 1. Abstracting
WSDL descriptions
of Blue and Moon
to COSMO

142 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

XML Schema OWL

1. attribute DatatypeProperty

2. element of a simple type DatatypeProperty

3. element of a complex type ObjectProperty

4. simple type DatatypeProperty

7. restriction on a simple type subPropertyOf

5. complex type Class

6. restriction / extension of a complex type subClassOf

a. complex type (sequence or all) intersectionOf

b. complex class (choice) intersectionOf(unionOf, complementOf)

8. minOccur / maxOccur constraint minCardinality / maxCardinality restriction

 In the following, we present each rule and give a short example to illustrate
it. All rules are generic; they can be applied to transform any XML schema
to an OWL ontology.

1. An XML schema attribute is transformed to an OWL DatatypeProperty.

Exam ple

<xsd:schema ...>

...

<xsd:attribute name=”name” type=”xsd:string”/>

...

</xsd:schema>

:name a owl:DatatypeProperty;

owl:dataRange xsd:string .

2. An XML schema element of a complex type is transformed to an OWL
ObjectProperty.

Exam ple

<xsd:schema ...>

...

<xsd:element name=”address” type=”AddressType”/>

...

</xsd:schema>

:address a owl:ObjectProperty;

rdfs:range :AddressType .

complex type

 SCENARIO 1 143

3. An XML schema element of a simple type is transformed to an OWL
DatatypeProperty.

Exam ple

<xsd:schema ...>

...

<xsd:element name=”city” type=”xsd:string”/>

...

</xsd:schema>

:city a owl:DatatypeProperty;

rdfs:dataRange xsd:string .

4. An XML schema simpleType is transformed to an OWL DatatypeProperty.

Exam ple

<xsd:schema ...>

...

<xsd:simpleType name="adultAge">

<xsd:restriction base="integer">

<xsd:minInclusive value="18">

</xsd:restriction>

</xsd:simpleType>

...

</xsd:schema>

:adultAge a owl:DatatypeProperty;

rdfs:domain rdfs:subClassOf

[a owl:DatatypeRestriction;

owl:onDataRange xsd:nonNegativeInteger;

owl:minInclusive "18"^^xsd:integer].

5. An XML schema complexType is transformed to an OWL Class. More
precisely, (a) a complexType using the compositors sequence or all is
transformed to an OWL Class defined as intersectionOf of property
restrictions derived from the elements of the compositor.

144 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

Exam ple

<xsd:schema ...>

...

<xsd:complexType name="Address">

<xsd:sequence>

<xsd:element name="street" type="xsd:string“/>

<xsd:element name="city" type="xsd:string“/>

</xsd:sequence>

</xsd:complexType>

...

</xsd:schema>

:Address a owl:Class;

owl:equivalentClass

[owl:intersectionOf (

[a owl:Restriction; owl:onProperty :street;

owl:allValuesFrom xsd:string]

[a owl:Restriction; owl:onProperty :city;

owl:allValuesFrom xsd:string]

)].

(b) A complexType using the compositor choice is transformed to an OWL
Class defined as an expression containing OWL intersectionOf, unionOf and
complementOf. If fact, the choice (i.e., exclusive or) is defined as combination
of conjunctions (and), disjunctions (or), and negations (not), e.g. the choice
between A and B is equivalent to (A or B) and not (A and B).

Exam ple

<xsd:schema ...>

...

<xsd:complexType name="ShippingAddressType">

<xsd:choice>

<xsd:element name="dutchAddress" type="DutchAddressType"

<xsd:element name=“ukAddress“ type=“UKAddressType"

</xsd:choice>

</xsd:complexType>

...

</xsd:schema>

:ShippingAddressType a owl:Class;

owl:intersectionOf (

owl:unionOf (

[a owl:Restriction; owl:onProperty :dutchAddress;

owl:allValuesFrom :DutchAddressType]

[a owl:Restriction; owl:onProperty :ukAddress;

owl:allValuesFrom :UKAddressType])

owl:complementOf owl:intersectionOf (

[a owl:Restriction; owl:onProperty :dutchAddress;

owl:allValuesFrom :DutchAddressType]

[a owl:Restriction; owl:onProperty :ukAddress;

owl:allValuesFrom :UKAddressType])

) .

 SCENARIO 1 145

6. An XML schema complexType derived by extension from or restriction on
another complexType is transformed to a rdfs:subClassOf assertion between the
respective OWL classes.

Exam ple

<xsd:schema ...>

...

<complexType name="Car">

<extension base="Vehicle">

</complexType>

...

</xsd:schema>

:Car a owl:Class;

rdfs:subClassOf :Vehicle.

7. An XML schema simpleType derived by restriction from another simpleType is
transformed to a rdfs:subPropertyOf assertion between the respective OWL
properties.

Exam ple

<xsd:schema ...>

...

<simpleType name="adultAge">

<restriction base="age">

</complexType>

...

</xsd:schema>

:adultAge a rdf:Property;

rdfs:subPropertyOf :age.

8. XSD minOccur and maxOccur constraints are transformed to OWL
minCardinality and maxCardinality property restrictions.

146 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

Exam ple

<xsd:schema ...>

...

<xsd:complexType name="Address">

<xsd:sequence>

<xsd:element name="street" type="xsd:string“ minOccur=”1”/>

<xsd:element name="city" type="xsd:string“ minOccur=”1” />

</xsd:sequence>

</xsd:complexType>

...

</xsd:schema>

:Address a owl:Class;

owl:equivalentClass

[owl:intersectionOf (

[a owl:Restriction; owl:onProperty :street;

owl:allValuesFrom xsd:string]

[a owl:Restriction; owl:onProperty :street;

owl:minCardinality 1]

[a owl:Restriction; owl:onProperty :city;

owl:allValuesFrom xsd:string]

[a owl:Restriction; owl:onProperty :city;

owl:minCardinality 1]

)].

We apply the transformation rules on the types sections from the WSDL
descriptions of Blue and Moon, and derive their information models in terms
of OWL-DL. The complete information models are quite verbose,
therefore we only present small excerpt of them in Turtle syntax (Beckett,
2007):

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix : <http://sws-challenge.org/schemas/rnet2#> .

 :AddLineItemResponseType a owl:Class;

 rdfs:subClassOf

 [a owl:Restriction;

 owl:onProperty :lineItemId;

 owl:cardinality 1];

 rdfs:subClassOf

 [a owl:Restriction;

 owl:onProperty :orderId;

 owl:cardinality 1];

 rdfs:subClassOf

 [a owl:Restriction;

 owl:onProperty :lineItemId;

 owl:allValuesFrom xsd:long];

 rdfs:subClassOf

 [a owl:Restriction;

 owl:onProperty :orderId;

 owl:allValuesFrom xsd:long];

:AddLineItemResponse rdfs:range :AddLineItemResponseType .

:Item a owl:Class;

 rdfs:subClassOf

 SCENARIO 1 147

 [a owl:Restriction;

 owl:onProperty :articleId;

 owl:cardinality 1];

 rdfs:subClassOf

 [a owl:Restriction;

 owl:onProperty :quantity;

 owl:allValuesFrom xsd:int];

 rdfs:subClassOf

 [a owl:Restriction;

 owl:onProperty :quantity;

 owl:cardinality 1];

 rdfs:subClassOf

 [a owl:Restriction;

 owl:onProperty :articleId;

 owl:allValuesFrom xsd:string] .

Deriving the Behavior PIMs
The behavior PIMs are derived using the interface section of the WSDL
descriptions of Blue and Moon.

As presented in Chapter 3, a WSDL description contains two parts. In
the abstract part, WSDL defines a web service in terms of messages
accepted by the system that implements the service. The messages are
defined by means of a type system (typically XML Schema) and their
sequence and cardinality is defined by message exchange patterns (MEPs). An
operation associates message exchange patterns with one or more messages.
An interface is used to group these operations. In the concrete part of the
WSDL description, bindings specify the transport and wire format for
interfaces. A service endpoint associates network address with a binding.
Finally, a service groups the endpoints that implement a common interface.

Using the WSDL descriptions of Blue and Moon we derive the initial
behavior models of the systems (cf. Figure 7-118).

Moon’s SMMoon’s CRMBlue

accept: M11

reply: M12

accept: M3

reply: M4

accept: M5

reply: M6

accept: M7

reply: M8

accept: M9

M1-M16 are the messages described in the beginning of this section. They
are summarised in the following table:

Figure 7-118
The behavior PIMs
of Blue and Moon

148 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

M1 Purchase Order Request
M2 Acknowledgement of Receipt
M3 Search Customer Request
M4 Search Customer Response
M5 Create New Order Request
M6 New Order Response
M7 Add Line Item Request
M8 Add Line Item Response
M9 Close Order
M10 Order Line Item Confirmation
M11 Purchase Order Confirmation
M12 Acknowledgement of Receipt message

In this step, we provided evidence for the validity of Claim 1, i.e., service
PIMs can be derived from their respective PSMs.

7.2.2 Step 2. Semantic Enrichment of the Service PIMs

In Step 2 (cf. Figure 7-119), we semantically enrich (i) the information PIMs
and (ii) the behavior PIMs of Moon and Blue.

PIM PIM

1 1

3

2 24

3

PIM

PSM PSMPSM

5

Semantic Enrichment of the Information PIMs
A WSDL types section defines only the syntax of the messages to be
exchanged between the provider of the service and its requestors. Further
work is required to define the semantics of these messages. For example, all
hidden assumptions should be made explicit by defining new classes and
relations among them, or by mapping the classes and properties to classes
and properties from some domain-specific ontologies and thus defining
their meaning. This is usually a manual process which requires domain
specific knowledge.

To illustrate one way to semantically enrich the information models of
Blue and Moon we use the Universal Data Element Framework (UDEF, 2008).
UDEF is an Open Group standard, which enables organizations to give

Figure 7-119
Step 2. Semantic
enrichment of the
service PIMs

 SCENARIO 1 149

meaning to elements of the information models of their systems by tagging
them with globally standard identifiers. These identifiers are constructed by
concatenating unique identifiers of object classes and properties defined in
the UDEF standard.
 The UDEF trees are available as an OWL ontology. We link the
elements of the information models of Blue and Moon systems to elements
of UDEF ontology by defining owl:equivalentProperty or rdfs:subPropertyOf,
relations among corresponding properties.
 To illustrate the use of UDEF we present an excerpt of the semantically
enriched information models of Blue and Moon (cf. Figure 7-120 and Figure
7-121).

PurchaseOrder

ShipTo

b.p.2 Purchase.Request.Document

PartnerDescription ContactInformation

contactName
emailAddress

PhysicalLocation

Telephone

CommunicationsNumber

a.v.3 Shipment.Destination.Enterprise

3.12.14 First-Line.Address.Text
10.10 City.Name

1.1.10.4 Address.Postal.Zone.Code
3.36.4 Address.Country.Code

c.g.5 Business.Contact.Person

2.10 Full.Name

25.8 Electronic-Mail-
Address.Identifier

37.8 Telephone.Identifier

c.g.5 Business.Contact.Person

PhysicalAddress

addressLine1
cityName
NationalPostalCode

GlobalCountryCode

Figure 7-120
The semantically
enriched
PurchaseOrder
(Blue system)

150 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

Order

ContactType

name

telephone
email

ShipTo

Name
Street

City

State
postalCode
country

BillTo

Name
Street

City
State
postalCode

country

shipTo

contact

billTo

2.10 Full.Name
37.8 Telephone.Identifier

25.8 Electronic-Mail-Address.Identifier

4.10 Company.Name

3.12.14 First-Line.Address.Text

10.10 City.Name
1.1.10.4 Address.Postal.Zone.Code
1.53.4 Address.State.Code

3.36.4 Address.Country.Code

c.g.5 Business.Contact.Person

4.10 Company.Name

3.12.14 First-Line.Address.Text

10.10 City.Name
1.1.10.4 Address.Postal.Zone.Code
1.53.4 Address.State.Code

3.36.4 Address.Country.Code

ag.3 Bill-To.Enterprise

a.v.3 Shipment.Destination.Enterprise

b.p.2 Purchase.Request.Document

The semantic annotations are used in Step 3 to match automatically
equivalent properties and to suggest mapping relations.

Semantic Enrichment of the Behavior models
A WSDL description only defines the operations, provided by some service,
i.e., it only defines the operation execution part of an operation. To define an
operation completely we need also to define the operation call part. Since
this information is missing in the WSDL descriptions of Blue and Moon, we
use the textual description of the integration problem as well as the abstract
diagram of the Mediator. The behavior models of Blue and Moon, after adding
the operations’ calls, is presented in Figure 7-122.

Figure 7-121
The semantically
enriched Order
(Moon system)

 SCENARIO 1 151

Moon’s SMMoon’s CRMBlue

invoke: M1

return: M2

accept: M3

reply: M4

accept: M5

reply: M6

accept: M7

reply: M8

accept: M9

accept: M11

reply: M12

invoke: M10

A WSDL message exchange pattern (MEP) defines only the relationship
between (input, output and fault) messages of a single operation. The
complete behavior model should also define the relationships between the
different operations. Since these relationships are not part of the WSDL
descriptions, they have to be derived from the informal textual descriptions
as provided in scenario description. In addition, the repetitive steps should
be made explicit as well. The semantically enriched behavior models of Blue
and Moon are presented in Figure 7-123.

Moon’s SMMoon’s CRMBlue

invoke: M1

return: M2

accept: M3

reply: M4

accept: M5

reply: M6

accept: M9

accept: M11

reply: M12 accept: M7

reply: M8

invoke: M10

In this step, we provided evidence for the validity of Claim 3, i.e., the service
models of the systems to be integrated can be semantically enriched.

Figure 7-122
The semantically
enriched behavior
PIMs of Blue and
Moon

Figure 7-123
The semantically
enriched behavior
PIMs of Blue and
Moon

152 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

7.2.3 Step 3. Solving Integration Problem at PIM Level

In Step 3 (cf. Figure 7-124), we design the information and behavior models
of the Mediator.

PIM PIM

1 1

3

2 24

3
PIM

PSM PSMPSM

5

The information model of the Mediator is constructed from the union of the
information models of Blue and Moon. In addition, the information model of
the Mediator contains new classes to represent status information of the
Mediator (e.g., the set of order line items that have been confirmed so far) as
well as the mapping relations among the classes and properties from the
information models of Blue and Moon.
 The construction of the behavior model of the Mediator requires the
definition of (i) the mapping relations among the classes and properties
from the information models of Blue and Moon, (ii) the services provided
and requested by the Mediator and (iii) the composition of these services by
relating their operations.
 To define the mappings among the classes and properties from the
information models of Blue and Moon we use the approach presented in
(Haase, 2005).
 An OWL mapping system MS is a triple (S, T, M), where S is the
source information model, T is the target information model, and M is the
mapping between S and T, i.e., a set of assertions Qs → Qt, where Qs and
Qt are conjunctive queries over S and T, respectively, with the same set of
distinguished variables x. Thus, a mapping is equivalent to an axiom:

∀x: Qs(x, ys) → Qt(x, yt)

The correspondence between classes and properties from the information
models of Blue and Moon are expressed as a function of subsumption, e.g.,
Qs ⊆ Qt. Using an OWL reasoner, such as Racer36and Pellet37, allows us to
check the information model of the Mediator for consistency.

36 Racer Systems, Racer Reasoner, http://www.racer-systems.com/

Figure 7-124
Step 3. Solving
integration problem
at PIM level

 SCENARIO 1 153

 To facilitate the use of the mapping approach described above, we have
defined a Domain-Specific Mapping Language (mapping DSL). The mapping
DSL provides a means for defining the mapping relations between the
information models of Blue and Moon and for deriving automatically the
information model of the Mediator in OWL (used in the verification step to
check necessary condition 1) and the Java classes that implement the data
transformation (used at runtime to transform the exchanged messages
between Blue and Moon). The metamodel of the mapping DSL is presented
in Figure 7-125.
 A Transformation consists of one or more Mappings. A Mapping defines an
assertion Qs → Qt where Qs is defined as conjunction of Bindings in a
number of Source domains and Qt is defined in a Binding in the Target
domain. In addition, a Mapping may contain zero or more expressions
which bind variables by invoking other Mappings or custom functions.

Transformat ion

Mapping

Domain

Target Source

Binding

Expression

mappings1..*

expressions

bindings

domains0..*

0..*

0..*

Figure 7-126 illustrates the mappings between the class
Pip3A4PurchaseOrderRequest from the information model of Blue and the
classes SearchCustomer, Order and LineItem from the information model of
Moon. Note, that the mappings are discovered automatically using the
UDEF information added in Step 2.

37 http://clarkparsia.com/pellet/

Figure 7-125
The metamodel of
the mapping DSL

154 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

Pip3A4PurchaseOrderRequest

fromRole

PartnerRoleDescript ion

Contact Informat ion

ContactNam e

Em ailAddress

TelephoneNumber

Com municat ionNum ber

PartnerDescript ion

BusinessNam e

BusinessDescript ion

PurchaseOrder

ProductLineI t em

LineNumber

OrderQuant it y

Product Ident if icat ion

shipTo

PartnerDescript ion

PhysicalLocat ion

PhysicalAddress

addressLine1

cit yNam e

Nat ionalPostalCode

SearchCustom er

searchStr ing

CreateNewOrder

Order

contact

shipTo

nam e

street

cit y

stat e

postalCode

count ry

nam e

em ail

telephone

AddLineI tem Request

lineI tem

art icleId

quant it y

GlobalProduct Ident ifier

RequiredQuant it y

ProductQuant it y

GlobalCount ryCode
Creat eNewOrderResponse

order Id

order Id

Using the mapping DSL we formally define these mappings:

transformation Blue2Moon {

 mapping POR2Search {

 source por:Pip3A4PurchaseOrderRequest {

 fromRole(?por, ?role)

 PartnerRoleDescription(?role, ?partnerRole)

 PartnerDescription(?partnerRole, ?partner)

 BusinessDescription(?partner, ?business)

 BusinessName(?business, ?businesName)

 }

 target search:SearchCustomer {

 searchString(?search, ?businesName)

 }

 }

 mapping POR2NewOrder {

 Source por:Pip3A4PurchaseOrderRequest {

 fromRole(?por, ?role)

 PartnerRoleDescription(?role, ?partnerRole)

 ContactInformation(?partnerRole, ?contact)

 ContactName(?contact, ?contactName)

 EmailAddress(?contact, ?email)

 TelephoneNumber(?contact, ?telephone)

 CommunicationNumber(?telephone, ?phoneNumber)

 purchaseOrder(?por, ?order)

 shipTo(?order, ?shipTo)

Figure 7-126
The mapping
between the
information PIMs of
Blue and Moon

 SCENARIO 1 155

 PhysicalLocation(?shipTo, ?location)

 PhysicalAddress(?location, ?address)

 addressLine1(?address, ?street)

 cityName(?address, ?city)

 NationalPostalCode(?address, ?pcode)

 GlobalCountryCode(?address, ?country)

 }

 target order: Order {

 contact(?order, ?newContact)

 name(?newContact, ?contactName)

 email(?newContact, ?email)

 telephone(?newContact, ?phoneNumber)

 shipTo(?order, ?newShipTo)

 name(?newShipTo, ?contactName)

 street(?newShipTo, ?street)

 city(?newShipTo, ?city)

 postalCode(?newShipTo, ?pcode)

 country(?newShipTo, ?country)

 }

 }

 mapping POR2NewLineItem {

 Source por:Pip3A4PurchaseOrderRequest {

 purchaseOrder(?por, ?order)

 ProductLineItem(?order, ?lineItem)

 ProductIdentification(?lineItem, ?id)

 GlobalProductIdentifier(?id, ?globalProductId)

 OrderQuantity(?order,?orderQty)

 RequiredQuantity(?orderQty, ?requredQty)

 ProductQuantity(?requredQty, ?quantity)

 }

 Target item: lineItem {

 articleId(?item, ?globalProductId)

 quantity(?item, ?quantity)

 }

 }

}

The Mediator provides one service that must match the service requested by
Blue. The service provided by the Mediator can initially be defined by
“mirroring” the service requested by Blue. The mirroring of a service is
obtained by changing each operation call into an operation execution, and vice
versa, while keeping the same parameters. In addition, the relations among
the operations and the parameter constraints may (initially) be retained.
Likewise, the services that are requested by the Mediator can be obtained by
mirroring the services that are provided by Moon.
 The design of the Mediator behavior can now be approached as the
search for a composition of the requested services that conforms to the
provided service. The structure of this composition is defined by the
(causal) relations among the operations. We do this by inspecting the
mapping relations in the information model of the Mediator. For instance,
the elements of M3 are related to the elements of M2 by mapping relation
POR2Search, i.e., the information required to construct M3 is provided in

156 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

M1. Therefore, we use the message splitting pattern (see Chapter 5, p.23) .
Similarly, the elements of M5 are related to the ones of M1 by mapping
relation POR2NewOrder. In addition, M5 contains the orderId (provided by
M4) i.e., the information required to construct M5 is provided in messages
M1 and M4. Therefore, we instantiate the message aggregation pattern (see
Chapter 5, p.23).

Mediator

Moon’s SM

Moon’s CRMBlue

invoke: M1

return: M2

accept: M3

reply: M4

accept: M5

reply: M6

accept: M11

reply: M12

accept: M7

reply: M8

accept: M1

reply: M2

invoke: M7

return: M8

invoke: M10

invoke: M11

return: M12

invoke: M3

return: M4

accept: M9

invoke: M5

return: M6

invoke: M9

accept: M10

The information mappings are not sufficient to define the complete
behavior of the Mediator. Although the search for a customer (M3) in CRM
system gives information (M4) such as AddressInfo or ContactInfo, still the
information that is provided in M1 should be used instead. Such hidden
assumptions have to be made explicit in the behavior model of the Mediator.
The complete behavior model of the Mediator is presented in Figure 7-128.

Figure 7-127
The behavior model
of the Mediator
after mirroring
operation calls and
operation
executions

 SCENARIO 1 157

Moon’s SM

Mediator Moon’s CRMBlue

invoke: M1

return: M2

accept: M3

reply: M4

accept: M5

reply: M6

accept: M15

reply: M16

accept: M7

reply: M8

accept: M1

reply: M2

invoke: M7

return: M8

invoke: M10

accept: M10

invoke: M15

return: M16

invoke: M3

return: M4

accept: M9

invoke: M5

return: M6

invoke: M9

In this step, we provided evidence for the validity of Claim 2, i.e., COSMO
provides all required concepts to model platform-independent integration solutions.

7.2.4 Step 4. Verification of the integration solution

In Step 4 (cf. Figure 7-129) of our integration method, we analyse whether
or not the proposed integration solution enables the integrated systems to
interoperate.

PIM PIM

1 1

3

2 24

3

PIM

PSM PSMPSM

5

To do this, we first abstract from the participation of each system and
construct the behavior of the integrated system. Next, we transform the
integrated behavior to a Petri Net and construct the corresponding
occurrence graph. Finally, we use the occurrence graph to check whether
the integrated systems are pragmatically interoperable (see Chapter 5,
Section 5.1.3)

Figure 7-128
The complete
behavioral model of
the mediator

Figure 7-129
Step 4. Verification
of the integration
solution

158 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

The integrated behavior of Blue, Moon and the Mediator systems after
representing the concurrent executions, choices, conjunctions and
disjunctions of conditions explicitly is shown in Figure 7-130.

After applying the transformation rules described in Appendix A, we derive
the corresponding Petri Net (Figure 7-131).

Next, we construct the occurrence graph of the net (Figure 7-132)

Figure 7-130
The integrated
perspective of the
Blue, Moon and the
Mediator

Figure 7-131
The Petri Net of the
integrated system

 SCENARIO 1 159

1

2

3 4 6 8 10 12 14 16 18

5 7 9 11 13 15 17 19 20

21

22

M1

M2

M3 M4 M5 M6 M7 M8 M9

M3 M4 M5 M6 M7

M2 M2 M2 M2 M2 M2 M2

M10

M2 M11

M12

M8 M9 M10

State Transition

Finally, we analyse the occurrence graph to check whether the integrated
system supports the desired execution. In our case, we check whether M12
can be sent after M1 has been sent (one possible execution trace is depicted
in Figure 7-133). Based on the result of the query on the occurrence graph,
we can conclude that systems satisfy the third necessary condition for
interoperability (see Chapter 5).

1

2

3 4 6 8 10 12 14 16 18

5 7 9 11 13 15 17 19 20

21

22

M1

M2

M3 M4 M5 M6 M7 M8 M9

M3 M4 M5 M6 M7

M2 M2 M2 M2 M2 M2 M2

M10

M2 M11

M12

M8 M9 M10

7.2.5 Step 5. Deriving the PSM of the integration solution

In Step 5 (cf. Figure 7-134), the service PIM of the Mediator is transformed
into a platform-specific model in terms of WS-BPEL.

PIM PIM

1 1

3

2 24

3

PIM

PSM PSMPSM

5

In Chapter 5, we presented the abstract architecture of the Mediator. To
recap, it consists of two main components: a Control Flow Manager and a Data
Flow Manager. The Control Flow Manager is responsible for sending and
receiving messages in a particular order as well as for querying and updating
the state of the Mediator. The Data Flow Manager in turn, is responsible for

Figure 7-132
The occurrence
graph of the Net in
Figure 7-131

Figure 7-133
Checking whether
M16 is reachable
from M1 via M11 and
M12

Figure 7-134
Step 5. Deriving the
PSM of the
integration solution

160 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

managing the state of the Mediator and for performing the necessary data
transformations and constraint checking.
 For this case, we have selected WS-BPEL engine to implement the
Control Flow Manager. Therefore, the behavior PIM of the Mediator has been
mapped to a WS-BPEL specification. The Data Flow Manager has been
implemented as separate Web Service. The reason for that is to provide an
interpreter for the mapping DSL and execute the data transformations at
run-time.

To derive the Control Flow Manager we adopt and extend the approach
described in (Dirgahayu, 2007). In this approach, the transformation is
divided into three successive transformation steps: (T1) pattern recognition,
(T2) activity replacement, and (T3) model realization (see Figure 7-135).

T2a

pattern

recognition

activity

replacement

PIM-to-PSM transformation

Platform-

independent

service model

Control-flow

service model

in CBPL

Pattern-oriented

service model

in CBPL

T3a

model

realization

Platform-

specific

service model

T1a

In the first step (T1), control flow patterns from service the PIM of the
Mediator are recognised and then transformed to the pattern-oriented
service model in terms of Common Behavioral Patterns Language (CBPL). Each
CBPL pattern represents a control flow that is common to most execution
languages, i.e., sequence, concurrence, selection, and iteration (cf. Figure 7-136).
A sequence contains one or more activities to be executed in succession. A
concurrence contains two or more activities that can be executed
independently, i.e., in parallel. Iteration contains one or more activities to be
executed repeatedly as long as a condition holds. Selection contains one or
more cases to be selected. Case contains an activity to be executed when its
condition holds.

a b

a

a

b

a

b

sequence iteration concurrence selection

condition А

condition B
condition А

In the second step (T2), all data transformations and constraint evaluation
activities from the pattern-oriented service model are replaced with
operations to interact with the Data Flow Manager. This step results in a
control-flow service model that represents the Control Flow Manager in
CBPL.

In the last step (T3), the control-flow service model is mapped onto a
service PSM in terms of WS-BPEL. Note, that a service PSM contains

Figure 7-135
Transforming the
service PIM of the
Mediator to a
service PSM

Figure 7-136
CBPL patterns:
Sequence,
concurrence,
selection and
iteration

 SCENARIO 1 161

information that is not present in the service PIM. Examples of such
information are the XML namespaces of the exchanged messages or the
WSDL port types and operations of the services to be integrated. To
provide the required platform-specific information we annotate the
elements of the service PIM. This information is maintained during the first
and second step and is used in the third step. In the following, we present
the mapping rules from a service model in CBPL to a WS-BPEL
description.
 Sequence maps to bpel:sequence

<sequence>

 <a />

</sequence>

Iteration maps to bpel:while

<while>

 <condition>

 Condition A

 </condition>

 <a />

</while>

Concurrence maps to bpel:flow

<flow>

 <a />

</flow>

selection maps to bpel:if

<if>

 <condition>

 Condition A

 </condition>

 <a />

 <elseif>

 <condition>

 Condition B

 </condition>

 </elseif>

</if>

In some cases, the behavior of the mediator may need to be restructured to
enable mapping onto CBPL patterns. Figure 7-137 gives examples of such a
restructuring.

162 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

The excerpt of the abstract WS-BPEL behavior of the Mediator is shown
below

<sequence>

 <receive ...

 operation="receivePurchaseOrderRequest"

 inputVariable="M1"/>

 <invoke ...

 operation="updateState"

 inputVariable="М1"/>
 <flow>

 ...

 <sequence>

 <!-- create а variable to request M3, e.g.
 <requestМ3>
 <mappingName>por2search</mappingName>

 <mappingParameter>M1</mappingParameter>

 </requestМ3>
 -->

 <invoke ...

 operation="retrieveState"

 inputVariable="requestМ3"
 outputVariable="М3"/>
 <invoke ...

 operation="search"

 inputVariable="М3"
 outputVariable="M4"/>

 <invoke ...

 operation="updateState"

 inputVariable="М4"/>
 ...

 <while>

 <invoke ...

 operation="addLineItem"

 inputVariable="М7"
 outputVariable="M8" />

 <invoke ...

 operation="updateState"

 inputVariable="М8"/>
 </while>

 ...

</sequence>

At run-time, the Web service, implementing the Data Flow Manager, receives
data in XML format from the Control Flow Manager (operation updateState).

Figure 7-137
Behavior
restructuring

 SCENARIO 2 163

First, it transforms the data from XML to OWL and uses them to infer new
state information, perform transformations and evaluate constraints. When
requested (operation retrieveState), the Web service transforms back the data
from OWL to XML and sends it to the Control Flow Manager for further use.

7.3 Scenario 2

To show that our integration method is able to cope with changes in the
integration requirements, we present a second case defined in Scenario 2 of
SWSC.

Moon decides to integrate also its Production Management (PM) system. The
Mediator can use the PM to order products to be scheduled for production,
when they are not available from SM system. (cf. Figure 7-138).

In addition to Scenario 1, if the SM system reports that an item is not
available, the PM system will be used to check whether that item can be
produced. This is done by sending a message (M13) to the PM system to which
this system responds synchronously by sending a message (M14) containing
the price and the availability date. If the price and the availability date meet the
expectations of the customer Blue (as specified in message M1) the item will
be ordered by sending a message (M15) to the PM system and be confirmed
synchronously (M16).

164 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

Moon PM

Check
Product ion
capability

Confirm line
item order

Add

line it em

Close

Order

Create new
Order

Search
custom er

Blue Mediator Moon CRM

PIP 3A4 POR (M1)

Ack (M2)

Search string (M3)

Customer object (M4)

CustomerId (M5)

Confirmation (M8)

OrderId (M9)

Line item confirmation (M10)

OrderId, ArticleId, Qty (M7)

OrderId (M6)

Moon SM

Send

POR

PIP 3A4 POC (M11)

Ack (M12)

Confirm /

Reject
line it em

Receive
POC

?

ArticleId, Qty (M13)

Date, Price (M14)

ArticleId, Qty (M15)

Date, Price (M16)

In the remainder of this section, we apply each step of our integration
method to solve the integration problem presented above. For that purpose,
we apply the steps of our integration method again using concrete technologies,
i.e., WSDL and WS-BPEL (for modeling the service PSMs) and COSMO in
conjunction with OWL (for modeling the service PIMs).

7.3.1 Step 1. Abstracting WSDL description of PM to COSMO

In Step 1, we reuse the transformation defined in Section 7.2.1 and derive
the information and behavior PIM of the PM system (cf. Figure 7-139)

Figure 7-138
Blue’s and Moon’s
systems

 SCENARIO 2 165

Moon’s PM

accept: M13

reply: M14

accept: M15

reply: M16

M13-M16 are the messages described in the beginning of this section and
summarised in the following table

M13 Check Production Capability Request

M14 Check Production Capability Response

M15 Confirm Production Order Request

M16 Confirm Production Order Response

7.3.2 Step 2. Semantic Enrichment of the service PIMs

This step is identical to Step 2 from Section 7.2.2, i.e., we use UDEF to
semantically enrich the information model of the PM system. There is no
need to semantically enrich the behavior PIM of the PM system.

7.3.3 Step 3. Solving integration problem at PIM level

In this step, we update the information and behavior models of the Mediator
to reflect the changes in the business requirements. Similar to Step 3 from
Section 7.2.3, we first identify and specify the new mapping relations
between the information models of the Mediator and the PM system. Next,
we obtain new services requested by the Mediator by mirroring the service
provided by the PM system. Finally, we specify the conditions of the new
services to address the new business requirements. The resulting behavior
PIM of the Mediator is presented in Figure 7-140.

Figure 7-139
The PIM of the PM
system

166 CHAPTER 7 THE SEMANTIC WEB SERVICE CHALLENGE CASE

Moon’s SM

Mediator Moon’s CRMBlue

Moon’s PM

invoke: M1

return: M2

accept: M3

reply: M4

accept: M5

reply: M6

accept: M11

reply: M12

accept: M13

reply: M14

accept: M15

reply: M16

accept: M7

reply: M8

accept: M1

reply: M2

invoke: M7

return: M8

invoke: M10

accept: M10

invoke: M11

return: M12

invoke: M13

return: M14

available?

not available?

rejected?

accepted?

invoke: M15

return: M16

invoke: M3

return: M4

accept: M9

invoke: M5

return: M6

invoke: M9

7.3.4 Step 4. Verification of the integration solution

After updating the service PIM of the mediator to address the new
requirements, we analyse whether or not the integration solution still
enables the integrated systems to interoperate. Similar to Scenario 1, we
first abstract from the participation of each system and construct the
behavior of the integrated system. Next, we transform the integrated
behavior to a Petri Net and construct its occurrence graph. Finally, we
analyse this occurrence graph to check if the integrated system supports the
desired execution. In our case, we check whether M16 can be send after M1
is sent (cf. Figure 7-141). In addition, we can perform additional checks,
for instance whether M16 is reachable from M1 via M14 and M15 (cf. Figure
7-141). Based on the result of the queries on the occurrence graph, we can
conclude that systems satisfy the third necessary condition for
interoperability (see Chapter 5).

Figure 7-140
The complete
behavioral model of
the Mediator

 SUMMARY 167

7.3.5 Step 5. Deriving the PSM of the integration solution

In this final step, the service PIM of the Mediator is transformed into a
platform-specific model in terms of WS-BPEL. This is automatic step that
reuses the transformation described in Step 5 of Section 7.2.5.

7.4 Summary

In this chapter, we applied our method for the semantic integration of
service-oriented applications in a concrete context. That is, we solved the
integration problems from Scenario 1 and Scenario 2 of SWSC using
concrete SOA, MDA and KR technologies.

When applying the method we observed a number of effects. The
observations supported the validity of the claims made in Chapter 6 and, in
this way, it validated that the methods meets the requirements defined in
Chapter 1.

In Chapter 9, we will compare the case, presented in this chapter, with
a second one (presented in Chapter 8) and identify some commonalities
and differences. By doing this we will seek to provide further insight into
the applicability of our integration method in a more general context. In
addition, we will analyse the observations that we made when solving the
cases and will argue about to what extent our integration method meets the
requirements defined in Chapter 1. Finally, we will present some lessons
learnt.

Figure 7-141
Checking whether
M16 is reachable
from M1 via M14 and
M15

Chapter 8

8. Railroad Operator Case

In this chapter, we validate our method in a second case. In this case, an
existing integration solution is replaced with a new one in order to address
new integration requirements.

The chapter is organised as follows: in Section 8.1, we present a real-
world integration problem from the travel domain. In Section 8.2, we apply
the steps of our integration method to solve the problem presented in
Section 8.1. In Section 8.3, we show how our method addresses changes in
the implementation technology. This is done by solving a problem
presented in a hypothetical variation of the case from Section 8.1. Finally,
in Section 8.4, we provide a short summary of the presented case.

8.1 Introduction

To validate our integration method in a second case study, we performed a
lab experiment, i.e., we applied our method using real-world data. The data
to perform the case study has been collected in the master thesis research of
Bob Koehoorn (Koehorn, 2007). Bob worked for a company that was
contracted to develop an integration solution for one of the major
European railroad operators.
 The IT architecture of the information systems for selling international
train tickets in Europe is quite complicated. The major reason for this
situation is that the physical railroad network is divided into various
segments, managed by different railroad operators. Each of these operators
uses its own proprietary information systems.
 Overtime, railroad operators have built various information systems to
handle different aspect of train travel (such as checking price and availability
or booking a trip). To support the booking of international trips, some of
these information systems have been integrated in order to provide two
sales channels. The first one, called @tlantis, is used for selling tickets

170 CHAPTER 8 RAILROAD OPERATOR CASE

through travel agencies. The second one, called DirectMode, is used for
selling tickets by service desk employees38. Figure 8-142 depicts the current
system architecture.

DirectMode

TOP100
Contract

Client
TACO OMAI TTI

DirectMode Client
(Java Applicat ion)

Current Architecture

TACO integrates and provides tariff and pricing information from various
inventory systems used by the different railway operators. TOP100 provides
up-to-dates service schedules for international trains. ContractClient is used
to check whether any special tariffs apply to a customer. For example, big
companies can make a deal with the railroad operators, so that reduced
fares are used when their employees book tickets. In such cases, the
ContractClient will find and provide these special tariffs. OMA is responsible
for processing payments. It delivers the payment screens for several
payment providers (e.g., iDeal, Visa, MasterCard and more). Finally, ITTI,
the most complex system, is responsible for booking a trip. Its behavior is
discussed later in this chapter.

One of the major railroad operators has decided to provide a new sales
channel, called SelfService, enabling customers (mainly business travelers) to
book international trips using a generic web browser. For that reason, the
operator contracted a software company to build an integration solution,
called Travel Information Provider (TIP). The purpose of TIP is to integrate the
existing information system, provide new functionality (currently missing in
DirectMode), and serve as a basis for the SelfService application. In addition,
the railroad operator has expressed its wish to replace DirectMode client (the
Java application) with a web application that also uses TIP. Figure 8-143
depicts the desired architecture of the booking system.

38 This case only concerns DirectMode channel

Figure 8-142
Current system
architecture

 APPLICATION OF THE INTEGRATION METHOD 171

TI P

Desired architecture

TOP100
Contract

Client
TACO I TTI ОМАDRC CRI S

SelfService

(Web applicat ion
for customers)

Web Applicat ion

(replacem ent of
DirectMode Client)

The DirectMode system lacks a capability to determine the possible routes
from A to B. The railroad operator has decided to provide this capability in
the SelfService application by adding a new system called DRC. DRC provides a
service to determine the possible routes from A to B. Furthermore, since
DirectMode is only used by the desk employees it does not provide a
capability for customers to store their travel preferences and reuse them
next time they want to make a booking. The railroad operator has decided
to provide this capability in the SelfService application by adding a new
system, called CRIS. CRIS is responsible for managing customer profiles.
Amongst others, it provides operations to register a new customer (input
customer profile, output acknowledgement) and to check customer
credentials.

Currently, DirectMode does not show the price unless a booking is made.
A customer might ask the service desk employee for the price and then
choose not to book at all. If the booking is not cancelled, it will remain in
the system, even if the payment and delivery of the booking have not been
completed. This can lead to a loss of money, as the booked (unpaid) seat
cannot be booked again. To deal with this problem the railroad operator
has decided to add a new behavior to TIP: TIP first should provide the
customer with an estimated price based on the applicable tariffs for all
segments of the trip. Only if the customer starts the booking process a
“provisional booking” will be made. This booking will be cancelled if the
final steps (payment and delivery) have not been fulfilled.
 In the following sections, we apply the steps of our integration method
to specify the services of TIP, verify its correctness, and generate an
implementation using model transformation.

8.2 Application of the Integration Method

The biggest obstacle in the case study, presented in this chapter, was the
limited availability of information about DirectMode and the systems it uses.
More specifically, the following information sources have been available:

Figure 8-143
Desired situation

172 CHAPTER 8 RAILROAD OPERATOR CASE

– The XML schemata of the messages sent from DirectMode to some of the
systems it uses.

– A test environment for DirectMode. Using the test environment, it was
possible (to a certain extent) to analyse the incoming and outgoing
messages and to derive their missing XML schemata.

– A manual on how DirectMode is used. The manual has been used to clarify
the semantics of the exchanged messages and to identify the
functionality of DirectMode.

8.2.1 Steps 1 and 2. Deriving the PIM models

Since the only information we had at our disposal was the information
about DirectMode, we had to use this information to derive the (partial)
service PIMs of the systems it integrates. Therefore, Steps 1 and 2 (cf.
Figure 8-144) of our method were performed manually, analyzing the
interactions between DirectMode and its environment.

PIM PIM

1 1

3

2 24

3
PIM

PSM PSMPSM

5

In Chapter 4, we showed that COSMO supports modeling services from
different perspectives at different levels of abstraction. In this section, we
model services of DirectMode starting from integrated perspective at
choreography abstraction level. Then we refine the model to a distributed
orchestration (see Chapter 4, Section 4.3.2) and this way present the
distributed choreography models of the systems used by DirectMode.

We start with the integrated choreography (see Chapter 4, Section
4.3.2) of DirectMode services (cf. Figure 8-145).

The behavior of DirectMode starts with either requesting an existing
booking (retrieveDossier) or creating a new one (provideTariffs). In the first
case, there are two options that follow: the existing booking can be either
changed (changeBooking) or canceled (cancelBooking). In the second case,
DirectMode provides tariff information (provideTariffs) and availability
information (provideAvailability). If seats for a requested trip are available,
DirectMode allows a new booking to be created (createBooking). Note that
only if this new booking is created, the exact price of the ticket can be

Figure 8-144
Steps 1 and 2.
Deriving the
(semantically
enriched) service
PIMs of the
systems

 APPLICATION OF THE INTEGRATION METHOD 173

shown (providePrice). At this point, the customer can decide to pay for the
ticket or save the booking and pay latter. If the customer decides to pay, he
is provided with a list of possible payment methods (getPaymentMethods).
Once he selects one of them, he is presented with the respective payment
screen where he can enter his account data and perform the actual
payment. Only if the payment succeeds a ticket will be printed and given to
the customer.

provideTariffs

provideAvailability

createBooking

retrieveDossier

providePrice

saveBooking

cancelBooking

getPaymentMethods

changeBooking

printTicket

arrangePayment

success?

fail?

In the first refinement step, we assign responsibilities to DirectMode and its
client. That is, we refine the model presented in Figure 8-145 and derive
the distributed choreography model of DirectMode. For the sake of
simplicity, we only present the refinement of the services responsible for
creating a new booking. The resulting distributed choreography model of
the DirectMode services is presented in Figure 8-146.

Figure 8-145
The integrated
choreography
model of
DirectMode

174 CHAPTER 8 RAILROAD OPERATOR CASE

c
re

a
te

B
o

o
k

in
g

p
ro

v
id

e
P

ri
c

e

a
rr

a
n

g
e

P
a
y

m
e
n

t

p
ri

n
tT

ic
k

e
t

s
u

c
c

e
s

s
?

g
e

tP
a

y
m

e
n

tM
e

th
o

d
s

p
ro

v
id

e
A

v
a

il
a

b
il

it
y

s
a

v
e

B
o

o
k

in
g

p
ro

v
id

e
T

a
ri

ff
s

fa
il

?

DirectMode
Client

DirectMode

In the second refinement step, we model the internal actions performed by
DirectMode in order to provide its services. At this point, we are only
interested in what actions are required and not in who is responsible to
perform these actions. The resulting integrated orchestration model of
DirectMode services is presented in Figure 8-147.

c
re

a
te

B
o

o
k

in
g

p
ro

v
id

e
P

ri
c

e

a
rr

a
n

g
e

P
a
y

m
e

n
t

p
ri

n
tT

ic
k

e
t

s
u

c
c

e
s

s
?

g
e

tP
a

y
m

e
n

tM
e

th
o

d
s

p
ro

v
id

e
A

v
a
il

a
b

il
it

y

s
a

v
e

B
o

o
k

in
g

p
ro

v
id

e
T

a
ri

ff
s

fa
il

?

DirectMode

s
a

v
e

B
o

o
k

in
g

g
e

tT
a

ri
ff

G
rp

u
p

s

g
e

tT
a

c
o

s

g
e

tA
v

a
il
a

b
il

it
y

c
re

a
te

B
o

o
k

in
g

c
o

n
tr

a
c

tC
li
e

n
t

g
e

tP
a

y
m

e
n

tM
e

th
o

d
s

g
e

tP
a

y
m

e
n

tS
c

re
e

n

In the final refinement step, we refine each internal action to an interaction
by defining the responsibility of each system that participates in this action.
 The TACO system is responsible for providing tariff and pricing
information. It integrates tariff information from the various inventory
systems (used by the various railway operators). In Figure 8-148 we present
the refinement of the actions getTariffGroups and getTacos.

Figure 8-146
The distributed
choreography
model of
DirectMode

Figure 8-147
The integrated
orchestration model
of DirectMode

 APPLICATION OF THE INTEGRATION METHOD 175

TACO

invoke: TariffRequest
return: PossibleTacos

invoke: TariffGroupRequest
return:TariffGroups

getTacos

getTаriffGroups

provideTariffs

TOP100 provides up-to-date availability information for international
trains. For a certain train (on a certain date and time) it returns the number
of seats available for every tariff that is still available. In Figure 8-149, we
present the refinement of the action getAvailability.

invoke: AvailabilityRequest

return: Availability

TOP100

provideAvailability getAvailability

To create a new booking DirectMode interacts with ITTI and
ContractClient systems. ITTI is used to create the actual booking whereas
ContractClient system is used to determine the price of the ticket (since
special tariffs may apply to some customers). If the customer agrees to pay
the price, DirectMode will interact with ITTI to obtain available payment
methods (getPaymentMethods). After selecting a payment method,
DirectMode requests the respective payment screen for that method by
interacting with OMA (getPaymentScreen) and presents it back to the
customer. Upon successful payment, DirectMode client can print the
ticket. In Figure 8-150, we present the refinement of the actions
createBooking, contractClient, saveBooking, getPaymentMethods and
getPaymentScreen.

Figure 8-148
Tariffs sub-behavior

Figure 8-149
Availability sub-
behavior

176 CHAPTER 8 RAILROAD OPERATOR CASE

ITTI

Contract Client

invoke: CompanyName
return: ContractDetails

ITTI
createBooking

getPaymentMethods

invoke: PaymentMethodsRequest
return: PaymentMethods

invoke: PaymentMethod
return: PaymentScreen

OMA

contractClient

getPaymentScreen

invoke: BookingRequest
return: ProvisionalBooking

fail?
success?

saveBooking

invoke: Booking
return: Confirmation

providePrice

saveBooking

getPaymentMethods

arrangePayment

printTicket

8.2.2 Step 3. Design of TIP framework

In Step 3 of our integration method, we address the new requirements of
the railroad operator by specifying the service PIM of TIP (cf. Figure 8-
151).

PIM PIM

1 1

3

2 24

3
PIM

PSM PSMPSM

5

To address the requirements, TIP should provide additional services to the
SelfService application. First, it should integrate a new system called DRC and
provide a service to determine the possible routes from A to B. Second, it
should integrate a new system called CRIS and functionality for managing
customer profiles. Finally, TIP behavior should provide support for

Figure 8-150
Booking sub-
behavior

Figure 8-151
Step 3. Design of
the TIP

 APPLICATION OF THE INTEGRATION METHOD 177

“provisional booking”. The integrated behavior of TIP is presented in Figure
8-152.

The behavior of TIP starts with either a new travel request made from
the SelfService or a request to login an existing customer. In case of a new
travel request, TIP first provides the possible routes from A to B. Then, it
provides the possible tariffs and availability for the selected route.

When a route is planned and the customer has logged in successfully a
new provisional booking can be created. Following this step, different
payment and delivery options are presented to the customer. At this point,
he can arrange the payment. If the payment is not arranged within a certain
period, the booking will be automatically cancelled. If the payment
succeeds, the booking will be either fulfilled or confirmed. Fulfilled booking
means that no further action on behalf of the railway companies is required.
E.g., customers print their own ticket (home print). Confirmed booking
means that the booking is paid for and reserved, but not yet finalised. It will
be finalised when the ticket is printed and mailed to the customer.

178 CHAPTER 8 RAILROAD OPERATOR CASE

provideTariffs

provideAvailability

createProvisionalBooking setNewPassword

paymentTimeout

succeed?

planRoute loginCustomer

getDeliveryMethods getPaymentMethods

arrangePayment

cancelBooking

fail?

confirmBookingfullfilBooking

printTicket

deliverTicket

Similar to DirectMode, we refine the integrated choreography of TIP by
assigning responsibilities to TIP and SelfService. That is, we refine the model
presented in Figure 8-152 and derive the distributed choreography model
of TIP. Again, for the sake of simplicity, we only present the refinement of a
part of TIP. The resulting distributed choreography model of the TIP
services is presented in Figure 8-153.

Figure 8-152
The integrated
choreography
model of TIP

 APPLICATION OF THE INTEGRATION METHOD 179

c
re

a
te

P
ro

v
is

io
n

a
lB

o
o

k
in

g

a
rr

a
n

g
e

P
a

y
m

e
n

t

c
a

n
c

e
lB

o
o

k
in

g

fa
il

?

lo
g

in
C

u
s

to
m

e
r

s
u

c
c

e
e

d
?

SelfService

p
ro

v
id

e
R

o
u

o
te

fu
lf

il
lB

o
o

k
in

g

TIP

In the second refinement step, we model the internal actions performed by
TIP in order to provide its services. This step is analogous to the second
refinement step performed on the DirectMode model. For that reason, we
skip the presentation of the integrated orchestration model of TIP and
continue with presenting the distributed orchestration.
 To make a booking, a customer first has to login. If the customer has
logged in successfully, the SelfService application will be provided with
customer information. Otherwise, an error message will be shown to the
customer. When logged in customers may also change their passwords (cf.
Figure 8-154).

loginCustomer

setNewPassword

CRISCustomer
Management

checkLogin

getCustomerInfo

updatePassword

login fail?

login failed

login succeeded

login fail?

To make a booking a customer also has to plan a trip. TIP provides this
functionality by integrating a new system called DRC (cf. Figure 8-155).

Figure 8-153
The distributed
choreography
model of TIP

Figure 8-154
Customer
Management sub-
behavior

180 CHAPTER 8 RAILROAD OPERATOR CASE

DRC

provideRoute getRoute

accept: TravelAdviceRequest

reply: TravelAdvice

Only when the customer has logged in and a certain travel option is selected
a booking can be made. This is done by executing the behavior presented in
Figure 8-156.

ITTI

ITTI
createBooking

getPaymentMethods

invoke: PaymentMethodsRequest
return: PaymentMethods

invoke: PaymentMethod

return: PaymentScreen

OMA

getPaymentScreen

invoke: BookingRequest
return: ProvisionalBooking

fail?
success?

invoke: DeliveryMethodRequest
return: DeliveryMehods

getPaymentMethods

arrangePayment

fulfillBooking

getDeliveryMethods getDeliveryMethods

cancelBooking

Besides specifying the behavior of TIP, we also needed to specify the
mappings between the information models of the systems that TIP
integrates and the information model of SelfService application. However,
in this case, most of the SelfService operation invocations have been defined
to match the operation executions of the systems that TIP integrates. This
resulted in a very few mapping definitions. For example, SelfService expects
a TravelOption that aggregates tariffs and availability information. In this case,

Figure 8-155
Route planning
sub-behavior

Figure 8-156
Booking sub-
behavior

 APPLICATION OF THE INTEGRATION METHOD 181

we defined a mapping to combine data from provideTariffGroups, provideTacos
and getAvailability operations.

To define the mappings we re-used the mapping DSL presented in
Chapter 7.

8.2.3 Step 4. Verification of the integration solution

In Step 4 (cf. Figure 7-129) of our integration method, we verify the service
PIM of TIP.

PIM PIM

1 1

3

2 24

3

PIM

PSM PSMPSM

5

To do this, we first abstract from the participation of each system and
construct the integrated behavior of TIP. In fact, we already have the
integrated model of TIP (cf. Figure 8-152). Next, we transform the
integrated behavior of TIP to a Petri Net and construct the respective
occurrence graph. Then, we use the occurrence graph to check whether the
integrated systems are pragmatically interoperable (see Chapter 5, Section
5.3.3). Finally, we analyse the occurrence graph to check whether TIP
meets the new requirements.
 This step is identical to Step 4 presented in Chapter 7. In fact, we reuse
the COSMO to Petri Net transformation, which we developed for the SWS
Challenge case study. Figure 8-158 presents the resulting Petri net.

Figure 8-157
Step 4. Verification
of the integration
solution

182 CHAPTER 8 RAILROAD OPERATOR CASE

A1

ε1

A2A3

Route

planned

Tariffs

provided

Availability

provided

A4

User

Logged in

Provisional

Booking

Created

A7

A5

Delivery

Methods

Provided

Payment

Methods

Provided
A6

Delivery and Payment

Methods Provided

A9A8
Payment

Arranged

Payment

TimeOut

Payment

Not Arranged

A10

Booking

Canceled

A11 A12

Booking

Fulfilled
Booking

Confirmed

A13A14

Ticket

Printed

Ticket

delivered

The table below presents the correspondence between the actions from the
integrated model and the transitions in the resulting Petri nets.

A1 planRoute

A2 provideTariffs

A3 provideAvailabilit y

A4 loginCustomer

A5 createProvisionalBooking

A6 getDeliveryMethods

A7 getPaym entmethods

A8 paym entTimeout

A9 arrangePayment

A10 cancelBooking

A11 confirmBooking

A12 fulfillBooking

A13 printTicket

A14 deliverTicket

Next, we construct the occurrence graph of the net (cf. Figure 8-159)

Figure 8-158
The Petri net
corresponding to
the integrated
choreography of
TIP

 APPLICATION OF THE INTEGRATION METHOD 183

1

2

3

4

5

6

7

8

11

9

12

10

13

14

15

17

16 19

20

18
A1 A2 A3

A1 A2 A3

A4 A4 A4 A4

A5 A7

A7

A6 A6

ε1

A8

A1 0

A9 A1 2

A1 1

A1 3

A1 4

Similar to Step 4 in the previous chapter, we analyse the occurrence graph
to check whether the integrated system supports all desired execution
traces. For example, we check whether a booking can be fulfilled (cf. Figure
7-133)

1

2

3

4

5

6

7

8

11

9

12

10

13

14

15

17

16 19

20

18
A1 A2 A3

A1 A2 A3

A4 A4 A4 A4

A5 A7

A7

A6 A6

ε1

A8

A1 0

A9 A1 2

A1 1

A1 3

A1 4

The answer is “yes” because there is an execution trace from A1 (planRoute)
and A4 (loginCustomer) that leads to A18 (fulfillBooking).

Another interesting query is to check whether a ticket can be printed
before it is paid (cf. Figure 8-161).

1

2

3

4

5

6

7

8

11

9

12

10

13

14

15

17

16 19

20

18
A1 A2 A3

A1 A2 A3

A4 A4 A4 A4

A5 A7

A7

A6 A6

ε1

A8

A1 0

A9 A1 2

A1 1

A1 3

A1 4

The answer is “no”, because the only execution path that leads to A11
(printTicket) is via A9 (arrangePayment).

Figure 8-159, Figure 8-160 and Figure 8-161 only serve for illustration
purpose. In real life, we do not need to visualise the net and occurrence

Figure 8-159
The occurrence
graph of the net
from Figure 8-158

Figure 8-160
Checking whether a
booking can be
fulfilled

Figure 8-161
Checking whether a
ticket can be
printed before paid
for

184 CHAPTER 8 RAILROAD OPERATOR CASE

graph. In fact, we only need to compute the occurrence graph, represent it
in some format (e.g., as a relational database), and query it.

8.2.4 Step 5. Deriving the service PSM of TIP

In Step 5 (cf. Figure 8-162) of our integration method, we transform the
service PIM of TIP to a PSM in terms of Java.

PIM PIM

1 1

3

2 24

3
PIM

PSM PSMPSM

5

Similar to the case presented in Chapter 7, the control flow patterns from
service PIM of the TIP system are recognised and then transformed to a
pattern-oriented service model in terms of Common Behavioral Patterns
Language (CBPL). As aforementioned, each CBPL pattern represents a
control flow that is common to most execution languages, i.e., sequence,
concurrence, selection and iteration. Besides, message sending and receiving,
data transformations and constraint evaluation activities in the CBPL model
are replaced with operations to interact with the Data Flow Manager and the
integrated systems. Finally, the CBPL model is transformed to a PSM in
terms of Java. For that purpose, we developed a simple process execution
engine and defined a transformation that creates a configuration for the
engine.

The metamodel of our process execution engine is show in Figure 8-
163.

Figure 8-162
Step 5. Deriving the
service PSM of TIP

 APPLICATION OF THE INTEGRATION METHOD 185

Element

execute()

ControlFlowElementActivity

elements

1..*

Condition

Sequence

Concurrence

SendMessage

ReceiveMessage

ConditionalElement

UnconditionalElement

Selection

Iteration

1..*

Process

start()

1

initialStep

A Process consists of executable elements that are either activities or control flow
elements. An activity can be either sending or receiving a message. After a
message is received, the process engine interacts with the Data Flow Manager
to update its state. Before sending a message, the process engine interacts
with the Data Flow Manager to retrieve the information required to construct
the message. At this stage, all required data transformations are performed
by the Data Flow Manager.
 The class Sequence implements the CPBL pattern sequence.

public class Sequence

 extends UnconditionalControlFlowElement {

 ...

 @Override

 public void execute() {

 for (Element element : this.getElements()) {

 element.execute();

 }

 }

}

In the execute() method of this class we iterate over all sub-elements and
execute them sequentially.
 The class Concurrency implements the CBPL pattern concurrency.

Figure 8-163
The meta-model of
the process
execution engine

186 CHAPTER 8 RAILROAD OPERATOR CASE

public class Concurrency extends

 UnconditionalControlFlowElement {

 ...

 @Override

 public void execute() {

 CountDownLatch doneSignal =

 new CountDownLatch(this.getElements().size());

 for (Element element : this.getElements()) {

 new Thread(new Worker(element, doneSignal)).start();

 }

 try {

 doneSignal.await();

 } catch (InterruptedException e) {}

 }

}

In the execute() method of the class we iterate over all sub-elements and start
a new thread for each of them. To synchronise the execution of the threads,
we use a CountDownLatch.
 A CountDownLatch is initialised with a given count. In our case, this is the
number of the sub-elements of the respective Concurrency object. The await()
method of the CountDownLatch blocks until its count reaches zero. The
count is decreased by invoking the countDown() method. Once the count
reaches zero all waiting threads are released and the execution flow
continues immediately.
 To provide a mechanism for decreasing the count of the CountDownLatch
we wrap the sub-elements of the Concurrency object in a special class Worker.
The Worker is a simple class that implements the interface Runnable. In Java,
the Runnable interface should be implemented by any class whose instances
are intended to be executed by a thread. The implementing class must
define a method run() with no arguments. In this method, the wrapped
process element is executed and, upon successful completion, the count of
the associated CountDownLatch is decreased by calling the method
countDown().

public class Worker implements Runnable {

 private final CountDownLatch doneSignal;

 private Element element;

 public Worker(Element element, CountDownLatch doneSignal)

{

 this.element = element;

 this.doneSignal = doneSignal;

 }

 public void run() {

 element.execute();

 doneSignal.countDown();

 }

 APPLICATION OF THE INTEGRATION METHOD 187

}

The class Iteration implements the CBPL pattern iteration.

public class Iteration

 extends ConditionalControlFlowElement {

 ...

 @Override

 public void execute() {

 while (this.getCondition().check(this.getContext()))

 this.getElement().execute();

 }

}

In the execute() method of the class we repeatedly execute a process element
until the controlling condition evaluates to false. The evaluation of the
condition is delegated to the Data Flow Manager and is based on the
current state of the system.
 The class Selection implements the CBPL pattern selection.

public class Selection extends

 ConditionalControlFlowElement {

 ...

 @Override

 public void execute() {

 for (int i = 0; i < this.getElements().size(); i++) {

 Element element = this.getElements().get(i);

 Condition condition = this.getConditions().get(i);

 if (condition.check(this.getContext())) {

 element.execute();

 break;

 }

 }

 }

}

In the execute() method of the class we check whether the condition,
associated with each sub-elements holds, and, if so, we execute this
element.
 Each CBPL model is transformed into a configuration specification for
the process engine. For that purpose, we use the Spring Framework39. The
key component of Spring is its Inversion of Control container40, which provides
a consistent means of configuring and managing Java objects.
 At run time, Spring reads the configuration specification, instantiates all
required objects and injects all specified dependences among them.

39 http://www.springsource.org/
40 http://static.springframework.org/spring/docs/2.5.x/reference/beans.html

188 CHAPTER 8 RAILROAD OPERATOR CASE

public class TIP {

 public static void main(String[] args) {

 BeanFactory factory = new XmlBeanFactory (

 new ClassPathResource("TIPConfig.xml"));

 Process process = (Process) factory.getBean("process");

 process.start();

 }

}

8.3 Deriving the Service PSM of TIP in Terms of WS-BPEL

To demonstrate that our integration method allows for changes of the
implementation technology we present a hypothetical scenario, in which
railroad operator decides to use WS-BPEL as implementation technology
for TIP. A reason for using WS-BPEL might be to take advantage of more
scalable and feature-rich execution engines which enable logging and
monitoring of process execution.

To generate the WS-BPEL process from the service PIM of TIP, we re-
use the transformation presented in Chapter 7. In this section, we present
an approach for exposing the systems used by TIP as Web Services.

As aforementioned in Chapter 3, a WS-BPEL process interacts with
other systems via WSDL interfaces. However, the systems used by TIP do
not provide such WSDL interfaces. Therefore, we first need to expose the
functionality of these systems as Web Services.

In our approach, we use Apache Axis WSDL2Java41 tool. The tool takes as
input a Java interface and produces a respective WSDL description.
However, we do not have the Java interfaces of the services used by TIP.
Fortunately, the distributed orchestration model of TIP provides all the
information required to generate these interfaces automatically. The
transformation is trivial – for each system, we generate a Java interface that
contains methods corresponding to all operation executions defined in the
service PIM of that system. The arguments of these method have the same
types as the results established in the accept part of the operation execution.
The return types of the methods are the same as the respective result types
established in the reply part of the operation execution. The transformation
is illustrated in Figure 8-164.

41 http://ws.apache.org/axis/

 DERIVING THE SERVICE PSM OF TIP IN TERMS OF WS-BPEL 189

TACO

accept: TariffRequest
reply: PossibleTacos

accept: TariffGroupRequest
reply:TariffGroups

getTacos

getTаriffGroups

public interface TACO {

public TariffGroups getTariffGrous(TarrifGrpoupRequest req);

public PossibleTacos getTacos(TariffRequest req);

}

Once we have the java interfaces of all systems, we use Java2WSDL 42tool to
produce the respective WSDL descriptions. The tool requires as input
information that is not present in the service PIMs of the systems, such as
the location of the service and the target namespace of the WSDL file. This
information is provided manually.

The Java2WSDL tool outputs a WSDL document that contains the
appropriate WSDL types, messages, portType, bindings and service descriptions
to support a SOAP RPC encoding. If the specified methods in the Java
interfaces reference other classes, the Java2WSDL tool will generate the
appropriate XML types to represent the classes and any nested/inherited
types.

In the next step, we use the generated WSDL to produce all of the glue
code for deploying the service as well as stubs for accessing it. For that
purpose, we use the Apache Axis’s WSDL2Java tool. The tool takes as an
input the base output directory for java classes, the scope of deployment
(Application, Request, or Session) and the name of the WSDL file and
produces a number of Java classes. For example, for the WSDL generated in
the previous step the outputted files are:

– TACOSoapBindingImpl.java - the implementation code for the Web service

– TACO.java – a remote interface to the TRC system

– TACOService.java – the service interface of the Web services. The

TACOServiceLocator class (see next bullet) implements this interface.

42 http://ws.apache.org/axis/

Figure 8-164
Deriving the Java
interface of TACO
system

190 CHAPTER 8 RAILROAD OPERATOR CASE

– TACOServiceLocator.java – a helper factory for retrieving a handle to the service

– TACOSoapBindingSkeleton.java – a server-side skeleton code

– TACOSoapBindingStub.java – a client-side stub code that encapsulates client
access

– deploy.wsdd – a deployment descriptor that we pass to the Axis system to deploy
these Web services

– undeploy.wsdd –a deployment descriptor that we use to undeploy the Web services
from the Axis system.

We focus on the generated TACOSoapBindingImpl class:

public class TACOSoapBindingImpl {

 private TACOImpl taco;

 public TACOSoapBindingImpl(TACOImpl taco) {

 this.taco = taco;

 }

 public TariffGroups getTariffGrous(TarrifGrpoupRequest req) {

 return taco.getTariffGrous(TarrifGrpoupRequest req);

 }

 public PossibleTacos getTacos(TariffRequest req) {

 return taco.getTacos(TariffRequest req);

 }

}

When the Web Service is deployed and the TACOSoapBindingImpl is
instantiated it is initialised (via its constructor) with the DirectMode
implementation, responsible for the actual communication with the TACO
system. At run-time, when Axis receives a SOAP message designated for
TACO system, it will unmarshal it and invoke the respective method of the
TACOSoapBindingImpl class. The TACOSoapBindingImpl, in turn, will delegate
the invocation to the DirectMode implementation.

To initialise the TACOSoapBindingImpl with the implementation of the
DirectMode class responsible for the interaction with TACO system, we
define the following Spring description:

...

<beans>

 <bean id="DirectModeTACO" class="DirectModeTACO">

 </bean>

 <bean id="TACOWebService" class="TACOSoapBindingImpl">

 <constructor-arg>

 <ref bean="DirectModeTACO"/>

 </constructor-arg>

 </bean>

 SUMMARY 191

...

</beans>

Finally, the web services and the WS-BPEL process are deployed and can be
executed.

8.4 Summary

In this chapter, we applied our method for the semantic integration of
service-oriented applications presented in Chapter 5 in a concrete context.
I.e., we solved a concrete integration problem from the real world using
concrete SOA, MDA and KR technologies. Note, that we solve the case
using real-world data but in lab settings, i.e., our solution has not been
deployed and used in the real-world.

Similar to the case presented in Chapter 7, when applying the method
we observed a number of effects. The observations supported the validity of
the claims made in Chapter 6 and this way, validated the that our method
meets the requirements defined in Chapter 1.

Chapter 9

9. Discussion

In this chapter, we discuss the validation results for our integration method
presented in Chapter 5. This chapter is organised as follows: Section 9.1
provides a discussion about the validity of the claims made in Chapter 6. In
Section 9.2, we provide a cross-case analysis of the two cases presented in
Chapters 7 and 8. Section 9.3 summarises the most important challenges
that emerged when applying our integration method to the cases as well as
lessons learnt. Finally, in Section 9.4 we discuss identified limitations of our
solution.

9.1 Validation Claims

In Chapter 6, we made a number of claims to validate whether or not our
integration method meets the requirements presented in Chapter 1. In this
section, we provide arguments for the validity of these claims. These
arguments are based on observations we made when solving the integration
problems presented in Chapters 7 and 8.

To solve the integration problem of Scenario 1 (cf. Chapter 7), we
developed a model transformation that takes a service PSM (specified in
WSDL) and produces a corresponding service PIM (in terms of COSMO).
We applied this transformation to derive the service PIMs of the systems to
be integrated. By contrast, when solving the integration problem presented
in Chapter 8, we did not have explicit service PSMs in machine processable
format. To derive the service PIMs (see Chapter 8, Section 8.2.1) we had to
experiment with the existing integration solution, read its manual and go
through its source code. Nevertheless, in both cases we were able to derive
the service PIMs of the systems and to confirm Claim C1 (Service PIMs can be
derived from service PSMs). For the case presented in Chapter 7, the derivation
process was fully automatic, whereas for the case we presented in Chapter
8, the service PIMs were derived manually.

194 CHAPTER 9 DISCUSSION

 In both cases, we used COSMO concepts to model the service PIMs of
the solutions of the respective integration problems. In Chapter 7, we used
the distributed choreography PIMs of the systems to be integrated. First, we
mirrored the PIMs and automatically derived the initial service PIM of the
integration solution. Then, we manually refined this initial service PIM and
derived the complete service PIM of the integration solution. In Chapter 8,
we started from a higher-level, i.e., we first specified the integrated
choreography PIM of the integrated solution. Then, in a number of
refinement steps, we derived the complete PIM of the integrated solution.
In both cases, COSMO provided all necessary concepts to model the service
PIMs of the integrated solutions. This, in turn, has confirmed Claim 2
(COSMO provides all required concepts to model platform-independent integration
solutions). In addition, regarding the case from Chapter 8, COSMO
abstraction layers and perspectives helped us to address only a limited set of
concerns in series of design steps. In this way, we were able to focus on
issues that have been relevant for each of these steps while ignoring or
discarding details that have been irrelevant for the same step.

In Chapter 7, we used OWL to map the elements of the service PIMs of
the systems to be integrated to classes and properties from UDEF (in this
case UDEF trees have been used as domain ontology). This way, we
provided shared, agreed upon semantics for these model elements. Besides,
a WSDL description only defines the services provided by some system and
does not define the services requested by it. Using COSMO, we formally
specified both services requested and provided by the systems. Finally,
WSDL does not provide means for specifying the ordering of service
operations. Using COSMO, we formally defined the order of service
operations. Thus, by applying the semantic enrichment step, in which we
added additional information and behavior semantics to the service models
of the systems to be integrated, we were able to make these service
descriptions more explicit and less ambiguous. By doing this, we have
confirmed Claim 3 (The service models of the systems to be integrated can be
semantically enriched).

In Chapter 7, we used OWL to define the information model of the
integration solution. This allowed us to aplly a formal logical reasoner to
check the Necessary Conditions 1 and 2. To validate necessary condition 3, we
developed a model transformation from COSMO to Petri Nets. In Chapter
7 and 8, we transformed the behavior models of the integration solutions to
Petri Nets and constructed the respective occurrence graphs. Based on the
occurrence graphs were able to check whether or not the integrated systems
satisfy Necessary Condition 3. Being able to check the necessary conditions for
interoperability we confirmed Claim C4 (The necessary conditions for
interoperability can be formally checked).

 CROSS-CASE ANALYSIS 195

In Chapter 7, Section 7.3, we presented a second scenario for which the
integrated requirements have changed. We showed that only updating the
service PIM of the integration solution was sufficient to generate an
implementation reusing the model transformation developed for the first
scenario. By doing this, we confirmed Claim C6 (The same model
transformations can be used to solve different integration problems).
 Finally, to confirm Claim C5 (The same solution PIM can be used to derive
different solution PSMs), in Chapter 8, Section 8.3 we presented an
hypothetical variation of the integration problem from Section 8.2. In this
variation, the requirements on the implementation technology have
changed. To address the new requirements, we developed a new model
transformation and applied it to the same PIM of the integration solution
presented in Section 8.2. This way, we showed that the same abstract
solution could be reused to derive an implementation for the new
technology platform.

9.2 Cross-case Analysis

In this section, we analyse the cases and identify commonalities and
differences between them. By doing this, we seek to provide further insight
into the practical applicability of our conceptual framework and integration
method in more general context.

The integration problems, presented in Chapters 7 and 8 originate from
different domains. In the first case, we built an integration solution for a
problem from the order management domain. In the second case, we
applied our integration method to solve a characteristic problem from the
travel domain. Based on experiences with both cases, we expect that our
conceptual framework and integration method can be used in different
domains to model a wide spectrum of services. When defining the
conceptual framework and the integration method, in addition, no
assumptions have been made with respect to the type of services that should
be modeled and integrated.

To derive the service PIMs of the systems from Chapters 7 and 8, we
used completely different sources of information. In the first case, there were
explicit service descriptions in WSDL. Although defining only the syntax of
the exchanged messages, these descriptions served as starting point to
derive the initial service PIMs of the systems. In the second case, we had no
explicit service descriptions. To derive the service PIMs we had to
experiment with the existing integration solution as well as to analyse its
documentation and source code. As already said, this is a very long and
difficult process. Nevertheless, in both cases we were able to derive the
service PIMs of the systems. In the first case, we automated the process by

196 CHAPTER 9 DISCUSSION

providing a model transformation from XML schema to OWL. In the
second case, we had to do this manually. Having an explicit service
description, in a machine processable format, enables the quick
initialization of a service PIM. Such a raw PIM can be presented in a
suitable way (e.g. using a graphical tool) to the business domain experts
who can specify the semantics of the model elements.

Another difference between the two cases is the nature of the integration
problem. In the first case, we had a “green field” situation, i.e., there was no
existing integration solution. We had to analyse the mismatches between
the systems and design an integration solution that enables them to
interoperate. In the second case, there was already an existing integration
solution. Our task was to change this solution such that it continues to
enable interoperability between the systems while meeting the new
integration requirements. In the first case, we specified the integration
solution by first identifying the mismatches in the information and behavior
models of the systems, and then providing a solution for each identified
interoperability problem. In the second case, we were able to reuse some
fragments of the existing integration solution and only had to provide
solutions such that the new integration solution meets the new integration
requirements.

In the second step of our method, we allow service PIMs, derived in the
first step of the method, to be semantically enriched. One way to do this is
to map their elements to elements of domain ontologies with well-defined
and shared meaning. In the first case, we were able to do this by mapping
the classes and properties of the information PIMs to objects and properties
defined in UDEF. In the second case, we were unable to find suitable
domain ontologies. Nevertheless, in this second case, the information
model of the application that uses the integrated services has been designed
to match as closely as possible the information models of the integrated
systems. This resulted in definition of much simpler mappings comparing
to the first case.

9.3 Challenges and Lessons Learnt

One of the biggest challenges, solving the integration problems in both
cases, was to understand the language used in the problem domains.
Although the provided XML schemata could be easily transformed into
information models, understanding and explicitly defining the meaning of
the model elements was a very hard task. For example, Blue exchanges
messages in RosettaNet’s PIP3A4 format. Although the XML schema of
PIP3A4 seemed relatively simple at first sight, a closer look revealed that it
imports another XML schema, defining large amount of RosettaNet core

 CHALLENGES AND LESSONS LEARNT 197

elements. In addition, the imported XML schema, in turn, imports another
large XML schema, defining various vocabulary terms such as country
codes, order status codes and currency codes. Since we are no domain
experts, it was difficult to understand the meaning of all elements, defined
in these XML schemata. Besides, most of the elements defined in the XML
schemata, have been nested in deep structures and referenced from other
elements. This also contributed to the complexity of the information
models. A tool capable of visualizing the information model in a graphical
way and providing a mechanism for showing/hiding parts of the model
would help significantly to get a quick overview of the model elements and
their structure. However, we could only guess the meaning of these
elements. To understand their semantics we needed a domain expert.

Another challenge was the lack of information about the systems in the
second case. Discovering what a system does by experimenting with the
system, reading its manual and going through the source code, is an
extremely difficult process. It could be avoided if the services of the systems
would be properly described at development time.
 Specifying and verifying the mappings between the information models
of the systems from the first case, also turned out to be a very complex task.
The reason for that was that we did not have a tool supporting our mapping
DSL. To specify the mappings, we used a generic text editor, which resulted
in many syntax errors. Finding and repairing these syntax errors took most
of the time required to solve the integration problem. Even a very simple
tool, e.g. a text editor with auto-completion function, could improve
dramatically the process of specifying the information mappings.

Finally, a big challenge was dealing with conflicting sources of
information about the systems in the second case. For example, the user
manual of DirectMode has been written before the document, describing
the design of the system. For that reason, there were mismatches between
these two information sources. In addition, the XML schemata, used to
specify the format of the exchanged messages did not always match the
actual implementation of the message exchanges.

Applying our integration method to the two cases led to a number of
lessons learnt.

First, describing the services of a system is very important. Reasoning
with service descriptions is already very difficult even without having to go
through the source code or user manuals of a system.

Second, in order to reuse fragments an existing integration solution, the
service PIMs of these solutions should be made as modular as possible. This
means specifying the PIMs as a composition of (logically independent)
components. Our conceptual framework is well-suited for this providing
two different ways for structuring, namely constraint-based and causality-
based structuring.

198 CHAPTER 9 DISCUSSION

Second, specifying only the syntax of the messages, exchanged between
the systems is not enough. Reasoning about a system requires richer
semantic descriptions about the exchanged messages and the functionality
of the system. In some cases, there were very useful comments in the
source code of the systems and the XML schemata files. However, it would
be much more useful if these comments were captured in a formal way in a
service description.

Another lesson learned is that routine comes from practice. After
starting with simple COSMO models, it became less difficult and time-
consuming to define more complex models. Besides, in both cases,
modeling systems helped us to understand what they do.

The last but not the least important lesson is that the modeling work is
not to be underestimated. Trying to understand what a complex system
does, especially when not much information is available, takes large amount
of time. This makes the planning of such a task very hard.

9.4 Limitations

In Step 1 of our method, we transform the service PSMs of the systems to
be integrated to their respective PIMs. However, in some cases, it might be
not possible to preserve the complete semantics of a PSM. For example, an
XML schema could define the order of children elements within a parent
element. Knowledge representation languages in general do not provide
means for specifying such an ordering. A possible workaround for this
problem would be to explicitly define the missing semantics of PSM
elements in dedicated PIM elements.

In the case study from Chapter 7, we used OWL as language to
represent the information modeling concepts of our framework. Although
providing means for semantic integration by increasing the precision of the
service models and having mapping constructs, OWL has limited
expressivity that is inherited in our approach. First, OWL does not allow
defining predicates of arbitrary arity, formulating complex queries (beyond
subsumption and instance checking), and “negation-as-failure” (i.e., closed
world assumption) reasoning. Second, it does neither have string
manipulation functions (e.g., concatenation) nor arithmetic primitives (e.g.
multiplication) and aggregation and grouping (e.g., the sum of all values of a
given property) are not supported. Confusingly, these have been defined as
objectives in the OWL “Use Cases and Requirements” document (OWL,
2004), but are not present in the current version of the language definition.

Although using KR languages to express the mappings between the
information models of the systems to be integrated, our method requires
system integrators to discover and represent these mappings. This is a

 LIMITATIONS 199

manual, error-prone process which requires understanding of the meaning
of all information models being integrated. In some cases, wrong mappings
can cause interoperability problems that cannot be discovered by
satisfiability reasoning.

In addition, it is not realistic to assume that system integrators are
familiar with KR languages, such as OWL. This means that tools are
required to hide the complexity of OWL and guide the system integrators
in defining the mappings. To take full advantage of the computational
properties of OWL, such tools could integrate an OWL reasoner and
provide feedback about the correctness of the mapping.

In our integration method, we check the third necessary condition for
interoperability by constructing the integrated service model, transforming
it to a Coloured Petri net, and analyzing the occurrence graph of the net.
The basic idea is to compute all reachable states and state changes of the
integrated system and represent these as a directed graph. The advantage is
that the approach is fully automatic and allows for the verification of many
properties of the integrated system by querying the graph. The main
disadvantage is that in some cases the state space may explode.

To automate the translation of COSMO models to Coloured Petri nets
we specified a model transformation in QVT. However, the mappings
between the COSMO concepts and the concepts of Coloured petri net have
not been formally verified.

In the final step of our method, we transform the service PIM of the
integration solution to service PSM in terms of some implementation
technology (e.g., WS-BPEL or Java). In most cases, the PIM is semantically
richer than the target PSM. Therefore, not all PIMs can be transformed to
PSMs. A way to deal with this problem would be to define a language
profile to restrict the semantics of the PIM elements such that they match
the one of the target PSM elements. In some cases (when a PIM element
cannot be mapped to a single PSM element) such a profile should also
provide composition rules. Similar to the first step of our method, the
specification of the model transformation is a complex, manual (and
therefore, error-prone) process, which requires knowledge about the
metamodels of both service PIM and PSM. Nevertheless, change in the
implementation technology will only require change in the transformation
specification; the same service PIM of the integration is used as source of
the new transformation. Hence, the integration design is preserved.

PART V.
CONCLUSIONS

Chapter 10

10. Conclusions

This chapter presents the conclusions of this thesis and identifies some
topics for future research. The chapter is organised as follows: Section 10.1
presents a summary of our work. Section 10.2 presents our main research
contributions. Section 10.3 reflects on the properties of our integration
method. Finally, Section 10.4 provides recommendations for future
research.

10.1 Summary

Enterprise application integration is an extremely complex process because
it has to deliver a solution that compensates for differences amongs multiple
heterogeneous, autonomous and distributed systems in order to enable
their interoperability. Therefore, to build a correct integration solution, a
system integrator must understand what interoperability means and what
possible mismatches there could be between information systems.

In Chapter 2, we studied existing definitions of interoperability and
identified their common characteristics. Based on this analysis, we provided
our own definition of interoperability and identified three different levels of
interoperability, namely syntactic, semantic and pragmatic interoperability.
Syntactic interoperability is outside the scope of this thesis. Therefore, we
focused on semantic and pragmatic interoperability. Analyzing various
literature sources from different areas such as artificial intelligence, database
research and process integration, we identified possible interoperability
problems at semantic and pragmatic level.

There are many existing integration tools available nowadays. The
contribution of our research to the users of these tools is that we provide a
conceptual model of the EAI problem. This model will help them to better
understand the underlying concepts and problems. Understanding the concepts
and awareness of the possible problems will enable system integrators to

204 CHAPTER 10 CONCLUSIONS

make more informed and carefully thought-out design decisions.
Furthermore, the identified concepts will provide them with a vendor
independent vocabulary. Such a vocabulary will enable efficient communication
between system integrators and problem stakeholders. Finally, we hope that
our research will inspire tool vendors and standardization bodies to shift
their attention from syntactic to semantic and pragmatic interoperability
problems.

In Chapter 3, we studied existing enterprise application integration
approaches and identified their drawbacks. In addition, we presented the
most significant emerging technologies that promise to improve these
approaches. We concluded that existing integration approaches and
technologies are too technical for business domain experts. This hinders
their participation in the integration process and requires software
engineers to take decisions beyond their competence. In addition, existing
integration solutions are not flexible, i.e., they cannot easily deal with
changes in business requirements or with changes in implementation
technology.

Service orientation, model-driven development and various knowledge
representation technologies have emerged to improve existing enterprise
application integration approaches. However, these emerging technologies
address different problems of the existing integration approaches. None of
them eliminates the identified drawbacks completely. For that reason, we
proposed to combine particular elements of these technologies in Chapter
5. In Chapter 3, we argued which elements are useful and what are the
possible interactions among them.

In Chapter 4, we studied existing definitions of the term “service”. In
analyzing them, we identified common characteristics of services. We used
these common characteristics to define a conceptual framework for service
modeling called COSMO. Using this framework, one can model the
domain of a system, its services and their relations. Based on this one can
reason whether these services are interoperable. For example, in our
integration method, we used COSMO to represent the service models of
systems that needed to be integrated. In addition, we used COSMO to
design the service models of the integration solution.

In Chapter 5, we proposed a model-driven method for the semantic
integration of service oriented applications. Our method provides solutions
for each of the interoperability problems identified in Chapter 2. In a
number of steps the method defines how to build end-to-end integration
solutions.

In the first step, we derive platform independent service models of the
systems to be integrated by abstracting all technical details from their
platform-specific service models. In the next step, we increase the coverage
and precision of derived platform independent models by adding additional

 RESEARCH CONTRIBUTIONS 205

semantic information that cannot be derived from their platform-specific
models. In the third step we solve the integration problem at a technology-
independent level. This enables the more active participation by the domain
experts. In addition, the semantically-enriched service models allow some
integration tasks to be fully or partially automated. In addition, the abstract
nature of the integration solution allows its reuse for different
implementation technologies. In the next step, we formally verify the
correctness of the integration solution using simulation and automatic
reasoning. In the final step of the method the platform independent service
model of the integration solution is transformed to a platform-specific
service model by adding technical details specific to the implementation
technology.

In Chapters 6 to 9, we validated our integration method by applying it
in a particular context, using concrete technologies. In Chapter 1, we
identified a number of requirements for integration methods in general. To
verify whether our method meets these requirements we made a number of
claims and provided arguments for their validity. We did this by applying
our method using concrete technologies to solve two integration problems
from the order management domain and the travel domain, respectively.
When applying our integration method we observed a number of effects.
We analysed our observations and argued to what extent our integration
method meets the requirements defined in Chapter 1.

10.2 Research Contributions

The research, presented in this thesis, contributes to the area of enterprise
application integration. Our main contributions are the following:

– We identified common characteristics of interoperability and gave a definition

of interoperability. Next, we identified three different levels of
interoperability, namely, syntactic, semantic and pragmatic interoperability.
At each of these levels, we identified possible interoperability problems.
Awareness of the possible interoperability problems enables system
integrators to make more informed and carefully thought-out design
decisions. In addition, the identified problems served as input to design
our service integration method, i.e., we analysed the problems and
provided solution for each them.

– We analysed commonly found interpretations of the service concept and
identified general service properties. We introduced and illustrated basic
concepts that support the modeling of these properties and underly the
service concept. Using these basic concepts we explained, related and

206 CHAPTER 10 CONCLUSIONS

formalised important notions, such as service choreography and
orchestration. Our conceptual framework consists of a small number of basic
concepts, based on practice and provides a powerful conceptual basis for
service modeling. It is language-independent, but at the same time its basic
concepts can be related to many of the popular languages used in the
context of service design, analysis and implementation. This opens the
possibility to use the framework as common semantic model for comparing
and analyzing models specified in different languages. Our conceptual
framework is domain-independent, i.e., no assumptions are made with
respect to the type of systems for which services should be modeled.
The framework is suitable for wide spectrum of application domains,
e.g., it can be used to model services at a business, application and
component level, thus beyond the usual domain of web services. Finally,
the framework supports the modeling of services at different abstraction
levels. More precisely, we identified three generic abstraction levels,
namely, service effect, choreography and orchestration.

– We identified necessary conditions for interoperability and proposed a

method for verifying whether a set of systems are interoperable. Our
verification method enables the early discovery of false agreements and
the automatic verification of integration solutions. This, in turn, results
in reduced cost and time to deliver the end solution.

– We proposed a method for the semantic integration of service-oriented
applications. The key feature of our method is that semantically-rich service
models at different abstraction levels are employed to develop flexible
integration solutions. Our method provides solutions for each of the
identified interoperability problems. In addition, the method defines all
steps for building integration solutions from business requirements to
software realization. Last but not least, the method allows for changes in
the implementation technology as well as for changes of business
requirements.

10.3 Reflection

In Chapter 1, we defined requirements for integration methods. In this
section, we discuss to what extent our method meets these requirements.

– Requirement R1. The method should provide for defining the integration

solutions in terms of the problem domain, rather than in terms of
solution technologies. To meet this requirement we have defined a
conceptual framework for service modeling that is technology

 REFLECTION 207

independent (cf. Chapter 4). Our concepts represent general service
properties identified by analyzing service definitions from different
domains such as economics, business science, telecommunications and
software engineering. In addition, our conceptual framework provides
for modeling services at different levels of abstraction. In this way, a
solution can be defined closer to the problem domain and refined to an
implementation in terms of a concrete technology by adding
technology-specific details. The refinement is captured in formally
defined transformations which provides for traceability of the design
choices and enables the conformance checks. In some domains,
COSMO concepts might be too generic or non-intuitive. Using
transformations one can define a DSL and relate its concepts to
concepts (or combinations of concepts) from COSMO. In this way,
business experts will be able to describe their requirements and review
the proposed solution using terminology they are familiar with. This will
also shield them from the formal semantics of our concepts while they
can still take advantage of the analytical features provided by our
framework.

– Requirement R2. The integration method should enable the semantic
integration of services. Existing service description standards merely
provide languages to specify the syntax of the messages exchanged
between systems. Although, this enables machines to check whether data
in the messages conforms to a specific syntactic schema, it entirely leaves
to humans the task of interpreting and using these data. In many cases,
data is ambiguous and can be misinterpreted, which, in turn, leads to
undesired effects of their use. Our integration method enables the
semantic integration of different services by allowing formal knowledge
representation techniques to be used to specify the information models
of the systems. In this way, data in the exchanged messages can be
automatically checked not only for syntactic but also for semantic
correctness. In addition, our method allows system integrators to relate
their information models to shared, agreed-upon, domain-specific
ontologies reducing further the ambiguity of the exchanged data.

– Requirement R3. The integration method should enable the formal
verification of the integration solution. Currently, the correctness of an
integration solution is verified by implementing it and performing tests
on the implementation. In this way, incorrect solutions are discovered at
a very late stage resulting in increased cost and time to deliver the end
solution. To address this requirement, we allow information models of
the systems to be specified using a formal knowledge representation
language. Further, we defined necessary conditions for interoperability

208 CHAPTER 10 CONCLUSIONS

and a method to check whether a number of systems are interoperable
given an integration goal. Note, that in some cases formalizing an
information model can be a very difficult task or a formal verification
might not be required. For that reason, this step in our method is
optional.

– Requirement R4. The integration method should allow for changes in the
implementation technology. This means that if the implementation
technology changes, it should be possible to reuse the same abstract
solution specification defined by the domain experts. To address this
requirement, in our method we provide a step in which a new model
transformation can be developed and applied to the same abstract
solution. In this way, a new implementation is generated automatically
reusing the knowledge captured in the abstract model of the solution. A
slight variation of this step would be to develop a transformation to a
different language with analytical capabilities and perform additional
verifications of the same abstract solution.

– Requirement R5. The integration method should allow for changes of the
business requirements. This means that if the business requirements
change, only the abstract solution specification has to be updated to
reflect the new business requirements. It should be possible to generate
a solution implementation from the updated abstract solution
specification. This is an important requirement, because enterprises
constantly change their systems and services to address new market
demands. We addressed this requirement by capturing the abstract
solution in a technology independent model and providing a generic,
domain independent transformation from COSMO to the respective
implementation technology.

10.4 Future Work

To enable the adoption of our results by the industry there are still some
issues that need to be further investigated. In this section, we summarise
them and provide some direction for a future research.

Tooling. The adoption of our integration method is largely determined by
the existence of tools that not only guide system integrations in the design
of the integration solution but also automate their work. For example, such
a tool could provide a library of generic building blocks that can be
customised and assembled together to build a solution to a concrete
integration problem. Further, the tool could provide a library of reusable

 FUTURE WORK 209

model transformations from different service description languages to
COSMO and vice versa. This will not only increase the value of the
framework, but will also help to further validate its concepts by the means
of concrete cases.

Automatic Construction of the Integrated Solution. At this moment, we
construct the integration solution manually. First, we manually specify the
mappings between the information models of the systems to be integrated.
Then, we mirror all interaction contributions of the systems together with
their conditions and manually add the causality relations among the
interaction contributions. Even with a good tool, these manual activities can
be expensive and error-prone. For that reason, it is desirable to automate
the process of constructing the integrated solution. To achieve this, two
main research tasks have to be performed: First, an investigation is needed
how to use existing approaches for automatic ontology mapping to derive
the information model of the integration solution. Second, an investigation
is needed how existing automatic service composition approaches can be
used to derive automatically the relations among the interaction
contributions of the integration solution.

Analytical Features. COSMO concepts have a formal foundation as
discussed in Chapter 4. This enables automatic reasoning about certain
properties of the services described by these concepts. We used these
feature of our conceptual framework to provide a method for the automatic
verification whether a number of systems are interoperable. However, using
formally defined concepts presents more possibilities for automatic
reasoning. For example, by assigning an execution time to an activity one
can reason about the performance of the integration solution.

Non-functional Properties. In our current work, we only briefly mentioned
the non-functional aspect of services. However, often non-functional
properties play an important role in the process of designing, implementing
and managing the integration solution. For example, to use the services of
some system, the integration solution may need to implement certain
security or transaction protocols. Likewise, in some cases the integration
solutions may need to perform an activity within a certain time frame.

Besides technical properties such as security and response time, our
framework could be extended to provide concepts to model the business
properties of the services. We consider the value provided by some service
to be the most important business property. Further research is needed to
align our conceptual framework with existing frameworks for business
modeling such as e3value (Gordijn and Akkermans, 2001).

Appendix A

A. Mapping COSMO to Petri Nets

Constructing and analyzing the state space of a system is a complex process
that requires sophisticated algorithms and tools. For that reason, we present
a mapping from COSMO to Coloured Petri Net (CPN) (Jensen, 1992)
(Jensen, 1994). This way, we can reuse existing tools and take advantage of
the knowledge and the best practices developed by the Petri Nets
community.

A classical Petri net consists of a set of places (represented by circles), a
set of transitions (represented by blocks), directed arcs connecting places to
transitions or transitions to places, and markings assigning one or more
tokens (represented by black dots) to some places. CPNs extend the classical
Petri nets by providing a mechanism for associating a value of a certain type
to each token. In addition, a transition can be enabled only if its input
tokens satisfy certain conditions (called guards) and can produce output
tokens that represent new values (called bindings). In this way, a transition
can be seen as a function that maps input values to output values in a
certain context.

An action in our language maps to a transition with two places as shown in
Figure A-165.

The place P1 represents the condition ¬a (i.e., the action a has not yet
occurred) and the place P2 represents the condition a (i.e., the action a has
occurred). The presence of a token in a place means that the respective

Figure A-165
Mapping an action
to transition

212 APPENDIX A MAPPING COSMO TO PETRI NETS

condition holds, i.e., a token in P1 means that the condition “a has not yet
occurred” is true and the absence of a token in the place P2 means that the
condition “a has occurred” is false. If the action a occurs, the respective
transition a fires, consumes the token from P1 and produces a token in P2
(cf. Figure A-166)

Now, P1 does not contain a token which means that the condition “a has not
yet occurred” is false and P2 contains a token which means that the condition
“a has occurred” is true.

The enabling relation between two actions a and b is mapped to an arc
from the place, representing that a has occurred to the transition b. The
disabling relation between two actions a and b is mapped to two arcs – one
from the place, representing that a has not yet occurred to the transition b
and one from the transition b back to the place representing that a has not
yet occurred. The second arc is necessary because the occurrence of b
should not change the conditions of a. The mapping of the enabling and
disabling relations is shown in Figure A-167.

More complex conditions (for example, conjunction and disjunction of
conditions) are mapped in a similar way as shown in Figure A-168. For
brevity, we omit the places that are not relevant for the respective example.

Figure A-166
A marking
representing that
the action a has
occurred

Figure A-167
Mapping COSMO
enabling and
disabling relations
to Petri Net

 MAPPING COSMO TO PETRI NETS 213

For completeness, we present the mapping of the operators and-split and or-
split in Figure A-169.

Each COSMO behavior can be expressed in disjunctive normal form
(DNF), i.e., as a disjunction of conjunctions of enabling and disabling
conditions. The mapping of a disjunction of conjunctions requires an
introduction of a transition that does not correspond to an action in the
original COSMO model. An example is shown in Figure A-170. The
transition ε can only fire if and only if both transitions a and b have already
fired.

Figure A-168
Mapping
conjunction and
disjunction of
conditions

Figure A-169
Mapping and-split
conjunction and
disjunction of
conditions

214 APPENDIX A MAPPING COSMO TO PETRI NETS

Introducing a ε transition causes a problem when there are disabling
conditions in some conjunction that participates in a disjunction. To
illustrate the problem, consider the mapping shown in Figure A-171.

The COSMO model in the Figure A-171 defines that the action d can occur
if c has already occurred or b has occurred and a has not yet occurred. We
apply the mapping rules defined earlier in this chapter and construct a Petri
net as shown in Figure A-171. However, this net does not define the same
behavior as the one defined in the corresponding COSMO model. Suppose
the transition b fires and produces a token in P1. Next, ε fires (because it
has tokens in all incoming places), produces a token in P3 (representing that
a has not yet occurred and b has occurred) and produces a token back in P2.
Now, suppose that the transition a fires (there is a token in P2); the
transition d can still fire because there is a token in P3. However, this is
wrong behavior, because d cannot occur after a has occurred and c has not
occurred. To deal with this problem we define a transaction monitor that
blocks the transition a until d fires.

Figure A-170
Mapping a behavior
in DNF to Petri
Nets

Figure A-171
Wrong mapping of
disabling condition
in DNF

 MAPPING COSMO TO PETRI NETS 215

а

b
d

а

ε1

b

c
c

d

ε2

ε3

P1

P2

P4

P8

P6

P3

P5 P7

COSMO Petri Net

Suppose, b fires producing a token in P2. Next, ε1 fires, consumes the token
from P1 (and therefore blocks a), consumes the token from P8 (and
therefore blocks c), produces a token in P4 (marking the beginning of the
transaction) and finally, produces a token in P3 (enabling d to fire because b
has fired and a has not yet fired). When d fires it produces a token in P6
enabling ε2 to fire. Next, ε2 fires and commits the transaction by producing
tokens in P1 (enabling a to fire) and P8 (enabling c to fire). This way, a and c
cannot fire until d commits the transaction. Now, suppose that c fires first,
consumes the token in P8 (and therefore blocks ε1), produces a token in P5
(marking the beginning of the transaction) and finally, produces a token in
P3 (enabling d to fire because c has fired). When d fires it produces a token
in P7 enabling ε3 to fire. Next, ε3 fires and commits the transaction by
producing tokens in P8 (enabling ε2 to fire).

As said earlier in Chapter 4, the occurrence or the result of an activity
may depend on the result of one or more causal predecessors. Such
dependences can be easily mapped onto guards and bindings in terms of
CPNs (cf. Figure A-173).

Figure A-172
The correct
mapping of
disabling condition
in DNF

216 APPENDIX A MAPPING COSMO TO PETRI NETS

a

c

b

int x

int y

x+ y < 10

a

c

b

int x

int y

int z
[z= x+ y]

c

b

a

x
x

y

GUARD

[x+ y< 10]

c

b

a

x
x

y

ACTI ON

[z= x+ y]

y

y

The occurrence

of the action c
depends on the

results of actions

a and b

The result of the

action c refers to

the results of the
action a and b

Petr i NetsOur concepts

The presented mappings allow any model expressed in COSMO to be
translated into a CPN and analysed using existing tools. For example, to
check whether an integrated system meets necessary condition 3, we
translate its model to a corresponding CPN and then construct and analyse
the state space graph of that net.

A state space graph for a CPN is a directed graph, with node for each
reachable marking and an arc for each occurring binding element. A binding
element is a pair of a transition and a binding. The source of each arc is the
marking in which the associated binding element occurs and the destination
of the arc is the marking resulting from the occurrence of that binding. An
state space graph of a CPN allows checking properties such as reachability,
deadlock-freedom and liveness. In our concrete situation to verify the necessary
condition 3, we first check for the existence of markings in which the
results defined by all participating systems are established. Next, we check
whether these results can be established in an order that meets the causality
constraints of all participating systems. The second is done by performing a
reachability analysis on the respective state space graph.

To illustrate the verification of necessary condition 3 we use the
example described in Chapter 4 (cf. Figure A-174).

Figure A-173
Mapping to
Coloured Petri Nets

 MAPPING COSMO TO PETRI NETS 217

To recapitulate, in this the example, a customer has specified the following
relations among the interaction contributions of the desired service:

– select does not depend on any other activities and can occur from the

beginning of the behavior
– checkout can only occur if select has already occurred
– cancel can occur only if checkout has already occurred
– pay can only occur if checkout has already occurred and cancel has not yet

occurred
– ship can occur only if checkout has already occurred and cancel has not yet

occurred
– refund can occur only if both pay and cancel have already occurred

Likewise, the retailer has specified the following relations among the
interaction contribution of the provided service:

– select does not depend on any other activities and can occur from the

beginning of the behavior
– checkout can only occur if select has already occurred
– cancel can occur only if checkout has already occurred and ship has not yet

occurred
– pay can only occur if checkout has already occurred and cancel has not yet

occurred
– ship can occur only if pay has already occurred and cancel has not yet

occurred
– refund can occur only if both pay and cancel have already occurred

First, we construct the integrated choreography of the service by abstracting
from the responsibilities of each participating system. This is done by
transforming all interactions into actions and adding all causality relations
among them (cf. Figure A-175).

Figure A-174
Example of an
online computer
shop

218 APPENDIX A MAPPING COSMO TO PETRI NETS

In the next step, we remove all redundant relations (for example, repeating
enabling or disabling relations)

Once we have the integrated service choreography we transform it to a CPN
(cf. Figure A-177) using the rules presented earlier in this section.

select checkout pay ship

refundcancel

We use the resulting net to construct the respective state space graph (cf.
Figure A-178)

Figure A-175
The example from
Figure 5-69 after
abstracting from the
participating
systems

Figure A-176
The example from
Figure A-176 after
removing the
redundant relations

Figure A-177
Possible markings
of the example in
Figure 5-69

 MAPPING COSMO TO PETRI NETS 219

Now, we can perform a reachability analysis on the state space graph to
check whether there is a scenario in which all the service interactions can
occur.

Now, suppose that customer has slightly different constraints on the
interaction with the retailer as shown in

– select does not depend on any other activities and can occur from the
beginning of the behavior

– checkout can only occur if select has already occurred
– cancel can occur only if checkout has already occurred
– pay can only occur if ship has already occurred and cancel has

not yet occurred
– ship can occur only if checkout has already occurred and cancel has not yet

occurred
– refund can occur only if both pay and cancel have already occurred

The integrated service choregraphy of the example from Figure A-178 is
shown in Figure A-180.

Figure A-178
State space graph
of the net in Figure
A-177

Figure A-179
Modified example

220 APPENDIX A MAPPING COSMO TO PETRI NETS

After removing the redundant relations, we come to the integrated service
choreography shown in Figure A-181.

Once again, we transform it to a CPN (cf. Figure A-177)

select checkout pay ship

refundcancel

We use the resulting net to construct the respective state space graph (cf.
Figure A-183).

Figure A-180
The example from
Figure A-179 after
abstracting from the
participating
systems

Figure A-181
The example from
Figure A-179 after
removing the
redundant relations

Figure A-182
The net
corresponding to
the behavior in
Figure A-181

 MAPPING COSMO TO PETRI NETS 221

As one can see, the only possible execution scenario is select-checkout-cancel
which means that the results of the interactions pay, ship and refund can
never be established.

Figure A-183
The state space
graph of the net
shown in Figure A-
182

Appendix B

B. The XML Schemata of SWS
Challenge Case

224 APPENDIX B THE XML SCHEMATA OF SWS CHALLENGE CASE

Figure B-184
XSD of message
M1 PIP 3A4
Purchase Order
Request messages

 THE XML SCHEMATA OF SWS CHALLENGE CASE 225

Figure B-185
XSD of message
M1 PartnerRole
Description part

Figure B-186
XSD of message
M2

Acknowledgement
of Receipt

226 APPENDIX B THE XML SCHEMATA OF SWS CHALLENGE CASE

Figure B-187
XSD of message
M3 Search
customer Request

Figure B-188
XSD of message
M4 Search
customer
Response

 THE XML SCHEMATA OF SWS CHALLENGE CASE 227

Figure B-189
XSD of message
M5 Create new
order Request

Figure B-190
XSD of message
M6 Create new
order Response

228 APPENDIX B THE XML SCHEMATA OF SWS CHALLENGE CASE

Figure B-191
XSD of message
M7 Add line item
Request

Figure B-192
XSD of message
M8 Add line item
Response

Figure B-193
XSD of message
M9 Close order

Figure B-194
XSD of message
M10 Confirm line
item

 THE XML SCHEMATA OF SWS CHALLENGE CASE 229

Figure B-195
XSD of message
M11 Check
production
capability
Request

Figure B-196
XSD of message
M12 Check
production
capability
Response

Figure B-197
XSD of message
M13 Confirm order
Request

230 APPENDIX B THE XML SCHEMATA OF SWS CHALLENGE CASE

Figure B-198
XSD of message
M14 Confirm order
Response

Figure B-199
XSD of message
M15 PIP 3A4
Purchase Order
Confirmation

Figure B-200
XSD of message
M16 PIP 3A4
Purchase Order
Confirmation

Appendix C

C. The Information Models of Real-
Road Operator Case

Figure C-201
The information
model of DRC

Figure C-202
The information
model of CRIS

232 APPENDIX C THE INFORMATION MODELS OF REAL-ROAD OPERATOR CASE

Figure C-203
The information
model of TACO

Figure C-204
The information
model of TOP100

 THE INFORMATION MODELS OF REAL-ROAD OPERATOR CASE 233

Figure C-205
The information
model of ITTI

D. References

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,

Pruyne, J., Rofrano, J., Tuecke, S., & Xu, M. Web services
agreement specification (ws-agreement), 2005.

Baida, Z., Gordijn J. and Omelayenko B. A shared service terminology for
online service provisioning. Proceedings of the 6th Int. Conference
on Electronic Commerce, vol. 60, 2004, pp. 1-10.

Barnickel, N., Weinand, R. and Flügge, M. Semantic System Integration -
Incorporating Rule based Semantic Bridges into BPEL Processes,
In: Proceedings of the 6th International Workshop on Evaluation
of Ontology-based Tools and the Semantic Web Service Challenge
(EON-SWSC-2008), Tenerife, Spain, June 2008.

Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R.,
Kifer, M., Martin, D., McIlraith, S., McGuinness, D., Su, J., Tabet,
S. Semantic Web Services Framework (SWSF) Overview, W3C
Member Submission 9 September 2005,
http://www.w3.org/Submission/SWSF/

Beckett, D. Turtle - Terse RDF Triple Language, November 2007,
http://www.dajobe.org/2004/01/turtle/

Berners-Lee, T. The World Wide Web and the "Web of Life". World Wide
Web Consortium (W3C), 1998. vaialable at
http://www.w3.org/People/Berners-Lee/UU.html

Booth, D. (eds.), Haas, H. (eds.), McCabe, F. (eds.), Newcomer, E. (eds.),
Champion, M. (eds.), Ferris, C. (eds.) and Orchard D. (eds.). Web
Services Architecture. W3C Working Group Note 11 February
2004. http://www.w3.org/TR/ws-arch/

Borst, W.N. Construction of Engineering Ontologies. Centre for
Telematica and Information Technology, University of Tweenty.
Enshede, The Netherlands, 2007

Bussler, C. B2B Integration/ Concepts and Architecture. Springer-Verlag,
2003. ISBN: 3540434879

Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. The
Description Logic Handbook: Theory, Implementation and
Applications, Cambridge University Press, 2003. ISBN
0521781760

Chen, P.P.-S.S. The Entity-Relationship Model: Toward a Unified View of
Data. ACM Transactions on Database Systems 1(1) pp. 9-36, 1976

236 REFERENCES

Curbera, F., Duftler, M. J., Khalaf, R., Nagy, W. A., Mukhi, N. and
Weerawarana, S. Colombo: lightweight middleware for service-
oriented computing. IBM Systems Journal 44(4) pp. 799 – 820,
2005

de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U.,
Kifer, M., König-Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren,
E., Polleres, A., Roman, D., Scicluna, J., Stollberg, M. Web Service
Modeling Ontology (WSMO), W3C Member Submission 3 June
2005, http://www.w3.org/Submission/WSMO/

de Saussure, F. Course in General Linguistics., Roy Harris (trans.), Open
Court Publishing Company, 1986 (original from 1916).

Dean, M. (eds.), Schreiber, G.(eds.), Bechhofer, S., van Harmelen, F.,
Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider,
P.F., Stein, L.A. OWL Web Ontology Language Reference, W3C
Recommendation 10 February 2004, http://www.w3.org/TR/owl-
ref/

Department of Defence (DoD), Dictionary of Military Terms, 2001,
http://www.dtic.mil/doctrine/jel/doddict/

Dijkman, R.M. Consistency in multi-viewpoint architectural design. PhD
thesis, CTIT Ph.D.-thesis series No. 06-80. ISBN 90 75176 80 5,
2006

Dirgahayu, T. and Quartel, D.A.C. and van Sinderen, M.J. (2007)
Development of transformations from business process models to
implementations by reuse. In: Proceedings of the 3rd International
Workshop on Model-Driven Enterprise Information Systems,
MDEIS 2007, 12 June 2007, Funchal, Portugal. pp. 41-50.
INSTICC Press. ISBN 978-989-8111-00-5

Elmasri, R. and Navathe, S.B. Fundamentals of Database Systems.
Benjamin/Cummings, 1994. ISBN 0-8053-1748-1

Erl, T. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall/PearsonPTR, 2005. ISBN: 0131858580

Estefan, J.A.(eds.), Laskey, K.(eds.), McCabe, F.G.(eds.) and Thornton,
D.(eds.). Reference Architecture for Service Oriented Architecture
Version 1.0, OASIS Public Review Draft, 23 April 2008,
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-01.html

European Commission, Interchange of Data between Administrations
(IDA) Community Programme. European Interoperability
Framework for Pan-European E-Government Services, 2005

Ferreira Pires, L. Architecture Notes: a Framework for Distributed Systems
Development. PhD thesis. CTIT Ph. D.-thesis series No. 94-01.
ISBN 90-9007461-9, 1994

García, R. and Celma, Ò. Semantic Integration and Retrieval of Multimedia
Metadata. 5th International Workshop on Knowledge Markup and
Semantic Annotation, SemAnnot 2005, 7th November 2005,
Galway, Ireland. http://ftp.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-185/

 REFERENCES 237

Goh, C.H. Representing and Reasoning about Semantic Conflicts in
Heterogeneous Information Sources. PhD thesis, MIT, 1997.

Gordijn, J. and Akkermans, H. E3-value: Design and evaluation of e-
business models. IEEE Intelligent Systems, 16(4):11–17, 2001

Gruber, T.R. A translation approach to portable ontologies. Knowledge
Acquisition 5 (2) pp. 199-220, 1993.

Guarino, N. Formal Ontology in Information Systems. In N. Guarino (ed.)
Formal Ontology in Information Systems. Proceedings of FOIS'98,
Trento, Italy, 6-8 June 1998. IOS Press, Amsterdam: 3-15.

Haase, P. and Motik, B. A mapping system for the integration of OWL-DL
ontologies. In Proceedings of the First international Workshop on
interoperability of Heterogeneous information Systems (Bremen,
Germany, November 04 - 04, 2005). IHIS '05. ACM, New York,
NY, 9-16.

IBM. IBM service definition, http://www.research.ibm.com/ssme/
services.shtml, 2006.

Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard
Computer Dictionary: A Compilation of IEEE Standard Computer
Glossaries, 1990

International Organization for Standardization (ISO), DIS 16100:
Manufacturing Software Capability Profiling, Part 1 - Framework
for interoperability, 2000.

International Organization for Standardization (ISO), ISO/IEC 2382-
1:1993 Information technology -- Vocabulary -- Part 1:
Fundamental terms, 1993

Janssen, W., Jonkers, H. and Verhoosel, J. What Makes Business Processes
Special? An evaluation framework for modeling languages and tools
in Business Process Redesign, In Siau, Wand and Parsons (Eds.),
Proceedings 2nd CAiSE/IFIP 8.1 international workshop on
evaluation of modeling methods in systems analysis and design,
Barcelona, June, 1997

Jensen, K. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 1, Basic Concepts. Monographs in
Theoretical Computer Science, Springer-Verlag, 1992. ISBN: 3-
540-60943-1.

Jensen, K. Coloured Petri Nets. Basic Concepts, Analysis Methods and
Practical Use. Volume 2, Analysis Methods. Monographs in
Theoretical Computer Science, Springer -Verlag, 1994. ISBN: 3 -
540-58276-2

Jonkers, H., Lankhorst, M., van Buuren, R., Hoppenbrouwers, S.,
Bonsangue, M., and van der Torre, L. Concepts for Modelling
Enterprise Architectures. International Journal of Cooperative
Information Systems, vol. 13, no. 3, 2004, pp. 257-287.

Klein, M. Combining and Relating Ontologies: an Analysis of Problems and
Solutions. In: Proceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI-01), Workshop on

238 REFERENCES

Ontologies and Information Sharing, Vol. 47, pp. 53–62, Seattle,
USA, August 2001.

Koehoorn, B. Comparing Systems for Replacement: A Constraint-based
Approach for Comparing ISDL Models. M.Sc. Thesis Business
Information Technology, University of Twente. March 2007.

Margaria T., Bakera M., Raffelt H. and Steffen B. Synthesizing the mediator
with jabc/abc, In: Proceedings of the 6th International Workshop
on Evaluation of Ontology-based Tools and the Semantic Web
Service Challenge (EON-SWSC-2008), Tenerife, Spain, June
2008.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith,
S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E.,
Srinivasan, N., Sycara, K. OWL-S: Semantic Markup for Web
Services W3C Member Submission 22 November 2004,
http://www.w3.org/Submission/OWL-S/

Morris, C.W. Foundations of the Theory of Signs. In: International
Encyclopaedia of Unified Science (Neurath, O., Carnap, R.,
Morris, C. (eds), Chicago University Press, Chicago, pp. 77-138,
1938

Naiman, C.F. and Ouksel, A. M. A classification of semantic conflicts in
heterogeneous database systems. J. of Organizational Computing
5(2): pp. 167-193 (1995)

Ogden, C.K., Richards, I.A. The Meaning of Meaning: A Study of the
Influence of Language Upon Thought and of the Science of
Symbolism., New York: Harcourt Brace Jovanovich, 1923.

Pollock, J.T. and Hodgson, R. Adaptive Information: Improving Business
Through Semantic Interoperability, Grid Computing, and
Enterprise Integration, Wiley-Interscience, ISBN: 0471488542,
2004

Quartel, D.A.C., Dijkman R. and van Sinderen M. Methodological support
for service-oriented design with ISDL. Proceedings of the 2nd
Internatiation Conference on Service Oriented Computing, 2004,
pp. 1-10.

Quartel, D.A.C., Dijkman R.M., Sinderen van M.J. Methodological support
for service-oriented design with ISDL. In: Proceedings of the 2nd
International Conference on Service Oriented Computing (ICSOC
2004), New York City, NY, USA, 2004.

Quartel, D.A.C., Ferreira Pires L., van Sinderen M.J., Franken H. and
Vissers C. On the role of basic design concepts in behaviour
structuring. Computer Networks and ISDN Systems, 29:413–436,
1997.

Quartel, D.A.C., Ferreira Pires, L., Sinderen, van M.J. On Architectural
Support for Behaviour Refinement in Distributed Systems Design.
In: Journal of integrated design and process science online, 06(01)
ISNN 1092-0617.

 REFERENCES 239

Quartel, D.A.C., Steen, M.W.A., Pokraev, S.V. and van Sinderen, M.J.
COSMO: a conceptual framework for service modelling and
refinement. Information Systems Frontiers, 9 (2-3). pp. 225-244.
ISSN 1387-3326, 2007

Quartel, D.A.C.. Action relations: Basic Design Concepts for Behaviour
Modelling and Refinement. PhD thesis, CTIT Ph.D.-thesis series
No. 98-18. ISBN 90 365 1071 6, 1997

Quartel, D.A.C.. Simulation and execution of service models using ISDL.
In: Proceedings of the 1st International Workshop on
Architectures, Concepts and Technologies for Service-Oriented
Computing, ACT4SOC 2007, July 22, 2007, Barcelona, Spain.
INSTICC Press, pp. 19-27. ISBN 978-989-8111-08-1.

Ratzer, A.V., Wells, L., Lassen, H.M., Laursen, M., Qvortrup, J.F., Stissing,
M.S., Westergaard, M., Christensen, S., Jensen, K. CPN Tools for
Editing, Simulating, and Analysing Coloured Petri Net, In:
Proceedings of the 24th International Conference on Applications
and Theory of Petri Nets (ICATPN 2003), Eindhoven, The
Netherlands, June 23-27, 2003, pages 450-462. Volume 2679 of
Lecture Notes in Computer Science / Wil M.P. van der Aalst and
Eike Best (Eds.) Springer-Verlag, June 2003.

Sheth, A.P. and Kashyap, V. So Far (Schematically) yet So Near
(Semantically). In: Hsiao D. K., Neuhold, E.J. and Sacks-Davis, R.
(eds). Proceedings of the IFIP WG 2.6 Database Semantics
Conference on Interoperable Database Systems (DS-5), Lorne,
Victoria, Australia, pp. 283-312 (1992)

Sheth, A.P. and Larson, J. Federated database systems for managing
distributed, heterogeneous, and autonomous databases ACM
Computing Surveys, 1990.

Shvaiko, P. and Euzenat, J.A survey of schema-based matching approaches.
Journal on Data Semantics, 4:146–171, 2005

Siau, K. and Rossi, M. Evaluation of Information Modeling Methods - A
Review. HICSS (5). pp. 314-322, 1998.

Sprott D.. and Wilkes L. Understanding Service-Oriented Architecture.
CBDI Journal, CBDI Forum, January 2004.

Steffen B., Margaria T., Nagel R., Jörges S., and Kubczak C. Model-Driven
Development with the jABC. In: Proceedings of Haifa Verification
Conference, LNCS N.4383. Springer Verlag, 2006.

Studer, R., Benjamins, V.R. and Fensel, D. Knowledge engineering:
principles and methods. IEEE Transactions on Data and
Knowledge Engineering 25(1-2):161-197, 1998

SWSC, Purchase Order Mediation Scenario, 2007, http://sws-
challenge.org/wiki/index.php/Scenario:Purchase Order Mediation
v2

U.S. Department of Commerce (DOC), National Telecommunications and
Information Administration (NTIA). Telecommunications:
Glossary of Telecommunication Terms, 1996

240 REFERENCES

Ullmann, S. .Semantics: An Introduction to the Science of Meaning., Basil
Blackwell, Oxford,1972.

van Eck, P., Blanken, H. and Wieringa, R.J. Project GRAAL: Towards
Operational Architecture Alignment. International Journal of
Cooperative Information Systems 13(3), 2004, pp. 235-255.

van Sinderen, M.J. van, Ferreira Pires, L., Vissers, C. A., Katoen, J.P. A
design model for open distributed processing systems. Computer
Networks and ISDN Systems, Vol. 27, 1995, pp. 1263-1285.
ISSN 0169-7552.

Verma, K., Gomadam, K., Sheth, A., Miller, J., Wu, Z. The METEOR-S
Approach for Configuring and Executing Dynamic Web
Processes", Technical Report . Date: 6-24-05.

Visser, P.R.S., Jones, D. M., Bench-Capon, T.J.M. and Shave, M.J.R. An
Analysis of Ontology Mismatches; Heterogeneity versus
Interoperability”, American Association for Artificial Intelligence
(AAAI 1997) Spring Symposium on Ontological Engineering, pp.
164–172, Stanford University, California, USA. 1997

Vissers C, Logrippo L. The importance of the service concept in the design
of data communication protocols. Protocol Specification, Testing
and Verification, V, 1986, pp. 3-17.

Wieringa R.J. Design Methods for Reactive Systems: Yourdon, Statemate,
and the UML. Design Methods for Reactive Systems: Yourdon,
Statemate, and the UML. Morgan Kaufmann, 2003.
http://www.mkp.com/dmrs

Wieringa, R.J., Maiden, N.A.M., Mead, N.R. and Rolland, C. Requirements
engineering paper classification and evaluation criteria: a proposal
and a discussion. In: Requirements Engineering 11 (1) pp. 102-
107, 2006

Wood, J. What’s in a link? Readings in Knowledge Representation, Morgan
Kaufmann, 1985.

E. Summary

In this thesis, we propose a method for the semantic integration of service oriented
applications. The distinctive feature of the method is that semantically-enriched
service models are employed at different levels of abstraction (from business
requirements to software implementation) to deliver flexible integration
solutions.

In Chapter 2, we start with analyzing the most cited interoperability
definitions and derive common characteristics of interoperability. Next, we
use these common characteristics to define what interoperability means and
identify three different levels of interoperability, namely, syntactic, semantic
and pragmatic interoperability. Finally, we study literature from different areas
and identify possible interoperability problems at each of the interoperability
levels.

In Chapter 3, we present a short history of the enterprise application
integration (EAI) approaches, discuss their shortcomings and argue what is
required to address these shortcomings. We identify three main aspects of
the EAI problem. The first aspect concerns the difference in the information
models of the systems that have to be integrated. The second aspect concerns
the differences in the interaction protocols of the systems. Finally, the third
aspect concerns the complexity of building EAI solutions.

Service-Oriented Architecture (SOA), Knowledge Representation (KR)
and Model-Driven Architectures (MDA) have been proposed as solutions to
each of the indentified problems. In Chapter 3, we argue that, since the
problem aspects of current EAI approaches always occur together, SOA, KR
and MDA should be combined to deal with the problem as a whole.

In Chapter 4, we define a conceptual framework for service modeling. The
purpose of the framework is to serve as a common semantic meta-model that
enables the description, integration and reasoning about (integrated)
service-oriented applications. Using the framework one can model the
domain of a system, the interactions among its components and their
relations, and reason whether these components are interoperable. We
expect that our framework will have a wide spectrum of application, e.g.,
can be used to model services at a business, application and component
level, thus beyond the usual domain of web services.

In Chapter 5, we present a method for the semantic integration of service-
oriented applications. We start by identifying necessary conditions for semantic

242 SUMMARY

and pragmatic interoperability of service-oriented applications. Next, we
propose an integration method that enables business domain experts to
explicitly specify an integration solution at a higher level of abstraction. The
abstract solution is then (semi-)automatically transformed to a software
solution by adding technical details by the IT experts. Finally, we present a
method to verify formally whether the proposed integration solution meets
the identified conditions for interoperability.

In Chapters 6 to 9, we validate our integration method by applying it a
particular context, using particular technologies. In Chapter 1, we identified
a number of requirements for integration methods in general. To verify
whether our method meets these requirements we make a number of claims
and provide arguments for their validity. We do this by applying our method to
in a concrete context using concrete technologies. For that purpose, we
solve two integration problems from order management domain and travel
domain, respectively. When applying our integration method we observe a
number of effects. We analyse our observations and argue to what extent
our integration method meets the requirements defined in Chapter 1.

Finally, in Chapter 10, we summarise the conclusions of this thesis and
identify some topics for further research.

F. Publications by the Author

(listed in reverse chronological order):

Quartel, D.A.C., Pokraev, S.V., Dirgahayu, T., Mantovaneli Pessoa, R. and

van Sinderen, M.J. Model-driven service integration using the
COSMO framework. In: Semantic Web Services Challenge:
Proceedings of the 2008 Workshops, 26 Oct 2008, Karlsruhe,
Germany. pp. 77-88. Stanford Logic Group Technical Reports
(LG-2009-01)

Quartel, D.A.C., Pokraev, S.V., Mantovaneli Pessoa, R. and van Sinderen,
M.J. Model-driven development of a mediation service. In: Twelfth
International IEEE Enterprise Computing Conference, EDOC
2008, 15-19 Sep 2008, Munich, Germany. pp. 117-126. IEEE
Computer Society Press. ISSN 1541-7719 ISBN 978-0-7695-
3373-5

Pokraev, S.V., Quartel, D.A.C., Steen, M.W.A., Wombacher, A. and
Reichert, M.U. (2007) Business Level Service-Oriented Enterprise
Application Integration. In: Proceedings 3rd International
Conference on Interoperability for Enterprise Software and
Applications (I-ESA 2007), 28 - 30 Mar 2007, Funchal (Madeira
Island), Portugal. pp. 507-518. Springer Verlag. ISBN 978-1-
84628-857-9

Quartel, D.A.C., Steen, M.W.A., Pokraev, S.V., van Sinderen, M.J.
COSMO: a conceptual framework for service modelling and
refinement. Information Systems Frontiers, 9 (2-3). pp. 225-244.
ISSN 1387-3326

Pokraev, S.V., Quartel, D.A.C., Steen, M.W.A. and Reichert, M.U.
Requirements and Method for Assessment of Service
Interoperability. In: Proceedings of the Fourth International
Conference on Service Oriented Computing (ICSOC'06), 4-7 Dec
2006, Chicago. pp. 1-14. Lecture Notes in Computer Science
4294. Springer Verlag. ISSN 0302-9743 ISBN 978-3-540-68147-
2

Pokraev, S.V., Quartel, D.A.C., Steen, M.W.A. and Reichert, M.U.
Semantic Service Modeling - Enabling System Interoperability. In:
Proc. International Conference on Interoperability for Enterprise
Software and Applications (I-ESA'06), Mar 2006, Bordeaux,
France. pp. 221-231. Springer Verlag. ISBN 978-1-84628-713-8

244 PUBLICATIONS BY THE AUTHOR

Pokraev, S.V., Quartel, D.A.C., Steen, M.W.A. and Reichert, M.U. (2006)
A Method for Formal Verification of Service Interoperability. In:
Proceedings IEEE International Conference on Web Services
(ICWS'06), 18 - 22 September 2006, Chicago, USA. pp. 895-900.
IEEE Computer Society. ISBN 0-7695-2669-1

Pokraev, S.V., Reichert, M.U. Mediation Patterns for Message Exchange
Protocols. In: Proceedings of the CAiSE'06 Workshops / Open
INTEROP Workshop on Enterprise Modelling and Ontologies for
Interoperability (EMOI-INTEROP), 5 - 9 June 2006,
Luxembourg. pp. 659-663. Presses Universitaires de Namur.
ISBN 2-87037-525-5

Quartel, D.A.C., Steen, M.W.A., Pokraev, S.V. and van Sinderen, M.J. A
Conceptual Framework for Service Modelling. In: Proceedings
Tenth IEEE International EDOC Enterprise Computing
Conference, 16-20 Oct 2006, Hong Kong. pp. 319-330. IEEE
Computer Society Press. ISSN 1541-7719 ISBN 978-0-7695-
2558-7

Diakov, N.K., Zlatev, Z.V. and Pokraev, S.V. Composition of Negotiation
Protocols for E-Commerce Applications. In: IEEE International
Conference on e-Technology, e-Commerce and e-Service
(EEE'05), 29 Mar-1 Apr 2005, Hong Kong, China. pp. 418-423.
IEEE Computer Science Press. ISBN 0769520731

Pokraev, S.V., Koolwaaij, J., van Setten, M., Broens, T.H.F., Dockhorn
Costa, P., Wibbels, M., Ebben, P. and Strating, P. Service platform
for rapid development and deployment of context-Aware, mobile
applications. In: International Conference on Webservices
(ICWS'05), Industry track, 2005, Orlando, Florida, USA. pp. 639-
646. IEEE Computer Society Press. ISBN 0-7695-2409-5

Pokraev, S.V., Reichert, M.U., Steen, M.W.A. and Wieringa, R.J. Semantic
and Pragmatic Interoperability: A Model for Understanding. In:
Proceedings of the Open Interop Workshop on Enterprise
Modelling and Ontologies for Interoperability (EMOI -
INTEROP'05), 13 - 14 Jun 2005, Porto, Portugal. pp. 1-5. CEUR
Workshop Proceedings 160. CEUR-WS.org. ISSN 1613-0073

Broens, T.H.F., Pokraev, S.V., van Sinderen, M.J., Koolwaaij, J. and
Dockhorn Costa, P. Context-aware, ontology-based, service
discovery. In: European Symposium on Ambient Intelligence
(EUSAI), Eindhoven, The Netherlands. pp. 72-83. Lecture Notes
in Computer Science 3295. Springer. ISBN 3540237216

Pokraev, S.V., Wieringa, R.J. and Steen, M.W.A. Towards semantic service
specification and discovery. In: CAiSE'04 Workshops in
connection with The 16th Conference on Advanced Information
Systems Engineering, 7-11 June 2004, Riga, Latvia. pp. 363-367.
Faculty of Computer Science and Information Technology. ISBN
9984976734

 PUBLICATIONS BY THE AUTHOR 245

Pokraev, S.V., Zlatev, Z.V., Brussee, R. and van Eck, P.A.T. Semantic
Support for Automated Negotiation with Alliances. In: 6th
International conference on enterprise information systems (ICEIS
2004), 14-17 April 2004, Porto, Portugal. pp. 244-249.
INSTICC.

Zlatev, Z.V., Diakov, N.K. and Pokraev, S.V. Construction of Negotiation
Protocols for E-commerce Applications. Technical Report SEN-
R0417 Center for Mathematics and Computer Science,
Amsterdam. ISSN 1381-3625

Zlatev, Z.V. and Diakov, N.K. and Pokraev, S.V. (2004) Construction of
Negotiation Protocols for E-Commerce Applications. ACM
SIGecom Exchanges, 5 (2). pp. 12-22. ISSN 1551-9031

Pokraev, S.V., Koolwaaij, J. and Wibbels, M. Extending UDDI with
Context-Aware Features Based on Semantic Service Descriptions.
In: The International Conference on Web Services (ICWS '03),
23-26 June 2003, Las Vegas, Nevada, USA. pp. 184-190. CSREA
Press. ISBN 1892512491

Michiels, E.F., Widya, I.A, Volman, C.J.A.M., Pokraev, S.V. and de Diana,
I.P.F. On the Enterprise Modelling of an Educational Information
Infrastructure. In: Enterprise Information Systems III, Setubal,
Portugal. pp. 231-239. Kluwer Academic Publishers. ISBN 1-
4020-0563-6

Widya, I.A., Volman, C.J.A.M., Pokraev, S.V., de Diana, I.P.F. and
Michiels, E.F. Enterprise Modelling for an Educational
Information Infrastructure. In: The 3rd International Conference
on Enterprise Information Systems, 2001, Setubal, Portugal. pp.
785-792. ICEIS Press. ISBN 972-98050-2-4

Michiels, E.F., Widya, I.A., Volman, C.J.A.M., Pokraev, S.V. and de Diana,
I.P.F. On the Enterprise Modelling of an Educational Information
Infrastructure. Technical Report TR-CTIT-00-18, Centre for
Telematics and Information Technology, University of Twente,
Enschede. ISSN 1381-3625

G. SIKS Dissertation Series

1998
[1998-1] Johan van den Akker (CWI) DEGAS - An Active, Temporal Database of
Autonomous Objects
[1998-2] Floris Wiesman (UM) Information Retrieval by Graphically Browsing
Meta-Information
[1998-3] Ans Steuten (TUD) A Contribution to the Linguistic Analysis of Business
Conversations within the Language/Action Perspective
[1998-4] Dennis Breuker (UM) Memory versus Search in Games
[1998-5] E.W.Oskamp (RUL) Computerondersteuning bij Straftoemeting

1999

[1999-1] Mark Sloof (VU) Physiology of Quality Change Modelling; Automated
modelling of Quality Change of Agricultural Products
[1999-2] Rob Potharst (EUR) Classification using decision trees and neural nets
[1999-3] Don Beal (UM) The Nature of Minimax Search
[1999-4] Jacques Penders (UM) The practical Art of Moving Physical Objects
[1999-5] Aldo de Moor (KUB) Empowering Communities: A Method for the
Legitimate User-Driven Specification of Network Information Systems
[1999-6] Niek J.E. Wijngaards (VU) Re-design of compositional systems
[1999-7] David Spelt (UT) Verification support for object database design
[1999-8] Jacques H.J. Lenting (UM) Informed Gambling: Conception and Analysis
of a Multi-Agent Mechanism for Discrete Reallocation.

2000
[2000-1] Frank Niessink (VU) Perspectives on Improving Software Maintenance
[2000-2] Koen Holtman (TUE) Prototyping of CMS Storage Management
[2000-3] Carolien M.T. Metselaar (UVA) Sociaal-organisatorische gevolgen van
kennistechnologie; een procesbenadering en actorperspectief.
[2000-4] Geert de Haan (VU) ETAG, A Formal Model of Competence Knowledge
for User Interface Design
[2000-5] Ruud van der Pol (UM) Knowledge-based Query Formulation in
Information Retrieval.
[2000-6] Rogier van Eijk (UU) Programming Languages for Agent Communication
[2000-7] Niels Peek (UU) Decision-theoretic Planning of Clinical Patient
Management

248 SIKS DISSERTATION SERIES

[2000-8] Veerle Coup‚ (EUR) Sensitivity Analyis of Decision-Theoretic Networks
[2000-9] Florian Waas (CWI) Principles of Probabilistic Query Optimization
[2000-10] Niels Nes (CWI) Image Database Management System Design
Considerations, Algorithms and Architecture
[2000-11] Jonas Karlsson (CWI) Scalable Distributed Data Structures for Database
Management

2001
[2001-1] Silja Renooij (UU) Qualitative Approaches to Quantifying Probabilistic
Networks
[2001-2] Koen Hindriks (UU) Agent Programming Languages: Programming with
Mental Models
[2001-3] Maarten van Someren (UvA) Learning as problem solving
[2001-4] Evgueni Smirnov (UM) Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets
[2001-5] Jacco van Ossenbruggen (VU) Processing Structured Hypermedia: A
Matter of Style
[2001-6] Martijn van Welie (VU) Task-based User Interface Design
[2001-7] Bastiaan Schonhage (VU) Diva: Architectural Perspectives on
Information Visualization
[2001-8] Pascal van Eck (VU) A Compositional Semantic Structure for Multi-
Agent Systems Dynamics.
[2001-9] Pieter Jan 't Hoen (RUL) Towards Distributed Development of Large
Object-Oriented Models, Views of Packages as Classes
[2001-10] Maarten Sierhuis (UvA) Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and simulation language for work practice
analysis and design
[2001-11] Tom M. van Engers (VUA) Knowledge Management: The Role of
Mental Models in Business Systems Design

2002

[2002-01] Nico Lassing (VU) Architecture-Level Modifiability Analysis
[2002-02] Roelof van Zwol (UT) Modelling and searching web-based document
collections
[2002-03] Henk Ernst Blok (UT) Database Optimization Aspects for Information
Retrieval
[2002-04] Juan Roberto Castelo Valdueza (UU) The Discrete Acyclic Digraph
Markov Model in Data Mining
[2002-05] Radu Serban (VU) The Private Cyberspace Modeling Electronic
Environments inhabited by Privacy-concerned Agents
[2002-06] Laurens Mommers (UL) Applied legal epistemology; Building a
knowledge-based ontology of the legal domain

 SIKS DISSERTATION SERIES 249

[2002-07] Peter Boncz (CWI) Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications
[2002-08] Jaap Gordijn (VU) Value Based Requirements Engineering: Exploring
Innovative E-Commerce Ideas
[2002-09] Willem-Jan van den Heuvel(KUB) Integrating Modern Business
Applications with Objectified Legacy Systems
[2002-10] Brian Sheppard (UM) Towards Perfect Play of Scrabble
[2002-11] Wouter C.A. Wijngaards (VU) Agent Based Modelling of Dynamics:
Biological and Organisational Applications
[2002-12] Albrecht Schmidt (Uva) Processing XML in Database Systems
[2002-13] Hongjing Wu (TUE)A Reference Architecture for Adaptive Hypermedia
Applications
[2002-14] Wieke de Vries (UU) Agent Interaction: Abstract Approaches to
Modelling, Programming and Verifying Multi-Agent Systems
[2002-15] Rik Eshuis (UT) Semantics and Verification of UML Activity Diagrams
for Workflow Modelling
[2002-16] Pieter van Langen (VU) The Anatomy of Design: Foundations, Models
and Applications
[2002-17] Stefan Manegold (UVA) Understanding, Modeling, and Improving
Main-Memory Database Performance

2003
[2003-01] Heiner Stuckenschmidt (VU) Ontology-Based Information Sharing in
Weakly Structured Environments
[2003-02] Jan Broersen (VU) Modal Action Logics for Reasoning About Reactive
Systems
[2003-03] Martijn Schuemie (TUD) Human-Computer Interaction and Presence
in Virtual Reality Exposure Therapy
[2003-04] Milan Petkovic (UT) Content-Based Video Retrieval Supported by
Database Technology
[2003-05] Jos Lehmann (UVA) Causation in Artificial Intelligence and Law - A
modelling approach
[2003-06] Boris van Schooten (UT) Development and specification of virtual
environments
[2003-07] Machiel Jansen (UvA) Formal Explorations of Knowledge Intensive
Tasks
[2003-08] Yongping Ran (UM) Repair Based Scheduling
[2003-09] Rens Kortmann (UM) The resolution of visually guided behaviour
[2003-10] Andreas Lincke (UvT) Electronic Business Negotiation: Some
experimental studies on the interaction between medium, innovation context and
culture
[2003-11] Simon Keizer (UT) Reasoning under Uncertainty in Natural Language
Dialogue using Bayesian Networks

250 SIKS DISSERTATION SERIES

[2003-12] Roeland Ordelman (UT) Dutch speech recognition in multimedia
information retrieval
[2003-13] Jeroen Donkers (UM) Nosce Hostem - Searching with Opponent
Models
[2003-14] Stijn Hoppenbrouwers (KUN) Freezing Language: Conceptualisation
Processes across ICT-Supported Organisations
[2003-15] Mathijs de Weerdt (TUD) Plan Merging in Multi-Agent Systems
[2003-16] Menzo Windhouwer (CWI) Feature Grammar Systems - Incremental
Maintenance of Indexes to Digital Media Warehouses
[2003-17] David Jansen (UT) Extensions of Statecharts with Probability, Time,
and Stochastic Timing
[2003-18] Levente Kocsis (UM) Learning Search Decisions

2004
[2004-01] Virginia Dignum (UU) A Model for Organizational Interaction: Based
on Agents, Founded in Logic
[2004-02] Lai Xu (UvT) Monitoring Multi-party Contracts for E-business
[2004-03] Perry Groot (VU) A Theoretical and Empirical Analysis of
Approximation in Symbolic Problem Solving
[2004-04] Chris van Aart (UVA) Organizational Principles for Multi-Agent
Architectures
[2004-05] Viara Popova (EUR) Knowledge discovery and monotonicity
[2004-06] Bart-Jan Hommes (TUD) The Evaluation of Business Process Modeling
Techniques
[2004-07] Elise Boltjes (UM) Voorbeeldig onderwijs; voorbeeldgestuurd
onderwijs, een opstap naar abstract denken, vooral voor meisjes
[2004-08] Joop Verbeek(UM) Politie en de Nieuwe Internationale
Informatiemarkt, Grensregionale politi‰le gegevensuitwisseling en digitale
expertise
[2004-09] Martin Caminada (VU) For the Sake of the Argument; explorations into
argument-based reasoning
[2004-10] Suzanne Kabel (UVA) Knowledge-rich indexing of learning-objects
[2004-11] Michel Klein (VU) Change Management for Distributed Ontologies
[2004-12] The Duy Bui (UT) Creating emotions and facial expressions for
embodied agents
[2004-13] Wojciech Jamroga (UT) Using Multiple Models of Reality: On Agents
who Know how to Play
[2004-14] Paul Harrenstein (UU) Logic in Conflict. Logical Explorations in
Strategic Equilibrium
[2004-15] Arno Knobbe (UU) Multi-Relational Data Mining
[2004-16] Federico Divina (VU) Hybrid Genetic Relational Search for Inductive
Learning
[2004-17] Mark Winands (UM) Informed Search in Complex Games

 SIKS DISSERTATION SERIES 251

[2004-18] Vania Bessa Machado (UvA) Supporting the Construction of Qualitative
Knowledge Models
[2004-19] Thijs Westerveld (UT) Using generative probabilistic models for
multimedia retrieval
[2004-20] Madelon Evers (Nyenrode) Learning from Design: facilitating
multidisciplinary design teams

2005
[2005-01] Floor Verdenius (UVA) Methodological Aspects of Designing
Induction-Based Applications
[2005-02] Erik van der Werf (UM)) AI techniques for the game of Go
[2005-03] Franc Grootjen (RUN) A Pragmatic Approach to the Conceptualisation
of Language
[2005-04] Nirvana Meratnia (UT) Towards Database Support for Moving Object
data
[2005-05] Gabriel Infante-Lopez (UVA) Two-Level Probabilistic Grammars for
Natural Language Parsing
[2005-06] Pieter Spronck (UM) Adaptive Game AI
[2005-07] Flavius Frasincar (TUE) Hypermedia Presentation Generation for
Semantic Web Information Systems
[2005-08] Richard Vdovjak (TUE) A Model-driven Approach for Building
Distributed Ontology-based Web Applications
[2005-09] Jeen Broekstra (VU) Storage, Querying and Inferencing for Semantic
Web Languages
[2005-10] Anders Bouwer (UVA) Explaining Behaviour: Using Qualitative
Simulation in Interactive Learning Environments
[2005-11] Elth Ogston (VU) Agent Based Matchmaking and Clustering - A
Decentralized Approach to Search
[2005-12] Csaba Boer (EUR) Distributed Simulation in Industry
[2005-13] Fred Hamburg (UL) Een Computermodel voor het Ondersteunen van
Euthanasiebeslissingen
[2005-14] Borys Omelayenko (VU) Web-Service configuration on the Semantic
Web; Exploring how semantics meets pragmatics
[2005-15] Tibor Bosse (VU) Analysis of the Dynamics of Cognitive Processes
[2005-16] Joris Graaumans (UU) Usability of XML Query Languages
[2005-17] Boris Shishkov (TUD) Software Specification Based on Re-usable
Business Components
[2005-18] Danielle Sent (UU) Test-selection strategies for probabilistic networks
[2005-19] Michel van Dartel (UM) Situated Representation
[2005-20] Cristina Coteanu (UL) Cyber Consumer Law, State of the Art and
Perspectives
[2005-21] Wijnand Derks (UT) Improving Concurrency and Recovery in Database
Systems by Exploiting Application Semantics

252 SIKS DISSERTATION SERIES

2006
[2006-01] Samuil Angelov (TUE) Foundations of B2B Electronic Contracting
[2006-02] Cristina Chisalita (VU) Contextual issues in the design and use of
information technology in organizations
[2006-03] Noor Christoph (UVA) The role of metacognitive skills in learning to
solve problems
[2006-04] Marta Sabou (VU) Building Web Service Ontologies
[2006-05] Cees Pierik (UU) Validation Techniques for Object-Oriented Proof
Outlines
[2006-06] Ziv Baida (VU) Software-aided Service Bundling - Intelligent Methods
& Tools for Graphical Service Modeling
[2006-07] Marko Smiljanic (UT) XML schema matching -- balancing efficiency
and effectiveness by means of clustering
[2006-08] Eelco Herder (UT) Forward, Back and Home Again - Analyzing User
Behavior on the Web
[2006-09] Mohamed Wahdan (UM) Automatic Formulation of the Auditor's
Opinion
[2006-10] Ronny Siebes (VU) Semantic Routing in Peer-to-Peer Systems
[2006-11] Joeri van Ruth (UT) Flattening Queries over Nested Data Types
[2006-12] Bert Bongers (VU) Interactivation - Towards an e-cology of people, our
technological environment, and the arts
[2006-13] Henk-Jan Lebbink (UU) Dialogue and Decision Games for Information
Exchanging Agents
[2006-14] Johan Hoorn (VU) Software Requirements: Update, Upgrade, Redesign
- towards a Theory of Requirements Change
[2006-15] Rainer Malik (UU) CONAN: Text Mining in the Biomedical Domain
[2006-16] Carsten Riggelsen (UU) Approximation Methods for Efficient Learning
of Bayesian Networks
[2006-17] Stacey Nagata (UU) User Assistance for Multitasking with Interruptions
on a Mobile Device
[2006-18] Valentin Zhizhkun (UVA) Graph transformation for Natural Language
Processing
[2006-19] Birna van Riemsdijk (UU) Cognitive Agent Programming: A Semantic
Approach
[2006-20] Marina Velikova (UvT) Monotone models for prediction in data mining
[2006-21] Bas van Gils (RUN) Aptness on the Web
[2006-22] Paul de Vrieze (RUN) Fundaments of Adaptive Personalisation
[2006-23] Ion Juvina (UU) Development of Cognitive Model for Navigating on the
Web
[2006-24] Laura Hollink (VU) Semantic Annotation for Retrieval of Visual
Resources

 SIKS DISSERTATION SERIES 253

[2006-25] Madalina Drugan (UU) Conditional log-likelihood MDL and
Evolutionary MCMC
[2006-26] Vojkan Mihajlovic (UT) Score Region Algebra: A Flexible Framework
for Structured Information Retrieval
[2006-27] Stefano Bocconi (CWI) Vox Populi: generating video documentaries
from semantically annotated media repositories
[2006-28] Borkur Sigurbjornsson (UVA) Focused Information Access using XML
Element Retrieval

2007
[2007-01] Kees Leune (UvT) Access Control and Service-Oriented Architectures
[2007-02] Wouter Teepe (RUG) Reconciling Information Exchange and
Confidentiality: A Formal Approach
[2007-03] Peter Mika (VU) Social Networks and the Semantic Web
[2007-04] Jurriaan van Diggelen (UU) Achieving Semantic Interoperability in
Multi-agent Systems: a dialogue-based approach
[2007-05] Bart Schermer (UL) Software Agents, Surveillance, and the Right to
Privacy: a Legislative Framework for Agent-enabled Surveillance
[2007-06] Gilad Mishne (UVA) Applied Text Analytics for Blogs
[2007-07] Natasa Jovanovic' (UT) To Whom It May Concern - Addressee
Identification in Face-to-Face Meetings
[2007-08] Mark Hoogendoorn (VU) Modeling of Change in Multi-Agent
Organizations
[2007-09] David Mobach (VU) Agent-Based Mediated Service Negotiation
[2007-10] Huib Aldewereld (UU) Autonomy vs. Conformity: an Institutional
Perspective on Norms and Protocols
[2007-11] Natalia Stash (TUE) Incorporating Cognitive/Learning Styles in a
General-Purpose Adaptive Hypermedia System
[2007-12] Marcel van Gerven (RUN) Bayesian Networks for Clinical Decision
Support: A Rational Approach to Dynamic Decision-Making under Uncertainty
[2007-13] Rutger Rienks (UT) Meetings in Smart Environments; Implications of
Progressing Technology
[2007-14] Niek Bergboer (UM) Context-Based Image Analysis
[2007-15] Joyca Lacroix (UM) NIM: a Situated Computational Memory Model
[2007-16] Davide Grossi (UU) Designing Invisible Handcuffs. Formal
investigations in Institutions and Organizations for Multi-agent Systems
[2007-17] Theodore Charitos (UU) Reasoning with Dynamic Networks in
Practice
[2007-18] Bart Orriens (UvT) On the development an management of adaptive
business collaborations
[2007-19] David Levy (UM) Intimate relationships with artificial partners
[2007-20] Slinger Jansen (UU) Customer Configuration Updating in a Software
Supply Network

254 SIKS DISSERTATION SERIES

[2007-21] Karianne Vermaas (UU) Fast diffusion and broadening use: A research
on residential adoption and usage of broadband internet in the Netherlands
between 2001 and 2005
[2007-22] Zlatko Zlatev (UT) Goal-oriented design of value and process models
from patterns
[2007-23] Peter Barna (TUE) Specification of Application Logic in Web
Information Systems
[2007-24] Georgina Ramírez Camps (CWI) Structural Features in XML Retrieval
[2007-25] Joost Schalken (VU) Empirical Investigations in Software Process
Improvement

2008
[2008-01] Katalin Boer-Sorbán (EUR) Agent-Based Simulation of Financial
Markets: A modular, continuous-time approach
[2008-02] Alexei Sharpanskykh (VU) On Computer-Aided Methods for Modeling
and Analysis of Organizations
[2008-03] Vera Hollink (UVA) Optimizing hierarchical menus: a usage-based
approach
[2008-04] Ander de Keijzer (UT) Management of Uncertain Data - towards
unattended integration
[2008-05] Bela Mutschler (UT) Modeling and simulating causal dependencies on
process-aware information systems from a cost perspective
[2008-06] Arjen Hommersom (RUN) On the Application of Formal Methods to
Clinical Guidelines, an Artificial Intelligence Perspective
[2008-07] Peter van Rosmalen (OU) Supporting the tutor in the design and
support of adaptive e-learning
[2008-08] Janneke Bolt (UU) Bayesian Networks: Aspects of Approximate
Inference
[2008-09] Christof van Nimwegen (UU) The paradox of the guided user:
assistance can be counter-effective
[2008-10] Wauter Bosma (UT) Discourse oriented summarization
[2008-11] Vera Kartseva (VU) Designing Controls for Network Organizations: A
Value-Based Approach
[2008-12] Jozsef Farkas (RUN) A Semiotically Oriented Cognitive Model of
Knowledge Representation
[2008-13] Caterina Carraciolo (UVA) Topic Driven Access to Scientific
Handbooks
[2008-14] Arthur van Bunningen (UT) Context-Aware Querying; Better Answers
with Less Effort
[2008-15] Martijn van Otterlo (UT) The Logic of Adaptive Behavior: Knowledge
Representation and Algorithms for the Markov Decision Process Framework in
First-Order Domains.
[2008-16] Henriette van Vugt (VU) Embodied agents from a user's perspective

 SIKS DISSERTATION SERIES 255

[2008-17] Martin Op 't Land (TUD) Applying Architecture and Ontology to the
Splitting and Allying of Enterprises
[2008-18] Guido de Croon (UM) Adaptive Active Vision
[2008-19] Henning Rode (UT) From Document to Entity Retrieval: Improving
Precision and Performance of Focused Text Search
[2008-20] Rex Arendsen (UVA) Geen bericht, goed bericht. Een onderzoek naar
de effecten van de introductie van elektronisch berichtenverkeer met de overheid
op de administratieve lasten van bedrijven.
[2008-21] Krisztian Balog (UVA) People Search in the Enterprise
[2008-22] Henk Koning (UU) Communication of IT-Architecture
[2008-23] Stefan Visscher (UU) Bayesian network models for the management of
ventilator-associated pneumonia
[2008-24] Zharko Aleksovski (VU) Using background knowledge in ontology
matching
[2008-25] Geert Jonker (UU) Efficient and Equitable Exchange in Air Traffic
Management Plan Repair using Spender-signed Currency
[2008-26] Marijn Huijbregts (UT) Segmentation, Diarization and Speech
Transcription: Surprise Data Unraveled
[2008-27] Hubert Vogten (OU) Design and Implementation Strategies for IMS
Learning Design
[2008-28] Ildiko Flesch (RUN) On the Use of Independence Relations in Bayesian
Networks
[2008-29] Dennis Reidsma (UT) Annotations and Subjective Machines - Of
Annotators, Embodied Agents, Users, and Other Humans
[2008-30] Wouter van Atteveldt (VU) Semantic Network Analysis: Techniques
for Extracting, Representing and Querying Media Content
[2008-31] Loes Braun (UM) Pro-Active Medical Information Retrieval
[2008-32] Trung H. Bui (UT) Toward Affective Dialogue Management using
Partially Observable Markov Decision Processes
[2008-33] Frank Terpstra (UVA) Scientific Workflow Design; theoretical and
practical issues
[2008-34] Jeroen de Knijf (UU) Studies in Frequent Tree Mining
[2008-35] Ben Torben Nielsen (UvT) Dendritic morphologies: function shapes
structure

2009
[2009-01] Rasa Jurgelenaite (RUN) Symmetric Causal Independence Models
[2009-02] Willem Robert van Hage (VU) Evaluating Ontology-Alignment
Techniques
[2009-03] Hans Stol (UvT) A Framework for Evidence-based Policy Making Using
IT
[2009-04] Josephine Nabukenya (RUN) Improving the Quality of Organisational
Policy Making using Collaboration Engineering

256 SIKS DISSERTATION SERIES

[2009-05] Sietse Overbeek (RUN) Bridging Supply and Demand for Knowledge
Intensive Tasks - Based on Knowledge, Cognition, and Quality
[2009-06] Muhammad Subianto (UU) Understanding Classification
[2009-07] Ronald Poppe (UT) Discriminative Vision-Based Recovery and
Recognition of Human Motion
[2009-08] Volker Nannen (VU) Evolutionary Agent-Based Policy Analysis in
Dynamic Environments
[2009-09] Benjamin Kanagwa (RUN) Design, Discovery and Construction of
Service-oriented Systems
[2009-10] Jan Wielemaker (UVA) Logic programming for knowledge-intensive
interactive applications
[2009-11] Alexander Boer (UVA) Legal Theory, Sources of Law & the Semantic
Web
[2009-12] Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin) Operating
Guidelines for Services
[2009-13] Steven de Jong (UM) Fairness in Multi-Agent Systems
[2009-14] Maksym Korotkiy (VU) From ontology-enabled services to service-
enabled ontologies (making ontologies work in e-science with ONTO-SOA)
[2009-15] Rinke Hoekstra (UVA) Ontology Representation - Design Patterns and
Ontologies that Make Sense
[2009-16] Fritz Reul (UvT) New Architectures in Computer Chess
[2009-17] Laurens van der Maaten (UvT) Feature Extraction from Visual Data
[2009-18] Fabian Groffen (CWI) Armada, An Evolving Database System
[2009-19] Valentin Robu (CWI) Modeling Preferences, Strategic Reasoning and
Collaboration in Agent-Mediated Electronic Markets
[2009-20] Bob van der Vecht (UU) Adjustable Autonomy: Controling Influences
on Decision Making
[2009-21] Stijn Vanderlooy (UM) Ranking and Reliable Classification
[2009-22] Pavel Serdyukov (UT) Search For Expertise: Going beyond direct
evidence
[2009-23] Peter Hofgesang (VU) Modelling Web Usage in a Changing
Environment
[2009-24] Annerieke Heuvelink (VUA) Cognitive Models for Training Simulations
[2009-25] Alex van Ballegooij (CWI) "RAM: Array Database Management
through Relational Mapping"
[2009-26] Fernando Koch (UU) An Agent-Based Model for the Development of
Intelligent Mobile Services
[2009-27] Christian Glahn (OU) Contextual Support of social Engagement and
Reflection on the Web
[2009-28] Sander Evers (UT) Sensor Data Management with Probabilistic Models
[2009-29] Stanislav Pokraev (UT) Model-Driven Semantic Integration of Service-
Oriented Applications

H. Notes

258 NOTES

