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Accurate, reliable prediction of NOx emission in flue gas is of great significance for operation of power station boilers 

with low nitrogen emissions. To improve the accuracy of a prediction model, a method for predicting NOx emission from 

boilers based on integration of the whale optimization algorithm and least squares support vector machine (MWOA-

LSSVM) is proposed in this paper. First, the sample space is divided, and a segmentation logistic chaotic map is then 

used to initialize the population. The nonlinear adaptive parameters are improved, and quadratic interpolation update 

position is used to improve the whale optimization algorithm (WOA) by broadening the global exploration ability of 

the algorithm. The MWOA is used to globally optimize the kernel function width and penalty factor of the LSSVM sub-

model in each subspace, yielding the sub-model as an output. Finally, the sub-model output is integrated using the least 

squares regression, yielding the output from the integrated model. The simulation results show that the MWOA-LSSVM 

integrated model has stable, high-precision simulation performance compared with other selected prediction models 

and can provide more accurate predictions of NOx emissions from boilers.

Introduction

Nitrogen oxide compounds (NOx) are one of the main 

components in pollutant emissions generated in coal-fired 

power plants and have a great impact on the formation 

of acid rain and fog (Park et al., 2019). With the continu-

ous improvement of mass concentration standards on NOx 

emissions from coal-fired power plants in China (Environ-

mental Protection Department, 2014), prediction and con-

trol of NOx emissions from coal-fired plant must be more 

accurate and faster. However, NOx emissions from boilers 

are affected by many factors, such as coal type, unit load, 

and wind volume ratio; thus, mathematically describing 

NOx emissions using simple traditional models is difficult 

(Lv et al., 2013).

Artificial intelligence algorithms and machine learning 

are becoming more useful for solving complex nonlinear 

problems, and many effective methods for predicting NOx 

emissions have been derived. At present, the least squares 

support vector machine (LSSVM) is a machine learning 

algorithm with good performance and has been widely used 

for predicting NOx emissions from power plant boilers (Gu 

et al., 2010; Li and Wang, 2018). However, the prediction 

from LSSVM often has large errors. This is because the ker-

nel function width σ2 and the penalty factor c influence the 

prediction accuracy. Unreasonable parameter setting will 

lead to poor reliability in the model results (Si et al., 2017).

Regarding the parameter optimization problem of 

LSSVM, Zhang et al. (2014) established a model for predict-

ing NOx emissions and proposed optimizing the parameters 

σ2 and c in LSSVM using the fruit fly optimization algorithm 

(FOA). Gao et al. (2012) proposed optimizing the param-

eters of LSSVM using an improved particle swarm optimiza-

tion (PSO) algorithm and built a shared model of a boiler 

combustion system. These super-parameter optimization 

algorithms can provide more accurate predictions, but they 

have poor stability and weak search ability.

Mirjalili and Lewis (2016) developed a new population-

based meta-heuristic optimization algorithm with high pre-

cision and stability, named the whale optimization algo-

rithm (WOA), which simulates the hunting behavior of 

humpback whales. Based on this, Zhang and Chen (2018) 

introduced the concept of nonlinear parameters and chaos 

to improve the global optimization ability and produce 

greater variations in the initial WOA population. Huang 

et al. (2018) improved the performance of WOA by intro-

ducing a cosine control factor and polynomial variation. 

However, WOA still has problems in that the algorithm can 

become trapped in a local optimum solution and it has poor 

global exploration ability, thus further refinement is neces-

sary.

Meanwhile, it is difficult to produce more accurate pre-

dictions by simply optimizing the parameters in the LSSVM 

using a meta-heuristic algorithm due to the limitations of 

LSSVM. Therefore, a new method for solving the problem 

is required. The multi-model integrated modeling method 

provides higher precision and stronger generalization than 

single-model modeling method (Zhao and Lv, 2016). Zhao 

and Lv (2016) integrated the LSSVM sub-model using the 

least squares regression based on membership degree and 

established an NOx emission prediction model for a boiler. 
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However, the model implementation process is relatively 

complicated and the test accuracy is low.

Based on the above problems, the author broadened the 

global exploration ability of WOA by initializing the popula-

tion with a segmented logistic chaotic sequence, called the 

modified whale optimization algorithm (MWOA). The posi-

tion of whale is updated by introducing modified sinusoidal 

nonlinear control parameters and quadratic interpolation 

(QI). The MWOA-LSSVM sub-model was based on parti-

tioning the sample space according to the amount of emit-

ted NOx. The sub-model output was integrated using least 

squares regression, yielding the predicted NOx emission. 

NOx emission prediction models such as LSSVM, FOA-

LSSVM, and PSO-LSSVM are examined for comparison. 

Simulation results show that the MWOA-LSSVM integrated 

model had higher accuracy than the other selected models.

1.　WOA and LSSVM

1.1　WOA

WOA (Mirjalili and Lewis, 2016) is a population-based 

intelligent bionic optimization algorithm that mimics the 

hunting behavior of humpback whales and is optimized 

for specific problems. A humpback whale will dive down 

and then rotate upwards after finding prey while spiraling 

bubbles around the prey; these bubbles reach the surface 

of the water in order to attack the prey. Figure 1 (Mirjalili 

and Lewis, 2016) shows the hunting behavior of humpback 

whales. The process involves surrounding prey, attacking 

prey (development phase), and for searching prey (explora-

tion phase).

During the development phase, the humpback whale re-

gards the current best position as the target prey and then 

adjusts its current position to achieve local optimum by 

shrinking encircling mechanism and spiral updating posi-

tion. The mathematical model for spiraling toward prey is 

described as follows: 

*⋅ −=| ( ) ( ) |D C X t X t   (1)

* − ⋅+ =( 1) ( )X t X t A D   (2) 

Here, t is the current iteration number, X* is the current 

optimal position vector, X is the position vector, | | is the 

absolute value operation in Eq. (1), ·  is the dot product, D 

is the position measurement parameter vector, and A and C 

are two control parameter vectors obtained from the follow-

ing equations: 

⋅ −=2A a r a   (3)

= ⋅2C r   (4) 

Here, r is a random vector in [0, 1] which is uniformly dis-

tributed, and a is the shrinking rate, which decreases lin-

early from 2 to 0 in successive iterations. 

= − ⋅

MaxIter

2 2
t

a
t

  (5) 

Here, tMaxIter is the maximum number of iterations.

The mathematical description for updating the position 

spirally is defined in the spiral equation: 

*′ −=| ( ) ( ) |D X t X t   (6)

*′ ⋅ ⋅+ = +( 1) cos(2 ) ( )bl
X t D e πl X t   (7) 

Here, D′ is the distance between the current position and 

the optimal position, l is a random number in [−1, −2], 

and b is a constant that determines the type of logarithmic 

spiral.

As a humpback whale hunts, shrinking encircling mecha-

nism and spiral updating position is simultaneously carried 

out. Therefore, both modes are given probability of 1/2. 
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Here, p1 is a random number in [0, 1].

During the exploration phase, a global search is used to 

continuously update the optimal position and reach a global 

optimal solution. The process is described using a math-

ematical model as follows: 

⋅ −= rand| |D C X X   (9)

− ⋅+ = rand( 1)X t X A D   (10) 

Here, Xrand is a random position vector selected from the 

current generation. The position is updated by selecting 

the absolute value of the control parameter vector A. When 

|A|<1, the local optimal solution is found by shrinking; 

when |A|≥1, the global optimal is located by exploration.

WOA still has the disadvantage of easily becoming 

trapped in a local optimum and poor global searching abil-

ity, although it provides better optimization accuracy than 

some traditional heuristic optimization algorithms. An im-

proved version of WOA is presented in this paper.

1.2　LSSVM

A set of data samples (xi, yi) with i=1, 2, . . . , n is assumed 

in the paper. The LSSVM algorithm uses the principle of 

structural risk minimization to establish optimization prob-

lems (Li et al., 2012): 
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Fig. 1　Hunting behavior (spiral bubble attack) of humpback whales
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Here, ξ is a slack variable whose significance is to introduce 

an outlier, c is a penalty factor, w is a weight vector, b is 

error, and φ is the kernel function.

αi is defined as a Lagrange multiplier, and the Lagrange 

method is used to solve the optimization problem in Eq. 

(11), which is structured as follows: 
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The Karush–Kuhn–Tucker (KKT) optimality condition is 

defined as follows: 
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K(xi, yi)=〈φ(xi), φ(yi)〉 is the definition of the kernel 

function. Equation (14) is obtained by Eq. (13). Taking 

∑
n
i=1 αi=0 in Eq. (14) yields: 
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The regression parameters [b α1 α2 . . . αn] in the model are 

obtained by solving Eq. (15). The decision function is de-

fined as follows: 


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i
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The Gaussian radial basis (RBF) function is chosen as the 

kernel function, and σ is the width of the kernel function: 

2 2|| || /( , ) i jx x σ
i jK x x e− −

=   (17)

2.　Modified WOA Algorithm

2.1　Population initialization based on chaos theory

The degree of diversity in the initial population has great 

significance on convergence of a population-based optimi-

zation algorithm. The initial population in WOA is too ran-

dom and lacks regularity (Zhang and Chen, 2018). Chaos 

provides randomness and ergodicity. A piecewise logistic 

chaotic map has better nonlinear characteristics can be used 

to generate a chaotic sequence without disturbing the calcu-

lation. Based on this, a piecewise logistic chaotic map was 

used to initialize the population in the WOA. The specific 

expression is as follows: 
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2.2　Nonlinearization of the control parameter a

The transition between the development phase and explo-

ration phase in WOA proceeds according to the control vec-

tor A. When the |A| is small, the local optimization ability 

is strong, and when the |A| is large, the global optimization 

ability is strong. The key to obtaining good performance 

such as accuracy depends on whether the algorithm can 

achieve perfect coordination between the two phases. There-

fore, the parameter a determined from A plays a crucial role 

in this process. While a decreases linearly from 2 to 0 in 

WOA, it cannot accurately reflect and adapt to the complex 

nonlinear search process. The global searching ability of the 

algorithm must be improved in order to avoid premature 

convergence when solving complex, high-dimensional prob-

lems (Long et al., 2018). Therefore, it is necessary to define 

a as a nonlinear function of time. A sine function is used to 

provide some nonlinear decay over successive iterations: 

MaxIter
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2 2

π t π
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2.3　Addition of a nonlinear adaptive parameter

The inertia weight has a significant impact on the explora-

tion ability of a meta-heuristic algorithm (Guo et al., 2017). 

The global exploration effect of the algorithm is broader 

when the value of the nonlinear adaptive is large. Local ex-

ploration of the algorithm is more effective when the value 

is small. Therefore, a nonlinear adaptive parameter is intro-

duced in the development phase of the WOA to speed up 

convergence and broaden global searching ability: 
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Considering the synchronous nonlinear variation with the 

control parameter a, ω is defined as follows: 

MaxIter
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The algorithm initially has a larger step size and stronger 

global searching ability. As the number of iterations tends to 

tMaxIter, ω gradually converges to 0, the step size of algorithm 

decreases, and local searching is enhanced such that accu-

racy is ensured.

2.4　Improvement based on QI

In order to further improve the global search ability of 

WOA and solve large-scale global optimization problems, 
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a QI method is used in WOA to improve the search ability 

of algorithm. In recent years, QI has been widely used in 

meta-heuristic optimization algorithms (Singh and Agrawal, 

2016; Gupta et al., 2017). QI uses three vectors selected in an 

n-dimensional space to find the minimum value on a qua-

dratic curve, called the second crossing. The three selected 

vectors in WOA are the current optimal position vector 

X*=(x1, x2, . . . , xn) and two population random vectors 

Y=(y1, y2, . . . , yn) and Z=(z1, z2, . . . , zn). The new solution 

vector X′=(x1′, x2′, . . . , xn′) is calculated using Eq. (20): 
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Here, f(X*), f(Y), and f(Z) are the fitness of X*, Y, and Z, re-

spectively, and i is the i-th dimension.

QI is used in the development phase in the WOA to 

enhance the development ability and ensure population 

differentiation. In this way, WOA includes two methods in 

the development phase: quadratic crossover and spirally 

updating position. A uniformly distributed parameter is 

used to control the two modes. Spiral position updating is 

calculated with Eq. (20) when the probability p2 is less than 

0.8. Otherwise, the position is updated by using the qua-

dratic crossover, as shown in Eq. (17). Therefore, Eq. (20) is 

updated as follows: 
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3.　MWOA-LSSVM Model

3.1　Data preparation

3.1.1　Selection of input variables　The experimental 

data was derived from the 1099.3 t/h forced circulation boil-

er (Alstom, France). Input variables are confirmed accord-

ing to the formation mechanism analysis of NOx emission in 

flue gas (Wang and Zhou, 2002; Zhao et al., 2015).

There are three factors that affect NOx formation: nitride 

content in coal, oxygen content in coal, and the combustion 

situation.

Nitrogen compounds in coal react with a large amount of 

oxygen to produce a large amount of NOx. Oxygen content 

in flue gas is used to measure whether there is adequate 

combustion, which has an important impact on the emis-

sion of NOx.

Variation in the unit load directly affects the temperature 

of the furnace and oxygen concentration, thus affecting NOx 

emission. Therefore, NOx concentration shows a positive 

trend as the unit load changes.

Coal with higher volatile content and lower calorific value 

is easier to ignite. Because the combustion of pulverized coal 

consumes a significant amount of oxygen, a hypoxic envi-

ronment forms in the later stage of combustion, which has a 

great impact on the production of NOx.

In a boiler combustion system, primary wind mainly car-

ries pulverized coal into the furnace and provides volatile 

combustion. Secondary wind provides an amount of air 

required for pulverized coal combustion in the furnace. 

Tertiary wind has a strong mixing effect on combustion 

and provides the oxygen required in the burnout stage. The 

primary wind volume is determined by the primary wind 

pressure, while the other wind volume is determined by the 

dampers.

The unit load, volatile matter of coal, low calorific value 

of coal (LCV), primary wind pressure (PA_SET), opening 

degree of secondary wind dampers A, B and C (SE_A, SE_B, 

SE_C), upper and lower tertiary wind damper opening degree 

(SR_U, SR_D), and oxygen content in flue gas (ρ(O2)) were 

used as input variables. The output variable is NOx emis-

sion. 105 sets of data in different steady-state conditions 

were obtained after a large number of orthogonal experi-

ments (Zhen and Liu, 2018). Some of these data are shown 

in Table 1.

3.1.2　Data processing　All data sample vectors are nor-

malized as follows: 

min

max min

x x
x

x x

−
′

−
=   (24) 

Here, x is the initial sample vector, xmin is the minimum of 

the vector, xmax is the maximum of the vector, and x′ is the 

processed sample vector.

According to the level of output NOx, the sample data 

Table 1　Experimental data for the boiler in steady conditions

Data

Input Output

LOAD  
[MW]

Volatile  
[%]

LCV  
[%]

PA_SET  
[kPa]

SE_A  
[%]

SE_B  
[%]

SE_C  
[%]

SR_U  
[%]

SR_D  
[%]

ρ(O2)  
[%]

NOx  
[mg·m−3]

1 237.68 9.27 23.1 3.46 41 7 42 20 50 3.68 659.18

2 238.17 9.15 22.3 2.94 41 7 42 20 50 3.70 643.72

… … … … … … … … … … … …

39 289.78 8.62 23.71 3.96 46 27.5 43 65 55 2.43 776.06

40 290.01 8.99 23.32 3.96 46 36.5 55 65 35 2.15 812.79

… … … … … … … … … … … …

72 327.16 9.19 23.46 3.85 53 22 55 45 57 2.89 987.34

73 327.43 9.30 23.22 3.85 81 38 43 33 45 2.42 965.22

… … … … … … … … … … … …
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is divided into three data subspaces Dl, Dm, and Dh as the 

sample set in the sub-model. The specific division rules are 

as follows: 

{ |0 0.47}

{ |0.47 0.64}

{ |0.64 1}

l i

m i

h i

D X y

D X y

D X y

≤ <

≤ <

≤ ≤

=

=

=

 
 

(25)

 

Here, the input of data space D=[Dl, Dm, Dh] is X= 

[x1, x2, . . . , x10], and yi (i=1, 2, . . . , n) is NOx emission.

3.2　Modeling process

After enhancing the global search ability of WOA, an in-

tegrated MWOA-LSSVM model is proposed to improve the 

accuracy of NOx prediction. First, the data space is divided 

according to the level of NOx emission value by Eq. (25). 

Then, the LSSVM sub-model in each subspace is globally 

optimized by MWOA. Finally, the sub-models are integrated 

using least squares method to obtain the output. The specific 

modeling steps are as follows:

1)　The sample set D is normalized;

2)　Define MWOA: the five parameters (variable number 

dim, maximum iteration number tMaxIter, number of whales 

SearchAgents_no, variable lower limit lb, and variable upper 

limit ub) in the WOA;

3)　Initialize the population: the whale population is ini-

tialized using Eq. (18) to increase the population difference.

4)　Define the fitness function: the position of the whale 

is used to represent the parameters of the LSSVM model σ2 

and c, namely X(i, 1) and X(i, 2), respectively. Therefore, X(i, 
1) and X(i, 2) are substituted into LSSVM to predict the test 

sample, and the root mean square error (RMSE) between 

the predicted value yi′ and true value yi is taken as the fitness 

function in WOA. RMSE is defined as follows: 

2

1

1

( )

n

i i

i

RMSE

n y y′ −
=

=  
 

(26)

5)　MWOA is used to determine the best σ2
best and cbest 

values;

6)　σ2
best and cbest are used as parameters in LSSVM to de-

termine NOx emission in each subspace.

7)　The integrated MWOA-LSSVM model is defined in 

Eq. (27) using least squares regression, where Ŷ is the input 

and y is the output: 

1

( ) ( )

d

i i

i

y x p h x
=

=   (27)

Equation (27) is written in matrix form Y=Ŷ·W, where 

W=(HTH)−1HTy, and Y is the output from the integrated 

model.

Table 2 shows the pseudo code for execution of MWOA-

LSSVM.

3.3　Defining parameters

The parameters optimization algorithm significantly af-

fect the performance of the optimization method. Generally 

speaking, the optimization parameters are determined based 

on experience or results from tests.

Population size and number of search agents: a smaller 

population can fully search the solution space, avoid overfit-

ting, and requires less computing time. Usually 20–40 indi-

viduals are used.

Variable number dim: refers to the number of optimiza-

tion variables. σ2 and c are parameters to be optimized, thus 

dim=2 in this paper.

Maximum number of iterations tMaxIter: this value is based 

on an analysis of a specific problem. If tMaxIter is too small, 

the algorithm may not converge to the true optimum. If 

tMaxIter is too large, the computation time may be unneces-

sarily long.

Range of parameters: the upper and lower bounds are de-

termined by previous experience or from experiments.

Learning factor: usually c1 and c2=2 in PSO.

4.　Results and Discussion

One hundred five sets of sample data were divided into 

training and test sets. The first 95 sets of sample data were 

used for training and the last 10 sets were used for testing. 

The test sample is not involved in training. The WOA pa-

rameters were dim=2, SearchAgents_no=30, tMaxIter=100, 

lb=[0.01, 0.001], and ub=[500, 500]. All simulations were 

performed on a PC with an Intel Core i5-4590 3.3 GHz 

processor with 4 GB RAM. All programs were implemented 

with the M scripting language in MATLAB 2015b.

4.1　Evaluation criterion and NOx prediction using MWOA-

LSSVM

The root mean square error (RMSE), average relative 

error δPMRE, average absolute error δPMAE, and relative error 

δMRE are the error criteria used to evaluate the performance 

of the model. RMSE is used to measure the deviation be-

tween the predicted value and the true value, thus it is more 

suitable as a fitness function for parameter optimization. 

δPMRE, δPMAE, and δMRE can better reflect the actual predic-

tion error, thus o they are more suitable for analyzing the 

results. Therefore, δPMRE, δPMAE, and δMRE are introduced to 

evaluate the accuracy in this section in order to better de-

scribe the performance of the proposed model. 
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1

ˆ1 | |n
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Here, n is the number of sample data, ŷi is the predicted out-

put from the model, and yi is the true value.

In order to verify that MWOA has broader global search-

ing ability, MWOA and WOA are used to directly optimize 
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the kernel function width σ2 and penalty factor c in LSSVM 

without data space division. LSSVM was used for training 

in order to build the NOx emission prediction model and 

predict emissions. The progress of parameter optimization is 

shown in Figure 2.

Figure 2 shows that MWOA and WOA provide the same 

precision after a sufficient number of iterations, but MWOA 

requires more iterations to converge. MWOA has wider 

search scope compared with WOA, but the wider search 

scope and the faster search time are contradictory, thus the 

search time must be increased in order to search a broader 

range. It is difficult for MWOA to fall into a local optimum 

and it can be used for optimization over a lager range in 

order to enhance the performance and generalization of the 

algorithm. It is difficult for a simple parameter optimization 

algorithm to enhance the prediction accuracy of LSSVM 

due to the limitations of the LSSVM and the data set. There-

fore, the integrated MWOA-LSSVM model is proposed for 

solving this problem. The integrated model is used to estab-

Fig. 2　RMSE from MWOA and WOA over successive Iterations

Table 2　Pseudocode for the MWOA-LSSVM algorithm

Pseudo code of MWOA-LSSVM integration algorithm

01 Normalize the sample set D by Eq. (24);

02 Divide the sample space into Dl, Dm and Dh according to the level of output NOx value;

03 Set dim, tMaxIter, SearchAgents_no, lb, and ub;

04 Establish sub-model based on data set which is a sample subspace;

05 while t<tMaxIter do

06 for1 1 to n do

07 Let n=SearchAgents_no and initialize the whale population X={x1, x2, ..., xi, ..., xn} by Eq. (18). Let t=1 and calculate fitness f(xi) of 
each whale individual xi, the current optimal individual fitness value Leader_score, and its position Leader_pos;

08 end for1

09 Repeat 03–06 twice to get the population Y, Z, and their optimal fitness and position;

10 Calculate a using Eq. (19);

11 for2 1 to n do

12 Update A, C, b, l, p1, and p2

13 if1 p1<0.5

14 if2 |A|<1

15 Update position vector by Eq. (20);

16 elseif2 |A|≧1

17 Select a random position vector Xrand;

18 Update position vector by Eq. (10);

19 end if2

20 else if1 p1≧0.5

21 if3 p2<0.8

22 Update position vector by Eq. (20);

23 else if3 p2≧0.8

24 Update position vector by Eq. (22);

25 end if3

26 end if1

27 end for2

28 Check and fix duplicate individuals to ensure that each search vector is valid;

29 Update Leader_pos if there is a better location;

30 t=t+1;

31 end while

32 Return Leader_score, Leader_pos;

33 Substitute Leader_pos into LSSVM to predict the test sample;

34 Record the output of the sub-model;

35 Return to 04 until sub-models are established on all sample subspaces;

36 Synthesize the output of each subspace by Eq. (27);

37 Generate prediction graph and calculate the error.
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lish a model after the sample data space is divided, and the 

output is shown in Figure 3. Figure 3 shows that the true 

and predicted values are highly fitted, and the error for the 

test sample is small (δPMRE=1.87% and δPMAE=14.643). The 

MWOA-LSSVM method can sufficiently predict NOx emis-

sions from a utility boiler.

4.2　Comparison of predictions from selected models

In order to verify the prediction accuracy of MWOA-

LSSVM integration model is higher than that from other 

prediction models, the fruit fly optimization algorithm 

(FOA) and particle swarm optimization algorithm (PSO) 

were used to optimize the kernel function width σ2 and 

penalty factor c in LSSVM for comparison. The results for 

σ2 and c from different optimization algorithms after param-

eter optimization are listed in Table 3.

The NOx emission prediction model can be established 

using the parameters in Table 3, yielding output values from 

different prediction models. The relative error δMRE values 

with different prediction models are compared in Figure 4. 

Figure 4 shows that the δMRE with WOA-LSSVM is distrib-

uted over a narrower range compared to the other models.

The output results with testing data with different predic-

tion models are compared in Figure 5, and the accuracy is 

compared in Table 4. Figure 5 and Table 4 show that the 

MWOA-LSSVM model has higher prediction accuracy than 

the other selected models because this model used the least 

squares method to significantly improve the prediction ac-

curacy compared with the single model.

Case studies were presented in the literature (Zhao et al., 
2015; Zhao and Lv, 2016; Zhen and Liu, 2018). Most of these 

introduced the fuzzy concept to improve the prediction 

accuracy, which often complicates the modeling process. 

Compared with the aforementioned studies, the proposed 

model does not require computation of a high-dimensional 

membership matrix. Therefore, the proposed model can 

provide high prediction accuracy while simplifying imple-

mentation.

Conclusion

In this paper, an NOx emission prediction model based on 

MWOA-LSSVM is proposed. For WOA, the global search-

ing ability has been improved by modifying the population 

initialization method through introducing a control param-

eter, and an algorithm for updating the position. The ac-

curacy of the prediction model is higher when sub-models 

Fig. 3 Comparison between the measured and predicted values using 

MWOA-LSSVM

Table 3 Comparison between parameters from different optimiza-
tion models

Model LSSVM FOA-LSSVM PSO-LSSVM WOA-LSSVM

σ2 57.15 48.19 203.12 126.45

c 8245.92 7.24 140.62 349.31

Fig. 4 Comparison between of relative error in NOx emission with 

different models

Fig. 5 Comparison between the true and predicted values with differ-

ent models

Table 4　Precision comparison between different prediction models

Model δPMRE/[%] δPMRE/[mg·m−3]

LSSVM 4.63 36.24

FOA-LSSVM 3.19 25.67

PSO-LSSVM 2.93 22.85

WOA-LSSVM 2.35 17.93

Integration Model 1.87 14.64
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are integrated using the least squares method. Compared 

with other prediction models such as LSSVM, FOA-LSSVM, 

and PSO-LSSVM, the proposed MWOA-LSSVM integration 

model provides more accurate prediction than the other 

selected models.
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