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Abstract

We propose a model to describe the sintering kinetics of polydispersed glass particles, having no adjustable pa-

rameter. The model is based on three sintering stages: a pure `Frenkel' (F) ®rst step, a mixed `Frenkel/Mackenzie±

Shuttleworth' stage, and a third, pure `Mackenzie±Shuttleworth' (MS) step. The model considers sample shrinkage as

the sum of the partial shrinkage of several clusters, each consisting of equally sized particles and each showing inde-

pendent F or MS behavior. The overall set of clusters mimics the specimen's real particle size distribution. We then

introduce the concept of neck forming ability ± nr, which allows the formation of necks among particles of di�erent

sizes, relaxing the clustering condition. Using experimental physical parameters: particle size distribution, viscosity,

surface energy, and the theoretical nr, the model describes well the sintering kinetics of an alumino-borosilicate glass

powder having polydispersed, irregular shaped particles in a variety of temperatures. The sintering kinetics of the real

powder is slower, but not far from the calculated kinetics of a monodispersed distribution containing only particles of

average size. Thus the model provides a tool for estimating the sintering kinetics of real glass powders, for any size

distribution and temperature, thus minimizing the number of laboratory experiments. Ó 2001 Elsevier Science B.V. All

rights reserved.

1. Introduction

The preparation of glass articles by sintering is

a common practice in both the laboratory and the

industry [1]. Models that predict the isothermal

densi®cation of a porous body, composed of glass

particles having the same size or porous compacts

having identical pores, as a function of viscosity,

surface energy and particle size, successfully de-

scribe parts of the sintering process [2,3].

Several models have been proposed and many

experiments conducted on sintering by viscous

¯ow. Just to mention a few, numerical simulations,

for instance, have also been applied to viscous

sintering to study pore size distribution during sol±

gel processing [4]. Exner et al. [5] developed a

stereological model to describe the shrinkage on

sintering glass powders. Their model will be dis-

cussed later in this paper. Giess et al. [2] reported

that the pure MS analysis does not accurately

describe the sintering of pressed compacts of

polydispersed, irregular shaped glass particles,

suggesting that this drawback may be the result of
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smaller particle-size fractions sintering more rap-

idly at the outset and larger ones sintering more

slowly towards the end of the process.

We agree with Giess et al. in that no actual

model describes the full sintering kinetics of real

powdered glasses, having wide size distributions of

particles. Thus, the objective of this paper is to

present and test such a model, which takes into

account the actual particle size distribution, and

that considers a distribution of pore sizes and si-

multaneous Frenkel and MS processes at di�erent

points of the sample at any time.

2. Summary of the theory

The Frenkel model (Eqs. (1a) and (1b)) [6] de-

scribes well the isotropic sintering of monodi-

spersed spherical particles. Starting from a loosely

packed powder with a relative density of about 0.6,

the model works up to a relative density of

q � q�t�=qg 0.8 (where q�t� is the bulk density of

the compact and qg the glass density) or, equiva-

lently, up to a linear shrinkage of approximately

10%.

DL

L0

� 3c

8g�T �r t; �1a�

q�t�
q0

� 1

�

ÿ 3ct

8g�T �r

�ÿ3

; �1b�

where L0 represents the original sample length, DL

the linear shrinkage after a sintering time t, g�T �
the temperature dependent shear viscosity, c the

glass±vapor surface energy, r the particle radius

and q0 is the relative green density.

For higher relative densities, when the pores are

isolated, the Mackenzie±Shuttleworth, MS-model

gives the densi®cation rate [7]

dq

dt
� 3c

2a0g�T �
�1ÿ q�; �2�

where a0 is the initial radius of the pores, which is

assumed to decrease during the ®nal stage of sin-

tering, while their number remains ®xed.

On a laboratory time scale, sintering is only

accomplished at temperatures above Tg, where

the viscosity curve g�T � is normally well

described by the Vogel±Fulcher±Tamman (VFT)

equation [8]:

g � g1e
Ev=R�TÿT0�; �3�

where R is the gas constant, T0 an empirical con-

stant, Ev the activation energy associated to mo-

lecular transport by viscous ¯ow, and g1 the

viscosity at `in®nite' temperature. T0; Ev and g0 are

obtained from shear viscosity measurements.

Therefore, from Eqs. (1a), (1b), (2) for viscous

¯ow sintering we expect that

oq

ot

�

�

�

�

q

� constant eÿEv=R�TÿT0�: �4�

Thus, the slope of a ln oq=ot� � vs: �T ÿ T0�ÿ1
plot

gives the apparent activation energy Ev=R.

3. The clustering model

Fig. 1 shows a SEM image of a compact of

polydispersed particles after a linear shrinkage of

about 8%. Although the largest particles are

clearly at the (initial) Frenkel stage, which is

characterized by the formation of a neck between

neighboring particles, the smaller particles (having

a higher surface area and, thus, a higher driving

force for sintering) have already overcome this

stage. This is the basis for the model proposed

here: small particles preferentially cluster in the

open spaces left by larger particles and sinter faster.

Thus, for a polydispersed compact with volume

fraction vr of particles of radius r, we propose the

following expression for the densi®cation kinetics

at a given temperature:

q�t� �
X

r

qF�r; t�hF�t0:8� ÿ t�

� qMS�r; t�hMS�t ÿ t0:8��mrnr: �5�

Eq. (5) sums up the relative density q�r; t� for

each particle size, r, as a function of time, t.

During the initial or Frenkel stage of sintering, the

q�r; t� < 0:8 condition is met and qF�r; t� is calcu-
lated using the Frenkel equation (Eq. (1b)). Later,

q�r; t� > 0:8; qMS�r; t� is calculated by the
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Mackenzie±Shuttleworth model (Eq. (2)). For

each cluster, the passage from the Frenkel regime

to the MS regime is realized using the step func-

tions hF�t0:8 ÿ t� and hMS�t ÿ t0:8�, whose values

switch between 1 and 0 at t � t0:8 when

qF�r; t0:8� � 0:8 is reached. Thus, hF�t0:8 ÿ t� � 1

and hMS�t ÿ t0:8� � 0 for t < t0:8 and hF�t0:8 ÿ t� � 0

and hMS�t ÿ t0:8� � 1 for t > t0:8.

The pore radius a0 in Eq. (2) was adjusted to

guarantee a continuous q�r; t� function at t � t0:8.

The adjustment was achieved by ®rst computing

t0:8 with Eq. (1b); then calculating a0 with the

integrated version of Eq. (2), at t � t0:8.

The (theoretical) function nr considers the for-

mation of necks among particles of di�erent radii

(Appendix A). For each particle size r, nr is a

normalized overall average of the number of necks

these particles can form with any other particle

size of the considered distribution of sizes, and can

be calculated as

nr �
1=rc

P

r
vr=rc

; �6�

where r is the particle radius, vr the volume frac-

tion of particles with radius r, and the exponent c

is calculated from the particle size distribution

using Eq. (7).

ln
X

i

n�r; ri�mri

 !

� constant ÿ c ln�r�; �7�

where n�r; ri� is the number of particles of radius r

that can be accommodated around a particle of

radius ri. The theoretical basis of Eq. (7) is given in

Appendix A.

For the size distribution shown in Fig. 2, the

calculated value of c is 1.23. Thus, by introducing

n, the model does not rely on any adjustable pa-

rameter. Eq. (5) can be explicitly written as Eq. (8)

Fig. 2. Particle size distribution of the glass powder used in this

work, measured with a Mastersizer l Ver.2.0.

Fig. 1. SEM micrographs of a polydispersed compact after a linear shrinkage of 8%. Magni®cation (a) 1200�, (b) 5000� gray arrows:

small sintered particles, white arrow: neck between two large particles, dashed white arrow: neck between a compact of small particles

and a large particle.
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q t� � �
X

r

 

q0

qg 1ÿ 3ct

8g T� �r

� �3
h t0:8 ÿ t� �

� 1

 

ÿ exp
ÿ3ct

2a0 r� �g T� �

 

� ln 1

 

ÿ q0

qg

!!!

� h t� ÿ t0:8�
!

vrnr: �8�

To test the proposed model, we used a polydi-

spersed, irregular shaped glass powder and deter-

mined the densities of uniaxially die-pressed

cylindrical samples by weighing and measuring

their diameters and heights after sequential iso-

thermal heat treatments. The relative densi®cation

rate (oq=ot) was obtained from both linear

shrinkage and buoyancy measurements as a func-

tion of time for various sintering temperatures. A

corrected sintering time was introduced to allow

for the retarded thermal equilibrium in the sample

bulk. For all stages of sintering, ln�oq=ot� showed
a linear dependence on �T ÿ T0�ÿ1

, where T is the

actual sintering temperature and T0 an empirical

constant, indicating a process controlled by vis-

cous ¯ow, as expected. A marked sintering an-

isotropy was found, ascribed to particle

orientation during pressing. The sintering curves

at di�erent temperatures follow a unique `master

curve' when plotted against the reduced time c.

t=g, where t is the sintering time, g the shear vis-

cosity and c the glass±vapor surface energy. The

sintering of polydispersed powders is not satisfac-

torily described by the existing models for mon-

odispersed particles. Necks form between di�erent

sized particles and particle clustering occurs. The

clustering model provides a good description of

the sintering kinetics of this powder. Our experi-

ments and results are described in more detail in

the following sections.

4. Materials and methods

An alumino-borosilicate glass of composition

(wt%): 71:70 SiO2; 8:33 B2O3; 8:56 Al2O3; 1:00

MgO; 2:67 CaO; 7:44 Na2O, which is a candidate

for nuclear waste encapsulation, was used owing

to its stability against devitri®cation and resistance

to water corrosion [9,10]. Due to its high liquidus

temperature (1820 K), the ®nal compact, including

nuclear wastes, should be prepared by sintering at

lower temperatures to avoid hazardous volatiles

leaving the glass matrix and contaminating the

surrounding atmosphere. Therefore, this glass was

used not only to test the clustering model but also

because its sintering behavior is technologically

signi®cant.

The glass transition temperature, Tg � 845 K,

was determined by di�erential scanning calorime-

try at 10 K/min. Fig. 2 shows the particle size

distribution measured with aMastersizer lVer.2.0.

High temperature viscosity measurements were

taken using a rotating cylinder viscometer. As-

suming that g
Tg
� 1012:5 Pa s at the glass transition

temperature TDSC
g , the viscosity showed a Vogel±

Fulcher±Tamman behavior with g1 � eÿ3:9681 Pa s;
Ev � 83:7 kJ=mol and T0 � 562:48 K.

The glass±vapor surface energy c varied slightly

with temperature, but there is no available data for

our glass for temperatures near Tg, at which the

sintering experiments were performed. Hence, ex-

trapolated data was used employing Lyon's

method [11]. The values of c extend from 0.327

J/m2 at 959 K to 0.325 J/m2 at 1017 K.

Cylindrical powder compacts were prepared by

uniaxial die-pressing of around 0.75 g of sample

glass powder at 0.5 MPa for 30 s. The cylinders

were approximately 6 mm height and 10.2 mm in

diameter. The sample's length, l, and diameter, /,

were measured after each sequential isothermal

sintering step to determine its relative density.

When the density did not further increase with

heat treatment, ®nal compact density was also

determined by the Archimedes method, using liq-

uid mercury.

Horizontal dilatometry was attempted to follow

the sintering kinetics [12]; however, this technique

was discarded due to the signi®cant creep caused

by the pressure of the measuring bar on the sam-

ple. The fact that the samples did not reach ther-

mal equilibrium instantaneously when brought to

the sintering temperature was considered. The

corrections performed are detailed in Appendix B.
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The sequence of experiments and calculations

were:

(a) Measurement of densi®cation as a function of

corrected time, t
�, at each temperature: 959,

966, 980, 989, 999 and 1017 K (see Appendix

B for the meaning of t�).
(b) Calculation of the densi®cation rate oq /ot� vs.

time for each temperature.

(c) Construction of ln(oq=ot�) vs. q curves.

(d) Determination of ln(oq=ot�) vs. �T ÿ T0�ÿ1
at

constant q.

(e) Determination of the activation energies Ev

from the curve slopes at (d).

(f) Calculation of mass density as a function of

time, t
�, at each temperature: 959, 966, 980,

989, 999, 1017 K (densi®cation curves) using

the present model.

5. Results

Fig. 3 shows the sintering curves at di�erent

temperatures plotted against the reduced time,

ct�=g. The reasonable match among these curves

con®rms that glass sintering depends on tempera-

ture mainly through viscosity.

Fig. 4 shows the axial and radial fractional

shrinkage for all temperatures as a function of the

reduced time. A marked anisotropy is evident,

with radial shrinkage about 25% higher than axial

shrinkage. To gain a better understanding of the

real sintering process, we have included the sin-

tering curves of ®ve idealized monodispersed

powders in Fig. 5. A comparison of the kinetics of

these idealized processes with the real one high-

lights the e�ect of having a polydispersed distri-

bution. This ®gure shows the calculated sintering

curves for a monodispersed distribution of the

smallest particles (curve a), a monodispersed dis-

tribution of the average particle size (curve b) and

a monodispersed distribution of the largest parti-

cles, according to the measured particle size dis-

tribution shown in Fig. 2. The curves were

calculated with the clustering model with c � 0

Fig. 3. Sintering curves at 959, 966, 980, 989, 999 and 1017 K as

a function of the reduced time 107ct�=g.

Fig. 4. Fractional height and diameter shrinkage for all tem-

peratures used in this study.

Fig. 5. Relative density vs. time at 989 K, showing the sintering

kinetics of: (a) smallest particles; (b) average particles; (c)

clustering model with c � 1:23; (d) clustering model with c � 0;

(e) largest particles.
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(curve d) and the calculated value of c � 1:23
(curve c). The sintering kinetics of the real

distribution is closer to that of the average size

particles.

Since our samples never reached q � 1, but only

reached qf � 0:96 at the ®nal stage of sintering

(due to the pressure of the entrapped gases in the

closed pores, which reach an equilibrium diameter

at each temperature), the ®nal density qf � 0:96qg

was used throughout our calculations instead of

qg:

Fig. 5 shows the measured shrinkage at 989 K of

the polydispersed powder whose size distribution

curve is shown Fig. 2. Fig. 6 shows other sintering

curves from which the activation energy for vis-

cous ¯ow Ev was calculated. The results are given

in Fig. 7. The average value is Ev � 81:3 kJ/mol.

6. Discussion

The superimposition of all the sintering curves

(Fig. 3) within experimental error when plotted

against the corrected reduced time ct�=g (see Ap-

pendix B for t
�) con®rms that sintering is con-

trolled by viscous ¯ow and by the absence of

surface crystallization of the powder. It also pro-

vides a test for the accuracy of our time, temper-

ature and density measurements.

We assign the anisotropy shown in Fig. 4 to a

geometrical rearrangement of the particles during

uniaxial pressing. The ¯at sides of the (irregular)

particles tend to align horizontally, leaving the

acute ends of high curvature pointing radially.

This is equivalent to the treatment of Giess et al.

[2].

The cluster model proposed here Eq. (5) is a

natural way of expressing the sintering of a po-

lydispersed distribution of particles with the sim-

plest existing models (F & MS) as a basis. As small

particle clusters sinter faster than larger particle

clusters, the model allows for regions of Frenkel

behavior and MS behavior to occur simulta-

neously. It not only considers the simultaneous

sintering of clusters of particles with a distribution

of sizes but also includes a distribution of pore

sizes and the formation of necks between particles

with di�erent radii through the nr function without

any adjustable factor.

The c parameter depends on the shape and size

distribution of the particles. If c � 0, there is no

mixing of particles of di�erent sizes. When c > 0,

particles of di�erent sizes are allowed to form

necks, as illustrated in Fig. 1, which becomes evi-

dent by the results shown in Fig. 5. For glasses in

which crystallization does not occur (crystalliza-

tion can hinder viscous ¯ow sintering [13,14]),

predictions can be made with the model for other

temperatures. This fact has practical importance,

since previously anticipates sintering results from

simple calculations.

The sintering kinetics of the real powder is

slower, but not far from the calculated kinetics of a

monodispersed distribution containing only parti-

cles of average size. The model provides a tool for

estimating the sintering kinetics of real glass

powders, for any size distribution and tempera-

Fig. 6. Relative density, q�t��, for di�erent sintering tempera-

tures. The symbols represent measured values. The continuous

lines are calculated from the clustering model.

Fig. 7. Activation energy vs. relative density from sintering

experiments and from shear viscosity measurements.
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ture, thus minimizing the number of laboratory

experiments.

When the sample size is su�ciently large to

create signi®cant temperature gradients, these

gradients must be taken into account. We propose

Eq. (B.1) as a simple and e�ective way to perform

such a correction. Proof that this is an adequate

procedure is the agreement between the activation

energy Ev � 81� 3 kJ/mol from sintering mea-

surements against Ev � 84� 1 kJ/mol obtained

independently by ®tting the VFT relationship from

shear viscosity measurements.

Exner's model [5], derived using stereological

equations to describe the pore/solid interface dur-

ing sintering, has the form

ln 1

�

ÿ DL

DLf

�

� ÿ2pc

3g�T �k0
1

DLf=L0

t� ÿ t0�; �9�

k0 � 4
VS

S0
; �10�

where DLf is the total shrinkage after sintering to

full density, L0 the length of the compact before

sintering, and k0 is related to the surface (S0)/vol-

ume (VS) ratio by the equation.

The calculated ln�1ÿ DL=DLf� curves (using the
present model) are shown in Fig. 8 for monodi-

spersed and polydispersed distributions. The be-

havior of a monodispersed system was calculated

for a particle size equal to the average of the po-

lydispersed distribution. Fig. 8 shows departures

from Exner's model, however, the scatter of the

measurements did not allow us to prove this pre-

diction.

7. Conclusions

A new model was proposed to describe the

sintering kinetics of polydispersed irregular glass

particles. The model assumes the clustering of

equally sized particles, the formation of necks

among particles of di�erent sizes, a distribution of

pore sizes and the simultaneous occurrence of

Frenkel and Mackenzie±Shuttleworth sintering.

While the sintering kinetics is not well described by

either the F or the MS equations for average sized

particles, the new model provides a good descrip-

tion of the full sintering kinetics using no adjust-

able parameter for all temperatures. This goal was

achieved through the introduction of the function

nr which is readily calculated for any particle size

distribution.

To test the model, we studied the sintering of a

polydispersed alumino-borosilicate glass powder

of irregular particles. The experimental isothermal

q�t� vs. ct�=g curve followed a unique pattern at all

temperatures. The activation energy, Ev � 81� 3

kJ/mol, agrees with Ev � 84� 1 kJ/mol obtained

by ®tting the VFT equation from shear viscosity

measurements.

The sintering kinetics of the real powder is

slower, but not far from the calculated kinetics of a

monodispersed distribution containing only parti-

cles of average size. Thus the model provides a tool

for estimating the sintering kinetics of real glass

powders, for any size distribution and tempera-

ture, thus minimizing the number of laboratory

experiments.
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Fig. 8. ln�1ÿ DL=DLf� vs. time calculated for: the glass with
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tion with particle size corresponding to the average of the po-

lydispersed one and measured values. All data at 980 K.
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Appendix A. Geometrical considerations about neck

formation among particles of di�erent radii

As shown by Frenkel Eqs. (1a) and (1b), the

sintering velocity depends on physical parameters

(c; g) and on particle size. In the case of a po-

lydispersed distribution, necks form among par-

ticles of di�erent sizes, as shown in Fig. 1. The

problem of counting exactly how many contacts

are formed among particles of di�erent radii is

very complex and, to our knowledge, there is no

theoretical expression for the sintering kinetics of

(irregular) particles of di�erent sizes. We do

know, however, that a mixture of a certain vol-

ume of particles of radii r1 with the same volume

of particles of radii r2 will sinter at a velocity that

is not the average of the velocity corresponding to

r1 or r2, but is closer to that of the smaller par-

ticles (Fig. 5). This is reasonable considering the

fact that the smaller particles have a larger sur-

face energy and, thus, a larger driving force for

sintering.

We now introduce a weighing function, nr (as

used in Eq. (7)), whose value depends on the

particle size and that weighs the particle volume

fractions vr�v0r � vrnr�. This nr should be larger

for the smallest particles since the actual sin-

tering rate is closer to that of the smaller par-

ticles. We propose that the variation of nr with

the particle radius r, is the same as the varia-

tion of the number of necks that particles of

radius r can form around a particle of radius r0

averaged over all r0 values for the distribution

studied.

The next question, then, is `how many particles

of radius r can be accommodated around a parti-

cle of radius r0?' For the sake of simplicity, we will

consider a compact array of spherical particles of

radius r at the surface of a spherical particle of

radius r0 (shown in Fig. 9).

From simple geometrical considerations, the

angle a stretched by a particle of radius r in con-

tact with a particle of radius r0 (Fig. 9) is given by

Eq. (A.1).

a � 2a tan
1

��������������������������

r0

r

� �2

� 2
r0

r

r : �A:1�

So the number n�r; r0� of particles of radius r

that can be accommodated around a particle of

radius r0 is

n�r; r0� �
4p r0 � r� �2

a r0 � r� �� �2
2
���

3
p � 8p

���

3
p 1

a2
; �A:2�

where 4p�r0 � r�2 is the area of a sphere with ra-

dius (r0 � r�; a2�r0 � r�2 is the area occupied by

each surrounding particle, and the factor 2=31=2

accounts for a closed packed arrangement of sur-

rounding particles at the surface of the central

particle.

The arc±tangent function in Eq. (A.2) can be

approximated by Eq. (A.3)

1

�a tan�x��2
� 2

3
� 2xÿ2 ÿ 1

15
x
2; �A:3�

where 0 < x < 1. This condition implies 0 < r <
2:5 r0 in Eq. (A.1).

The argument x can be written as a function of r

and r0, inserting Eq. (A.1) into Eq. (A.3). If one

remains restricted to r < r0, then one can develop

Eq. (A.3) in series.

Fig. 9. Particle of radius r forming a neck with a particle of

radius r0. The dotted line shows an imaginary spherical surface

with radius r � r0.
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1

�a tan�x��2
� 2

3
� 2

r0

r
� r0

r

� �2

: �A:4�

Keeping only the ®rst three terms, one has:

Using Eqs. (A.2) and (A.4) one obtains Eq.

(A.5)

n�r; r0� �
2p
���

3
p 2

3

�

� 2
r0

r
� r0

r

� �2
�

: �A:5�

From Eq. (A.5), one can see that n�r� depends
on r as a mixture of negative powers )2 and )1. In

practice, one observes that the dependence of n on

r for a ®xed value of r0 can be roughly expressed as

1=rc�1 < c < 2�. Hence, the number of particles

that surround a central particle increases with de-

creasing r as 1=rc.
A weighing function nr is now introduced cor-

responding to particles with radius r

nr �
1=rc

P

r
vr=rc

�A:6�

within a particle size distribution. For a given size

distribution and particle geometry, c is a theoret-

ical constant, and its value is determined by

equating the overall volume fraction

ln
X

i

n�r; ri�mri

 !

� constantÿ c ln�r� �A:7�

weighed average of the n�r; r0� functions for dif-

ferent r0 values to a 1=rc behavior, as shown in Eq.

(A.7).

From Eq. (A.6) it is possible to demonstrate

that the following relations are met:

X

r

mrnr � 1; �A:8�

X

r

vr � 1: �A:9�

Appendix B. Sample temperature measurements

When a cold glass sample is introduced into a

furnace previously heated to a Tsint temperature,

each of its volume elements requires a di�erent

length of time to reach that temperature. The

center of the sample obviously needs the longest

time.

Fig. 10 shows the measured temperature at the

sample's surface and center during sintering.

Therefore, in assigning the actual sintering times

t
�, the measured times, t, were weighed by the

factor

t
� � t

eEv=�Ts intÿT0�

eEv=�Ts intÿDTÿT0�
; �B:1�

where Tsint ÿ DT is the actual temperature of the

sample at time t while reaching thermal equilibri-

um, (DT > 0) and T0 is the VFT temperature.

This manner of weighing the sintering time in-

tervals comes straight from Eqs. (1a) and (1b), in

which t is proportional to g. In this study, we made

this correction considering the evolution of center

and surface temperatures of the sample (both

measured, Fig. 3) and assuming, for a ®rst ap-

proximation, a linear temperature distribution

from the center to the surface of the glass cylin-

ders.
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