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Abstract. Climatic effects of newly-formed atmospheric sec-

ondary aerosol particles are to a large extent determined by

their condensational growth rates. However, all the vapours

condensing on atmospheric nanoparticles and growing them

to climatically relevant sizes are not identified yet and the ef-

fects of particle phase processes on particle growth rates are

poorly known. Besides sulfuric acid, organic compounds are

known to contribute significantly to atmospheric nanoparti-

cle growth. In this study a particle growth model MABNAG

(Model for Acid-Base chemistry in NAnoparticle Growth)

was developed to study the effect of salt formation on

nanoparticle growth, which has been proposed as a poten-

tial mechanism lowering the equilibrium vapour pressures of

organic compounds through dissociation in the particle phase

and thus preventing their evaporation. MABNAG is a model

for monodisperse aqueous particles and it couples dynamics

of condensation to particle phase chemistry. Non-zero equi-

librium vapour pressures, with both size and composition de-

pendence, are considered for condensation. The model was

applied for atmospherically relevant systems with sulfuric

acid, one organic acid, ammonia, one amine and water in the

gas phase allowed to condense on 3–20 nm particles. The ef-

fect of dissociation of the organic acid was found to be small

under ambient conditions typical for a boreal forest site, but

considerable for base-rich environments (gas phase concen-

trations of about 1010 cm−3 for the sum of the bases). The

contribution of the bases to particle mass decreased as parti-

cle size increased, except at very high gas phase concentra-

tions of the bases. The relative importance of amine versus

ammonia did not change significantly as a function of parti-

cle size. While our results give a reasonable first estimate on

the maximum contribution of salt formation to nanoparticle

growth, further studies on, e.g. the thermodynamic properties

of the atmospheric organics, concentrations of low-volatility

organics and amines, along with studies investigating the ap-

plicability of thermodynamics for the smallest nanoparticles

are needed to truly understand the acid-base chemistry of at-

mospheric nanoparticles.

1 Introduction

Atmospheric aerosol particles affect the climate by scattering

solar radiation and by acting as cloud condensation nuclei

(CCN). Both of these aerosol climate effects depend on par-

ticle size. A significant fraction of atmospheric aerosol par-

ticles may be formed by nucleation (Merikanto et al., 2009),

but these nanometre sized particles need to grow tens of

nanometres to effectively act as climate forcers. During their

growth, a fraction of the nanoparticles are lost due to coagu-

lation to larger particles, and the survival probability to CCN

sizes depends on how fast the particles grow relative to their

coagulation rate (Kerminen et al., 2004; Pierce and Adams,

2007). Therefore, correctly accounting for the nanoparticle

growth is crucial for correct representation of aerosol ef-

fects in climate models (Riipinen et al., 2011). This requires

Published by Copernicus Publications on behalf of the European Geosciences Union.



12508 T. Yli-Juuti et al.: Model for acid-base chemistry in nanoparticle growth

knowledge of the vapours condensing on the nanoparticles

and the processes related to the nanoparticle growth.

The chemical composition of atmospheric nanoparticles

and vapours condensing on them are not fully resolved yet.

Several studies indicate that the key compound in atmo-

spheric nucleation is sulfuric acid (Weber et al., 1995; Kul-

mala et al., 2006; Kuang et al., 2008; Sipilä et al., 2010),

likely assisted by basic compounds (Kurtén et al., 2008; Or-

tega et al., 2008; Berndt et al., 2010; Kirkby et al., 2011).

However, at many locations sulfuric acid concentrations are

too low to explain observed particle growth rates (Birmili et

al., 2003; Boy et al., 2005; Fiedler et al., 2005; Stolzenburg

et al., 2005; Smith et al., 2008; Riipinen et al., 2011; Kuang

et al., 2012), and most of the particle growth is likely due to

condensation of organic vapours (Riipinen et al., 2012 and

references therein). Importance of organic vapours is sup-

ported by the large organic fraction in larger, above 40 nm,

particles measured with an aerosol mass spectrometer (Al-

lan et al., 2006; Jimenez et al., 2009) and the observations

on the composition of smaller nanoparticles (e.g. O’Dowd

et al., 2002; Smith et al., 2008; Riipinen et al., 2009; Smith

et al., 2010; Laitinen et al., 2011; Bzdek et al., 2012). The

significant role of organic vapours is also supported by the

behaviour of particles during their growth. For instance, in

a boreal forest region, particle growth rates vary seasonally

with maximum during summer when the organic emissions

peak as well (Dal Maso et al., 2005; Hirsikko et al., 2005;

Yli-Juuti et al., 2011).

It has been approximated that the compounds growing at-

mospheric nanoparticles should have an equilibrium vapour

pressure of 10−7 Pa or less (Donahue et al., 2011; Pierce et

al., 2011). These low-volatility organic compounds can be

produced by gas phase oxidation from the volatile organic

compounds emitted to the atmosphere from biogenic and an-

thropogenic sources (Kroll and Seinfeld, 2008). However,

many of the oxidation products of organic vapours identi-

fied in the atmosphere have higher saturation vapour pres-

sures than required for condensation on nanoparticles (Gold-

stein and Galbally, 2007), and short-chain organic acids as

well as aliphatic amines that have higher saturation vapour

pressures have been observed in nanoparticles (Smith et al.,

2010; Laitinen et al., 2011). This suggests that gas phase

oxidation and reversible condensation are not the only pro-

cesses explaining nanoparticle growth (see also Donahue et

al., 2011; Pierce et al., 2011) and that particle phase pro-

cesses, like polymerization (Limbeck et al., 2003) and salt

formation (Barsanti et al., 2009), may have an important role

in lowering the volatility of condensing organic compounds.

The importance of different particle phase processes proba-

bly depends on particle size (Riipinen et al., 2012; Zhang et

al., 2012). While polymerization is likely important for larger

than 20 nm particles, salt formation is thought to be more im-

portant for the growth of the smallest, sub-20 nm, particles

(Riipinen et al., 2012).

Numerous different amines have been detected in the at-

mosphere – both in the gas and particle phases. The low

molecular weight aliphatic amines, such as dimethylamine

(DMA) or trimethylamine (TMA), are the most abundant

(for a review on atmospheric observations of amines see Ge

et al., 2011a). Low molecular weight aliphatic amines are

highly water soluble compounds and can therefore dissolve

into aqueous aerosol particles. Many of them, e.g. DMA, are

strong bases and can thus compete with ammonia in neu-

tralizing acids in the particle phase. Quantum chemistry cal-

culations (Kurtén et al., 2008; DePalma et al., 2012; Ortega

et al., 2012) indicate that amines enhance the sulfuric acid

driven nucleation more effectively than ammonia due to the

stronger basicity of amines and evidence of this has also been

seen in laboratory studies (Berndt et al., 2010). Both labora-

tory studies (Murphy et al., 2007; Berndt et al., 2010; Smith

et al., 2010; Qiu and Zhang, 2013) and theory (Murphy et al.,

2007; Barsanti et al., 2009) suggest that amines also partici-

pate in the growth of the particles formed by nucleation. Most

of the contribution of amines in particle growth is assumed

to be due to formation of aminium salts; however, non-salt

contribution of amines on particle mass has also been ob-

served, presumably due to partitioning of low-volatility oxi-

dation products of amines into particle phase (Murphy et al.,

2007).

In this study we investigate the effect of acid-base chem-

istry on the growth of atmospheric nanoparticles based on

state-of-the-art thermodynamics of amine-containing sys-

tems. We developed a new particle growth model MABNAG

(Model for Acid-Base chemistry in NAnoparticle growth)

which accounts for acid dissociation and base protonation

in the particle phase. Using the model we study the poten-

tial role of salt formation on particle growth rates, with par-

ticular focus on organic salts. The aim is to make an upper

limit estimate of the possible effects that salt formation could

have on nanoparticle growth. With this in mind, we choose

dimethylamine, which is a relatively strong organic base, to

represent all the amines involved in the particle growth and

all the other condensing organic compounds we represent as

one organic acid. We focus on four research questions: (1)

what concentrations of organic acid and amine are needed to

explain the atmospheric nanoparticle growth rates when acid-

base chemistry is taken into account and what should the sat-

uration vapour pressure of the organic acid be; (2) what are

the relative roles of ammonia and amine in the salt forma-

tion and particle growth; (3) how does the relative humidity

affect the salt formation and particle growth; and (4) how do

the properties of the organic acid affect the salt formation and

particle growth.

2 Model description

In this study we have developed the particle growth model

MABNAG (Model for Acid-Base chemistry in NAnoparticle
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Fig. 1. Gas–liquid system modelled in this study with MABNAG.

Two acids, two bases and water condense on the particle. In the

particle phase, the dissociation/protonation produces ions and as a

result 12 chemical species are included in the particle phase chem-

istry calculations.

Growth). It is a monodisperse growth model for aerosol par-

ticles. In addition to condensation of vapours onto parti-

cles, particle phase acid dissociation and base protonation are

taken into account in MABNAG. To calculate particle phase

chemistry, MABNAG couples dynamic condensation calcu-

lations to the Extended Aerosol Inorganics Model (E-AIM)

(http://www.aim.env.uea.ac.uk; Clegg et al., 1992; Clegg and

Seinfeld, 2006a, b; Wexler and Clegg, 2002), which is a

phase equilibrium model. Using ambient vapour concentra-

tions together with initial particle size and composition as

inputs, MABNAG predicts the time evolution of the particle

size and composition.

The condensing vapours can include both inorganic and

organic compounds. Here, MABNAG is applied for a system

with five compounds in the gas phase: two acids, two bases

and water (Fig. 1). Acids are sulfuric acid and an organic

di-acid. Bases are ammonia and an amine. All five gas phase

compounds are allowed to condense onto the particle accord-

ing to their abundance in the gas phase and their equilibrium

vapour pressures.

The condensation of acids is calculated based on their

mass fluxes in the gas phase. The change in mass of each

of the acids in the particle phase is calculated according to

Fuchs and Sutugin (1970); Lehtinen and Kulmala (2003):

dmi

dt
=

2π
(

dp + di

)(

Dp + Di

)

βm,iMi

RT

(

pi − peq,i

)

, (1)

where d is diameter, D is diffusion coefficient, Mi is the mo-

lar mass of vapour i, R is gas constant, T is temperature, and

pi and peq,i are the ambient partial pressure and equilibrium

vapour pressure of vapour i, respectively. Subscripts p and i

refer to the particle and the vapour i, respectively. The mass

flux in Eq. (1) is based on the vapour–molecule collision rate

suggested by Lehtinen and Kulmala (2003) where the motion

of particle and the volume of vapour molecule are accounted

for. In Eq. (1) the Fuchs–Sutugin transition regime correction

factor for mass transport is (Fuchs and Sutugin, 1970)

βm,i =
1 + Kni

1 +

(

4
3αm,i

+ 0.377
)

Kni + 4
3αm,i

Kn2
i

, (2)

and here it is calculated defining Knudsen (Kn) number as

(Lehtinen and Kulmala, 2003)

Kni =
2λi

(

dp + di

) , (3)

where the mean free path (λ) for condensation of vapour i is

λi =
3
(

Dp + Di

)

(

c2
p + c2

i

)1/2
. (4)

Here, cp and ci are the thermal speeds of respectively the

particle p and vapour molecule i, and αm,i is mass accom-

modation coefficient.

In this version of MABNAG, equilibrium between gas and

liquid phase is assumed to hold for water and basic com-

pounds and their amount in the particle during each time step

is calculated according to

peq,i = pi, (5)

where i refers now to water or either of the bases. The char-

acteristic time of change of equilibrium vapour pressure of

compound i (as a result of composition change due to con-

densation) for aqueous solution is τa,i = mw/Ki × τs,i (Se-

infeld and Pandis, 2006) where mw is the total mass of liq-

uid water and Ki is the equilibrium constant. The charac-

teristic time for uptake of compound i from gas phase to

particles by diffusion is τs,i = 1/(4πNDiβm,i), where N

is the particle number concentration (Seinfeld and Pandis,

2006; Riipinen et al., 2010; Saleh et al., 2011). For mul-

ticomponent particles, τa,i can be approximated as τa,i =

NntotRTXi′ /peq,i × τs,i , where ntot is total moles in one par-

ticle and Xi′ is the sum of particle phase molar fractions of

i and its ions (in the case of an acid or a base). The charac-

teristic timescale τs,i of the diffusion of vapour i towards a

given particle population is proportional to the inverse of the

diffusion coefficient and transition regime correction factor

for i, (Diβm,i)
−1, thus decreasing with decreasing molecular

mass of the condensing vapour.

Consequently, τs,i for sulfuric acid is two times longer

compared to water and ammonia, 1.5 times longer compared

to amine, and similar or slightly shorter compared to the or-

ganic acid (see Table 1 for the properties of the organic com-

pounds).

However, due to the large differences in the equilibrium

vapour pressures of the vapours, τa,i has larger differences

between the compounds. For typical particle sizes and com-

positions in our simulations, τa,water is less than a second,

τa,ammonia is of the order of few seconds, τa,amine is of the
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order of tens of seconds, τa,organic acid ranges from the order

of minute to few hours while τa,sulfuric acid is more than sev-

eral days. Therefore, equilibration of water and ammonia is

expected to be clearly faster than condensation of the acids

and the timescale of the particle growth. However, in some

cases τa,amine can be comparable to τa,organic acid. The equi-

librium assumption might thus slightly overestimate the con-

densation of amines, so it serves the purpose of testing for the

maximum possible contribution of salt formation to nanopar-

ticle growth. This assumption should, however, be carefully

tested in future studies where more detailed analysis on the

condensation of specific compounds are investigated (e.g. if

used for interpretation of laboratory experiments).

Particle phase chemistry and particle size affect condensa-

tion through the equilibrium vapour pressures (e.g. Seinfeld

and Pandis, 2006):

peq,i = γi(Xi, {Xj }) · Xi · psat,i(T ) · exp

(

4σvi

RT dp

)

, (6)

where γi is activity coefficient, which depends on the com-

position of the particle, Xi and Xj are molar fractions of re-

spectively condensing species i and the other compounds j

in the particle, and psat,i is the saturation vapour pressure

above pure liquid i. The exponential term in Eq. (6) is the

size-dependent Kelvin term where σ and vi are respectively

the surface tension of the solution and molar volume of i in

the liquid.

In the particle phase, acid dissociation and base protona-

tion are taken into account. The organic acids included in

this study were di-acids. Thus, the organic acid (H2A) has

two dissociation products (HA− and A2−), as does sulfuric

acid:

H2A → HA− + H+ (R1a)

HA− → A2− + H+. (R1b)

In this study, the amine was dimethylamine (DMA), which is

an organic base (B) that has one protonation product (BH+),

as does ammonia:

B + H+ → BH+. (R2)

The fraction of dissociated acids and protonated bases are

defined by the acid dissociation constants. Sulfuric acid is

a strong acid and in E-AIM its first dissociation (H2SO4 →

HSO−
4 + H+) is assumed always to be complete in the aque-

ous phase (Clegg and Brimblecombe, 1995). Second disso-

ciation of sulfuric acid (HSO−
4 → SO2−

4 + H+) and protona-

tion/dissociation of bases and organic acids are treated ex-

plicitly in the model. Also, water dissociation to OH− and

H+ ions is taken into account. Thus, in total, 12 different

species are considered in the liquid phase chemistry calcula-

tions.

The particle phase acid dissociation/base protonation and

composition dependence of equilibrium vapour pressures are

calculated in MABNAG with E-AIM (Clegg et al., 1992;

Clegg and Seinfeld, 2006a, b; Wexler and Clegg, 2002). E-

AIM is a thermodynamic phase equilibrium model that can

be used for systems with gas, aqueous, hydrophobic liquid

and solid phases. In MABNAG, E-AIM is set to allow only

the gas and aqueous phases. For mixtures of inorganic and or-

ganic compounds, E-AIM considers all the compounds when

calculating activity of water. However, interactions between

inorganic and organic compounds are neglected. The activity

coefficients of water and solutes are first calculated based on

separate purely inorganic and organic aqueous solutions of

same molalities of solutes as in the mixed inorganic–organic

mixture. The water activity is then calculated as a product of

water activities of the inorganic and organic solutions (Eq. 9

in Clegg and Seinfeld, 2006a; Clegg et al., 2001). For so-

lutes the activity coefficients are assumed to be the same as

in the purely inorganic or organic solution. In this study, the

group contribution method UNIFAC (UNIQUAC (UNIver-

sal QUAsiChemical) Functional-group Activity Coefficients)

with standard set of parameters (Fredenslund et al., 1975;

Hansen et al., 1991; Wittig et al., 2003; Balslev and Abild-

skov, 2002) was chosen as the activity model for the neutral

form of the organic compounds in E-AIM. The activity co-

efficients of water and inorganic ions are calculated accord-

ing to Pitzer, Simonson and Clegg equations (Clegg et al.,

1992) in E-AIM. The same method is applied also for the or-

ganic ions. However, due to the lack of data for organic ions

the interaction parameters of inorganic ions are used for or-

ganic ions: HSO−
4 and SO2−

4 for singly and doubly charged

organic anions, respectively, and NH+
4 for singly charged or-

ganic cations.

E-AIM is an equilibrium model and, therefore, while

MABNAG calculates the dynamics of condensation, the liq-

uid phase is assumed to equilibrate instantaneously regard-

ing the acid-base chemistry. E-AIM itself does not take into

account surface curvature for gas–liquid equilibrium (see

Eq. 6). For nanoparticles the surface curvature can have

a large effect and therefore the equilibrium vapour pres-

sures obtained from E-AIM are corrected for Kelvin effect

in MABNAG by multiplying with the exponential term in

Eq. (6). For bases and water this requires using E-AIM iter-

atively to find the equilibrium described in Eq. (5) according

to gas phase partial pressures and equilibrium vapour pres-

sures presented in Eq. (6).

3 Model calculations

3.1 Modelled system and the properties of compounds

The system modelled in this study contained sulfuric acid,

one organic acid, ammonia, one amine and water in the

gas phase and all of them were allowed to condense on the

Atmos. Chem. Phys., 13, 12507–12524, 2013 www.atmos-chem-phys.net/13/12507/2013/
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Table 1. Properties of organic compounds used in the model.

Organic acid 1 Organic acid 2 Amine

Molar mass (g mol−1) 104 189 45

Molecular structure Malonic acid Pinic acid a Dimethylamine

pKa,1 (at 298.15 K) 2.85 4.62 10.73 b

pKa,2 (at 298.15 K) 5.70 5.70 c –

Enthalpy change for pKa,1 (kJ mol−1) 0 0 49.45

Enthalpy change for pKa,2 (kJ mol−1) 0 0 –

Saturation vapour pressure psat (Pa) d, –

base case 10−6 10−6 –

tested value 10−5–10−6 10−5–10−7

Henry’s law constant KH (at 298.15 K) (mol kg−1 atm−1)d – – 31.41 e

Enthalpy change for KH (kJ mol−1) – – 33.26e

Diffusion coefficient D (m2 s−1)f 8.9 × 10−6 4.9 × 10−6 11.2 × 10−6

aActivity coefficient for organic compounds were calculated in E-AIM with the UNIFAC standard set of parameters and no non-aromatic rings are

included. Therefore, cyclic groups were assumed to have straight-chain group properties. bGe et al., 2011b; measured value from Lide (2009). cValue
of pKa,2 for pinic acid was not found in the literature so value of pKa,2 of malonic acid was used also for the organic acid 2. In general, the pKa,2 of

organic di-acids vary little compared to pKa,1. dVolatility of organic compounds was given in the model by assigning either saturation vapour pressure
(organic acid) or Henry’s law coefficients (amine). eGe et al., 2011b; measured value from NIST (National Institute of Standards and Technology)

Chemistry WebBook (http://webbook.nist.gov/chemistry). fCalculated at 283.15 K with the method of Fuller et al. (Eq. 11-4.4 in Poling et al., 2001).

particle. The properties of dimethylamine (DMA) were used

for the amine (Ge et al., 2011b), and for the organic acid

two model compounds with different properties were tested

(Table 1). Organic acid 1 resembles malonic acid, being the

smaller and stronger of the organic acids, whereas organic

acid 2 is a larger and weaker acid like pinic acid. For both of

the organic acids, different saturation vapour pressures were

tested (Table 1). This was done since saturation vapour pres-

sures of different organic acids vary over several orders of

magnitude (Goldstein and Galbally, 2007). The lower limit,

10−7 Pa (≈ 2.6 × 107 cm−3), corresponds to the previous es-

timates on saturation vapour pressure required for conden-

sation onto atmospheric nanoparticles without particle phase

processes taking place (Pierce et al., 2011). The upper limit

10−5 Pa (≈ 2.6 × 109 cm−3) approximately corresponds to

the saturation vapour pressures of larger dicarboxylic acids,

e.g. pinic acid, but is significantly lower than what is mea-

sured for short-chain organic acids, e.g. malonic acid (Pope

et al., 2010).

In this study, all organic compounds, except amines, were

grouped in one and treated as a single organic acid in the

model. While there can be other organic compounds con-

densing on atmospheric nanoparticles, this assumption was

made in order to have an upper limit estimate for the con-

tribution of the salts. For the same reason, in many of the

simulations (see Sect. 3.2) properties of the organic acid 1

were chosen for the organic acid. Also, grouping all amines

in one and using the properties of DMA as representative of

this organic base supports the aim of making an upper limit

estimate of salt formation.

The properties related to liquid phase chemistry and

gas–liquid equilibrium for inorganic compounds are built

into E-AIM. Particle density and surface tension were as-

sumed to be independent of particle composition and val-

ues ρ = 1500 kg m−3 and σ = 30 mN m−1 were used, re-

spectively. For each compound i the molar volume in liquid

was approximated as vi = Mi/ρ. Mass accommodation co-

efficients of all the compounds were assumed to be 1.0.

3.2 Inputs in simulations

In all of the simulations the model was initialized with

20 molecules of sulfuric acid, 20 molecules of organic

acid and equilibrium amount of ammonia, amine and wa-

ter, which gave an initial particle diameter of approximately

2.5 nm (4500–7000 u). Gas phase concentrations of acids and

bases, relative humidity (RH) and temperature were varied in

simulations, according to Table 2. Within a simulation, am-

bient conditions were assumed to stay constant in order to

separate size dependence from time dependence. The simu-

lations were set to run for 12 h time periods or, in case of fast

growth, until the particle diameter was 40 nm. The focus was

on sub-20 nm particle growth as organic salt formation is ex-

pected to be more important in this size range compared to

larger particles (Riipinen et al., 2012). Also, after 20 nm the

simulated particle composition changed only slightly, giving

no reason to continue the model runs to much larger sizes.

Five types of simulations were performed:

1. Concentrations of organic acid and amine needed for

realistic atmospheric particle growth rates were stud-

ied based on a set of simulations where concentra-

tions of organic acid and amine were varied within

the higher and the lower limits presented in Table 2.

In these simulations, concentrations of sulfuric acid

and ammonia, T and RH were set to base case val-

ues (Table 2) and properties of organic acid 1 (Table 1)

www.atmos-chem-phys.net/13/12507/2013/ Atmos. Chem. Phys., 13, 12507–12524, 2013

http://webbook.nist.gov/chemistry


12512 T. Yli-Juuti et al.: Model for acid-base chemistry in nanoparticle growth

Table 2. Ambient conditions in simulations. Base case values rep-

resent typical conditions at Hyytiälä and low and high refer to the

limits of the range that was tested (see Appendix A for the estima-

tion of these values). The last column gives the ambient conditions

used for the case study day simulation.

Low Base case High Case study

sulfuric acid 106 cm−3 106 cm−3 108 cm−3 3 × 06 cm−3

organic acid 107 cm−3 108 cm−3 109 cm−3 2 × 108 cm−3

ammonia 108 cm−3 109 cm−3 1011 cm−3 2 × 1010 cm−3

amine 108 cm−3 109 cm−3 1010 cm−3 1 × 109 cm−3

RH 40 % 40 % 90 % 50 %

T 283.15 K 283.15 K 283.15 K 283.15 K

were used. These simulations were repeated for several

values of saturation vapour pressure of organic acid

(10−7–10−5 Pa).

2. Effect of basic vapour concentrations on the dissoci-

ation of organic acid and particle growth rate (GR)

was studied based on simulations where ammonia and

amine concentrations were varied (see Table 2). This

also allowed for studies on the relative role of the two

bases. For these calculations, the base case values of

sulfuric acid concentration, T and RH, were used (Ta-

ble 2). Concentration and saturation vapour pressure of

the organic acid were set to respectively 3 × 108 cm−3

and 10−6 Pa based on the results of the simulation set 1

(see also Sect. 4). Other properties of the organic acid

were as for organic acid 1 (Table 1).

3. Effect of water on the particle growth was studied

based on simulations where RH was varied. For these

simulations, the base case values of sulfuric acid, am-

monia and amine were used (Table 2), concentration

and saturation vapour pressure of the organic acid were

set to 3 × 108 cm−3 and 10−6 Pa and other properties

of organic acid were as for organic acid 1 (Table 1).

4. To investigate the effect of the chemical and physical

properties of the organic acid, a set of simulations was

performed where one or several properties of the or-

ganic acid were varied from those of organic acid 1

to those of organic acid 2 (Table 1). For these simu-

lations, the base case values of sulfuric acid and RH

were used (Table 2) and concentration and saturation

vapour pressure of the organic acid were set to respec-

tively 3 × 108 cm−3 and 10−6 Pa. Base case values or

elevated concentrations were used for ammonia and

amine.

5. A set of simulations was performed for a case study

day, 23 July 2010, at Hyytiälä, which is a boreal forest

background site situated in southern Finland (Hari and

Kulmala, 2005). First, the average ambient conditions

(Table 2; see Appendix A for details of the measure-

ments) with varied saturation vapour pressure of the

organic acid were used in the model, and, second, the

organic acid and amine concentrations were varied in

the model. The case study day simulations allowed us

a direct comparison between the simulated and mea-

sured GR. For these simulations, properties of organic

acid 1 were used.

The base case values and the limits of ambient conditions

are based on typical conditions at the Hyytiälä measurement

station. For details, see Appendix A.

The GR calculated from the simulated particle growth was

compared to GR calculated based on particle distributions

measured at Hyytiälä. For Hyytiälä, particle growth rates are

most often calculated based on total particle population mea-

sured with differential mobility particle sizer (DMPS; Aalto

et al., 2001) or based on naturally charged particle popu-

lation measured with one of the ion spectrometers, air ion

spectrometer (Mirme et al., 2007) or balanced scanning mo-

bility analyzer (Tammet, 2006). While the DMPS setup used

in Hyytiälä is equipped with a dryer and thus measures dry

particle size, the two ion spectrometers measure wet parti-

cle size. Studies using and comparing the GRs from the dif-

ferent instruments show that in most of the cases, except in

conditions with very high RH, the difference between GRs

calculated from dry and wet sizes is small and does not af-

fect the results significantly (Dal Maso et al., 2005; Hirsikko

et al., 2005; Yli-Juuti et al., 2011). In this study, the GR from

the model simulations was thus calculated based on the dry

particle size.

4 Results and discussion

4.1 The effect of organic acid and amine concentrations

– simulation set 1

In simulation set 1, concentrations of the organic acid and

amine and saturation vapour pressure of the organic acid

were varied while concentrations of sulfuric acid and am-

monia and RH were kept constant in order to study the con-

centrations of organic acid and amine needed for atmospheric

nanoparticle growth. Figure 2 shows the predicted GR of par-

ticles 3–7 nm in diameter as a function of gas phase concen-

trations of amine and organic acid with four different satura-

tion vapour pressures of the organic acid. The concentration

ranges on the x and y axes represent reasonable organic acid

and amine concentrations, respectively, at Hyytiälä (Table 2;

see also Appendix A).

The organic acid concentration required in the model to

predict similar GRs as observed in the atmosphere depends

strongly on the assumed saturation vapour pressure of the

organic acid. Typically, GR of 3–7 nm particles varies at

Hyytiälä within 1–10 nm h−1 with the average 3.8 nm h−1

(Dal Maso et al., 2005; Hirsikko et al., 2005; Yli-Juuti et al.,

Atmos. Chem. Phys., 13, 12507–12524, 2013 www.atmos-chem-phys.net/13/12507/2013/



T. Yli-Juuti et al.: Model for acid-base chemistry in nanoparticle growth 12513

2011). By assuming the psat,Org. acid of 1 × 10−7 Pa, growth

rates comparable to measured values were predicted with

about 1 × 108 cm−3 organic acid concentrations, which cor-

responds to the base case value in Table 2. As psat,Org. acid

was increased, higher concentration of organic acid were nat-

urally required in the model to reach the GRs observed in

the atmosphere. With psat,Org. acid up to 1 × 10−6 Pa, MAB-

NAG still predicted GRs to reach the values observed in the

atmosphere with reasonable assumptions about the organic

acid concentrations. When psat,Org. acid was set higher than

1 × 10−6 Pa, unrealistically high organic acid concentrations

(over 109 cm−3) were needed to grow the particles with GRs

equal to the atmospheric GRs.

The saturation vapour pressure of 10−6 Pa is only one or-

der of magnitude higher than the values derived without in-

cluding any particle phase processes (e.g. Pierce et al., 2011).

This implies that the organic salt formation is not able to fully

explain the apparent gap between the saturation vapour pres-

sures required for the molecules to condense onto nanoparti-

cles and those observed in laboratory for organic compounds.

Since the range of organic acid concentrations considered

here was rather wide, the result is likely to apply also for

many other environments, except for those with high base

concentrations (see Sect. 4.2).

The higher the amine concentration the lower the organic

acid concentration needed to produce GRs comparable to at-

mospheric observations (Fig. 2). However, amine concentra-

tion affected the GR less than organic acid concentration.

For example, the GR of 3–7 nm particles was rather insen-

sitive to changes in amine concentration below 109 cm−3,

and one order of magnitude increase of amine concentra-

tion from 108 cm−3 to 109 cm−3 did not change the predicted

GR significantly. An increase from 109 cm−3 to 1010 cm−3

in amine concentration decreased the organic acid concen-

tration needed for 1 nm h−1 growth rate by less than a factor

of two.

4.2 The role of ammonia and amine – simulation set 2

In most of the model calculations, a major part of the particle

growth was due to condensation of the organic acid. Vary-

ing the concentrations of basic vapours affected the GR both

due to the effect on dissociation of organic acid and due to

the increase of particulate mass of the basic compounds. The

effect of basic vapour concentrations on dissociation of or-

ganic acid and the subsequent effect on the GR were stud-

ied based on the simulation set 2, where amine and ammonia

concentrations were varied while acid concentrations and RH

were kept constant. For these simulations, organic acid con-

centration of 3 × 108 cm−3 and psat,Org. acid of 10−6 Pa were

chosen as they gave GR values comparable to atmospheric

values with base case concentrations of amine and ammonia.

Figure 3 shows the fraction of organic acid that was

predicted to dissociate in the particle phase. The differ-

ence in dissociated fraction between amine concentrations of

Fig. 2. Growth rate of 3–7 nm particles as a function of organic

acid and amine concentration predicted, assuming saturation vapour

pressure of organic acid to be (a) 1 × 10−7 Pa, (b) 5 × 10−7 Pa,

(c) 1 × 10−6 Pa and (d) 5 × 10−6 Pa. Concentrations of sulfuric

acid (106 cm−3) and ammonia (109 cm−3), RH (40 %) and temper-

ature (283.15 K) were set to base case values presented in Table 2,

and properties of organic acid 1 (Table 1) were used.

Fig. 3. Dissociated fraction of particle phase organic acid at par-

ticle sizes (a) 3 nm, (b) 7 nm and (c) 20 nm as a function of am-

monia concentration for three amine concentrations. Concentra-

tion and saturation vapour pressure of organic acid were set to

3 × 108 cm−3 and 10−6 Pa, respectively. Other properties of or-

ganic acid were as for organic acid 1 (Table 1). Sulfuric acid con-

centration (106 cm−3), RH (40 %) and temperature (283.15 K) were

set to base case values in all simulations (Table 2).
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108 cm−3 and 109 cm−3 was very small and in both cases

only less than 20 % of the organic acid dissociated unless

ammonia concentration was very high, > 1010 cm−3. With

amine concentration of 1010 cm−3, a considerable fraction

of organic acid dissociated even at low ammonia concentra-

tions. Amine, as a stronger base, enhances organic acid disso-

ciation more effectively than ammonia: with amine concen-

tration of 1010 cm−3 and base case concentration of ammo-

nia, 20–44 % of organic acid dissociated in the particle phase,

depending on particle size; while with ammonia concentra-

tion of 1010 cm−3 and base case concentration of amine, only

6–17 % of organic acid dissociated. The fraction of dissoci-

ated organic acid was predicted to increase with particle size

at each ammonia and amine concentration.

Particle growth rates calculated from simulations corre-

sponding to Fig. 3 are reported in Table 3. The stronger effect

of amine on dissociation of the organic acid is directly re-

flected in growth rates. Increasing amine concentrations from

109 cm−3 to 1010 cm−3 while keeping the ammonia concen-

tration constant below 1011 cm−3 increased the GR of 3–

7 nm particles over a factor of three. A similar increase in

ammonia concentration with constant amine concentration at

best doubled the GR of 3–7 nm particles. Also, the GR of 7–

20 nm particles was affected more by the change in amine

concentration than by a similar change in ammonia concen-

tration. The neutral fraction of the organic acid condenses

reversibly on the particle, while the ionized fraction is ef-

fectively non-volatile. The relative change of these fractions

between different base concentrations affects the GRs shown

in Table 3. When most of the organic acid remains in neutral

form in the particle phase, the growth is limited by the Kelvin

term and GR increases with particle size. When most of the

organic acid is in the ionized form, organic acid condenses

as if it was non-volatile, the Kelvin term does not limit the

particle growth and GR does not increase with particle size.

The latter is observed only with very high base concentra-

tions (ammonia concentration 1011 cm−3 in the simulations).

In addition to affecting the dissociation of the organic acid,

the basic compounds affect the particle GR through their

mass fluxes to the particle. However, the increase in GR with

increasing base concentration is not only due to the increased

mass fluxes of bases since the bases account for less than ap-

proximately 25 % of the dry particle mass. This is seen from

Fig. 4 where the mass fractions of compounds are shown af-

ter removing the contribution of water. In Fig. 4, for each

acid/base the neutral form and its dissociation/protonation

product(s) are grouped together in order to indicate the con-

tribution of each of the condensing vapours. The dry mass

fractions are presented in order to be consistent with parti-

cle composition measurements where typically particle wa-

ter content is not measured. With ammonia concentration

one order of magnitude higher than amine concentration, the

mass fractions of the two bases are approximately equal in

the particle. With similar gas phase concentrations of amine

and ammonia, amine mass is significantly higher in the parti-

Fig. 4. Dry particle mass fractions of particles at 3 nm (a, d, g), 7 nm

(b, e, h) and 20 nm (c, f, i) as a function of ammonia concentration

at amine concentrations of 108 cm−3 (a, b, c), 109 cm−3 (d, e, f)

and 1010 cm−3 (g, h, i). Concentration and saturation vapour pres-

sure of organic acid were set to 3 × 108 cm−3 and 10−6 Pa. Other

properties of organic acid were as for organic acid 1 (Table 1). Sul-

furic acid concentration (106 cm−3), RH (40 %) and temperature

(283.15 K) were set to base case values in all simulations (Table 2).

cle phase. This is partly due to the difference in their strength

as bases but also affected by their different molecular masses.

In most cases, the fraction of bases in the particle dry

mass decreased as the particle size increased (Fig. 4), and,

therefore, the contribution of bases on the particle mass was

largest for the smallest particles. In these cases, most of the

particle phase bases were used for neutralizing sulfuric acid,

and as a result the mass fractions of the bases decreased

simultaneously with the mass fraction of sulfuric acid dur-

ing the particle growth. However, at the highest amine and

ammonia concentrations, 1010 cm−3 and 1011 cm−3 respec-

tively, there was little change in the mass fractions of base

compounds during particle growth, although sulfuric acid

mass fraction decreased as the particle size increased. This

leads to lack of correlation between the mass fractions of

sulfuric acid and the bases. Therefore, at these conditions

the controlling factor for the partitioning of the bases to the

particle phase seems to be their high gas phase concentra-

tions, and the acid-base chemistry in the particle phase is

driven by the bases. Figure 4 shows model simulation for

base case sulfuric acid concentration (106 cm−3) but similar

behaviour in mass fractions of bases was observed with all

sulfuric acid concentrations (106–108 cm−3). Molar fractions

from the same model simulations are presented in Fig. 5.

The mass fraction of sulfuric acid decreased as a func-

tion of particle size. The driving force for condensation is the

difference between gas phase concentration and equilibrium

vapour pressure of the condensing vapour (Eq. 1). For the
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Table 3. Growth rates of 3–7 nm and 7–20 nm particles calculated based on the dry size for three amine concentrations when concentration

of NH3 was varied from the base case (109 cm−3, first row). Organic acid concentration and saturation vapour pressure were 3 × 108 cm−3

and 10−6 Pa. Sulfuric acid concentration (106 cm−3), RH (40 %) and temperature (283.15 K) were set to base case values in all simulations

(Table 2).

GR 3–7 nm (nm h−1)

[Amine] = 108 cm−3 [Amine] = 109 cm−3 [Amine] = 1010 cm−3

[NH3] = 109 cm−3 2.0 2.0 10.5

[NH3] = 108 cm−3 1.9 2.0 10.2

[NH3] = 1010 cm−3 3.1 3.8 14.0

[NH3] = 1011 cm−3 23.4 23.8 26.9

GR 7–20 nm (nm h−1)

[Amine] = 108 cm−3 [Amine] = 109 cm−3 [Amine] = 1010 cm−3

[NH3] = 109 cm−3 6.0 7.0 16.9

[NH3] = 108 cm−3 5.8 6.8 16.6

[NH3] = 1010 cm−3 8.6 9.6 19.0

[NH3] = 1011 cm−3 22.5 22.8 25.4

Fig. 5. Dry particle molar fractions of particles at 3 nm (a, d, g),

7 nm (b, e, h) and 20 nm (c, f, i) as a function of ammonia concen-

tration at amine concentrations of 108 cm−3 (a, b, c), 109 cm−3 (d,

e, f) and 1010 cm−3 (g, h, i). Concentration and saturation vapour

pressure of organic acid were set to 3 × 108 cm−3 and 10−6 Pa.

Other properties of organic acid were as for organic acid 1 (Ta-

ble 1). Sulfuric acid concentration (106 cm−3), RH (40 %) and tem-

perature (283.15 K) were set to base case values in all simulations

(Table 2).

smallest particles, the driving force for the condensation is

comparable for the two acids. As the particles grow, driving

force for condensation of the organic acid becomes stronger

due to the decrease of its equilibrium vapour pressure (de-

crease of Kelvin effect) and its higher gas phase concentra-

tion. Sulfuric acid is a much stronger acid compared to the or-

ganic acid and therefore its dissociation is strongly preferred

over dissociation of organic acid. As the underlying assump-

tion in the model is that all the sulfuric acid, due to being

so strong acid, will dissociate at least once, all the sulfuric

acid is forming salt in the particle phase. This further low-

ers the equilibrium vapour pressure of sulfuric acid, making

it effectively non-volatile and its condensation independent

of the change in equilibrium vapour pressure with particle

size. The increase of the dissociated fraction of organic acid

with increasing particle size (Fig. 3) is also related to the

differences in the dissociation constants and gas phase con-

centrations of the two acids, and thus their competition for

the bases. The ratio of organic acid to sulfuric acid in the

particle increases with particle size, and, due to this, more of

the organic acid can dissociate in the larger particles, while

at the smaller particles the organic acid is not strong enough

to compete for the bases with the sulfuric acid.

It is worth noting that the model does not include any

possible interactions between sulfuric acid and the organic

acid. Formation of low-volatility compounds, e.g. organosul-

fates, in the particle could further enhance the condensation

of organic acid. This would probably not affect the conden-

sation of sulfuric acid as the condensation of sulfuric acid on

nanoparticles seems to be limited by its gas phase concentra-

tion, and not by its equilibrium vapour pressure.

The mass fraction of salts in the particle varied both as

a function of particle size and gas phase concentrations of

bases (Fig. 6). The variation with the base concentration was

the largest in the larger particle sizes: depending on the con-

centrations of the bases, 3 % to 96 % of particle dry mass

consisted of salts at 20 nm, while at 3 nm the fraction of salts

varied from 40 % to 95 %. The larger contribution of salts in

particle mass of the smallest particles is due to differences

in the contribution of sulfuric acid and organic acid to the
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Fig. 6. Dry mass fraction of salts at particle sizes (a) 3 nm, (b) 7 nm

and (c) 20 nm as a function of ammonia concentration for three

amine concentrations. Concentration and saturation vapour pressure

of organic acid were set to 3 × 108 cm−3 and 10−6 Pa, respectively.

Other properties of organic acid were as for organic acid 1 (Table 1).

Sulfuric acid concentration (106 cm−3), RH (40 %) and tempera-

ture (283.15 K) were set to base case values in all simulations (Ta-

ble 2).

growth since in practice all of the non-salt dry mass of the

particle was due to the neutral organic acid.

4.3 The effect of water – simulation set 3

The effect of RH on acid-base chemistry and particle growth

was tested using simulation set 3 where RH was varied from

40 % to 90 % while concentrations of acids and bases were

kept constant. Increasing RH from 40 % to 60 % increased

the mass fraction of water in the particle approximately by

30 % (Fig. 7a and b), and GR calculated from particle dry

size increased from 2.0 nm h−1 to 6.9 nm h−1 at size range

3–7 nm and from 7.0 nm h−1 to 11.8 nm h−1 at size range 7–

20 nm. At RH of 90 % about half of the particle mass was

water (Fig. 7c) and the GRs calculated based on particle dry

size were 22.5 nm h−1 and 28.4 nm h−1 at size ranges 3–7 nm

and 7–20 nm, respectively. The GR was calculated based on

the dry mass of the particle and therefore the increase in GR

is not explained by the increase in particle water content. In-

stead, the increased amount of water in the particles at higher

RH enhanced the condensation of the other compounds: mass

fraction of bases increased and consequently the dissociated

fraction of organic acid also increased when RH increased.

According to these results, the effect of salt formation on

the particle growth is more important at environments with

high RH. These results also suggest that if the model is repre-

senting the ambient nanoparticles correctly, the ambient GRs

would be expected to have a positive correlation with RH

if concentrations of other vapours are constant. Such cor-

relation is not seen in data from Hyytiälä (Yli-Juuti et al.,

2011). This indicates that salt formation is likely not the lim-

iting factor for the growth of the atmospheric 3–20 nm parti-

Fig. 7. Mass (a, b, c) and molar (d, e, f) fractions as a function

particle size in simulations where RH was 40 % (a, d), 60 % (b, e)

and 90 % (c, f). Concentrations of sulfuric acid (106 cm−3), ammo-

nia (109 cm−3) and amine (109 cm−3), RH (40 %) and temperature

(283.15 K) were set to base case values. Concentration of organic

acid was 3 × 108 cm−3 and psat,Org. acid was 10−6 Pa.

cles – at least not with the thermodynamics considered here.

However, the correlation of GR with RH could be disturbed

by possible changes in the concentrations of other vapours

(Hamed et al., 2011).

4.4 The effect of properties of organic acid – simulation

set 4

For the results presented so far, the properties of organic

acid 1 were used. In simulation set 4, effect of thermody-

namic properties of the organic acid were studied by chang-

ing one or several of the properties of the organic acid from

those of organic acid 1 to those of organic acid 2. For these

simulations, acid concentrations and RH were kept constant

and different base concentrations were tested. Table 4 shows

the GR in simulations where properties of the organic acid

were varied from organic acid 1 to organic acid 2 (simula-

tion set 4). Keeping all other properties of the organic acid as

for organic acid 1 but using the molar mass of organic acid 2

(higher molar mass) decreased the GR by about 65 % for 3–

7 nm particles and about 20 % for 7–20 nm particles. This is

due to the decrease of diffusion coefficient with increased

molecular mass. Also, the molecular structure of the organic

acid, which affects the calculation of the activity coefficients

and thereby the equilibrium vapour pressure of the organic

acid, affected the predicted GR. Use of the molecular struc-

ture of organic acid 2 instead of the molecular structure of or-

ganic acid 1 decreased the GRs in both size ranges by about

60 %. Changing the strength of the organic acid had very mi-

nor effect on the GR: using the acid dissociation constant of

organic acid 2 instead of organic acid 1 decreased the GR by

only a few per cent. With base case gas phase concentrations

the GR of 3–7 nm particles was not affected by this change
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in dissociation coefficient. Both organic acids 1 and 2 are

much weaker acids than sulfuric acid and it seems that they

are too weak to drive the particle phase acid-base chemistry.

The results suggest that the dissociation of organic acid is not

sensitive to its dissociation constant but instead controlled by

the available concentrations of the bases. The assumptions of

the properties of the organic acid thus change the quantita-

tive results but do not affect the conclusions drawn from the

model results.

It is possible that the small size-scale of nanoparticles af-

fects the thermodynamic behaviour of the compounds and

that the bulk-based thermodynamics in MABNAG may not

capture all the properties of nanoparticles. To study this pos-

sibility, MABNAG was compared to the conceptual growth

model introduced by Riipinen et al. (2012), which considers

a system of two acids and two bases but includes no water in

the particles. The relative stability of the salts was accounted

for with effective mass accommodation coefficients based on

quantum chemical results on the evaporation rates of very

small clusters (Kurtén et al., 2008) instead of detailed ther-

modynamics. In the conceptual model, diffusional fluxes of

all the four compounds are calculated dynamically, and acids

are allowed to exist in the particle phase in their acidic form

or as salts formed with one of the bases in 1:1 molar ratio.

Bases are allowed to exist in the particle phase only if they

form salt with one of the acids and the excess base molecules

are evaporated from the particles. The two models, MAB-

NAG and the conceptual model (Riipinen et al., 2012) give

qualitatively similar results on the particle growth with the

same gas phase concentrations and initial composition of the

particle: mass fraction of organic acid increases while mass

fractions of sulfuric acid and bases decrease as the particle

grows (Fig. 8). However, MABNAG predicts less amine and

more ammonia, and in total less bases, in the particle com-

pared to the conceptual growth model. This indicates that the

bulk thermodynamics based MABNAG and the conceptual

growth model based on quantum chemistry calculations of

cluster stabilities predict different behaviour, especially for

amine salts. The conceptual growth model, as it is based

on stabilities of small (1–2 nm) molecular clusters, is more

likely to work for the smallest, nanometre-sized, particles but

might fail in predicting particle composition at larger sizes.

MABNAG, on the other hand, is more likely to work for

larger particles but might fail when particles are very small.

This is also the reason why in this study MABNAG was ini-

tialized with particles of about 2.5 nm in diameter instead of

trying to capture the cluster sizes. The differences in predic-

tions from the two models suggest that MABNAG might lack

important interactions between molecules at the smallest par-

ticle sizes. More quantitative comparisons of thermodynamic

and quantum chemical approaches are thus highly desirable

and make an excellent topic for future studies.

4.5 Case study day – simulation set 5

For the case study day, the gas phase concentrations of sul-

furic acid and ammonia were obtained directly from mea-

surements while organic acid and amine concentrations were

estimated based on measurements and were thus more un-

certain. When the vapour concentrations from measurements

(Table 2) were used and the saturation vapour pressure of

the organic acid was varied, the best agreement between

measured and modelled GR was found with psat,Org. acid of

10−6 Pa (Fig. 9a). With psat,Org. acid ≥ 10−5 Pa, the predicted

GRs were an order of magnitude lower compared to mea-

sured values with the estimated gas phase concentrations, and

organic acid (> 8 × 108 cm−3) or amine (> 1 × 1010 cm−3)

concentrations that are probably unrealistically high were re-

quired in the model for particles to grow with the measured

growth rates. On the other hand, with psat,Org. acid ≤ 10−7 Pa

lower organic acid gas phase concentration compared to esti-

mated value was needed in the model to reach the measured

GR. In this case, the modelled GRs did not have the correct

size dependence as equilibrium vapour pressure of organic

acid was low enough compared to ambient partial pressure

for the Kelvin effect not to affect the GRs. In the atmosphere,

the organic acid concentration is likely to increase during the

morning and early afternoon due to the photo-oxidation ac-

tivity, and, hence, the apparent increase of GR with particle

size would be predicted even with the low saturation vapour

pressure if the time profiles of condensing vapours would be

taken into account. Therefore, we conclude that the condens-

ing organic acids should on average have saturation vapour

pressures on the order of 10−6 Pa or lower for the model to

predict GRs that are consistent with measurements on the

case study day. It should be noted that this low-volatile com-

pound could be an organic compound of any type as salt for-

mation does not seem to be driving its condensation. This is

in agreement with the results shown above for the average

conditions at Hyytiälä.

Assuming psat,Org. acid to be 10−6 Pa, the ambient organic

acid concentrations estimated from measurements seem to be

rather consistent with the particle growth. The GR predicted

with MABNAG was reasonable compared to the measured

GR when organic acid concentration was within ±50 % of

the estimated value. Particle growth was less sensitive to

changes in amine concentration, but as amine concentra-

tion is not well constrained there is considerable uncertainty

related to the effect of amine on the particle growth. As-

suming lower amine concentration did not affect the pre-

dicted particle growth much since ammonia was the main

base even with the amine concentration estimated from the

measurements (Fig. 9b). Assuming higher amine concentra-

tion increased the GR, partly due to enhanced dissociation

of organic acid, and as a consequence a lower organic acid

vapour concentration was needed to explain the measured

particle growth. This effect is not very strong as an order

of magnitude increase in amine concentration was needed
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Table 4. Growth rates of particles calculated based on the dry size from the simulations where the properties of the organic acid were varied.

First column indicates the property of organic acid which was changed from organic acid 1 to organic acid 2 (Table 1). First case (“none”)

has all the properties of organic acid 1. Ammonia (109 cm−3) and amine (109 cm−3) concentrations were set to base case values, unless

otherwise stated. Organic acid concentration and saturation vapour pressure were 3 × 108 cm−3 and 10−6 Pa. Sulfuric acid concentration

(106 cm−3), RH (40 %) and temperature (283.15 K) were set to base case values in all simulations (Table 2).

Changed property GR 3–7 nm GR 7–20 nm

(nm h−1) (nm h−1)

none 2.0 7.0

Molar massa 0.7 5.7

Activity coefficientb 0.8 3.0

pKa,1 2.0 6.8

none, [amine] = 1010 cm−3 10.5 16.9

pKa,1, [amine] = 1010 cm−3 10.0 16.6

none, [amine] = 1010 cm−3, [NH3] = 1010 cm−3 14.0 19.0

pKa,1, [amine] = 1010 cm−3, [NH3] = 1010 cm−3 13.8 18.8

aMolar mass affects also diffusion coefficient. bStructure of organic acid was changed, which affects
UNIFAC calculations for activity coefficients.

Fig. 8. Dry mass fractions in the particle at 3 nm (a, c) and 7 nm

(b, d) predicted with MABNAG (a, b) and the conceptual growth

model (c, d; Riipinen et al. 2012). Gas phase concentration of

sulfuric acid, organic acid, ammonia and amine were 106 cm−3,

3 × 108 cm−3, 1010 cm−3 and 108 cm−3, respectively, and RH was

40 %. Saturation vapour pressure of organic acid was set to 10−6 Pa

and other properties of organic acid were as for organic acid 1 (Ta-

ble 1).

for decreasing organic acid concentration by 50 % but still

achieving GR comparable to the measured values.

With the gas phase concentrations estimated based on the

measurements, the model predicted that all the ammonia and

amine was protonated in the particle phase (Fig. 9c). Most

Fig. 9. (a) Particle size distribution measured on the case study day

and particle size predicted with MABNAG using gas phase con-

centrations estimated based on measurements and base case prop-

erties for organic acid. Note that constant vapour concentrations

were used in the model and the starting time for modelled parti-

cle growth is not specified in the model. Dry particle mass frac-

tions (b) and mole fractions (c) are shown for the model run with

psat,Org. acid = 10−6 Pa.

of the sulfuric acid dissociated twice and was as SO2−
4 in the

particles. Ratio between HSO−
4 and SO2−

4 was rather con-

stant during the growth. Most of the organic acid was in its

non-dissociated form in the particle phase. The dissociated
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fraction of the organic acid increased during the particle

growth from 18 % at the beginning to 39 % at 40 nm. The

dissociated fraction of the organic acid was dominated by the

second dissociation product and only 2–3 % of organic acid

was as its first dissociation product.

5 Conclusions

The particle growth model MABNAG was developed and ap-

plied for studying atmospheric nanoparticle growth. MAB-

NAG considers the condensation of mixtures of organic and

inorganic vapours together with water, calculates the acid-

base chemistry in the particle phase thermodynamically and

takes into account both the size and composition dependence

of equilibrium vapour pressures.

According to the model predictions for typical ambient

conditions at Hyytiälä, only a small fraction of organic acid

dissociated in the particle phase and, thus, a rather low

(10−6 Pa) saturation vapour pressure of organic acid was re-

quired for reaching realistic atmospheric nanoparticle growth

rates, even though the acid dissociation was taken into ac-

count. It should be noted that here all the organic acids were

grouped as one model compound. Therefore, the results sug-

gest that on average the organic compounds should be less

volatile than, e.g. malonic acid, and that there is likely some

larger, stickier, organic compounds also condensing on the

atmospheric nanoparticles. However, the possibility of si-

multaneous condensation of organic acids or other type of

organic compounds with higher saturation vapour pressure is

not excluded.

Short-chain organic acids have been observed to account

for a large fraction of nanoparticle mass in the atmosphere

(Smith et al., 2010). This would not be predicted in MAB-

NAG since these compounds have even higher saturation

vapour pressures than malonic acid. This suggests that there

are other processes affecting the condensation of the or-

ganic acids in addition to salt formation or that the acid-

base chemistry in the model does not capture the real system

correctly. For instance, formation of organosulfates, amides,

oligomerization and particle phase oxidation could produce

low-volatility compounds in the particle but are not included

in MABNAG. On the other hand, the small size-scale of

nanoparticles affects the behaviour of the compounds due to

which bulk-based thermodynamics might not capture all the

properties right for nanoparticles.

Relative contributions of ammonia and amine to particle

mass depended on their relative gas phase concentrations.

For all the particle sizes, ammonia was the more important

base when its gas phase concentration was one order of mag-

nitude or more higher than the gas phase concentration of

amine. Otherwise, amine was a more important base, which

is in agreement with equilibrium calculations by Barsanti

et al. (2009) and quantum chemistry calculations on nucle-

ation by Kurtén et al. (2008). Mass-wise the bases seem to be

more important for the smallest particles. In most conditions,

condensation of ammonia and amine was driven by parti-

cle phase chemistry, mainly neutralization of sulfuric acid.

For base-rich condition the partitioning of the bases between

gas and particle phase was, however, driven by their high gas

phase concentration.

Results from MABNAG for typical conditions at Hyytiälä

suggest that salt formation has a minor role in the conden-

sation of organic acids on the nanoparticles. However, only

an order of magnitude increase in the gas phase concentra-

tion of either of the bases would make organic salt formation

an important process for particle growth. Salt formation is

also predicted to be more important at higher RH. For the

condensation of sulfuric acid, ammonia and amine salt for-

mation was predicted to be a crucial process since none of

these three compounds existed in the particle phase in their

neutral form. In total the salts were predicted to account for

50 %, 13 % and 11 %, respectively, of the mass of 3 nm, 7 nm

and 20 nm particles in the typical gas phase concentrations at

Hyytiälä. At elevated base concentrations salts accounted for

more than 90 % of the particle mass.

Our results indicate that acid-base chemistry seems not to

be the limiting process for the growth of 3–20 nm particles

in the boreal forest conditions, and the formation of organic

salts is probably not enough to explain the observed very

low volatility of the organics condensing on atmospheric

nanoparticles. The situation changes considerably and very

steeply, however, for base-rich conditions (ammonia concen-

tration larger than 1010 cm−3 for amine concentrations larger

than 108 cm−3) where acid-base chemistry starts to domi-

nate the organic vapour uptake. We believe that our results

give a reasonable first estimate on the upper limit of possible

contribution of salt formation to nanoparticle growth, as they

rely on the state-of-the-art thermodynamics of an atmospher-

ically relevant chemical mixture. To confirm the details of the

acid-base chemistry of the atmospheric nanoparticle growth,

however, further studies on, e.g. the thermodynamic prop-

erties of the atmospheric organic compounds and amines,

the atmospheric concentrations of low-volatility organics and

amines, along with studies investigating the applicability of

thermodynamics for the smallest nanoparticles are needed.

Measuring the evolution of nanoparticle composition during

the growth is challenging, but as the experimental techniques

on this area develop, such measurements will serve as an im-

portant comparison point in validating the growth model.

Appendix A

Ambient conditions from measured data

This appendix describes the measurements which were used

for estimating the ambient conditions needed as inputs in

MABNAG. The inputs required for MABNAG are the gas

phase concentrations of all the condensing vapours, RH and
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temperature. In this study the data measured at Hyytiälä

SMEAR II (Station for Measuring Ecosystem–Atmosphere

Relations) research station, southern Finland, were used.

Hyytiälä is a background site situated on the boreal forest

zone. The surroundings of the station are dominated by Scots

pine (Hari and Kulmala, 2005).

The base case values and range of values used in simula-

tion sets 1–4 were estimated based on the typical values for

the atmospheric parameters measured at Hyytiälä. The case

study day 23 July 2010 was during an intensive measurement

campaign at Hyytiälä (Williams et al., 2011) and there were

measurements for most of the quantities required as input for

MABNAG.

A1 Sulfuric acid

Typical sulfuric acid vapour concentrations were estimated

based on Petäjä et al. (2009), where sulfuric acid concentra-

tions were measured during spring and summer 2007. Base

case value was taken to be the median daytime concentra-

tion of sulfuric acid on new particle formation event days

(1 × 106 cm−3). The maximum measured sulfuric acid con-

centration was approximately 1 × 107 cm−3, which gave us

the middle value for sulfuric acid concentration. The highest

concentration in our study, 1 × 108 cm−3, is highly overes-

timating the sulfuric acid concentration for Hyytiälä and is

included in our analysis to represent sulfuric rich environ-

ments, e.g. Atlanta (McMurry et al., 2005).

On the case study day, sulfuric acid concentration was

measured with a chemical ionization mass spectrometer

(CIMS; Eisele and Tanner, 1991; Petäjä et al., 2009). Sul-

furic acid concentration varied between 1 × 106 cm−3 and

4 × 106 cm−3 during the time that the particles grew to reach

50 nm, and the average concentration was 3 × 106 cm−3.

A2 Organic acid

Oxidized organic vapour concentrations are rarely measured

and therefore condensable organic vapour concentrations

could not be obtained directly from measurements. Estimate

for organic acid concentration can be obtained from the con-

centration of oxidation products of monoterpenes. Rate of

change of gas phase concentration of the oxidation products

of monoterpenes (Cmonot. oxid.) can be estimated as (e.g. Dal

Maso et al., 2005)

dCmonot.oxid.

dt
= Q − CS · Cmonot.oxid., (A1)

where Q is the sum of oxidation rates of monoterpenes by

OH and O3 and CS is the condensation sink of oxidation

products on particles. Equation (A1) assumes that the only

loss for the oxidation products is condensation on particle,

CS is same for all the oxidation products and equilibrium

vapour pressures of the oxidation products are negligible

compared to the ambient gas phase concentrations. There-

fore, Eq. (A1) can be used only as an order of magnitude

estimate. Assuming steady state, the concentration of oxida-

tion products is

Cmonot.oxid. =
Q

CS
. (A2)

For order of magnitude estimation the CS of monoterpene

oxidation products can be approximated with the CS of sul-

furic acid, which is typically of the order of 10−3 s−1 at

Hyytiälä (Dal Maso et al., 2005). Oxidation rate depends on

the rate constants (kOH, kO3), gas phase concentration of oxi-

dizing compounds OH and O3 (COH, CO3) and monoterpene

concentration (Cmonot.):

Q = kOHCOHCmonot. + kO3CO3Cmonot.. (A3)

Rate constants calculated as weighted averages

based on typical relative abundances of differ-

ent monoterpenes at Hyytiälä are estimated to be

kOH = 7.5 × 10−11 cm3 molecules−1 s−1 and kO3 =

1.4 × 10−17 cm3 molecules−1 s−1 (Yli-Juuti et al., 2011).

OH concentrations of 3–6 × 105 cm−3 have been reported

for nucleation and growth periods at Hyytiälä (Petäjä

et al., 2009). Typical O3 concentrations are 6 × 1011–

1 × 1012 cm−3 on the particle formation days (Lyubovtseva

et al., 2005). Daytime monoterpene mixing ratios at Hyytiälä

during spring when new particle formation is most fre-

quent are approximately 0.1 ppbv and throughout the year

stay mostly below 0.4 ppbv (Lappalainen et al., 2009),

which correspond to concentrations of 2.6 × 109 cm−3 and

1 × 1010 cm−3, respectively. Based on these rate constants

and concentrations, typical concentration of monoterpene

oxidation products would be of the order of 108 cm3 and

maximum estimate would be 109 cm−3. These were used

as the base case and maximum values for the organic acid

concentration. According to these calculations, organic

acid concentration was approximately 5 % of monoterpene

concentration. The lower limit for organic acid concentration

was taken to be 107 cm−3 as concentrations of at least this

order of magnitude are needed to explain the particle growth

rates observed in the atmosphere.

For the case study day, monoterpene concentrations mea-

sured at Hyytiälä with proton transfer reaction mass spec-

trometer (PTR-MS) were used to estimate gas phase concen-

tration of the organic acid. There was a measurement break

with PTR-MS in the morning and the data was available

only starting from 11:00. The median monoterpene concen-

tration between 11:00 and 18:00 was 3.9 × 109 cm−3. This

corresponds to organic acid concentration of approximately

2 × 108 cm−3 when 5 % of monoterpenes are assumed to ox-

idize and form organic acid.

A3 Ammonia

Gas phase ammonia concentrations measured with MARGA

(ten Brink et al., 2007; Makkonen et al., 2010) with
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one-hour time resolution at Hyytiälä during July 2010–

April 2011 where used for estimating typical concentrations.

Median and 5th and 95th percentiles of daytime concen-

trations were 2.4 × 109 cm−3, 5.5 × 108 cm−3, respectively,

and 2.1 × 1010 cm−3 while maximum concentration was

8.7 × 1010 cm−3. Based on these, the base case value was

taken to be 109 cm−3 and the minimum and the maximum

were chosen as 108 cm−3 and 1011 cm−3. As 1011 cm−3 is

rather extreme based on the measurements, also an interme-

diate value of 1010 cm−3 was used to represent high, but still

reasonable, ammonia concentration.

On the case study day, there was a measurement break

with MARGA in the morning and ammonia concentration

data was available only starting from 13:00. In the afternoon,

ammonia concentration had a decreasing trend and therefore

the value at 13:00, 2 × 1010 cm−3, was taken to represent the

growth period.

A4 Amine

Gas phase amine concentrations measured during June–

August 2010 and May–October 2011 were used for estimat-

ing typical amine concentrations. The sampling period for

these off-line analysis methods was 2–3 days during 2010

and 7 days during 2011. Samples were collected on acid

impregnated filters through PTFE membrane filter. Extracts

from filters were analysed using a high performance liq-

uid chromatography electro spray ionisation ion trap mass

spectrometer (Agilent 1100 Series LC/MSD Trap System).

Sample collection and analytical procedure are described

by Kieloaho et al. (2013). Concentrations of seven low

molecular weight aliphatic amines were measured: trimethy-

lamine, triethylamine, ethylamine, propylamine, butylamine,

dimethylamine and diethylamine. During 2011 dimethy-

lamine (DMA) and ethylamine (EA) were not separated in

analysis, and the measured concentration represented the

sum of these two amines. During 2010 DMA and EA were

distinguished from each other in the analysis and on average

DMA accounted for 10 % of the total amine concentration.

During 2010 there were leakages in the sampling system,

causing the measured concentrations to be underestimates.

Therefore, for estimating typical amine concentrations, mea-

surements from 2011 were used. Median, minimum and

maximum of the sum of the concentrations of the seven

measured amines were 1.5 × 109 cm−3, 7.8 × 108 cm−3 and

6.1 × 109 cm−3, respectively. This gave a conservative es-

timate of average sum of amine concentrations 109 cm−3

and typical range of concentration 108 cm−3–1010 cm−3. It

should be noted that all the amines were grouped in one com-

pound in the model and these gas phase amine concentra-

tions refer to the sum of the measured amines. Properties of

DMA are used in the model for the amine although DMA

accounted for only a fraction of the total measured amine

concentration, which may have lead to overestimation of salt

formation. Therefore, the model results are, from this per-

spective, maximum estimates for salt formation. From the

recent review on atmospheric amines by Ge et al. (2011a),

the best comparison points for Hyytiälä are the rural and

agricultural sites where concentration levels of low molec-

ular weight aliphatic amines have been reported to be of the

order of 108–109 cm−3.

Sum of amine concentrations during the two sampling

periods around the case study day 23 July 2010 were

8.8 × 107 cm−3 (21–23 July 2010) and 1.4 × 108 cm−3 (23–

26 July 2010). Due to the leakage in sampling these concen-

trations are likely to be underestimates, even by an order of

magnitude, and, therefore, amine concentration of 109 cm−3

was used in the model for the case study day.

A5 Temperature and relative humidity

During years 2003–2009 average temperature during new

particle formation events was 281.5 K and minimum and

maximum were 257.0 K and 294.7 K, respectively. It is worth

noting that temperature dependence of saturation vapour

pressures of organic compounds was not included in the

model. Therefore, the temperature dependence was not stud-

ied, and in all simulations temperature was set to 283.15 K.

The average relative humidity during nanoparticle growth

was 43 % with 5th and 95th percentiles of 26 % and 74 %,

respectively, and with maximum value reaching 92 %.
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