
Model Expansion in the Presence of

Function Symbols Using Constraint

Programming

Broes De Cat
Bart Bogaerts
Jo Devriendt
Marc Denecker

Report CW644, July 2013

KU Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)



Model Expansion in the Presence of

Function Symbols Using Constraint

Programming

Broes De Cat
Bart Bogaerts
Jo Devriendt
Marc Denecker

Report CW644, July 2013

Department of Computer Science, KU Leuven

Abstract

The traditional approach to model expansion (generating models
of a logic theory extending a partial structure) is to reduce the the-
ory to a propositional language and apply a search algorithm to the
resulting theory. Function symbols are typically replaced by pred-
icate symbols representing the graph of the function, an operation
that blows up the reduced theory.

In this paper, we present an improved approach to handle func-
tion symbols in a ground-and-solve methodology, building on ideas
from Constraint Programming. We do so in the context of FO(·)IDP ,
the knowledge representation language that extends First-Order logic
with, among others, inductive definitions, arithmetic and aggregates.
A model expansion algorithm is developed, consisting of (i) a ground-
ing algorithm for FO(·)IDP that is parametrized by the function sym-
bols the are allowed to occur in the reduced theory, and (ii) a search
algorithm for unrestricted, ground FO(·)IDP . The ideas are imple-
mented within the IDP knowledge-base system and experimental
evaluation shows that both more compact groundings and improved
search performance are obtained.

Keywords : Extended First-Order Logic, Declarative Modeling, Constraint
Programming.
CR Subject Classification : F.4.1, I.2.4.



Model Expansion in the Presence of Function
Symbols Using Constraint Programming

Broes De Cat, Bart Bogaerts, Jo Devriendt and Marc Denecker
Department of Computer Science, KU Leuven, Belgium

Email: firstname.lastname@cs.kuleuven.be

Abstract—The traditional approach to model expansion (gen-
erating models of a logic theory extending a partial structure)
is to reduce the theory to a propositional language and apply a
search algorithm to the resulting theory. Function symbols are
typically replaced by predicate symbols representing the graph
of the function, an operation that blows up the reduced theory.

In this paper, we present an improved approach to handle
function symbols in a ground-and-solve methodology, building
on ideas from Constraint Programming. We do so in the context
of FO(·)IDP, the knowledge representation language that extends
First-Order Logic (FO) with, among others, inductive definitions,
arithmetic and aggregates. A model expansion algorithm is
developed, consisting of (i) a grounding algorithm for FO(·)IDP
that is parametrized by the function symbols the are allowed
to occur in the reduced theory, and (ii) a search algorithm for
unrestricted, ground FO(·)IDP. The ideas are implemented within
the IDP knowledge-base system and experimental evaluation
shows that both more compact groundings and improved search
performance are obtained.

I. INTRODUCTION

Model generation is a widely used problem solving
paradigm. A problem is specified as a theory in a declarative
logic in such a way that models of the theory represent solu-
tions to the problem. A closely related paradigm is bounded
Model Expansion (MX). Here, a partial input structure over a
finite and known domain is extended into a complete structure
that is a model of a given theory. These paradigms are studied
and applied in the fields of Constraint Programming (CP)
[1], Answer Set Programming (ASP) [26] and Knowledge
Representation (KR) [3].

A state-of-the-art approach is to reduce the input theory,
formulated in an expressive logic, in a model-equivalence
preserving way to a theory in a fragment of the language
supported by some search algorithm. Afterwards, this algo-
rithm searches for models of the theory. For example, model
generation/expansion for the language FO(·) [9] is performed
by reducing theories to a ground fragment of FO(·) for which
a search algorithm is available. The term grounding refers
to both the reduction process and to its outcome; the 2-step
approach is called ground-and-solve.

A first generation of MX systems used search algorithms
for (pseudo)-propositional languages, such as Clausal Normal
Form (SAT solvers) and ground ASP (ASP solvers). An
important bottleneck of such systems is the blowup caused by
grounding the input theory, as the size of the theory increases

Broes De Cat is funded by the Institute for Innovation through Science and
Technology Flanders (IWT).

rapidly with the size of the domain and the nesting depth
of quantified variables. One apparent approach to reduce the
nesting depth of quantified variables is to replace predicate
symbols with function symbols wherever possible, as follows.

Example I.1. Consider the well-known 2-D packing-problem
for squares: given a set of squares with known size and a
rectangular area of known size, position all squares in a non-
overlapping fashion within the area (if possible). One of the
constraints, that two squares should not overlap horizontally,
can be expressed as follows, using posx(id, x) to express that
the left side square id is at x and sz(id) for the size of id:

∀id1 id2 x1 x2 : id1 6= id2 ∧ posx(id1, x1) ∧ posx(id2, x2)
⇒ (x1 + sz(id1) ≤ x2 ∨ x2 + sz(id2) ≤ x1).

In fact, posx represents a function mapping squares to x-
coordinates, so it can be rewritten using a function fx(id) : x:

∀id1 id2 : id1 6= id2 ⇒ (fx(id1) + sz(id1) ≤ fx(id2)
∨fx(id2) + sz(id2) ≤ fx(id1)).

Next to being a more natural way to express the constraint,
the rewriting halves the quantifier depth. However, if the target
solver only takes propositional input, the function symbols are
eliminated again during the reduction phase, replacing function
symbols by predicate symbols and adding additional quanti-
fiers. In fact, in the example, it comes down to transforming
the latter sentence into the former one.

Recently, research is being done in ASP to incorporate
techniques from CP, giving rise to the field of ASP modulo
CSP (CASP) [27]. In CASP, the ASP language is extended
with constraint atoms, atoms that stand for the constraints of a
CSP problem [19][14], and can, for example, contain function
symbols. Second, search algorithms have been developed that
allow ground constraint atoms (instead of only propositional
atoms) in the input. This gives rise to more compact ground-
ings that often also yield better propagation. Among those next
generation systems are the systems Clingcon[27], EZ(CSP)[2],
Mingo[20] and Inca[12].

In this paper, we work in the context of the language
FO(·)IDP, the language of the knowledge-base system (KBS)
IDP [18]. FO(·)IDP extends FO with, among others, induc-
tive definitions, aggregates and arithmetic. We show that
for FO(·)IDP, allowing the grounding to contain function
terms in fact produces a general form of such “constraint
atoms”, without extending the language. In the above example,
fx(id1) + sz(id1) ≤ fx(id2) is such an atom, for which
efficient propagation techniques exist in the field of CP. We
present a model expansion algorithm for FO(·)IDP that exploits



this idea. It of (i) an algorithm to ground FO(·)IDP theories
without eliminating all function symbols from the grounding
and (ii) a search algorithm for general, ground FO(·)IDP.
As different search algorithms often support different sets of
function symbols, the grounding algorithm is parametrized by
the set of functions allowed to occur in the grounding. The
search algorithm, extends the search algorithm of the state-of-
the-art solver MINISAT(ID) [21] using the technique of lazy
clause generation[30], an approach to support finite-domain
constraints in a SAT-solver by encoding propagation as clauses
(for details, see Section IV). The algorithms are implemented
within IDP (i) and as the solver CONSTRAINT-(ID) (ii).

We take terminology from the logic-based point of view
to model generation.Below, we provide a short overview of
coinciding notions from CP and ASP1. A theory T can be seen
as a set of constraints (CP) or a logic program (ASP). Symbols
are by default non-defined / uninterpreted; constants (0-ary
functions symbols) coincide with variables in the Constraint
Programming sense (CP-variables) and n-ary (n > 0) function
symbols can be seen as n-dimensional arrays of CP-variables.
A (partial) interpretation coincides with a (partial) assignment
to CP-variables; a model of T is a total interpretation satisfying
T , i.e., a solution (CP) or answer set (ASP). A domain is a set
of domain elements, e.g., the set of values a CP-variable might
take. Following CP-terminology, the domain of a function
symbol refers to the set of values it can map to. A variable is
a placeholder for instantiation with domain elements.

The paper is organized as follows. In Section II, the
language FO(·)IDP is introduced. Next, the algorithms for
grounding and search are presented in Section III, respectively
Section IV. Experimental evaluation is presented in Section V;
related work and concluding remarks in Section VI.

II. PRELIMINARIES

We assume familiarity with FO. The notation FO(·) [9]
denotes the family of extensions of FO with new language
constructs. The language we consider in this paper is the
language FO(·)IDP. It is a many-sorted extension of FO with
aggregate functions, arithmetic and inductive definitions. We
know give an overview of the language.

A vocabulary Σ consists of a set Σt of types denoted τ
and a set Σs of typed predicate symbols denoted P,Q,R and
function symbols denoted f, g, h. For each type τ , Σ includes
a unary predicate symbol T (τ) representing all elements in τ .

Variables x, y, terms t, atoms A, literals L, domain ele-
ments d, and FO-formulas ϕ are defined as usual. A domain
atom(domain term) is an atom(term) consisting of a predi-
cate(function) symbol applied to a tuple of domain elements.
We use c to denote domain terms and e to denote domain
elements or domain terms. The set of symbols of a theory T
is denoted voc(T ). Given two tuples x and x′ of terms of equal
length n, x = x′ denotes the conjunction x1 = x′1∧ . . .∧xn =
x′n. A term t containing occurrences of a term t′ is denoted
as t[t′]; the replacement of t′ in t by t′′ is denoted as t[t′/t′′]
(similarly for formulas).

An interpretation for a type τ is a set of domain elements
Dτ . A (partial) interpretation for a predicate symbol P (τ)

1A formal comparison of FO(·) and ASP is presented in [8]

consists of two disjoint subsets of Dτ1×· · ·×Dτn , denoted as
Pct and Pcf . An (partial) interpretation for a function symbol
f(τ) : τ ′ is a function mapping elements of Dτ1 × · · · ×Dτn
to a non-empty subset of τ ′. A (partial) Σ-interpretation I
is then an interpretation for all symbols in Σ; we use sI

to refer to the interpretation of a symbol s in I. An atom
P (d) is true in I if P (d) ∈ P Ict, false if P (d) ∈ P Icf
and unknown otherwise. An atom f(d) = d′ is true in I if
{d′} = fI(d), unknown if {d′} ( fI(d) and false otherwise.
An interpretation for a predicate symbol P is two-valued if
Pct = Pcf ; an interpretation for a function symbol is two-
valued if all images are singletons. An interpretation is two-
valued if the interpretation of all its symbols are two-valued.
For a two-valued interpretation I, ϕI (tI) denotes the value
of a formula ϕ (a term t) under I as usual. A well-typed
expression is one in which the type of each argument matches
with the type of its argument position. Badly typed atoms are
false. We say a term t (formula ϕ) is ground-evaluatable in
I if all symbols in t are two-valued. In this paper, we only
consider interpretations where all types are finitely interpreted
and with a total order on all domain elements; in that case,
define minτ as the function mapping to the smallest element
of τ and predτ as the (partial) predecessor function over τ .

We extend the notion of term to include aggregate terms.
A set expression is of the form {x : ϕ : t}, {ϕ : t} (if
there are no local variables) or a union of set expressions
{x1 : ϕ1 : t1} ∪ {x2 : ϕ2 : t2} (denoted shortly as
{x1 : ϕ1 : t1, x2 : ϕ2 : t2}). Given an interpretation I and an
assignment d to the free variables y of the set expression,
the interpretation {x : ϕ[y/d] : t[y/d]}I is the multiset
{t[x/d′, y/d]I | ϕ[x/d

′
, y/d]I = t}. Thus, in the context of a

given assignment for the variables y, the expression denotes the
multiset of tuples t for which ϕ holds. Aggregate terms are of
the form agg(S), with agg an aggregate function (cardinality,
sum, product, minimum or maximum) and S a set expression.
The cardinality function then maps a set interpretation to the
number of elements in the set. The aggregate functions sum,
product, minimum and maximum map a set to respectively the
sum, product, minimum and maximum of the elements in the
set, or to 0, respectively 1, +∞ and −∞ if the set is empty.
Aggregate terms can occur nested in other aggregates; in this
paper however, aggregate terms occurring in a definition cannot
contain any symbols defined in that definition.2

Definitions ∆ are sets of rules of the form ∀x : P (t)← ϕ,
where P (t) is called the head and ϕ the body of the rule.
Predicates in the head of rules of ∆ are called defined pred-
icates; all other symbols in ∆ are called parameters or open
symbols of ∆. Intuitively, for each value of the parameters, ∆
defines the defined predicates in a unique way. The satisfaction
relation of FO is extended to definitions. We say that I satisfies
∆ (I |= ∆) if I is the parametrised well-founded model of
∆ [29]. The well-founded semantics is used here because
it correctly formalises the most common forms of informal
inductive definitions (monotone inductive definitions and defi-
nitions over a well-founded order). Definitional implication←
should not be confused with the material implications ⇐ and
⇒. Intuitively, when the condition of a material implication is
false, its head is arbitrary (true or false), while if the condition

2In fact, the results in this paper are also correct for such aggregate terms
if they do not occur nested in other aggregate terms.



of a definitional rule is false, its head cannot be derived and is
false (unless another rule derives it). This intuition coincides
exactly with inductive definitions as in mathematical texts.

The completion of ∆ for a symbol P , defined in ∆ by the
rules ∀xi : P (ti) ← ϕi with i ∈ [1, n], is the set consisting
of the sentence ∀xi : ϕi ⇒ P (ti) for each i ∈ [1, n] and
the sentence ∀x : P (x) =>

∨
i∈[1,n](x = ti ∧ ϕi). This set

is denoted as compP,∆, the union of all these sets for ∆ as
comp∆. It is well-known that if I |= ∆ then I |= comp∆
but not vice-versa (e.g., the inductive definition expressing
transitive closure is stronger than its completion).

For a vocabulary Σ and a structure I over Σ, two theories
T and T ’ are {Σ, I}-equivalent if for each model M of T that
extends I, its restriction to Σ can be extended to a model of
T ’ extending I, and vice-versa and the extensions are unique.

A formula is in Negation Normal Form (NNF) if ¬ only
occurs directly in front of atoms and if conjunctions and
disjunctions are in left-associative form (e.g., A∨ (B∨ (. . . )).
We assume, without loss of generality, that our sentences and
rule bodies are NNF.

III. GROUNDING TO PARAMETRISED GROUND FO(·)
This section describes an algorithm to construct the ground-

ing of a theory Tin over Σ in the context of a 3-valued,
consistent interpretation Iin. The algorithm transforms Tin to
a {Σ, I}-equivalent ground —quantifier-free— theory Tg and
a “mapping” theory Tm consisting of explicit definitions for
symbols of Σ that were eliminated from Tg .

The algorithm takes as parameter a set ResF of “residual”
function symbols, function symbols allowed in Tg . In our
algorithm, functions f/n not in ResF are replaced by their
“graph” predicate symbol gf/n+1. If ResF is empty, then all
atoms in the grounding will be domain atoms; by translating
these into propositional symbols, such a theory can be mapped
into an “equivalent” propositional theory.

The grounding process is described as two stratified se-
quences of {Σ, I}-equivalence preserving rewrite rules, rewrit-
ing the theories Tg and Tm. Theory Tg is initialized as Tin, Tm
as the empty set. The rewrite rules operate on Tg , substituting
expressions or rules by simpler ones, and sometimes introduc-
ing new definitions to Tg or Tm. E.g. ¬¬ϕ ��� ϕ is the rule
that replaces occurrences of ¬¬ϕ in Tg by ϕ.

A. Phase 1: simplifying the syntax

The first phase consists of iterated rewriting of Tg by the
rewrite rules specified below. The rewriting process terminates
when no more rules are applicable.

• ϕ⇔ ψ ��� ϕ⇒ ψ ∧ ψ ⇒ ϕ.

• ϕ⇒ ψ ��� ¬ϕ ∨ ψ.
• ¬¬ϕ ��� ϕ.

• ¬(ϕ ∨ ψ) ��� ¬ϕ ∧ ¬ψ.

• ¬(ϕ ∧ ψ) ��� ¬ϕ ∨ ¬ψ.

• ¬(∀x : ϕ) ��� ∃x : ¬ϕ.

• ¬(∃x : ϕ) ��� ∀x : ¬ϕ.

• ¬(t ∼ t′) ��� t 6∼ t′. We use ∼ to denote a
comparison operator such as ≤, <,=, 6=, . . . and 6∼
denotes respectively >,≥, 6=,=, . . . .

• (ϕ ∧ ψ) ∧ γ ��� ϕ ∧ (ψ ∧ γ).

• (ϕ ∨ ψ) ∨ γ ��� ϕ ∨ (ψ ∨ γ).

• Unnest function terms f(t) A[f(t)] ��� ∃x : f(t) =
x ∧ A[f(t)/x] where A is an occurrence of an atom
in an FO sentence or rule body and A is not of the
form f(t) = t.
A[f(t)]← ϕ ��� ∀y : A[f(t)/y]← f(t) = y ∧ ϕ.
{x : ϕ : t[f(t)]} ��� {x, y : ϕ ∧ f(t) = y : t[y]}.

These rewrite rules eliminate⇔ and⇒, drive negation deeper
and flatten conjunctions and disjunctions. In the resulting
theory, negation is in front of atoms of user-defined symbols.
All occurrences of function symbols f /∈ ResF are top left
symbols in equalities f(t) = t. Note, if ResF is empty, such
atoms are of the form f(t) = t with t1, . . . , tn, t either domain
elements (e.g., natural numbers) or variables. As final step in
this phase, function symbols are replaced by their graph as
follows. For each function symbol f/n /∈ ResF, we introduce
a new predicate symbol gf/n + 1, apply the rewrite rule
f(t) = t ��� gf (t, t), add ∀x : #({y : gf (x, y) : 1}) = 1
to Tg and add ∀x y : f(x) = y ⇔ gf (x, y) to Tm.

B. Phase 2: Grounding

From now on, all expressions explicitate the domains of
variables, written as ∀x ∈ D : ϕ or {x ∈ D : ϕ : t}. Initially,
D is τIin1 × · · · × τIinn , where τi is the type of xi3.

The second phase applies the following set of rewrite rules
and also terminates when no more rules are applicable.

• Split conjunctive sentences: ϕ ∧ ψ ��� ϕ,ψ where
ϕ ∧ ψ is a sentence in Tg .

• Instantiate, for some d ∈ D:

∀x ∈ D : ψ ��� ψ[x/d] ∧ ∀x ∈ D − d : ψ.
∃x ∈ D : ψ ��� ψ[x/d] ∨ ∃x ∈ D − d : ψ.
∀x ∈ D : A← ψ ��� A[x/d]← ψ[x/d]

∀x ∈ D − d : A← ψ.
{x ∈ D : ϕ : t} ��� {ϕ[x/d] : t[x/d]}∪

{x ∈ D − d : ϕ : t}.
• Evaluate t ��� tIin if t is a domain term with a single

value in tIin . P (d) ��� P (d)Iin , if P (d)Iin 6= u.
This rule is not applied to occurrences of P (d) in
definitions that define P .4

• Introduce Tseitin ψ ��� Tψ , where ψ is an oc-
currence of a formula without free variables in Tg
and Tψ is a newly introduced propositional symbol.
Additionally, if ψ occurs in a definition ∆, the rule
Tψ ← ψ is added to ∆, otherwise, the singleton
definition {Tψ ← ψ} is added to Tg . The rule is not
applied if ψ is a domain literal, sentence or rule body.

• Introduce term t ��� ct, where t is an occurrence of
a term without free variables in Tg and ct is a newly

3Recall that Iin specifies a finite domain τIin for every type τ .
4By definition, Evaluate checks well-typedness of expressions.



introduced constant over the type of t. Additionally,
t = ct is added to Tg . The rule is not applied if t is a
domain element or occurs in an atom of the form P (e),
f(e) ∼ e0 or agg({L1 : e1} ∪ · · · ∪ {Ln : en}) ∼ e0.

• Simplify
¬t ��� f ¬f ��� t
ψ ∨ t ��� t ψ ∧ f ��� f
ψ ∨ f ��� ψ ψ ∧ t ��� ψ.
∀x ∈ D : t ��� t ∃x ∈ D : t ��� t
∀x ∈ D : f ��� f ∃x ∈ D : f ��� f
∀x ∈ ∅ : ψ ��� t ∃x ∈ ∅ : ψ ��� f
{x ∈ ∅ : ψ : t} ��� {f : t} {x ∈ D : f : t} ��� {f : 0}

After application of the above rewrite rules, we obtain a theory
in Ground Normal Form (GNF).

Definition III.1. An FO(·) theory T is in Ground Normal
Form (GNF) if all its sentences and rules are of one the
following forms (with all Li’s domain literals):

L1 ∨ . . . ∨ Ln. Q(e). f(e) ∼ e0.

agg({L1 : e1} ∪ · · · ∪ {Ln : en}) ∼ e0.

P (e)← L1 ∧ . . . ∧ Ln.
P (e)← L1 ∨ . . . ∨ Ln.
P (e)← Q(e′). P (e)← f(e) ∼ e0.

P (e)← agg({L1 : e1} ∪ · · · ∪ {Ln : en}) ∼ e0.

Theorem III.2. For input Tin, Iin and ResF, let Tg and Tm be
the computed theories at any time during the rewrite process.
Then Tin and Tg ∪ Tm are {Σ, I}-equivalent. The rewrite-
process terminates and the resulting theory Tg is in GNF and
contains only function symbols in ResF.

The equivalence follows from the fact that each rewrite rule
preserves {Σ, I}-equivalence. That the resulting theory is in
GNF follows from the fact that none of the rewrite rules apply
in the context of a GNF theory and that at least one rewrite
rule is applicable to any theory not in GNF.

Termination of phase 1 is straightforward. To prove termi-
nation of phase 2, it can be shown that a well-founded order
exists on theories for the presented rewrite rules. This order
depends among others on the nesting depth of symbols, the
nesting and domain size of quantifications and the number of
occurrences of symbols in the theory. The formal presentation
of the well-founded order is out of the scope of this paper.

C. Concrete grounding algorithm

The rewrite process of the previous section is not confluent.
By imposing different rewrite strategies, it can be instanti-
ated to a class of –sound– grounding algorithms. To obtain
a state-of-the-art grounding algorithm, one should select an
instantiation that minimizes the number of traversals through
formulas in search for applicable rewrite rules, the memory
and time complexity of the algorithm, the grounding size, . . . .
The rewrite strategy that is implemented in our system is quite
complex and a full presentation is out of the scope of this
paper; we highlight the most important considerations here:

• The top priority is to minimize the grounding size,
followed by minimizing the running time and memory
usage of the grounding algorithm.

• Instantiate is performed top-down and depth-first.
This allows to simplify formulas early and reduces
the memory overhead of storing partial results.

• Simplify and Evaluate are applied eagerly, as they
may considerably reduce the size of formulas.

• The number of introduced symbols should be mini-
mized. E.g., it is important to avoid the creation of
multiple Tseitin symbols for multiple occurrences of
the same term, atom or formula.

An important optimisation is to first make Iin more precise
by applying symbolic propagation for Tin to it. This leads
to a more precise 3-valued structure Iin’ that approximates
all instances of Iin that are models of Tin. This process was
described first in [34] and later for the restriction to FO in [31]
where it was called lifted unit propagation, as this propagation
is indeed a symbolic version of unit propagation. With the
refined structure Iin’, the ground theories are sometimes orders
of magnitude smaller than w.r.t. Iin [35].

IV. MODEL EXPANSION FOR GENERAL GROUND FO(·)
In this section, we present an MX algorithm which takes as

input a general ground FO(·) theory Tg in GNF and a 3-valued
input structure Iin.5 As before, we assume that all types τ are
interpreted as finite sets τIin of domain elements.

The algorithm is based an existing MX algorithm for
function-free GNF, implemented in the system MINISAT(ID)
and described in [22][21]. That algorithm is a conflict-driven
clause-learning (CDCL) search algorithm, extended to handle
inductive definitions and aggregates. Recall that function-free
GNF can be obtained by running the algorithm of the previous
section with ResF = ∅. The algorithm developed here uses a
generalisation of the technique of lazy clause generation[30]
to support full GNF, explained later in this section.

A. Adapt existing CDCL algorithm to our setting

The state of the algorithm consists of a theory Ts, and a
three-valued interpretation I. We present I as the sequence of
its true literals, ordered by the time at which the literals were
derived. A literal Li in this sequence is annotated LDi if it is
a decision literal; other literals were derived by propagation.
Initially, Ts is the input theory Tg and I is the empty set. For
ease of presentation, we use a slight adaptation of GNF in the
rest of the paper: any sentence A, with A one of the atoms
Q(e), f(e) ∼ e0 or agg({L1 : e1} ∪ · · · ∪ {Ln : en}) ∼ e0, is
generalized as an equivalence P (d)⇔ A. Any such sentence
A in Tg is then added as the sentence t⇔ A to Ts.

As an initial step of the algorithm, definitions ∆ in Ts are
simplified. If ∆ is not recursive (or if it can be stratified), it
can be split in a set of subdefinitions ∆1, . . . ,∆n as shown in
[9]. These are added to Ts and ∆ is removed from it.

A number of inference rules operate on such states. The
first four rules describe a basic CDCL SAT-solver: Decide:
Select non-deterministically a domain literal L such that LI =
u, and append LD to I. UP: Apply unit propagation to a

5The theory Ts computed during grounding contains only explicit defini-
tions of symbols that do not occur in Tg and can be ignored during search.



clause in Ts and append the derived literal L to I. Fail: If I
is inconsistent and contains no decision literals, the algorithm
returns “unsatisfiable”. Learn: If I is inconsistent and contains
decision literals, conflict-driven clause-learning is applied to I
and Ts to construct a learnt clause C which is added to Ts.
Backjumping to the level of the second youngest literal of this
clause occurs. The output of the algorithm is either fail or a
three-valued interpretation I expanding Iin such that every
more precise two-valued interpretation I’ is a model of Tg .

The remaining propagation rules, presented in the next
section, then serve to perform propagation on the non-clausal
components of Ts. In the MINISAT(ID) algorithm, this con-
sists of four additional rules, Aggregate, Completion, Un-
founded and Wellfounded. The first checks for propagation
over aggregate expressions by reasoning on the bounds of
the aggregate function (the minimum and maximum value the
function can still take in a partial structure). The latter two
rules apply to inductive definitions. The rule Completion is
only executed in the initial phase; it applies to a definition
∆ and adds its completion to Ts. If ∆ is equivalent with its
completion (for example for Tseitin symbols introduced only
in sentences), ∆ can be dropped from Ts, as shown in [9].
Unfounded searches for unfounded sets[33] in a definition
∆ and if an unfounded set U is found, propagates all its
atoms as f (i.e., it appends ¬U to I.). When I is a 2-valued
interpretation, Wellfounded checks if I is a well-founded
model of a definition ∆, as shown in [32]. In what follows,
these rules will be extended (and new ones will be added), to
handle the more general format of GNF.

We omit a discussion on CDCL improvements such as the
2-watched literal scheme and restarts; they can be incorporated
straightforwardly in the presented algorithm. The experimental
evaluation is based on a state-of-the-art CDCL algorithm.

B. Approach to extend to GNF

Any GNF theory can be transformed into a {Σ, I}-
equivalent function-free GNF theory. In that case, the inference
rules presented above are sufficient for a complete algorithm.
One approach to obtain such a theory was already presented
in Section III: to apply the rewrite algorithm with an empty
set ResF. However, instead of generating such a function-free
theory eagerly, before search, in the rest of the section we
present a concrete algorithm to generate such a function-free
theory lazily (i.e, during search). The algorithm is based on the
technique of lazy clause generation, presented in [30]. Lazy
clause generation alleviates the blowup of creating the full
function-free ground theory in advance in two ways: first it
uses smarter technique than graphing functions, and second,
it only generates these clauses when they would contribute to
the search, i.e. on the moment that they would propagate. We
generalise the scheme by not only lazily generating clauses but
lazily generating GNF sentences. To avoid infinite loops, we
impose the following partial order on GNF expressions; only
smaller expressions can be generated (w.r.t. this ordering).

definitional rules�reified aggregates� P ⇔ Q(e)

� P ⇔ f(e) ∼ e0 � P ⇔ f(d) ∼ e0 � clauses

We assume e contains at least one domain terms (distinguish-
ing it from the case P ⇔ f(d) ∼ e0); additionally, we

assume expressions over the operator ≤ are ordered lower
below similar expressions over other comparison operators.

In the rest of the section, we show how the various
GNF expressions that possibly contain function terms are
supported. For each of these, the presentation consists of
three components. First, a set of (non-ground) sentences of
the form ∀x : ϕ ⇒ L; intuitively, these will be the set of
propagations or decompositions we consider for the expression
at hand, propagating the right-hand side (the head) when the
left-hand side (the body) is true. Second, a discussion on how
to quickly find instances of x for which ϕ holds in I and LI
is not true. The algorithm then consists of adding the sentence
ϕ[x/d]⇒ L[x/d] for the relevant instantiations d of x. Third,
a discussion on when such derived sentences will be added to
Ts, which will depend on the expression at hand. As discussed
previously, the type of the derived sentences should be ordered
below the type of the original expression.

C. Encoding functions

To handle constraints over functions f/n with domain D
in a solver that decides on domain atoms, we use the range
encoding[30]. A domain term t = f(d) with f a function
mapping to the domain D = {d1, . . . , dn} is encoded as the
set of propositional symbols {Tt≤d1 , . . . , Tt≤dn}. For each t,
we define mint = max{d ∈ D | T It≤prev(d) = f} and maxt =

min{di ∈ D | T It≤di = t}. The range of t is then defined
as [mint,maxt]. The values mint and maxt can be computed
from I, but an efficient algorithm should store them and adapt
them incrementally whenever I changes.

The range encoding is selected over encoding the function
as a set of equalities Tt=di as the encoding of inequalities is
more compact (and the encoding for equalities is only a factor
2 larger) and choices on encoding atoms more often eliminate
subsets of the domain instead of just one value. A more in-
depth comparison is provided in [30].

In the sequel, for domain term t and value d, we use
dt ≤ de to denote the atom Tt≤d if d ∈ D = {d1, . . . , dn}, the
atom f if d < d1, the atom t if d > dn and otherwise the atom
Tt≤d′ , with d′ the smallest domain element in D larger than
d. All other comparison operators ∼ can be defined in terms
of ≤. We use dt ∼ de as a shorthand for those rewritings. E.g,
dt 6= die denotes dt ≤ di−1e ∨ ¬ dt ≤ die.

The following set of non-ground clauses represents the
dependencies between those symbols.

dt ≤ dne
∀x ∈ D − dn : dt ≤ xe ⇒ dt ≤ next(x)e .
∀x ∈ D − d1 : dt > xe ⇒ dt > prev(x)e .

The propagation rule Encode is applied to a domain term t
the first time it appears in Ts, and it adds the grounding of the
above formulas to Ts. For small domains D (‖D‖ < 100), this
is done eagerly; for larger ones this is done lazily as described
in [30]. We do not elaborate the details here. Additionally,
to take care of interpreting f when we have a model of the
encoding clauses, Encode adds the mapping sentence ∀x ∈
D :

⌈
f(d) = x

⌉
⇒ f(d) = x to Tm.

Example IV.1. Consider the theory Tg consisting only of
the sentence P ⇔ f(1) ≤ 3, with f typed as f(τ) : τ ′,



τ interpreted as D, τ as D′. Encode will then add the
grounding of the above sentences for t = f(1). It does not
add instantiations for any other term f(d), d 6= 1, which has
an important impact if D is large. In this case, the result of
MX is a three-valued interpretation of which any two-valued
extension is a model of the theory. For example, interpretation
I = {P, f(1) = 3} contains enough information: all structures
more precise than I, are models of Tg .

D. Comparison constraint

The propagation rule Comparison applies to constraints
P ⇔ c ≤ c′, with P a domain atom and c and c′ domain
terms over a domains D, respectively D′. The propagations
we consider can be represented as the following sentences.

∀x ∈ D ∪D′ : dc ≤ xe ∧ dc′ ≥ xe ⇒ P.
∀x ∈ D ∪D′ : dc > xe ∧ dc′ < xe ⇒ ¬P.
∀x ∈ D : dc′ ≤ xe ∧ P ⇒ dc ≤ xe .
∀x ∈ D : dc′ ≥ xe ∧ ¬P ⇒ dc > xe .
∀x ∈ D′ : dc ≥ xe ∧ P ⇒ dc′ ≥ xe .
∀x ∈ D′ : dc ≤ xe ∧ ¬P ⇒ dc′ < xe .

It is easy to see that together with the encoding of c and c′, this
set of sentences it {Σ, I}-equivalent to the original constraint.
Comparison constraints over comparison operators other than
≤ are converted into 1 or 2 comparison constraints over ≤
(with Tseitin introduction in the latter case).

Instantiations are generated as follows. Comparison
checks for each of the non-ground sentences whether the body
is true, but only for instantiations of x with minc,maxc,minc′
and maxc′ . This is checked whenever one of those values
increases (for min) or decreases (for max) and whenever P
becomes assigned. It is straightforward to show that this is
sufficient, i.e., when UP, Encode and Comparison are at
fixpoint (without conflict), none of the above sentences has a
true body and an unknown or false head for any instantiation.

Example IV.2. Consider a constraint P ⇔ c ≤ c′, with c
a range of [3, 10], c′ a range of [7, 20] and P is true in I.
When I is extended with dc ≥ 8e to I’, Comparison checks
for x = 8 which of the left-hand sides are true, which is the
case for the sentence dc ≥ xe ∧ P ⇒ dc′ ≥ xe. As the head
is not true in I’, the sentence is added to Ts (in clausal form)
and UP will derive dc′ ≥ 8e.

E. Aggregates

Next, we introduce propagation rules for sentences of the
form P ⇔ agg({L1 : e1} ∪ · · · ∪ {Ln : en}) ≤ e0 where agg
is either a maximum or sum aggregate function. As above,
other comparison operators can be rewritten into constraints
over ≤. Cardinality constraints are rewritten straightforwardly
into sum constraints and minimum into maximum constraints.
The rules for product aggregates are not presented here, as
they are similar to those for sum (although complicated by the
non-monotonicity of product for terms with negative values).

The rule Encodemax rewrites a maximum constraint P ⇔
max(S) ≤ c into the following sentences

P ∧ Li ⇒ ei ≤ e0 for each i ∈ [1, n]
¬P ⇒ ∨

i∈[1,n](Li ∧ ci > e0)

As the rewriting consists of only n+ 1 ground sentences, it is
done eagerly for any maximum aggregate constraint in Ts.

Enumerating the clauses generated from a sum constraint,
by the Encodesum propagation rule, is out of the scope of this
paper, we only give an example: the sentence



∑

i|LI
i 6=f

maxei ≤ e0



∧

i|LI
i =f
¬Li ⇒ P

is in fact a smart instantiation of the clause

∀x :



⌈∑

i

xi ≤ e0

⌉
∧

∧

i|LI
i 6=f
dei ≤ xie

∧

i|LI
i =f
¬Li


⇒ P

This sentence expresses that P is true if the sum of the maxima
of all terms in S, of which the condition is not false, is lower or
equal than e0. The other sentences are similar in idea, but not
presented here. Similarly to handling comparison constraints,
propagation is checked for the bounds of all terms and for all
assignments to the associated atoms.

F. General ground atoms

Constraints of the form P ⇔ q(e) and P ⇔ f(e) ∼ e0 are
handled by waiting until all domain terms in e are assigned.
At that moment, the instantiated constraint is generated, which
coincides with instantiations of the sentence

∀x ∈ dome : de = xe ⇒ (P ⇔ Q(x)), respectively
∀x ∈ dome : de = xe ⇒ (P ⇔ f(x) ∼ e0).

The propagation rule Encodegeneral adds the above sen-
tences whenever the value of each of the ci is known (applying
Tseitin introduction to generate sentences in GNF). The former
results in a set of clauses, the latter in a clause and a
comparison constraints, which are both constraints of a lower
type than the original sentence.

Constraints of the form P ⇔ f(e) ∼ e0 are in fact
a generalisation of the element constraint from the field of
Constraint Programming[17], as the next example shows.

Example IV.3. An element constraint element(c, A, i) ex-
presses that a cp-variable (or constant) c takes the value at
index i of array A. It is well-known that an array is in fact a
function fA from indices to values. The element constraint can
then be modelled as the sentence fA(i) = c and handled lazily
as described above, by generating the comparison constraint
fA(d) = c when i is assigned to d in I. It is possible that A
(fA) is very large or not completely known in advance.

Obviously, it is sometimes possible to derive propagation
even before e is completely instantiated. Investigating the
benefit of such propagation is part of future work.

G. Definitions with function terms

In the standard case (no function terms), definitions are
handled by applying the rules Completion, Unfounded and
Wellfounded. Definitions containing function terms should be
handled carefully, for which we introduce the extended rules
Completion′, Unfounded′ and Wellfounded′.



Consider a definition ∆ defining, among others, the symbol
P by the rules {P (e1) ← ϕ1, . . . , P (en) ← ϕn}. The
completion of P for ∆ is the (non-ground) sentence

∀x : P (x)⇔


 ∨

i∈[1,n]

dx = eie ∧ ϕi




The rule Completion′ adds the equivalent sentences∧
i∈[1,n] ϕi ⇒ P (ei)

∀x : P (x)⇒
(∨

i∈[1,n] dx = eie ∧ ϕi
)

The former sentence is added eagerly for each i (as it is
already ground). For the latter sentence, Completion′ adds its
instantiation of x with d to Ts for atoms P (d) true in I.

An issue with the condition on instantiation is that prop-
agations might be missed. Indeed, the latter sentence of
Completion is only instantiated for P (d) true in I; however,
if
(∨

i∈[1,n]

⌈
d = ei

⌉
∧ ϕi

)
is false, then ¬P (d) is entailed.

If P (d) does not occur in Ts (and is never added by other
rules), it will not be decided, resulting in an interpretation of
which not all two-valued extensions are models. It is easy to
show that in a (non-failed) state in which no more inference
rules are applicable, all unassigned domain atoms over defined
symbols have to be false. Extending the interpretation in this
way, denoted as the rule Defined-false, then restores the post-
condition of the algorithm.

For Unfounded′ and Wellfounded′, we take an approach
similar to previous sections: both rules are only applied when
all domain terms occurring in ∆ are assigned. In such situa-
tions, replacing all domain terms in ∆ with their interpretation
results in a definition to which the existing propagation rules
Unfounded and Wellfounded can be applied. If one of these
generates an explanation clause C, this clause is only valid
conditionally, as we had to substitute several constants in order
to obtain it. So instead of adding C to Ts, we add

 ∧

c|c occurs in ∆

⌈
c = cI

⌉

⇒ C.

Example IV.4. Consider part of a graph application consisting
of a function next mapping nodes to nodes and a constant
start of type node. Suppose the aim is to compute a relation r
on nodes, representing all nodes reachable from the start node
through next. The following is a definition of r6.{

r(start). ∀x : r(next(x))← r(x).
}

In the context of an interpretation I over domain {a, b, c},
with startI = a and nextI = {a 7→ b, b 7→ a, c 7→ c},
the definition reduces to the following definition, to which
Unfounded can be applied:{

r(a). r(b)← r(a). r(a)← r(b). r(c)← r(c).
}

Unfounded would then derive the unit clause ¬r(c); conse-
quently, Unfounded’ generates the clause

(dstart = ae ∧ dnext(a) = be
∧ dnext(b) = ae ∧ dnext(c) = ce)⇒ ¬r(c).

6Note that the size of the grounding of this definition is linear in the size
of the domain, instead of quadratic if functions would be graphed.

H. Pre-interpretation over some symbols

As discussed in the section on grounding, next to the
ground theory, the algorithm maintains a partial, symbolic in-
terpretation Iin which is guaranteed to be consistent. However,
we do not want to add this interpretation as constraints to the
theory, for the same reason as we do not want to eagerly
generate the full propositional grounding; e.g., if very few
atoms over an interpreted predicate occur in Ts. Instead, the
following propagation rule takes care of adding just enough of
Iin to obtain interpretations that are consistent with Iin. Rule
check-Iin adds a clause (¬)A to Ts for every atom A in Ts
such that AIin = t(f) and (¬)A /∈ I.7

Example IV.5. Consider a theory Ts with constraint P (c) ∨
¬P (c′), with P over a large domain D and interpreted in Iin.
Adding clauses (¬)P (d) for every domain-element d ∈ D
would cause an immense grounding. However, lazily adding
this whenever a value for c or c′ is chosen, results in a theory
where only the relevant literals are asserted.

I. Complete search algorithm

Next to the set of inference rules, a search algorithm
consists of an execution order � on its rules. For the
MINISAT(ID) algorithm, the order is Fail � Learn �
UP � Unfounded � Decide � Wellfounded. This order
was chosen with efficiency in mind. E.g., whenever Fail is
possible, it is useless to propagate further; UP is preferred
over Unfounded because it is much cheaper and often derives
more propagation; etc.

An additional concern is to not generate the same ex-
pression lazily multiple times, preferably without having to
explicitly keep track of this. The approach taken is to order
the rules in the inverse order of the type of constraints they
apply to. This results in the following priority order (recall that
Encodemax is executed in the initial phase).

Fail� Learn� UP� check-Iin
� Encode� Comparison� Completion′
� Encodesum � Encodegeneral � Unfounded′
� Decide�Wellfounded′ � Defined-false

Theorem IV.6 (Soundness and completeness). For any GNF
theory T and consistent interpretation Iin over Σ (T ), the al-
gorithm terminates and returns an interpretation I, consistent
with Iin, such that all two-valued extensions of I ∪ Iin are
models of T , or fail if no models of T exist that extend Iin.

The proof is omitted due to lack of space.

V. EXPERIMENTS

The grounding algorithm is implemented in the IDP3

system[4], a knowledge-base system supporting state-of-the-
art model expansion, as can be observed from previous ASP
competitions [10], [5]8. The search algorithm is implemented
in the solver CONSTRAINT-(ID), extending the state-of-the-
art algorithm MINISAT(ID) [7]. As benchmarks, we used
the benchmarks of the fourth ASP competition9 in the NP

7By definition, check-Iin checks well-typedness of expressions.
8Results of the fourth ASP competition are not available as of this writing.
9Available at https://www.mat.unical.it/aspcomp2013/OfficialProblemSuite



Benchmark # inst. # solved avg. time(sec) avg. size (# atoms)
bottle fill. 12 12(12) 39.5(39.3) 5 ∗ 1055 ∗ 1055 ∗ 105(7 ∗ 105)

crossing min. 20 7(7) 372.3(340.5) 6 ∗ 1036 ∗ 1036 ∗ 103(3 ∗ 105)

graceful graphs 17 111111(3) 387.1(244.5) 1 ∗ 1061 ∗ 1061 ∗ 106(3 ∗ 107)

incr. sched. 20 202020(0) 0.8(−−−) 1 ∗ 1041 ∗ 1041 ∗ 104(−−−)
no-mystery 8 8(8) 2.9(0.80.80.8) 1 ∗ 105(1 ∗ 105)

pattern matching 6 6(6) 0.40.40.4(58.2) 2 ∗ 1042 ∗ 1042 ∗ 104(2 ∗ 107)
ricochet robots 8 5(5) 267.7(269.4) 9 ∗ 106(9 ∗ 106)

sokoban 7 7(7) 9.9(4.54.54.5) 5 ∗ 1045 ∗ 1045 ∗ 104(6 ∗ 104)
solitaire 20 14(14) 28.1(32.2) 3 ∗ 104(3 ∗ 104)
stable marriage 20 20(20) 68.5(66.3) 2 ∗ 107(2 ∗ 107)

still life 7 4(4) 19.9(20.2) 2 ∗ 1032 ∗ 1032 ∗ 103(6 ∗ 103)

valve location 5 5(5) 5.85.85.8(10.8) 1 ∗ 1061 ∗ 1061 ∗ 106(2 ∗ 106)

disj. scheduling 20 202020(5) 2.02.02.0(27.5) 3 ∗ 1033 ∗ 1033 ∗ 103(2 ∗ 107)

packing 20 202020(4) 0.70.70.7(279.0) 1 ∗ 1041 ∗ 1041 ∗ 104(6 ∗ 107)
TABLE I. EXPERIMENTAL EVALUATION

complexity class. Also, we included two classic constraint
programming problems, present at the third ASP competition:
the disjunctive scheduling problem and the packing problem.
Problem instances were taken from the fourth ASP competition
(at the time of writing, only a limited subset has already
been disclosed) and the third ASP competition. The search
implementation is currently limited to functions over integer
domains, which is not an issue in the considered benchmarks.

Each of the benchmarks and associated instances was
solved using IDP3, measuring performance and size of the
grounding10. Two different setups were used. The gnf setup
applies MX with as ResF, the set of all functions with integer
domains. The gnf setup, able to apply all ideas presented
in this paper, is compared to the (function-free) reference
setup ref , which uses ResF = ∅. As discussed earlier, this
results in an effectively propositional grounding, in which case
CONSTRAINT-(ID) collapses to MINISAT(ID).

In table I, we report on the performance per benchmark,
measured as the number of solved instances, the average total
time for the solved instances, and the average size of the
grounding; bold numbers indicate clear winners. For each, we
report the results as x(y), with x the result of the gnf setup
and y the result of the reference setup. The time limit was
1000 seconds, the memory limit 3.5 GB.

The most important conclusion this table gives is that the
techniques described in this paper are crucial to solve some
problems: incremental scheduling could not be solved by ref ,
but posed no problem to gnf , while disjunctive scheduling,
packing and graceful graphs clearly favour gnf . The opposite
does not hold: there are no problems where ref could solve
more instances than gnf .

Looking at the problems where the same number of in-
stances were solved, the average solve time is much lower
for gnf in pattern matching, valve location and weighted
sequence, while being much higher in no-mystery and sokoban.
A closer look at the raw data shows that for the latter bench-
marks, the results are skewed by one instance which is solved
orders of magnitude slower by gnf . A larger set of instances
could show whether gnf is really significantly slower on these
instances; a possible explanation is that crucial propagations
are derived not soon enough. The average grounding size is

10Experiments were run on a 64-bit Ubuntu 12.04 system with an Intel Core
i5 3570 processor and 8 GB of RAM. All experimental data is available at
dtai.cs.kuleuven.be/krr/research/experiments

in line with the above results: problems with a much smaller
grounding are typically solved much faster, and vice versa.
Note that there are no benchmarks where using gnf leads to
a larger average grounding size compared to ref . The above
results imply that the described techniques are a significant
improvement, with almost no instances negatively affected.

VI. RELATED WORK AND CONCLUSION

The presented work fits in a more general effort to combine
techniques from SAT, CP and high-level knowledge representa-
tion languages. The solver-independent CP language Zinc [23]
is grounded to the language MiniZinc[25], supported by a
range of search algorithms using various paradigms, as can be
seen on www.minizinc.org/challenge2012/results2012.html. In
the context of CASP, several systems ground to ASP extended
with constraint atoms, such as Clingcon[28] and EZ(CSP)[2].
For search, Clingcon combines the ASP solver Clasp[13]
with the CSP solver Gecode[15], while EZ(CSP) combines
an off-the-shelf ASP solver with an off-the-shelf CLP-Prolog
system. The prototype CASP solver Inca[12] searches for
answer sets of a ground CASP program by applying lazy
clause generation for arithmetic and all-different constraints.
As opposed to extending the search algorithm, a different
approach is to transform a CASP program to a pure ASP
program[11], afterwards applying any off-the-shelf ASP solver.
CASP languages generally only allow a restricted set of
expressions to occur in constraint atoms and impose conditions
on where constraint atoms can occur. For example, none of the
languages allows general atoms P (c) with P an uninterpreted
predicate symbol. One exception is the language AC(C) by
[24], a language aimed at integrating ASP and Constraint Logic
Programming. As shown in [19], the language captures the
languages of both Clingcon and EZ(CSP); however, existing
implementations only implement subsets of the language[16].

The presented ideas only improve performance when func-
tion symbols are present in the input theory. However, mod-
elers are free to use predicates when some of its arguments
depend functionally on each other and might choose to do
so for example out of preference or ignorance of the func-
tional relationship. In [6], it is investigated how functional
relationships can be detected automatically, using a technique
based on theorem proving, and how to subsequently rewrite
the theory to introduce function symbols. Interesting avenues
of future work are an experimental comparison with the above-
mentioned systems and to investigate the effect of improving
propagation for rules such as Encodegeneral and Unfounded′,
which now only fire when most terms are assigned.

In this paper, we first presented a FO(·) grounding algo-
rithm, parametrized by the function symbols allowed in the
grounding. In this way, we can, without changes to the input
language, support the next generation of search algorithms
that integrate techniques from SAT, ASP and CP. Second, we
presented a search algorithm for the ground fragment of FO(·).
To the best of our knowledge, this is the first implementation
for the full ground fragment of FO(·) (combining definitions
with nested uninterpreted functions), which is one of the first
freely available implementations of lazy clause generation.
Experimental results show that the grounding size can be
significantly reduced while obtaining similar or improved
search performance.



REFERENCES

[1] K. R. Apt, Principles of Constraint Programming. Cambridge Uni-
versity Press, 2003.

[2] M. Balduccini, “Industrial-size scheduling with asp+cp,” in LPNMR,
2011, pp. 284–296.

[3] C. Baral, Knowledge Representation, Reasoning, and Declarative Prob-
lem Solving. New York, NY, USA: Cambridge University Press, 2003.

[4] B. Bogaerts, B. De Cat, S. De Pooter, and M. Denecker, “IDP website,”
http://dtai.cs.kuleuven.be/krr/software/idp, 2012.

[5] F. Calimeri, G. Ianni, and F. Ricca, “The third open answer set
programming competition,” CoRR, vol. abs/1206.3111, 2012.

[6] B. De Cat and M. Bruynooghe, “Detection and exploitation of func-
tional dependencies for model generation,” submitted to the 29th
International Conference On Logic Programming.

[7] B. De Cat and M. Mariën, “MINISAT(ID) website,” http://dtai.cs.
kuleuven.be/krr/software/minisatid, 2008.

[8] M. Denecker, Y. Lierler, M. Truszczynski, and J. Vennekens, “A tarskian
informal semantics for asp,” in Technical Communications of the 28th
International Conference on Logic Programming, 2012.

[9] M. Denecker and E. Ternovska, “A logic of nonmonotone inductive
definitions,” ACM Transactions on Computational Logic (TOCL), vol. 9,
no. 2, pp. 14:1–14:52, Apr. 2008.

[10] M. Denecker, J. Vennekens, S. Bond, M. Gebser, and M. Truszczyński,
“The second Answer Set Programming competition,” in LPNMR, 2009,
pp. 637–654.

[11] C. Drescher and T. Walsh, “Conflict-driven constraint answer set solving
with lazy nogood generation,” in AAAI, 2011.

[12] ——, “Answer set solving with lazy nogood generation,” in ICLP
(Technical Communications), 2012, pp. 188–200.

[13] M. Gebser, B. Kaufmann, and T. Schaub, “Conflict-driven answer set
solving: From theory to practice,” Artif. Intell., vol. 187, pp. 52–89,
2012.

[14] M. Gebser, M. Ostrowski, and T. Schaub, “Constraint answer set
solving,” in ICLP, ser. LNCS, P. M. Hill and D. S. Warren, Eds., vol.
5649. Springer, 2009, pp. 235–249.

[15] Gecode Team, “Gecode: Generic constraint development environment,”
2013, available from http://www.gecode.org.

[16] M. Gelfond, V. S. Mellarkod, and Y. Zhang, “Systems integrating
answer set programming and constraint programming,” in LaSh, M. De-
necker, Ed., 2008, pp. 145–152.

[17] P. V. Hentenryck and J.-P. Carillon, “Generality versus specificity: An
experience with ai and or techniques,” in AAAI, H. E. Shrobe, T. M.
Mitchell, and R. G. Smith, Eds. AAAI Press / The MIT Press, 1988,
pp. 660–664.

[18] “The IDP system,” http://dtai.cs.kuleuven.be/krr/software, 2012.
[19] Y. Lierler, “On the relation of constraint answer set programming

languages and algorithms,” in AAAI, J. Hoffmann and B. Selman, Eds.
AAAI Press, 2012.

[20] G. Liu, T. Janhunen, and I. Niemelä, “Answer set programming via
mixed integer programming,” in KR, G. Brewka, T. Eiter, and S. A.
McIlraith, Eds. AAAI Press, 2012.

[21] M. Mariën, “Model generation for ID-logic,” Ph.D. dissertation, Depart-
ment of Computer Science, K.U.Leuven, Leuven, Belgium, February
2009.

[22] M. Mariën, J. Wittocx, M. Denecker, and M. Bruynooghe, “SAT(ID):
Satisfiability of propositional logic extended with inductive definitions,”
in SAT, 2008, pp. 211–224.

[23] K. Marriott, N. Nethercote, R. Rafeh, P. J. Stuckey, M. G. de la
Banda, and M. Wallace, “The design of the Zinc modelling language,”
Constraints, vol. 13, no. 3, pp. 229–267, 2008.

[24] V. S. Mellarkod, M. Gelfond, and Y. Zhang, “Integrating answer set pro-
gramming and constraint logic programming,” Annals of Mathematics
and Artificial Intelligence, vol. 53, no. 1-4, pp. 251–287, 2008.

[25] N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck, and G. Tack,
“Minizinc: Towards a standard CP modelling language,” in Proceedings
of the 13th International Conference on Principles and Practice of
Constraint Programming, ser. LNCS, C. Bessiere, Ed., vol. 4741.
Springer-Verlag, 2007, pp. 529–543.

[26] I. Niemelä, “Answer set programming: A declarative approach to
solving search problems,” in JELIA, 2006, pp. 15–18, invited talk.

[27] M. Ostrowski and T. Schaub, “Asp modulo csp: The clingcon system,”
TPLP, vol. 12, no. 4-5, pp. 485–503, 2012.

[28] ——, “Asp modulo csp: The clingcon system,” TPLP, vol. 12, no. 4-5,
pp. 485–503, 2012.

[29] N. Pelov, “Semantics of logic programs with aggregates,” Ph.D. disser-
tation, K.U.Leuven, Leuven, Belgium, April 2004.

[30] P. J. Stuckey, “Lazy clause generation: Combining the power of SAT
and CP (and MIP?) solving,” in CPAIOR, 2010, pp. 5–9.

[31] P. Vaezipoor, D. Mitchell, and M. Mariën, “Lifted unit propagation for
effective grounding,” CoRR, vol. abs/1109.1317, 2011.

[32] A. Van Gelder, “The alternating fixpoint of logic programs with
negation,” Journal of Computer and System Sciences, vol. 47, no. 1,
pp. 185–221, 1993.

[33] A. Van Gelder, K. A. Ross, and J. S. Schlipf, “The well-founded
semantics for general logic programs,” Journal of the ACM, vol. 38,
no. 3, pp. 620–650, 1991.

[34] J. Wittocx, M. Denecker, and M. Bruynooghe, “Constraint propagation
for first-order logic and inductive definitions,” ACM Transactions
on Computational Logic, 2013, accepted. [Online]. Available: https:
//lirias.kuleuven.be/handle/123456789/369791

[35] J. Wittocx, M. Mariën, and M. Denecker, “Grounding FO and FO(ID)
with bounds,” Journal of Artificial Intelligence Research, vol. 38, pp.
223–269, 2010.


