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Model for the Elasticity of Compressed Emulsions
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We present a new model to describe the unusual elastic properties of compressed emulsions. T
response of a single droplet under compression is investigated numerically for different Wigner-Sei
cells. The response is softer than harmonic, and depends on the coordination number of the drop
Using these results, we propose a new effective interdroplet potential which is used to determine t
elastic response of a monodisperse collection of disordered droplets as a function of volume fractio
Our results are in excellent agreement with recent experiments. This suggests that anharmonic
together with disorder are responsible for the quasilinear increase ofG andP observed atwc.

PACS numbers: 82.70.Kj, 62.20.Dc, 81.40.Jj
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Emulsions are materials with highly unusual elas
properties. They consist of droplets of one fluid disper
in a second fluid, with interfaces stabilized by a surfacta
Despite being comprised solely of fluids, they can
elastic solids, when droplets are compressed to a la
volume fractionw by an osmotic pressureP. The origin
of this elasticity is the interfacial energy of the drople
At low volume fractions, their surface tensions ensures
that the droplets are spherical in shape; however, at hig
w, the packing constraints force the droplet shapes
deform, storing energy. The application of a shear str
to a compressed emulsion causes the droplets to de
further, increasing their surface area, thereby storing ela
energy [1–5].

The experimentally measured [6,7]w dependence o
the static shear modulusG is remarkable in several ways
Typical data [7] obtained for monodisperse [8] silicon
oil-in-water emulsions are summarized in Fig. 1. T
solid symbols showG measured as a function ofw for
several monodisperse emulsions of different droplet siz
The data are normalized bysyR whereR is the radius
of an undeformed droplet. The observed scaling by
Laplace pressures2syRd confirms the essential role of th
interfacial energy. The magnitude of the scaled modu
increases approximately linearly, varying asG , wsw 2

wcd, wherewc is the volume fraction where the droplets a
first deformed. For monodisperse droplets,wc ø 0.64, the
maximum volume fraction that monodisperse spheres
be randomly packed [7,9]; for polydisperse dropletswc is
larger [6], reflecting more efficient packing. Surprisingl
the osmotic pressure required to compress the emulsio
very similar to the shear modulus [7,10], as shown by
open circles in Fig. 1. This implies that the correspond
longitudinal bulk elastic modulus, or the bulk osmot
modulus,K ­ wdPydw, must differ significantly from
the shear modulus as it must have a much sharper o
at wc [7].

The behavior of the shear modulus of emulsions
been the subject of various theoretical studies. A first
0031-9007y96y76(18)y3448(4)$10.00
ic
ed
nt.
e

rge

s.

her
to
in
rm
tic

.
-
e

es.

he

us

e

an

,
n is
he
g

c

set

as
p-

proach consists in considering a single droplet, and to o
tain the properties of a periodic structure, assuming t
strain remains affine [1,4,5]. While this can be done an
lytically in two dimensions, in three dimensions it ca
only be done through approximations. Results obtain
from this approach consistently predict a sharp rise ofG
at wc, followed by a much slower increase at largerw.
This suggests that the effects of disorder may be resp
sible for the quasilinear rise ofG at wc found experimen-
tally. The response to shear of disordered arrangeme
of droplets has also been investigated. However, d
to the additional complexity this imposes, these calcu
tions have been restricted to two dimensions [2,3,11,1
where disorder needs to be introduced through polydisp
sity. Nevertheless, these two-dimensional models show
different behavior than that observed experimentally f
disordered, three-dimensional emulsions. In particul
two-dimensional systems do not exhibit a smooth nea
linear increase ofG nearwc, although a smooth quadratic
increase ofP nearwc has recently been observed [11].

FIG. 1. Experimental values of the osmotic pressure (Ø)
and elastic shear modulus (≤) of different emulsions with
monodisperse droplets. The data are normalized bysyR,
allowing data from emulsions with different droplet sizes to b
compared. Results predicted by the present model for the sh
modulus (1) and the osmotic pressure (line) are also shown.
© 1996 The American Physical Society
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In this Letter, we present the first three-dimensio
computer simulation modeling the elasticity of a dis
dered emulsion. In addition, we propose a new, m
realistic interdroplet potential. It is based on numeri
results obtained by calculating the change in surface
ergy of a single droplet as it is compressed using Brakk
surface evolver (SE) software [13]. Our model captu
the essential physics of the droplet interactions and t
disordered, glassy packing. The droplets are soft, mo
disperse spheres interacting through a purely repulsive
tential. The droplet positions are allowed to relax up
application of shear. We calculate the osmotic press
and the shear modulus as a function of volume fract
We find that both the positional relaxation of the dropl
and the form of the potential are essential in reproduc
the experimental behavior of the shear modulus.

We first investigate in more detail the interacti
between droplets. When two droplets are forced toget
their spherical shapes are deformed and their surf
develop flattened facets at contact. As a simplificati
consider a droplet of radiusR compressed between tw
parallel planes, each one located at a distanceh from
the center of the droplet. Naively, for small deformatio
dj, wherej ­ sR 2 hdyR is a dimensionless measure
compression, the resultant force,F, on the flat facets can
be estimated by assuming that the radius of the drop
and hence the Laplace pressure, remains unchanged.
thus haveF ø s2syRddS, wheredS is the area of the
flattened facet. To linear order in the deformation,dS ø
2pR2dj, so thatF ø 4psRdj. Thus, the interaction
between the facets of two droplets is often taken a
strictly repulsive harmonic spring of spring constant4ps

acting between the centers of the spheres [3,12].
The harmonic-spring potential, while appealing, igno

the details of the response of the shape to deforma
[4,14], and the possibility of coupling between the d
ferent facets on each droplet. Thus, to determine an
proved potential, we investigated numerically the sh
of a single droplet confined within space-filling polyh
dral cells. Using SE we calculated the excess surf
as the confinement is increased, under the constraint
fixed droplet volume. As confining cells we investigat
a rhombic dodecahedron (fcc), a truncated octahed
(bcc), and a simple cube (sc). In all cases, the comp
sions leave the center of mass unchanged, so that a dis
h from the center can be defined.

For simplicity, we shall defines ­ 1 andR ­ 1. For
a droplet of total surface areaA, we can thus define the ex
cess energy asE1 ­ A 2 4p. Figure 2 shows the calcu
lated dependence of the excess energy per facet,E1yn, on
j for different types of cells, wheren represents the num
ber of facets. The data are well described byfsRyhd3 2

1ga as shown by the dashed lines. For smallj, this form
reduces to a simple power laws3jda, as is evidenced in
Fig. 2 by the asymptotically linear behavior. This fun
tional form is also equivalent tosw 2 wcda for space-
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FIG. 2. Excess surface energy per facet under differ
Wigner-Seitz constraining cells. The lines are obtain
from a fit to E1yn ­ Cswywc 2 1da , where wywc ­
sRyhd3 ­ 1ys1 2 jd3. Curves are, from top to bottom, fcc
(n ­ 12, wc ­ p

p
2y6), bcc (n ­ 8, wc ­ p

p
3y8), and sc

(n ­ 6, wc ­ py6). Values ofC anda are accurate to 0.05.

filling structures. Fitting toE1yn ­ CfsRyhd3 2 1ga , we
find that both the coefficientC and the exponenta de-
pend onn, as is evident from the data in Fig. 2. The
values are shown in the table inserted in Fig. 2. The d
selected for the fits lie in thej interval (0–7)%, the upper
value corresponding tow ­ 0.92 for an fcc lattice. For
the bcc lattice we usen ­ 8 since second neighbors d
not contribute to the energy forw & 0.90 [14]. Our re-
sults show explicitly that the response of a droplet to co
pression is a nonlocal phenomenon:the response depend
on the number of planes used to compress the drop.
One might expect that it also depends on the relative o
entation of these planes. However, comparison betw
results obtained for iso-n configurations, for instance, the
pentagon dodecahedron and the rhombic dodecahed
suggests that the distribution of the compressing planes
the droplet surface has only a minor effect [14]. Thu
we expect a similar functional form forE1, even when the
planes are more randomly distributed as they would in
disordered emulsion.

This behavior is different from the one encounter
in two-dimensional systems. A minimum free surface
characterized by a uniform pressure or, equivalently, b
uniform mean curvature. In two dimensions, the surfa
is parametrized by only one radius of curvature and
minimum free surface is always an arc of a circle.
this case, a harmonic potential is a good approximati
By contrast, in three dimensions, the response is alw
softer than harmonic sinceasnd . 2 for all values of
n investigated here; thus, the effective spring const
goes to zero as the distortion vanishes. We note that
proposed, ann-dependent power law leads to unphysic
behavior for very small compressions, as the energies
differentn should cross. However, this effect is too sma
in magnitude to affect our results. The functional for
3449
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we use is a convenient way to mimic the response o
droplet over the range of compression we investigate.

To describe the elastic properties of a disordered drop
packing, we use a model which replaces the droplets
soft spheres which interact with their nearest neighbo
through central-force potentials that reflect the behavior
the facets. However, since we found that the energy cu
of each contact is a function of the droplet coordinatio
number, the interaction energy should be obtained
balancing the forces at each contact, using the values
n for each droplet. To make the computation tractab
we determine the average coordination numbern̄ of the
whole configuration of droplets, and use a single effecti
potential for that configuration. This is a reasonab
approximation given the rather narrow distribution ofn for
our monodisperse systems. Thus, we use the SE resul
define a repulsive, central-force interdroplet potential,

Usdd ­

Ω
2Cfs2Rydd3 2 1ga sd , 2Rd ,

0 sd $ 2Rd , (1)

whered ­ 2h is the distance between the droplet cente
and the factor 2 accounts for the two facets on the
teracting pair. During the simulation, the exponentasn̄d
and the prefactorCsn̄d are estimated from cubic interpo
lations of the values shown in Fig. 2. The value ofn̄ is
observed to increase from̄nc ø 6 at wc ø 0.64 to n̄ ø 10
at w ­ 0.84. We finally note that central-force potential
can only include compressional distortion; neverthele
we use them to describe shear distortions as well.

The relaxation algorithm entails the minimization of th
3N-dimensional function,

EN ­
NX

i,j.i

Usdijd , (2)

where dij is the distance between point particlesi and
j. We use a conjugate-gradient (CG) method coupled
the Brent line-minimization method [15]. This proces
represents a damped relaxation of a system of interac
droplets, and therefore the masses of the particles are
necessary. In order to find only a local minimum, our ve
sion of CG is written so that each line-minimization sear
interval is defined using the result of the line minimizatio
along the previous conjugate direction. The evaluati
of the potential benefits from techniques borrowed fro
molecular dynamics, such as a Verlet table [16]. The
gorithm is designed to return after a minimum number
iterationsand when new values for the energy differ b
less thandENyEN # 1027. For each relaxed configura
tion, the energy, the average coordination number, and
pressure are measured. The coordination number is
rived from the sum of all pairs contributing at least a sma
e to the energy, and values for the pressure in each Ca
sian direction (diagonal elements of the stress tensor)
obtained from the virial [16].

We first construct a random distribution ofN monodis-
perse particles of radiusR in a cubic container with
3450
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periodic boundary conditions. Typical runs start from
configuration prepared at the desired volume fraction. S
tems that were slowly compressed fromw , wc to w .

wc, and random configurations built and relaxed atw .

wc were found to have similar elastic properties. Thu
we usually start atw ø 0.67 . wc in order to avoid the
long computational time required to relax a configurati
atwc. The system is then compressed and relaxed in sm
step increments up tow ø 0.84. From this value, the cu-
bic container is sheared using isochoric uniaxial stra
wherein, say, thez axis is stretched by a factorl * 1 and
the perpendicular plane is compressed byl21y2. The shear
modulus is obtained from the excess energy density a
function of the extension ratiol [17],

EN yV ­ E0
N yV 1

1
2 Gsl2 1 2yl 2 3d , (3)

whereE0
N is the excess energy of the unstrained syste

We perform several strain cycles to allow for relaxatio
and to verify reproducibility. This shearing process is p
formed along the three Cartesian directions. The syste
then expanded in a small step increment, relaxed, and
shearing procedure is repeated. System sizes of at
N ­ 103 were used to avoid undesired relaxation into
fcc structure at large strains.

The calculatedw dependence of the shear modulus
shown by the plus symbols in Fig. 1, while the osmo
pressure is shown by the solid line, for a system ofN ­
103. Interestingly, the data forP show self-averaging
and contain much less fluctuations than that forG. This
suggests that there is an effective larger correlation len
that determines the modulus and limits the averag
possible in our finite systems. Nevertheless, remarka
good agreement with the experimental data is obtain
Both the magnitudes and thew dependencies are correctl
reproduced for bothG andP.

The simulation also provides physical insight to the o
gin of the behavior of the shear modulus of emulsio
There are two essential effects. The first is the positio
relaxation of the droplets. We illustrate this graphica
in Fig. 3: we subtract the actual motion of the drople
from the affine motion caused by a strain associated w
l ­ 1.0006, and use arrows at the center of each drop
to signify the direction and magnitude of this differenc
The length of each arrow has been increased by 250
make the motion with such a small strain observable. T
droplet motion is clearly not affine; moreover, the diffe
ence appears random in direction. The importance of
nonaffine motion is reinforced by calculating the she
modulus for a strictly affine (unrelaxed) motion; it in
creases by a factor of about 3 for allw. We emphasize,
however, that the nonaffine motion of the droplets does
result in large scale rearrangements of their positions.
found that only a very small fraction of the droplets chan
neighbors during shear. Thus, the nonaffine motion res
from localized relaxation of the droplet positions [18]. Th
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FIG. 3. An isochoric uniaxial shear strain ofl ­ 1.0006
is applied to anN ­ 103 system. Each arrow, magnified
250 times, represents the droplet relaxation from an affin
nonrelaxed strain.w ­ 0.80.

second essential feature is the anharmonicity of the pot
tial. We performed similar simulations using a harmon
potential and obtained qualitatively different results [1
for G, which exhibited a significantly steeper rise nearwc,
similar to what is observed in harmonic two-dimension
systems [3,12]. By contrast, the behavior ofP is not as
sensitive to the potential.

Finally, we note that the average coordination numb
was found to increase continuously abovewc, consistent
with a power law increasēn 2 n̄c , sw 2 wcd1y2, sur-
prisingly the same functional form as the one observ
in computer simulations in two dimensions [12]. In th
present picture, the increase ofn̄ not only creates more con-
tacts capable of storing energy, but also causes the en
of the existing contacts to increase because of the incre
of the number of facets around each droplet. Howev
this has only a minor effect as confirmed by simulatio
using fixedC anda.

These results suggest an explanation for the origin
the surprising elasticity of emulsions; moreover, they w
likely have broader significance. They are immediate
applicable to foams, since the compressibility of the g
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in the bubbles is typically much less than the Lapla
pressure. More generally, emulsions are an example o
material with strictly repulsive interactions, which is neve
theless a solid when confined by an osmotic pressu
The elasticity of these packings is significantly differe
than that of more traditional materials, and the resu
presented here should form the basis for developing a m
comprehensive description of these fascinating materia
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