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In order to retrain chaotic oscillation of marine power systems which are excited by periodic electromagnetism perturbation, two
novel model free command-	ltered backstepping control methods are designed in this paper. Firstly, the dynamic model of marine
power system based on the two parallel nonlinear models is established. Secondly, extended state observer (ESO) and adaptive
neural network observer (NNO) are designed to estimate the velocity signal and the unknown dynamic model. Moreover, the
uniform form of ESO and NNO is given. Next, the model free command-	ltered backstepping controller is put forward based on
the uniform observer form. Finally, the simulation results indicate that the two proposed control algorithms can quickly retrain
chaotic oscillation and their e
ectiveness and potential are amply demonstrated.

1. Introduction

�e structure of modern marine power systems has been
evermore complicated, especially the emergence of high-
performance ship electric propulsion applications. With the
development of modern marine power system, more reliable
and stable requirements are needed for marine power sys-
tems. In recent years, researchers have found that chaotic
oscillations occur in marine power system during the voyage
or paroxysmal bursts. Chaotic oscillations could lead to the
system instability, which poses a potential threat to the safe
operation of the marine power grid [1–3].

At present, most of the power system chaos control
methods mainly focus on land-based power systems, such
as adaptive control, feedback control, and inverse system
control [2, 4–7]. Obviously, the marine power systems can
be regarded as a special case of land-based power systems.
As a result, a large number of control methods of land-based
power systems can be extended to marine power systems.
However, in the actual system, the accurate value of speed
signal and themodel parameters are di
cult to obtain, which

will make many model-based control algorithms di
cult to
be applied [8].

In control theory, backstepping is a technique developed
in the 1990s for designing stabilizing controls for a special
class of nonlinear dynamical systems [9], which has wider
application range than output feedback [10, 11].�ese systems
are built from subsystems that radiate out from an irreducible
subsystem stabilized by using some other methods. �anks
to this recursive structure, the designer can start the design
process at the known-stable system and “back out” new
controllers that progressively stabilize each outer subsystem.
�e process terminates when the 	nal external control is
reached. �erefore, this process is known as backstepping.
So far, backstepping control has made a lot of achievements,
such as adaptive backstepping control, adaptive sliding mode
backstepping control, and dynamic surface control [12–14].

Recently, model free control has increasingly received
more attention in solving complex and practical problems,
such as active disturbance rejection control (ADRC) [15],
model free adaptive control (MFAC) [16–18], and intelligent
control [19]. Based on the aforementioned works, this paper
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Figure 1: Block diagram of marine power systems.

develops two model free adaptive backstepping controls with
command-	ltered compensation for marine power systems.
In order to suppress the chaotic marine power system oscil-
lations, based on extended state observer (ESO) and adaptive
neural network observer (NNO), the model free adaptive
command-	ltered backstepping chaos controller is designed.
�e rest of this paper is organized as follows. In Section 2,
a brief description of two parallel nonlinear mathematical
models is introduced. In Section 3, ESO and adaptive NNO
are designed to estimate the velocity signal and the unknown
dynamic model. Moreover, the uniform form of ESO and
NNO is given. In Section 4, themodel free command-	ltered
backstepping controller is proposed based on the uniform
observer form. Simulation results are presented to show the
e
ectiveness of the proposed control technique in Section 5.
Finally, some conclusions are made in Section 6.

2. Marine Power System Modeling and
Problem Formulation

�e basic structure of the power supply network for marine
power system can be expressed as Figure 1, where �1∠�1 and�2∠�2 are emf of two generators in the system, respectively.���1 and ���2 are synchronous reactances of two generators,
respectively. �� and �� are the line resistance and reactance,
respectively. � and� denote the system loads. Because of the
short-circuit in the marine power system, the line resistance
is very small, which can o�en be neglected.

Considering the same case of generator parameters, let� = �1 − �2 and 	 = 	1 − 	2 become the relative power
angle and relative power angle velocity of the two equivalent
generators.�en twomachines interconnected system can be
described as follows:


�
� = 	,
�
	
� = �� −
	−�� (1+Δ� cos (��)) sin �, (1)

where � and 
 are equivalent inertia and damping, respec-
tively. �� is the input mechanical power of generator;�� denotes the electromagnetic power of system output.�� ⋅ Δ� cos�� represents the electromagnetic perturbation
introduced to study chaotic motion for the marine power
system under disturbance. �� ⋅ Δ� expresses the amplitude of
disturbance, and � describes the frequency of disturbance.

�rough the transformation � = �√��/�, �1(�) = �(�),
and �2(�) = √�/��	(�). Equation (1) can be written as


�1
� = �2,

�2
� = − sin�1 −��2 +�+� cos (��) sin�1,

(2)

where � = 
√��/�, � = ��/��, � = Δ�, and � = �√��/�.
According to the transformation, we know that the system
state variables�1 and�2 are obtained by the transformation of� and	, which have the physicalmeanings of the power angle
error and the power angle error relative velocity between the

two generators. However, if the value √�/�� is imprecise,
accurate state �2(�) cannot be gained. In the following works,
a novel model free control method is proposed under one
condition; that is, only power angle �(�) can be measured.

In order to ascertain subject for further elaboration, we
de	ne ̇� = 
�/
�. In this paper, then (2) can be rewritten as

�̇1 = �2,
�̇2 = − sin�1 −��2 +�+� cos (��) sin�1. (3)

Let � = [�1, �2]�, and �(�) = − sin�1 − ��2 + � +� cos(��) sin�1. In the above marine power system (3), when
amplitude � and frequency � of disturbance satisfy certain
conditions, the chaotic motion will occur. In the case of
suppressing the chaotic motion, a controlled input �must be
added to the equation of state (3); namely,

�̇1 = �2,
�̇2 = � (�) + �,
� = �1.

(4)

If the parameters of model (3) cannot be obtained, �(�) can
be regarded as an unknown function, and the state �2 also
cannot be measured.

3. Observer-Based Model Identification and
State Estimation

In this section, there are two methods proposed to estimate
the �(�) and the state �2 of (4). One is the ESO method; the
other is the neural network observer method.

3.1. Extended State Observer Design. It is assumed that only
power angle � = � can be measured for marine power system
(3). Hence in this paper, the third-order ESO is designed,
which is used to estimate the state �2 and the unknown
function �(�). De	ne the unknown function �(�) as an
extended state �3. Let �3 = �(�) and �̇3 = �, where �(�)
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is an unknown function. Assume that |�(�)| < �, and then
system (4) is equivalent to

�̇1 = �2,
�̇2 = �3 +�,
�̇3 = �,
� = �1.

(5)

For purpose of estimating the state �2 and the unknown
function �(�), the following third-order ESO [13, 17] is
designed:

̇̂�1 = �̂2 − !1",̇̂�2 = �̂3 +�− !2fal (", #1, $1) ,̇̂�3 = − !3fal (", #2, $2) ,
�̂ = �̂1,

(6)

where " = � − �̂ = �1 − �̂1 and �̂1, �̂2, �̂3 is the observer of�1, �2, �3. 0 < #1 < 1, 0 < #2 < 1, $1 > 0, $2 > 0, and !� > 0,% = 1, 2, 3, are parameters of observer (6). And the nonlinear
function fal(⋅) is de	ned as

fal (&, #, $) = {{{
|&|	 sgn (&) , |&| > $,&$1−	 , |&| ≤ $. (7)

Let 1 be the sampling period of control. In general, $ is
selected as $ = 5 ∼ 101. Until now, there is no reliable
and theoretical analysis method available for the third-order
ESO. Fortunately, based on [20], if the suitable parameters of
observer (6) are selected, the following results can be gained:

lim

→∞

3333�̃23333 < !1 ( �!3)
1/	2 = 7
2 ,

lim

→∞

3333�̃33333 < !2 ( �!3)
1/	2 = 7�(
),

(8)

where �̃2 = �2 − �̂2 and �̃3 = �3 − �̂3. Hence, the suitable
observer parameters can make the state estimation errors �̃1
and �̃2 and the function estimation error �̃(�) = �̃3 = �̂(�) −�(�) uniformly ultimately bounded.

3.2. AdaptiveNeuralNetworkObserverDesign. �emodel (4)
can be represented as

�̇ = 8�+ 9 [� (�) + �] ,
� = ?��, (9)

where

8 = [0 1

0 0
] ,

9 = [0
1
] ,

? = [1
0
] .

(10)

Radical basis function (RBF) neural network is usually used
to model nonlinear functions for its good capabilities in
function approximation [21]. It is a well-known result that for� restricted to a compact set of B and for some su
ciently
large numbers of hidden layer neurons, there exist weights
and thresholds so that any continuous function on the
compact set B can be represented by a recurrent neural
network. �e functions �(�) are approximated as follows
by using neural network system with �̂, their input being
estimated:

�̂ (�̂) = D̂�Φ (�̂) , (11)

where �̂ is the estimation of �. D̂ ∈ G�×3 is the estimation
weight matrix of the RBF neural network. �erein, H is
the number of nodes of the implicit layer. And Φ(⋅) =[I(⋅), . . . , I�(⋅)]� acts as an activation function vector, which
is usually assumed to be a Gaussian function as follows:

I� (�) = exp(−KKKKK� − ]�
KKKKK2L2� ) , N = 1, . . . , H, (12)

where ]� ∈ G3×1 and L� represent the center vector and
the width vector of the basis function, respectively. �e
approximating property of the nonlinear models depends on
the center vector, width vector of Gaussian function, and the
number of implicit layers H. �e original functions �(�) in
(11) can be expressed as

� (�) = D∗�Φ (�) + 7, (13)

where 7 is the functional reconstruction error of the neural
network. In general, even given the best-possible weight val-
ues, the given nonlinear function is not exactly approximated
and the functional reconstruction error is still remaining.D∗ is the optimal parameter vector required for analytical
purpose satisfying

D∗ = argmin
�

[sup 33333�̂ (�̂) − � (�)33333] (14)

with bounded as ‖D∗‖ ≤ R.
With the neural network approximation, the dynamic

equation of a NNO which estimates the states in (4) is given
as follows: ̇̂� = 8�̂ + 90 [�̂ (�̂) + �] +S (�− ?��̂)

�̂ = ?��̂, (15)
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Figure 2: Proposed two model free adaptive command-	ltered backstepping controls block diagram.

whereS = [V1, V2]� is the observer gain vector; �̂ = [�̂1, �̂2]�,
and 90 will be designed later. De	ne the state and the output
estimated errors as �̃ = � − �̂ and yield the error dynamics
from (4) and (15):

̇̃� = 8�̃ + 90 [D̃�Φ (�̂) + �]
+ (9 − 90) [D∗�Φ (�) + �] + 90
+ 97, (16)

where8 = 8−S?�, D̃ = D∗−D̂, and
 = D∗�[Φ(�)−Φ(�̂)].
In general, the neural network basis function is bounded.�is
implies that every element ofΦ(�)−Φ(�̂) is bounded; that is,‖Φ(�) − Φ(�̂)‖ ≤ Φ� withΦ� constant.

In order to construct the vector 90, the algebraic Ricati-
like equation 8�Γ + Γ8 + Γ2 ≤ −�1 for �1 > 0 is considered
[22]. Using the positive de	nite matrix Γ, the vector 90 is
chosen as 90 = Γ−1?. It is shown below that this choice will
guarantee the stability of the observer.

�eorem 1. Considering the observer system (15), the update
law for the parameters of the neural network system is

̇̂D = �̃ΥΦ (�̂) − ZΥD̂, (17)

where Υ = Υ� > 0 and Z > 0. �en, the state estimation
errors �̃1, �̃2 and parameter estimation errors are uniformly
ultimately bounded.

Proof. �e proof is similar as [22].

Let 90 = [901, 902]�; (15) can be rewritten as

̇̂�1 = �̂2 + 901 + V1 (� − ?��̂) ,
̇̂�2 = 902� (�̂) + 902�+ V2 (� − ?��̂) . (18)

Equation (19) denotes the uniform form of observers (6) and
(18):

̇̂�1 = �̂2 + \1,̇̂�2 = 9�+ \2. (19)

For ESO (6), \1 = −!1", \2 = �̂(�) − !2fal(", #1, $), and 9 = 1.

For NNO (18), \1 = 901 + V1(� − ?��̂), \2 = 902�̂(�̂) + V2(� −?��̂), and 9 = 902.

4. Command-Filtered Backstepping
Controller Design

It can be seen above that (19) is a strict-feedback form, so
the controller can be designed via the backstepping idea. �e
di
erential expansion and control saturation problems exist
in the traditional backstepping control. �erefore, Farrell et
al. have introduced a constrained command 	lter into the
adaptive backstepping control system [23], and the command
	lter is used to eliminate the impact of derivative of the
“virtual controls” and the control saturation. Command-
	ltered backstepping control is di
erent from backstepping
control, such as the design procedure. �e block diagram of
the proposed control algorithm is described as Figure 2.

De	ne the tracking error variables "1 and "2 which are
introduced as follows: "1 = �̂1 −��

1
,

"2 = �̂2 − �̂�
2
, (20)

where ��
1
and �̂�

2
are the 	ltered-command of �̂1 and �̂2,

respectively. From (19) and (20), it can be seen that

̇"1 = �̂2 + \1 − �̇�
1
,

̇"2 = 9�+ \2 − ̇̂��
2
. (21)

Consider the candidate Lyapunov function

1̂ = 1

2
"2
1
. (22)

�e time derivative of 1̂ with respect to time is given bẏ̂
1 = "1 (�̂2 + \1 − �̇�

1
) . (23)

�e virtual controller (i.e., outer-loop controller) can be
designed as

�̂�
2
= �̇�

1
− \1 − ?1"1, (24)

where ?1 is a positive de	nite constant to be designed.

Substituting (24) into (23), we have ̇̂
1 ≤ 0. Pass �̂�

2
through a

	lter [24], which is shown in Figure 3.
And the state-spacemodel of constrained command 	lter

can be described as

{ ̇`1̇`2} = [[[
`2

2f	� [B� ( 	2�2h	� (B� (i) − `1)) − `2]]]]
, (25)
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Figure 3: Structure of constrained command 	lters.

where

[`1`2] = [���̇�] ,
i = ��,

(26)

and �� is the output of the constrained command 	lter.
�erein, h and 	� represent the damping and the band-

width of 	lter, respectively.
Rede	ne tracking error "1 = "1 − &, and the 	lter error

compensation is designed as

̇& = − ?1& + �̂�
2
− �̂�

2
. (27)

We choose the Lyapunov function

2̂ = 1

2
"2
1
+ 1

2
"2
2
. (28)

�en, taking the time derivative of 2̂ yields

̇̂2 = "1 ̇"1 + "2 ̇"2
= "1 (�̂2 + \1 − �̇�1 + ?1& − �̂�2 + �̂�2)

+ "2 (9� + \2 − ̇̂��2)
= − "1 (?1"1 + �̂2 − �̂�2) + "2 (9� + \2 − ̇̂��2)
= − ?1"21 − "1"2 + "2 (9� + \2 − ̇̂��2) .

(29)

If the global control law is extracted as

� = 9−1 (−?2"2 − \2 + "1 + ̇̂��2) (30)

the time derivative of Lyapunov function 2̂ is described as

̇̂
2 = − ?1"21 − ?2"22 ≤ 0, (31)

where ?2 is also a positive de	nite constant. Equation (31)
means that "1 and "2 are uniformly ultimately bounded.
Further, combined with the results of Section 3, we know all
error signals are bounded.

5. Simulation Results

Simulations are performed in the MATLAB/SIMULINK
environment. From the numerical analysis of the marine
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Figure 4: Chaotic attractor under � = 1.3.
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Figure 5: Timing diagram of power angle � and relative power angle
velocity 	.

power system’s chaotic motion, the results can be obtained
that when the amplitude � = 1.3, the chaos will appear in the
marine power system under � = 0.4, � = 0.2 and disturbance
frequency � = 0.8. It can be obtained that the motion state
of the marine power system is in Figures 4-5. From Figure 4,
it can be seen that the system power angle and the angular
velocity of the phase diagramofmovement are ergodic, which
shows that the system appears in chaos.

5.1. Simulation 1 (ESO-BasedModel Free Adaptive Command-
Filtered Backstepping Control). �e parameters of the back-
stepping controller are chosen as ?1 = ?2 = 2. �e parameters
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Figure 6: �e curve of power angle � (Simulation 1).
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Figure 7: �e curve of power angle velocity 	 (Simulation 1).

of command	lter are chosen as h = f = 0.1 and 	� = 20.
�e parameters of ESO are designed as #1 = #2 = 0.9,$1 = 100, $2 = 1000, !1 = 10, !2 = 100, and !3 = 1000. �e
initial state is �0 = [0.1, 0]. In the following simulation, the
control signal � is added to the marine power system when
the chaotic motion occurs a�er 100 seconds. Figures 6 and
7 show the curves of power angle and the angular velocity
of marine power system with ESO method. And the phase
diagram is expressed in Figure 8. Figure 9 shows the Actual�(�) function and its estimation �̂(�).

It can be seen from Figures 6 and 7, before 100 seconds,
that the power angle and the relative power angle velocity 	
are in chaotic state. While the designed controller is added
a�er 100 seconds, the system is quickly stabilized, which
indicates that the proposed ESO-based control algorithm has
a very reliable and stable ability for themarine power system’s
chaotic motion.

5.2. Simulation 2 (NNO-Based Model Free Adaptive
Command-Filtered Backstepping Control). In Simulation 2,
the same parameters of the backstepping controller and
command-	lter are chosen as Simulation 1. �e number
of nodes of neural network basis function is chosen as 10.
�e parameters of NNO are designed as S = [1000, 2000]�,
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Figure 8: Phase diagram of power angle � and relative power angle
velocity 	 (Simulation 1).
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Figure 9: Actual �(�) function and its estimation �̂(�)
(Simulation 1).

90 = [0, 1]�, Υ = diag[5 × 104], and Z = 0.001. �e
initial states of the marine power system and NNO are�0 = �̂0 = [0.1, 0]. In the following simulation, the control
signal � is also added to the marine power system when the
chaotic motion occurs a�er 100 seconds. Figures 10 and 11
show the curves of power angle and the angular velocity of
marine power system under NNO method. And the phase
diagram is shown in Figure 12. Figure 13 shows the actual�(�) function and the estimation �̂(�).

It can be seen from Figures 10 and 11, a�er 100 seconds,
that the designed controller is added to the chaotic marine
power system, and the system is quickly stabilized, which
indicates that the proposed NNO-based control algorithm
also has a very reliable and stable ability for themarine power
system’s chaotic motion.

6. Conclusion

Based on observer techniques, two novel model free adaptive
command-	ltered backstepping control methods are pro-
posed formarine power systems. In the developed twomodel
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0 50 100 150 200 250 300 350 400 450 500
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Time (s)

�
(r

ad
/s

)

Figure 11: �e curve of power angle velocity 	 (Simulation 2).

free adaptive command-	ltered backstepping controls, there
are three main problems solved. �ey are the following: (1)
Velocity signal does not need to be known. �e proposed
control algorithms can achieve the closed-loop stability with-
out speed sensor. (2) �e proposed control methods do not
need dynamicmathematical model of marine power systems.
(3) �e proposed two controls can eliminate the impact
of derivative signal and control saturation. In addition, the
stability analysis is given for closed-loop control system.
Simulation results show that the proposed method not only
guarantees the closed-loop stability of the controlled marine
power system, but also well identi	es the velocity state and
the unknown dynamic model.
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