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Model for the Elasticity of Compressed Emulsions
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We present a new model to describe the unusual elastic properties of compressed emulsions. The
response of a single droplet under compression is investigated numerically for different Wigner-Seitz
cells. The response is softer than harmonic, and depends on the coordination number of the droplet.
Using these results, we propose a new effective interdroplet potential which is used to determine the
elastic response of a monodisperse collection of disordered droplets as a function of volume fraction.
Our results are in excellent agreement with recent experiments. This suggests that anharmonicity
together with disorder are responsible for the quasilinear increaGeaofd I1 observed atp..

PACS numbers: 82.70.Kj, 62.20.Dc, 81.40.Jj

Emulsions are materials with highly unusual elasticproach consists in considering a single droplet, and to ob-
properties. They consist of droplets of one fluid dispersediain the properties of a periodic structure, assuming the
in a second fluid, with interfaces stabilized by a surfactantstrain remains affine [1,4,5]. While this can be done ana-
Despite being comprised solely of fluids, they can bdytically in two dimensions, in three dimensions it can
elastic solids, when droplets are compressed to a largenly be done through approximations. Results obtained
volume fractiong by an osmotic pressudd. The origin  from this approach consistently predict a sharp ris& of
of this elasticity is the interfacial energy of the droplets.at ¢, followed by a much slower increase at larger
At low volume fractions, their surface tensi@nensures This suggests that the effects of disorder may be respon-
that the droplets are spherical in shape; however, at highaible for the quasilinear rise @ at ¢. found experimen-
¢, the packing constraints force the droplet shapes ttally. The response to shear of disordered arrangements
deform, storing energy. The application of a shear straif droplets has also been investigated. However, due
to a compressed emulsion causes the droplets to defortn the additional complexity this imposes, these calcula-
further, increasing their surface area, thereby storing elastiitons have been restricted to two dimensions [2,3,11,12],
energy [1-5]. where disorder needs to be introduced through polydisper-

The experimentally measured [6,4 dependence of sity. Nevertheless, these two-dimensional models show a
the static shear modulus is remarkable in several ways. different behavior than that observed experimentally for
Typical data [7] obtained for monodisperse [8] silicone-disordered, three-dimensional emulsions. In particular,
oil-in-water emulsions are summarized in Fig. 1. Thetwo-dimensional systems do not exhibit a smooth nearly
solid symbols showG measured as a function @f for linear increase of; nearg,, although a smooth quadratic
several monodisperse emulsions of different droplet sizesncrease ofll nearg,. has recently been observed [11].

The data are normalized hy/R whereR is the radius

of an undeformed droplet. The observed scaling by the 045
Laplace pressur@qo/R) confirms the essential role of the 040 | °
interfacial energy. The magnitude of the scaled modulus 435 |
increases approximately linearly, varying@s~ ¢ (¢ —

@), wherep. is the volume fraction where the droplets are E 0%
first deformed. For monodisperse dropleis,=~ 0.64, the E 025 ¢
maximum volume fraction that monodisperse spheres can § 020 1
be randomly packed [7,9]; for polydisperse dropletsis S o015

larger [6], reflecting more efficient packing. Surprisingly, 0.10 |
the osmotic pressure required to compress the emulsion is o5 }
very similar to the shear modulus [7,10], as shown by the (4, . . . .
open circles in Fig. 1. This implies that the corresponding 0.65 0.70 0.75 0.80 085
longitudinal bulk elastic modulus, or the bulk osmotic
modulus,K = ¢dIl/de, must differ significantly from FIG. 1. Experimental values of the osmotic pressugg (

the shear modulus as it must have a much sharper ons"é’id elastic shear moduluss)( of different emulsions with
at o, [7] monodisperse droplets. The data are normalizedotiR,
¢ 7]

. . allowing data from emulsions with different droplet sizes to be
The behavior of the shear modulus of emulsions hagompared. Resuits predicted by the present model for the shear
been the subject of various theoretical studies. A first apmodulus &) and the osmotic pressure (line) are also shown.
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In this Letter, we present the first three-dimensional -1
computer simulation modeling the elasticity of a disor-
dered emulsion. In addition, we propose a new, more n C o
realistic interdroplet potential. It is based on numerical 12 066 247 /
results obtained by calculating the change in surface e g 20 8 036 232 ]
ergy of a single droplet as it is compressed using Brakke’ 3 6 026 223 <
surface evolver (SE) software [13]. Our model captures%% //}////5
the essential physics of the droplet interactions and the™ | //’
disordered, glassy packing. The droplets are soft, monc /
disperse spheres interacting through a purely repulsive pt 1/
tential. The droplet positions are allowed to relax upon /
application of shear. We calculate the osmotic pressur 4 . .
and the shear modulus as a function of volume fraction ~ ? 18 1.6
We find that both the positional relaxation of the droplets IG. 2. Excess surface ener or facet under different
and the f(_)rm of the potential are essential in reproducin ig.ne-r-Seitz constraining cell?./ pThe lines are obtained
the experimental behavior of the shear modulus. from a fit to E /n = Cl¢/@. — 1), where ¢/¢, =

We first investigate in more detail the interaction (R/h)> = 1/(1 — £)°. Curves are, from top to bottom, fcc
between droplets. When two droplets are forced togethety = 12, 9. = 7+/2/6), bcc @@ = 8, ¢. = w+/3/8), and sc
their spherical shapes are deformed and their surfacdg = 6.¢. = 7/6). Values ofC and« are accurate to 0.05.
develop flattened facets at contact. As a simplification,
consider a droplet of radiuR compressed between two
parallel planes, each one located at a distamcitom filling structures. Fitting ta€; /n = C[(R/h)? — 1]%, we
the center of the droplet. Naively, for small deformationsfind that both the coefficien€ and the exponent de-
8&,whereé = (R — h)/R is a dimensionless measure of pend onn, as is evident from the data in Fig. 2. Their
compression, the resultant fordg, on the flat facets can values are shown in the table inserted in Fig. 2. The data
be estimated by assuming that the radius of the dropleselected for the fits lie in thé interval (0—7)%, the upper
and hence the Laplace pressure, remains unchanged. Walue corresponding t@ = 0.92 for an fcc lattice. For
thus haveF = (20 /R)46S, where S is the area of the the bcc lattice we use = 8 since second neighbors do
flattened facet. To linear order in the deformatiés, =  not contribute to the energy fas < 0.90 [14]. Our re-
2mR?8¢, so thatF =~ 4roRS8&. Thus, the interaction  sults show explicitly that the response of a droplet to com-
between the facets of two droplets is often taken as @ression is a honlocal phenomendime response depends
strictly repulsive harmonic spring of spring constdmto  on the number of planes used to compress the droplet
acting between the centers of the spheres [3,12]. One might expect that it also depends on the relative ori-

The harmonic-spring potential, while appealing, ignoresentation of these planes. However, comparison between
the details of the response of the shape to deformatioresults obtained for isa-configurations, for instance, the
[4,14], and the possibility of coupling between the dif- pentagon dodecahedron and the rhombic dodecahedron,
ferent facets on each droplet. Thus, to determine an imsuggests that the distribution of the compressing planes on
proved potential, we investigated numerically the shap¢he droplet surface has only a minor effect [14]. Thus,
of a single droplet confined within space-filling polyhe- we expect a similar functional form fdt;, even when the
dral cells. Using SE we calculated the excess surfacplanes are more randomly distributed as they would in a
as the confinement is increased, under the constraint ofdisordered emulsion.
fixed droplet volume. As confining cells we investigated This behavior is different from the one encountered
a rhombic dodecahedron (fcc), a truncated octahedroim two-dimensional systems. A minimum free surface is
(bcc), and a simple cube (sc). In all cases, the compresharacterized by a uniform pressure or, equivalently, by a
sions leave the center of mass unchanged, so that a distanog@form mean curvature. In two dimensions, the surface
h from the center can be defined. is parametrized by only one radius of curvature and the

For simplicity, we shall definer = 1 andR = 1. For minimum free surface is always an arc of a circle. In
a droplet of total surface areg we can thus define the ex- this case, a harmonic potential is a good approximation.
cess energy aB; = A — 4. Figure 2 shows the calcu- By contrast, in three dimensions, the response is always
lated dependence of the excess energy per fagét;, on  softer than harmonic since(n) > 2 for all values of
¢ for different types of cells, where represents the num- n investigated here; thus, the effective spring constant
ber of facets. The data are well described[ty/h)> —  goes to zero as the distortion vanishes. We note that, as
1]® as shown by the dashed lines. For sngalthis form  proposed, am-dependent power law leads to unphysical
reduces to a simple power lai#£)“, as is evidenced in behavior for very small compressions, as the energies for
Fig. 2 by the asymptotically linear behavior. This func- differentn should cross. However, this effect is too small
tional form is also equivalent tép — ¢.)® for space- in magnitude to affect our results. The functional form

-14 -1.2 -1.0
logyo &
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we use is a convenient way to mimic the response of @eriodic boundary conditions. Typical runs start from a
droplet over the range of compression we investigate.  configuration prepared at the desired volume fraction. Sys-
To describe the elastic properties of a disordered dropléems that were slowly compressed fram<< ¢. to ¢ >
packing, we use a model which replaces the droplets by., and random configurations built and relaxedgat-
soft spheres which interact with their nearest neighborg,. were found to have similar elastic properties. Thus,
through central-force potentials that reflect the behavior ofve usually start atp = 0.67 > ¢, in order to avoid the
the facets. However, since we found that the energy curvieng computational time required to relax a configuration
of each contact is a function of the droplet coordinationat ¢.. The system is then compressed and relaxed in small
number, the interaction energy should be obtained bgtep increments up tp = 0.84. From this value, the cu-
balancing the forces at each contact, using the values dfic container is sheared using isochoric uniaxial strains
n for each droplet. To make the computation tractablewherein, say, the axis is stretched by a factar = 1 and
we determine the average coordination numbeosf the  the perpendicular plane is compressedby/’2. The shear
whole configuration of droplets, and use a single effectivanodulus is obtained from the excess energy density as a
potential for that configuration. This is a reasonablefunction of the extension ratia [17],
approximation given the rather narrow distributiomdbr
our monodisperse systems. Thus, we use the SE results to Ex/V = ES/V + %G()\2 +2/A = 3), 3
define a repulsive, central-force interdroplet potential,
2C[QR/dY — 1% (d < 2R) whereEY is the excess energy of the unstrained system.
Ud) = { 0 d = 2R)’ (1) We perfor_m several strain cycl_es to aI_Iow for rela>_<at|on
= ’ and to verify reproducibility. This shearing process is per-
whered = 2k is the distance between the droplet centersformed along the three Cartesian directions. The system is
and the factor 2 accounts for the two facets on the inthen expanded in a small step increment, relaxed, and the
teracting pair. During the simulation, the exponex(t) shearmg procedure is repeated. System sizes of at least
and the prefacto€(i) are estimated from cubic interpo- N = 10° were used to avoid undesired relaxation into an
lations of the values shown in Fig. 2. The valueiofs ~ fCC Structure at large strains. _
observed to increase from ~ 6 atg, ~ 0.64 07 ~ 10 The calculatedy dependen_ce (_)f the shfear modulus is
ate = 0.84. We finally note that central-force potentials Shown by the plus symbols in Fig. 1, while the osmotic
can only include compressional distortion; neverthelesg?réssure is shown by the solid line, for a systemvot=

we use them to describe shear distortions as well. 0%, Interestingly, the data fofl show self-averaging
The relaxation algorithm entails the minimization of the @d contain much less fluctuations than thatdor This
3N-dimensional function, suggests that there is an effective larger correlation length
N that determines the modulus and limits the averaging
Ey = Z u(d;), (2) possible in our finite systems. Nevertheless, remarkably
ij>i good agreement with the experimental data is obtained.

where d;; is the distance between point particlesasnd  Both the magnitudes and thedependencies are correctly
j. We use a conjugate-gradient (CG) method coupled toeproduced for boti&s and 1.
the Brent line-minimization method [15]. This process The simulation also provides physical insight to the ori-
represents a damped relaxation of a system of interactingin of the behavior of the shear modulus of emulsions.
droplets, and therefore the masses of the particles are ndhere are two essential effects. The first is the positional
necessary. Inorder to find only a local minimum, our ver-relaxation of the droplets. We illustrate this graphically
sion of CG is written so that each line-minimization searchin Fig. 3. we subtract the actual motion of the droplets
interval is defined using the result of the line minimizationfrom the affine motion caused by a strain associated with
along the previous conjugate direction. The evaluatiom = 1.0006, and use arrows at the center of each droplet
of the potential benefits from techniques borrowed fromto signify the direction and magnitude of this difference.
molecular dynamics, such as a Verlet table [16]. The alThe length of each arrow has been increased by 250 to
gorithm is designed to return after a minimum number ofmake the motion with such a small strain observable. The
iterationsand when new values for the energy differ by droplet motion is clearly not affine; moreover, the differ-
less thandEy/Ey = 1077, For each relaxed configura- ence appears random in direction. The importance of this
tion, the energy, the average coordination number, and theonaffine motion is reinforced by calculating the shear
pressure are measured. The coordination number is desodulus for a strictly affine (unrelaxed) motion; it in-
rived from the sum of all pairs contributing at least a smallcreases by a factor of about 3 for gl We emphasize,
€ to the energy, and values for the pressure in each Cart&owever, that the nonaffine motion of the droplets does not
sian direction (diagonal elements of the stress tensor) amesult in large scale rearrangements of their positions. We
obtained from the virial [16]. found that only a very small fraction of the droplets change
We first construct a random distribution 8fmonodis-  neighbors during shear. Thus, the nonaffine motion results
perse particles of radiu® in a cubic container with from localized relaxation of the droplet positions [18]. The
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in the bubbles is typically much less than the Laplace
pressure. More generally, emulsions are an example of a
material with strictly repulsive interactions, which is never-
theless a solid when confined by an osmotic pressure.
The elasticity of these packings is significantly different
than that of more traditional materials, and the results
presented here should form the basis for developing a more
comprehensive description of these fascinating materials.
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