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Model-Free Control of Nonlinear Stochastic
Systems with Discrete-Time Measurements

James C. Spall,Senior Member, IEEE, and John A. Cristion

Abstract—Consider the problem of developing a controller for
general (nonlinear and stochastic) systems where the equations
governing the system are unknown. Using discrete-time measure-
ments, this paper presents an approach for estimating a controller
without building or assuming a model for the system (including
such general models as differential/difference equations, neural
networks, fuzzy logic rules, etc.). Such an approach has potential
advantages in accommodating complex systems with possibly
time-varying dynamics. Since control requires some mapping,
taking system information, and producing control actions, the
controller is constructed through use of a function approximator
(FA) such as a neural network or polynomial (no FA is used
for the unmodeled system equations). Creating the controller
involves the estimation of the unknown parameters within the
FA. However, since no functional form is being assumed for
the system equations, the gradient of the loss function for use
in standard optimization algorithms is not available. Therefore,
this paper considers the use of the simultaneous perturbation
stochastic approximation algorithm, which requires only system
measurements (not a system model). Related to this, a con-
vergence result for stochastic approximation algorithms with
time-varying objective functions and feedback is established. It
is shown that this algorithm can greatly enhance the efficiency
over more standard stochastic approximation algorithms based
on finite-difference gradient approximations.

Index Terms—Direct adaptive control, gradient estimation,
nonlinear systems, simultaneous perturbation stochastic approx-
imation.

I. INTRODUCTION

A DAPTIVE control procedures have been developed in a
variety of areas for controlling systems with imperfect

information about the system (e.g., manufacturing process
control, robot arm manipulation, aircraft control, etc.). Such
procedures are typically limited by the need to assume that
the forms of the system equations are known (and usually
linear) while the parameters may be unknown. In complex
physical, socioeconomic, or biological systems, however, the
forms of the system equations (typically nonlinear) are often
unknown as well as the parameters, making it impossible to
determine the control law needed in existing adaptive control
procedures. This provides the motivation for developing a
control procedure that does not require a model for the
underlying system. In this way, we expand the range of
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problems for which “formal” automatic control methods can
apply. It is obvious that one should not be limited by customary
model-based approaches given the wide range of successful
“model-free” controllers in nature. Humans, for example, have
little problem solving certain control problems that would vex
even the must sophisticated model-based automatic controllers.

By definition, an automatic controller requires some func-
tion mapping that takes current (and maybe past) information
about the system and produces control actions to affect fu-
ture system performance. The approach here uses the system
measurements to determine the control function without the
need to estimate or assume a separate model for the system.
The approach here is based on using a function approximator
(FA) to represent the controller (no FA—or other mapping
such as fuzzy logic rules base—is used for the system).
Associated with any FA will be a set of parameters that must be
determined, which will be one of the key aspects of this paper.
Popular FA’s include, for example, polynomials, multilayered
feed-forward or recurrent neural networks, splines, wavelet
networks, and trigonometric series. By results such as the
well-known Stone–Weierstrass approximation theorem (e.g.,
Rudin [38, pp. 146–153, 176, 205]), it can be shown that
many of these techniques share the property that they can be
used to approximate any continuous function to any degree
of accuracy (of course, this is merely an existence result,
so experimentation must usually be performed in practice to
ensure that the desired level of accuracy with a given FA is
being achieved). Each FA technique tends to have advantages
and disadvantages, some of which are discussed in Poggio
and Girosi [36], Laneet al. [22], and Chen and Chen [8] (e.g.,
polynomials have a relatively easy physical interpretability,
but the number of parameters to be determined grows rapidly
with input dimension or polynomial order). Since the approach
of this paper is generic, the methods will be presented without
regard to which type of FA is to be used, although we
will demonstrate the approach using polynomials and neural
networks.

Others have considered the problem of developing con-
trollers based on FA’s when there is minimal information
about the system equations. The majority of such techniques
are indirect control methods in the sense that a second FA is
introduced to model the open-loop behavior of the system. This
open-loop FA is typically determined in a system identification
process from sample input–output data on the system prior
to operating the system in closed-loop and constructing the
controller FA (with neural networks as the FA’s; see, e.g.,
Narendra and Parthasarathy [31], Paoet al. [34], or Sartori
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and Antsaklis [45]). In contrast, the direct control approach
here does not require any open-loop system identification,
instead constructing the one (controller) FA while the system is
operating in closed-loop. Thus we avoid the need for open-loop
“training” data, which may be difficult or expensive to obtain,
and the need to estimate perhaps twice as many parameters
(for constructing two FA’s). Further, the approach here offers
potential advantages in being better able to handle changes
in the underlying system dynamics (since it is not tied to a
prior system model) and being more robust in the face of
widely varying control inputs (i.e., the indirect approach may
perform poorly for closed-loop controls outside of the range
of open-loop controls used in the prior identification step).

Let us briefly discuss how the approach here contrasts with
other “model-free” approaches. We are aware of many claims
made in the literature that a particular control technique is
“model-free.” However, we question most of these claims on
the basis of the hidden or implicit system modeling required.
(We wish to raise this issue not because there is anything
inherently wrong with these other approaches, but to help
clarify that our use of “model-free” is to be taken literally.)
For example, fuzzy controllers are frequently claimed as
model-free; nevertheless, in all fuzzy controllers there is a
requirement for a rules base (or associative memory matrix)
that describes the dynamics of the system in a linguistic-type
fashion. Although such information is not in the classical form
of differential or difference equations, it is still a representation
of the dynamics that seems to qualify as a model. Similar
arguments can be made for other controllers claimed as model-
free (e.g., some neural network controllers).

Although the model-free approach here is appropriate for
many practical systems, it is generally inappropriate for sys-
tems where a reliable system model can be determined. One
reason, of course, is that with a reliable model, the controller
will generally achieve optimal control more quickly (fewer
suboptimal “training” steps). Further, a reliable model allows
in some cases for theoretical analysis of such issues as stability
and controllability and for the calculation of state estimates
for use in system performance monitoring and feedback to the
controller. (We say “in some cases” because in the stochastic
discrete-time setting, there are currently almost no practically
useful stability results for adaptive nonlinear systems.) Sanner
and Slotine [43], Levin and Narendra [23], [24], Jagannathan
et al. [16], Fabri and Kadirkamanathan [13], and Ahmed
and Anjum [1] are examples of approaches that rely on
controller FA’s but introduce stronger modeling assumptions
(e.g., deterministic systems or specific knowledge of how
the controller enters the system dynamics) as a means of
performing a stability analysis. However, for systems where
only a flawed (if any) model is available, attempts to do such
analysis can lead to suboptimal (or worse) controllers and
faulty stability and controllability analysis. It is such cases
that are of interest here.

As we will show, it is not possible in our model-free frame-
work to obtain the derivatives necessary to implement standard
gradient-based search techniques (such as back-propagation)
for estimating the unknown parameters of the FA. We will,
therefore, consider stochastic approximation (SA) algorithms

based only on measurements of the system as it operates
in closed-loop. Usually such algorithms rely on well-known
finite-difference approximations to the gradient (for examples
of such algorithms in control, see Saridis [44, pp. 375–376] or
Bayard [2]). The finite-difference approach, however, can be
very costly in terms of the number of system measurements
required, especially in high-dimensional problems such as
estimating an FA parameter vector, (which may easily have
dimension of order 10 or 10 ). Further, real-time imple-
mentation of finite-difference methods would often suffer
since the underlying system dynamics may change during
the relatively long period in which measurements are being
collected for one gradient approximation (see Section IV here).
We will, therefore, consider an SA algorithm based on a
“simultaneous perturbation” method (Spall [46]), which is
typically much more efficient than the finite-difference SA
algorithms in the amount of data required. In particular,
the simultaneous perturbation approximation requires only
one or two system measurements versus the hundreds (or
more) typically required in finite-difference methods. A special
case of the control approach here—focusing on the “direct
approximator” method (see Section II below), perfect state
measurements, and a neural network as the FA—is consid-
ered in Spall and Cristion [52]. Some applications of the
simultaneous perturbation optimization method in control are
given in Maeda and De Figueiredo [26] (robotics), Kochet al.
[17] (integrated transit/traffic control), and Nechyba and Xu
[32] (human-machine interface control). Note that the general
convergence result presented here is relevant to most of these
applications.

The remainder of this paper is organized as follows.
Section II describes two related methods (based on different
levels of prior information about the system) for using FA’s to
control nonlinear systems. This section also describes why it is
not possible to determine the gradient of the loss function, in
contrast to the approaches of Narendra and others mentioned
above where they introduce an additional FA to model the
open-loop system. Section III discusses the SA approach to
FA parameter estimation using the simultaneous perturbation
method and presents a theoretical result on the convergence
of the estimate. Section IV presents numerical studies on
two different nonlinear systems, and Section V offers some
concluding remarks and areas for further investigation.

II. OVERVIEW OF APPROACH TO

CONTROL WITHOUT SYSTEM MODEL

A. The System and Generic Form of Controller

We consider general dynamic processes, typically involving
nonlinear dynamics and stochastic effects. It is assumed that
a sequence of discrete-time measurements of the process is
available and that the goal is to choose a corresponding
sequence of controls to optimize a function of future system
measurements. We let the sequence of discrete-time measure-
ments be

(1a)
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with corresponding controls

(1b)

(so affects , etc.). In general, we assume no
particular analytical structure (e.g., state-space, NARMAX,
continuous- or discrete-time process evolution, etc.) behind the
process generating the measurements. Based on information
contained within measurements and controls up toand

, our goal is to choose a control in a manner such that
we minimize some loss function related to the next measure-
ment (or to the next specified number of measurements).
Often, this loss function will be one that compares against
a target value , penalizing deviations between the two.
Without sacrificing generality, most of this paper will focus
on this target-tracking control problem, although the approach
would apply in other (say, optimal control) problems as well,
as discussed briefly in Section II-B.1

In the approach here, a function approximator (e.g., neural
network or polynomial) will be used to produce the control

, as outlined in Section I. We will consider an FA of fixed
structure across time (e.g., the number of layers and nodes in a
neural network is fixed), but allow for underlying parameters
in the FA (e.g., connection weights in a neural network) to
be updated. Since past information will serve as input to the
control, this fixed structure requires that be based on only
a fixed number of previous measurements and controls (in
contrast to using all information available up to timefor each

). Suppose our “sliding window” of previous information
available at time , say , contains previous measurements
and previous controls; akin to Parisini and Zoppoli [35],
the choice of and reflects a tradeoff between carrying
along a large quantity of potentially relevant information and
the corresponding requirements for a more complex FA. Thus,
when the system is operating without the FA parameters being
updated, we have from (1a) and (1b)

(when the FA parameters are being updated, the setof
and previous measurements and controls will contain “test”
values, as discussed in Section III-A).

We will consider two methods to the problem of a con-
trolling system in the face of uncertainty about the system
dynamics governing the evolution of sequence (1a), as illus-
trated in Fig. 1(a) and 1(b) for the target-tracking problem
in the important special case where (for the
more general definition of , as given above, the figures
would be modified in an obvious way; in addition, the process
may include direct-state feedback, which is not shown). In
the direct approximation method of Fig. 1(a), the output of
the FA will correspond directly to the elements of the
vector, i.e., the inputs to the FA will be ( here) and

and the output will be . This approach is appropriate
when there is no known analytical structure generating the
measurements. In contrast, the self-tuning method of Fig. 1(b)

1The method here attempts to find the best controller given such charac-
teristics as degree of controllability, relative number of elements inuk, and
yk+1, etc. Since the system may inherently be less than fully controllable,
perfect tracking may be unachievable in even deterministic systems.

(a)

(b)

Fig. 1(a) Control system with FA as direct approximator to optimalukwhen
Ik = fykg. (b) Self-tuning control system with FA as approximator tofk(Ik)
whenuk = �k(fk(Ik); tk+1) and Ik = fykg:

requires some prior information about this structure. In par-
ticular, it requires that enough information be available to
write , where is a known control
law that depends on some unknown function that is
approximated by the FA. As demonstrated in Section IV, a
very important type of process to which this second method
can apply is an affine-nonlinear (i.e., generalized bilinear)
system such as that in Chen [7] and Dochain and Bastin [11].
As we will see in Section IV, when reliable prior information
is available, the self-tuning method of Fig. 1(b) may yield
a controller superior to the direct approximation method of
Fig. 1(a).

B. Formulation of Estimation Problem for Determining FA

We now introduce some of the principles involved in
determining the FA for use in generating the control.
Section III will provide a more detailed discussion on the
estimation procedure and an associated convergence proof.

Associated with the FA-generating will be a parameter
vector that must be estimated (e.g., the connection weights
in a neural network). Recall that we assume that the FA
structure is fixed across time. Hence the problem of finding
the optimum control function at time is equivalent to finding
the not a function of , that minimizes some loss
function (and the optimal control value would be the
output of after the optimal has been found). A common
loss is the one-step-ahead quadratic tracking error

(2)

where and are positive semi-definite matrices reflecting
the relative weight to put on deviations from the target
and on the cost associated with larger values of. The
approach of this paper would also apply with nonquadratic
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and/or nontarget-tracking loss functions. Such functions might
arise, e.g., in constrained optimal control problems where
we are trying to minimize some cost (without regard to a
specific target value) and penalty functions or projections are
used for certain values of and/or to reflect problem
constraints (e.g., Sadegh [41]). For convenience, however, the
remainder of the paper will illustrate points with the target-
tracking problem exemplified by (2). Note that although (2) is
a one-time-step error function, much of the adaptive control
literature focuses on minimizing a loss function over an infinite
horizon; Saridis [44, pp. 291–296] and Moden and Soderstrom
[29] are two of a number of references that discuss the
relationship between the two approaches. Note also that if
the unconditional loss function were replaced by a
conditional loss as is sometimes seen in the control literature
(e.g., (2) replaced by an expected tracking error conditional
on previous measurements and controls), the same optimal

would typically result. This follows since under standard
conditions justifying the interchange of a derivative and an
integral (e.g., Fleming [14, pp. 237–239])
implies
at the optimal , where represents the conditional loss.

With a control of the form in Fig. 1(a) or (b), the problem
of minimizing implies that for each we are seeking
a (minimizing) solution to

Since the functions governing the system are incompletely
known, the term is not generally computable.
Hence, is not generally available in either of the
methods in Fig. 1(a) and (b).2 Thus the standard gradient
descent algorithm (e.g., back-propagation—see, Narendra and
Parthasarathy [31]), or any other algorithm involving
or a direct noisy measurement of , is not feasible.

Because gradient-descent-type algorithms are not generally
feasible in the model-free setting here, we consider a stochastic
approximation (SA) algorithm of the form

gradient approx. (3)

to estimate , where denotes the estimate at the given
iteration, is a scalar gain sequence satisfying certain
regularity conditions, and the gradient approximation is such
that it does not require full knowledge of the form of the
process equations. The next section is devoted to describing
in more detail the gradient-free SA approach to this problem.

2This contrasts with implementations of so-called indirect feedback con-
trollers (e.g., Narendra and Parthasarathy [31, Sec. 6]), where a separate FA
is used to model the unknown system dynamics and the identification and
adaptive control are performed as if the FA model was identical in structure to
the true system dynamics. One special case wheregk(�k) can be computed is
in the self-tuning setting of Fig. 1(b) whereuk(�) is known to enter the process
addictively (since@Lk=@uk then does not depend on unknown dynamics);
such additive control models are considered, e.g., in Sanner and Slotine [43]
for continuous time and Jagannathanet al. [16] for discrete time. Of course,
in the more general setting of direct approximation control [Fig. 1(a)]gk(�k)
would still be unavailable since such adaptivity is not assumed known.

III. PARAMETER ESTIMATION BY SIMULTANEOUS

PERTURBATION STOCHASTIC APPROXIMATION:
IMPLEMENTATION AND CONVERGENCE

This section is divided into three sections. The first gives
a summary of how simultaneous perturbation SA (SPSA) is
used in implementing the control strategies of Fig. 1(a) and
(b). The second section establishes conditions under which the
FA parameter estimates from SPSA converge to the optimal
weight values for the given structure of the FA. The final
section provides some comments on the regularity conditions
of the convergence result and considers the setting where there
is no asymptotically unique (time-invariant) optimal parameter
vector, as would often occur, say, when the underlying system
has nonstationary dynamics.

A. Overview of the Approach

Recall that we are seeking the FA parameter vector at
each time point that minimizes , i.e., we are seeking
a such that . Recall also that since gradient-
based search algorithms are not applicable, we will consider
a gradient-free SA-based approach.

Spall [46] gives a detailed analysis of the SPSA approach
to optimization in the classical setting of a time-invariant
loss function and corresponding fixed minimum. It is
shown that the SPSA algorithm has the usual almost sure (a.s.)
convergence and asymptotic normality properties of finite-
difference SA (FDSA) algorithms of the Kiefer–Wolfowitz
form but that the asymptotic normality result indicates that
SPSA can achieve the same level of asymptotic accuracy as
FDSA with only the number of system measurements in
many practical problems. This is of particular interest in FA’s
for nonlinear, multivariate problems sincecan easily be on
the order of 10 or 10 . Of course, in the control setting here
the loss function is generally time-varying, and hence
it cannot be automatically assumed that the results of Spall
[46] apply. We, therefore, will present conditions under which
the SPSA estimation error converges a.s. to zero as
in the time-invariant loss setting. Unfortunately, it does not
appear possible to similarly produce an asymptotic normality
result for the time-varying setting, which would provide
a formal proof that asymptotically SPSA achieves the same
level of accuracy as FDSA with only th the number of
measurements for the gradient approximations. This follows
from the fact that the limiting mean and variance of the
asymptotic normal distribution in Spall [46] are based on the
(fixed) values of the second and third derivatives of the loss
function and, of course, such fixed values do not exist in
the time-varying setting here. Nevertheless, we feel that the
general advantage of SPSA in the fixed loss function case
together with the a.s. convergence of SPSA established below
for the time-varying setting provide ample theoretical
evidence of the advantage of SPSA over the standard FDSA
approach in this control problem. This will be augmented by
empirical evidence in Section IV.

In line with (3), the SPSA algorithm has the form

(4)
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where is the simultaneous perturbation approxima-
tion to . Although several variations are possible (see
below), the core approximation is such that theth component
of , is given by

(5)

where

• are estimated values of using
the observed and , e.g., for as in (2),

.

• are controls based on an FA with parameter vector
, where

is a random vector. Usually, the are independent,
bounded, symmetrically distributed (about zero) random
variables , identically distributed at each, with

uniformly bounded , although the condi-
tions for convergence below are stated more generally
(see Section III-C for comments on regularity conditions).

• are measurements based on .
• is a sequence of positive numbers satisfying certain

regularity conditions (typically or ,
depending on whether the system equations are stationary
or nonstationary, as discussed in Sections III-B and III-C).

The key fact to observe is that at any iteration only two
measurements are needed to approximate (i.e., the nu-
merators in are the same for all components, reflecting
the simultaneous perturbation about allelements in ).
This is in contrast to the standard FDSA approach where

measurements are needed (i.e., for theth component
of the gradient approximation, the quantity is replaced
by a vector with a positive constant in theth place and
zeroes elsewhere; see, e.g., Ruppert [39]). A variation on the
gradient approximation in (5) is to average several gradient
approximations, with each vector in the average being based
on a new (independent) value of and a corresponding new
pair of measurements; this may enhance the performance of
the algorithm in a high-noise setting as discussed in Spall
[46] and Spall and Cristion [52], even at the expense of
the additional loss function evaluations. A further variation
on (5) is to smooth the gradient approximation across time
by a weighted average of the previous and current gradient
estimates (analogous to the “momentum” approach in back-
propagation); such smoothing can sometimes improve the
performance of the algorithm (see Spall and Cristion [51]
for a thorough discussion of smoothing in SPSA-based direct
adaptive control).

A slightly more fundamental modification is to replace the
two-measurement gradient approximation in (5) with the one-
measurement form

(6)

as discussed in Spall [47]. Although [47] shows that (5) re-
mains generally preferable to (6) in terms of overall efficiency
of optimization based on loss function measurements (even
though (5) uses twice the number of measurements), (6)

has advantages in highly nonstationary systems. This follows
from the relationship of (5) or (6) to the underlying gradient

: if the dynamics change significantly, (5) may be a
poor approximation to the gradient, while the instantaneous
approximation (6) always provides a quantity that [to within

] is an unbiased estimate of the gradient. A guideline for
when one should consider the instantaneous form (6) is when
condition C3) from the proposition is not satisfied for (5); this
condition is a stochastic analogue of a well-known condition
for nonlinear optimization. Thus, although the focus here is on
the “standard” SP gradient approximation in (5), the closely
related one-measurement form in (6) may be preferable in
some cases.

There are several ways in which a practical control strategy
can be developed using the SPSA algorithm in (4) and (5)
[with obvious analogues for (4) and (5)]. These differences
result from whether or not it is desired to produce a “nominal”

based on a control with updated (only
are required in implementing (4) and (5), which use

) and whether or not it is possible to reset the
system from a given state value to the previous state value.
Spall and Cristion [52] discuss these strategies in greater
detail for neural network-based control when one has direct
measurements of the states in a nonlinear state-space model;
these strategies could be readily extended to the more general
setting here. As an illustration of one of these strategies,
suppose that we wish to produce a sequence of system
measurements that includes nominal measurements, i.e., the
sequence is , and that
the system cannot be readily reset from one state to the previ-
ous state (which is the usual case). Then, as in Section II-A,
each of and are produced using the previous
measurements and controls, which comprise the information
sets and (say), respectively (note that the
elements of here will differ from those in Section II-A
where no parameter update is taking place). Thus, for example,
if and the most recent measurement is , then

the next control is based on ,
and .

To keep the notation in this paper relatively simple, the
discussion focuses on the case whereis changed at every
discrete-time point during the “training” process of building
the controller. The same basic ideas can be applied when
is changed less frequently (say, to allow transient effects to
decay). An example of such a setting is the vehicle traffic con-
trol problem in Spall and Chin [50] where(i.e., the control
function) is changed on a daily basis even though traffic-
responsive control actions (the control function outputs) are
changed much more frequently (perhaps minute by minute).

One must also pick an initial to initialize the controller.
Random initialization is one possibility (see Section IV). How-
ever, in some real-world systems, it will be useful to exploit
simulations and/or other prior information to provide a more
precise initial . With a simulation, one could implement the
control strategy above using the simulation as a proxy for the
real system. The final trained value forcould then serve
as the initial for use with the real system (in the idealized
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limiting case where the simulation was run for a large number
of SPSA iterations and was a perfect representation of the
real system, and where the real system was nonstationary,
this initial would be the optimal based on the
convergence theory in Section III-B). If historical data are
available on “reasonable” controls and responses, then one
can use standard offline optimization (e.g., back-propagation)
to train so that is a control function that can effectively
reproduce the historical input–outputs. So if the historical
data represented a prior suboptimal control strategy, the SPSA
approach would allow for a graceful transition to a more nearly
optimal controller.

B. The Convergence of the Weight Estimate

Let us now present conditions such that, as in the
case of Spall [46], [47], will converge a.s. for

the case of varying . The proposition below applies
to either the two- or one-measurement approximation form
in (5) or (6). Note that general convergence results such
as in Benvenisteet al. [4, Part II] do not directly apply
here due to the time-varying loss function and underlying
system evolution. Unlike Spall [46], the connection to the
true gradient is not used explicitly in the regularity conditions
here [this is especially relevant when (5) is used since the
system evolution between and complicates the
interpretation of as an estimate of ]; hence,
certain conditions related to being a nearly unbiased
estimator of the gradient (e.g., mean zero on the measurement
noise difference) are not used here, while other conditions
imposing “gradient-like” behavior are imposed [C3) and C4)].
Section III-C provides some discussion on the conditions
relative to the control problem here. Note that having the
optimal parameters converge (i.e., ) does not imply
the (say) pointwise convergence of to some fixed ; in
fact may be perpetually varying even when ,
as discussed in Section III-C below. Also note that the result
below differs considerably from the convergence result in Spall
and Cristion [51], which requires stronger conditions (e.g., uni-
formly bounded increments for the iterates) and is oriented to
the “smoothed” SP gradient approximation. We let denote
any vector norm, i.o., represent “infinitely often,” and

represent theth components of the indicated vectors
(notation chosen to avoid confusion with time subscript), and

C1) as
.

C2) is symmetrically distributed about and for some
and .

C3) For some any and for each
suppose that if , there exists a
such that where satisfies

.
C4) For each , and any

i.o. i.o.
.

C5) For any and nonempty , there
exists a such that

a.s.

for all when and
when .

Proposition: Let conditions C1) through C5) hold, and
suppose there exists a such that as . Then

a.s. (7)

Proof: The proof will proceed in three parts. First we
will show that does not diverge in magnitude to

on any set of nonzero measure. Second, we will show that
converges a.s. to some random vector; third we show that

this random vector is the constant zero, as desired.
Part 1: Letting and

we can write

(8)

Since C1) and C2) imply that represents a mar-
tingale sequence (in)

where the finiteness follows from C1) and C2). Then by (8)
and the martingale convergence theorem

a.s.
(9)

where is some integrable random vector.
Let us now show that .

Since the arguments below apply along any subsequence,
we will for ease of notation replace the “lim sup” with
“lim” without loss of generality. We will show that the
event has probability zero in a multivariate
extension to scalar arguments in Blum [5] and Evans and
Weber [12]. Furthermore, suppose that the limiting quantity
of the unbounded elements in is (trivial modifications
cover a limiting quantity including limits). For and

as in C5), the event of interest can be
represented as

(10a)

(10b)
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where and the superscript denotes set com-
plement. We now analyze the two principal events shown in
(10a) and (10b). For the event (10a), we know that there exists
a subsequence such that

is true. But, from C5),
this implies that sufficiently large,
contradicting C3). Hence the first event on the right-hand side
of (10) has probability zero for any . Now consider the
second principal event, as shown in (10b). From (9), we know
that for almost all sample points,
must be true. But this implies from C4) that for no can

occur i.o. However, at each, the event
is composed of the union of events,

each of which has for at least one . This, of
course, requires that i.o. for at least one ,
which creates a contradiction. Hence, the probability of the
event in (10b) is zero for any . Taking the union over
[shown in (10a and (10b)] of the zero-probability events yields

, completing Part 1 of the proof.
Part 2: To show that converges a.s. to a unique (finite)

limit, we show that

(11)

for any . There exist two subsequences, one with
convergence to a point and one with convergence to a
point . From (9) and the conclusion of Part 1, each of
these subsequences has a sub-subsequencesuch that

a.s. (12)

Supposing that the event within the probability statement of
(11) is true, we know from C4) and (9) that for any and
corresponding sample point we can choose sufficiently
large so that for eachand combined sub-subsequence (from
both sub-subsequences mentioned above)

(13a)

(13b)

(13c)

Picking implies by (13a) and (13b) that

However, (13c) requires that

which is a contradiction. Hence, (11) holds, completing the
proof of Part 2.

Part 3: Let us now show that the unique finite limit from
Part 2 is zero. From (12) this follows if

(14)

Suppose the event in the probability of (14) is true and let
represent those indexessuch that

as . Then, by the convergence in Part 2 there exists
for almost any sample point in the underlying sample space
some and (dependent on the
sample point) such that
when and when . From C3),
and taking , it follows that

(15)

But since C4) implies that can change sign only
a finite number of times (except possibly on a set of sample
points of measure zero) and since , we know from
(15) that for at least one

(16)

From C3), we have . Then by (16)
. Since, for the above, there

exists such a for each sample point in a set of measure
one (recalling that converges a.s. by Part 2), we know
from the above discussion that there also exists at least one

( possibly dependent on the sample point) such that
. Since has a finite number of elements,

with probability greater than zero for at
least one . However, this is inconsistent with the event in
(14), showing that the event does in fact have probability zero.
This completes Part 3, which completes the proof.

C. Comments on Regularity Conditions for Proposition
and Extension to Perpetually Varying

This section provides some interpretation of the above
regularity conditions and discusses the feasibility of a unique
limiting existing together with some discussion on SA
algorithms when is not converging to any fixed .

Condition C1) presents some standard conditions on the
SA gains (as discussed below, however, in a system with
nonstationary dynamics—where does not converge—it is
generally best to not satisfy this condition). C2) ensures
that the variability of is not so large as to potentially
cause divergence of the algorithm. Note that this condition
is closely related to the important bounded inverse moments
condition for in SPSA, since by Holder’s inequality, C2)
holds if and are both bounded for
certain . This bounded inverse moments condition
prevents, e.g., taking as uniformly or normally distributed.
However, taking as symmetrically Bernoulli-distributed
to satisfy this condition has proven effective in our numerical
studies, and, in fact, is shown in Sadegh and Spall [42] to
be the optimal choice of distribution in static optimization
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problems based on asymptotic principles. C3) ensures that
if we are at a value not at , the estimate is,
on average, sufficiently steep (as well as pointing toward)
so that there will be a tendency to push the next value
toward .3 One case where C3) may be violated is where
(5) is used and there are strong system transients between the
times associated with and (in such
cases, it may be desirable to lengthen the time interval between
changes in to allow the transients to decay). Note that the
nonuniformity (in ) that is allowed for permits
to “flatten out” in some fixed region around as gets large
provided that this flattening does not occur too fast.4 C4) is
a very weak condition that says if is uniformly bounded
away from , then it cannot be bouncing around in a manner
that causes the elements of the mean of to change sign
an infinite number of times. C5) is another weak condition
that ensures for sufficiently large that each element of
makes a nonnegligible contribution to products of the form

[see C3)] when . A sufficient
condition for C5) is that for each is uniformly (in )
bounded and when .

The assumption in the proposition that there exists a fixed
such that is reasonable for a range of applications.

In fact, the even stronger assumption that
holds in many applications, including settings where
is perpetually varying at any (as results from, among other
things, a time-varying target ). For example, stationary
dynamics and measurement processes result in a control law
that can generally be expressed as for some not
indexed by (see, e.g., Nijmeijer and van der Schaft [33, Ch.
14]). Then, there will generally exist a that yields the best
possible approximation to under a mean-square-type loss
function (this may not be unique unless the FA is minimal
in some sense—see e.g., Sussman [53]). The more general
condition of the proposition, , allows for a system
with transient effects.

Let us close this section with a brief discussion of the
constant gain setting where we take and/or

. It is well known that SA algorithms with such
gains are better able to track a time-varying root than the
usual decaying gain algorithms (see e.g., Kushner and Huang

3This condition does not precludê�k from converging to a local minimizing
point �� (the same issue arises, of course, in gradient search algorithms such
as back-propagation); Chin [9] discusses a technique by which SPSA can be
used as a global optimizer for arbitrary initial conditions. An alternate global
optimizing approach that seems likely to apply here is described in Yakowitz
[56] for the FDSA algorithm. We have yet to investigate such approaches in
control problems, instead relying on the standard approach of experimenting
with different initial conditions to see that we are converging to the same
minimum. In fact, this issue is not always critical since in some systems
converging to only a local minimum may offer performance that is sufficiently
improved for the allowable resources expended.

4In some special cases, the conditional expectation�gk(�) can be replaced by
the true gradient. Then condition C3) resembles the well-known “steepness”
condition in stochastic approximation derived from Lyapunov theory (e.g.,
Lai [21] and Ruppert [40]). Two of the special cases are when the one-
measurement form (6) is used forĝk(�) or when the system can be “reset”
when the two-measurement form (5) is used (i.e., the system can be placed at
the same state prior to generatingu(+)

k
andu(�)

k
, as, say, with some robotic

systems). In these special cases�gk(�̂k) equalsgk(�̂k) plus anO(c2
k
) bias

that can be absorbed into�k(�).

[19], Benveniste and Ruget [3], Macchi and Eweda [25], or
Benvenisteet al. [4, pp. 120–164]), which is relevant when
is nonconvergent. This is likely to occur, say, when the process
or measurement dynamics are perpetually time-varying due to
cyclic behavior or when they change due to a failure or wear
and tear of components in the system. In fact, because of their
ease of use, such constant gains are sometimes applied in SA
(or SA-type) algorithms even when (see, e.g.,
Kushner and Huang [19] or Kuan and Hornik [18]), although
it is known that they preclude the formal a.s. convergence of
decaying gain algorithms.

IV. EMPIRICAL STUDIES

This section presents the results of numerical studies on two
different nonlinear systems. In the first study we present results
for controlling a wastewater treatment system, where the
dynamics are in the so-called affine-nonlinear form. This study
includes a comparison of direct approximation (DA) versus
self-tuning (ST) controllers, SPSA versus FDSA estimation
algorithms, and one-measurement SPSA [see (6)] versus two-
measurement SPSA [see (5)]. In the second study we consider
a system where the noise is not additive and where the control
only begins to have an effect after a certain time lag. For
this second study we compare two different FA’s: a neural
network and a polynomial. This study also briefly examines
the Polyak–Ruppert iterate averaging technique.

Because of time-varying dynamics, the first study uses
constant SA gains for the estimation
algorithms. The dynamics in the second study are time-
invariant; hence decaying gains are used, which fulfills the
requirements for convergence given in the proposition of
Section III-B.

A. Wastewater Treatment System

This section presents the results of a study on a wastewater
treatment system from Dochain and Bastin [11].5 Our interest
here is to compare the SPSA (one- and two-measurement
forms) and FDSA estimation algorithms as well as the DA
and ST control approaches of Fig. 1(a) and (b). Models for
similar wastewater treatment systems may also be found in the
bioremediation literature (e.g., Cardello and San [6]). This is
a model of affine-nonlinear multiplicative control form (e.g.,
Chen [7]).

In this wastewater treatment system, influent wastewater is
first mixed (as determined by a controller) with a dilution
substance to provide a mixture with a desired concentration
of contaminants. This diluted mixture is then sent to a second
tank at a controlled flow rate. In the second tank the mixture
goes through an anaerobic digestion process, where the organic
material in the mixture is converted by bacteria into by-
products such as methane (Metcalf and Eddy [28, p. 420]).

5More detailed information and additional references on this wastewater
treatment system model may be found in Spall and Cristion [52]. That paper
considers a model with process noise but no measurement noise. A similar
DA controller model was used except for a time-invariant target vector. Also
included in the study of Spall and Cristion [52] were the effects of gradient
averaging at each iteration (not considered here). The model here, however,
has a greater degree of nonstationarity.
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Therefore, the system consists of two controls (the mix of
wastewater/dilution substance and the input flow rate) and two
states (an effluent depolluted water and methane gas, which
is useful as a fuel). Since this system relies on biological
processes, the dynamics are nonlinear and usually time-varying
(Cardello and San [6]). Also, the system is subject to con-
straints (e.g., the input and output concentrations, the methane
gas flow rate, and the input flow rate all must be greater than
zero), which presents an additional challenge in developing
a controller for the system. (Note that Dochain and Bastin
[11] controlled only the output substrate concentration or the
methane production rate—not both—using the input flow rate
as their only control, and they used an indirect controller where
a general form for the model of the wastewater treatment
system was assumed to be known with unknown parameters
that were estimated.)

The study here is based on (a constant weighting
matrix) and in the loss function (2) (i.e., a minimum
variance regulator). The performance of the technique will
mainly be evaluated by presenting an estimate of the root-
mean-square (rms) error for the measurements, i.e., an estimate
of . For our studies, we used
a two-dimensional diagonal weight matrix with a value
.01 as the first diagonal element and .99 as the second
diagonal element (reflecting the relative emphasis to be given
to methane production and water purity, respectively). We will
also present some results on the actual (versus measured) rms
state tracking error. The (feedforward) neural networks (NN’s)
considered here have nodes that are scaled logistic functions
(i.e., for input ). Each node takes as an input
the weighted sum of outputs of all nodes in the previous layer
plus a bias weight not connected to the rest of the network
as in Chen [7]. For the weight estimation we will consider
the SPSA and the FDSA algorithms. For the SPSA algorithms
we take the perturbations to be Bernoulli 1 distributed,
which satisfies the relevant regularity conditions mentioned in
Section III.

The nonstationary model we used for producing the mea-
surements closely follows that of Dochain and Bastin [11, eqs.
(8) and (9)] with the addition of additive (independent) process
and measurement noise, i.e.,

(state) (17a)

(bacterial growth rate) (17b)

(measurement) (17c)

where , and the sampling
period is . The DA control algorithm, of course,
has no knowledge of the model (17a)–(17c). The ST control
algorithm has some prior information about the form of the
model, namely that the state equation (17a) has the general
affine-nonlinear form shown, but with no knowledge of the
functional form of the nonzero/nonone elements appearing as

the components of the two 2 2 matrices in (17a) (the “one”
elements are a result of the transformation of a differential
equation to a difference equation). For the target sequence
we used a periodic square wave, with values for the
first 48 time points and for the second 48 time points,
where the second (water purity) component is as in Fig. 4 in
Dochain and Bastin [11] (we also varied the first component
[methane production rate] to provide for time variation in both
components). The controllers for both the DA and ST methods
were NN’s with two hidden layers, one of 20 nodes, and one
of 10 nodes (as in Narendra and Parthasarathy [31] and Chen
[7]). The inputs to the controller were the current and most
recent state and the most recent control ,
yielding a total of eight input nodes for the DA controller
(the target vector for the next state was also included) and six
input nodes for the ST controller. In the notation of Narendra
and Parthasarathy [31], an network was used for the
DA controller, which has weights to
be estimated, and an network was used for the ST
controller, which has weights to be
estimated.

Fig. 2 shows the main results for our study of the model in
(17a)–(17c), based on the procedure outlined in Section III-A
with the two-measurement form for in (5) (including
the generation of the optional nominal state for purposes
of plotting the weighted total system rms error). As with a
practical wastewater system, there is no system resetting in
the course of the SPSA estimation (see Section III-A). The
rms error curves in the figure are based on the sample mean
of ten independent runs, where the elements offor each run
were generated randomly (and independently) from a uniform

distribution for the DA controller and a uniform
distribution for the ST controller. We chose

, process noise , and measurement
noise , so the initial-weighted total system rms error
is 1.51 (which includes the effects of the measurement noise)
and the minimum achievable long-run weighted total system
rms error is some number greater than .01 (see footnote 6). To
further smooth the resulting error curves and to show typical
performance (not just case-dependent variation), we applied an
expanding window smoother (which allows for rapid changes
in the early iterations and little change in later iterations)
to the error values based on the average of ten runs. The
curves shown in the figure are based on this combination of
across-realization averaging and across-iteration smoothing.

For this nonstationary system, we used constant SA gains
of the form and with . We attempted
to tune and in each algorithm to approximately maximize
the rate of decay in weighted total system rms error (as would
typically be done in practice); the values satisfied

and . The choice of is important for
adequate performance of the algorithm (analogous to choosing
the step-size in back-propagation). For example, choosing
too small may lead to an excessively slow reduction in error,
while choosing an too large may cause the system to go
unstable (so for practical problems, wherea priori “tuning”
may not be feasible, it might be appropriate to begin with a
relatively small and gradually increase it until there is an
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Fig. 2. Root mean square errors for DA and ST controllers and a relative number of required loss function measurements in wastewater treatment system.

adequate convergence rate but little chance of going unstable;
Spall [49] also includes some practical guidelines for choosing
the gain sequences).

Fig. 2 shows that all of the SPSA and FDSA algorithms
yield controllers with decreasing weighted total system rms
error over time.6 We see that the overall performance of
SPSA-DA is somewhat better than FDSA-DA. Further, SPSA-
ST has the best terminal performance, reflecting the value
of the additional information used. The critical observation
to make here is that the SPSA algorithms achieved their
performance with a large savings in data: each iteration of the
SPSA algorithms required only two measurements, while each
iteration of the FDSA algorithm needed 824 measurements.
Hence Fig. 2 illustrates that the SPSA algorithms yielded a
slightly lower level of rms error than the standard FDSA
algorithm with a 412-fold savings in measurements. The data
savings seen in Fig. 2 is typical of that for a number of other
studies involving SPSA and FDSA that we have conducted on
model (17a)–(17c) as well as on other nonlinear models (see
Spall and Cristion [52]); in fact, even greater data savings are
typical with more complex NN’s (as might be needed in higher
dimensional systems). Note also that the curves in Fig. 2 have
the typical shape of many optimization algorithms in that there
is a sharp initial decline followed by a slow decline. Hence,
the rms error is reduced over 90 percent, (which may be all
that is required in some applications), by the SPSA algorithms
(DA and ST) within approximately 20 iterations. In terms of

6It does not appear possible to analytically know the minimum achievable
total measured rms errors for each algorithm since they involve the combined
effects of the process and measurement noise as well as the nonstationary
dynamics and requisite nondecaying SA gains (which preclude formal con-
vergence of the^�k). As an approximate indication of these lower bounds,
SPSA-DA and SPSA-ST achieved total measured rms errors of 0.0845 and
0.0104, respectively, after 10 000 iterations versus values of 0.0983 and 0.0127
at 100 iterations.

relative performance, the same pattern holds for actual rms
state (versus measurement) tracking error. For example, the
rms state error for SPSA-ST at 20 iterations was 0.0389 (versus
0.0981 for the measured tracking error shown in Fig. 2), at
50 iterations was 0.0070 (0.0128), and at 100 iterations was
0.0059 (0.0127). Of course, in a real system the state tracking
error would not be measurable.

In Fig. 2 we see that the SPSA-DA algorithm has slightly
better overall performance than the FDSA-DA algorithm.
This appears to be a result of the significant nonstationary
dynamics shown in (17b). Since the FDSA-DA algorithm
requires 412 times more measurements than SPSA-DA at
each iteration, the system dynamics change more over the
course of one gradient approximation. Therefore, the FDSA-
DA algorithm will have inherent difficulties in achieving the
same performance as the SPSA-DA algorithm since in SPSA
the dynamics change only a negligible amount over the course
of a gradient approximation. In contrast, the wastewater study
in Spall and Cristion [52] has a smaller level of nonsta-
tionarity, and consequently the FDSA-DA and the SPSA-DA
algorithms have more nearly equivalent overall rms errors
performances (of course, FDSA-DA still requires many times
the number of measurements of SPSA-DA to achieve this
performance).

As a final study on this system, we evaluated the one-
measurement SPSA form (6) in the DA context. After 100 iter-
ations, the rms error was 0.195, somewhat greater than 0.0983
for the two-measurement form, but still much improved from
the 1.51 initial error at half the cost of the two-measurement
form.7 It is expected that the ideal application for (6) is in
systems with even greater nonstationarity where the underlying
dynamics change significantly at each measurement point.

7After 10 000 iterations, the rms error for the one-measurement form was
0.0889, relatively close to the error of 0.0845 for two-measurement SPSA.
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B. Nonadditive Noise Model

The second model we consider is one where the noise is not
additive and the control is added to the dynamics. In particular,
as in Yaz [56], the data are generated according to

(18)

where is an independent scalar Bernoulli.5 noise process
and denotes the Euclidean norm. Aside from the multi-
plicative (possibly unstable) mode in which the noise enters
(18), this model is interesting since only one of the two control
elements affects the system, and since the first element of

can only be affected by a control after a delay of one
time period. We used a periodic square wave target sequence,
where for the first five iterations of the period
and for the second five iterations, which yields
a long-run best possible rms error of based on the same
quadratic loss function considered in Section IV-A, with a
diagonal weight matrix a with a value .5 for both of the
diagonal elements and . Since this system has time-
invariant dynamics (and fixed ), the proposition of
Section III is relevant here.

In this study we looked at two different function approxi-
mators using the DA method [which, of course, assumes no
knowledge of the dynamics in (18)]. As in Fig. 1(a), only the
most recent measurement (and next target) are fed into the
controller (i.e., ). One FA was a
neural network, which has weights to be
estimated (including bias weights). The hidden layer nodes
were hyperbolic tangent functions (i.e.,
for input ) and the output nodes were linear functions.
The second FA was a third-order polynomial, which has 70
parameters to be estimated (close to the 67 weights used for
the NN FA so as to maintain an approximate equivalence in
complexity of the FA).

Table I shows the results of the study with model (18).
The rms errors were calculated as in the wastewater treatment
study above, with values formed from the same averag-
ing/interpolation scheme. The decaying SA gains were of the
form and with
and (the gains satisfy condition C1) of the
proposition; although not used here, an of the form

, usually provides superior practical
performance as discussed in Spall [49]). We also used an
average of four individual SP gradient approximations for each
gradient estimate to enhance algorithm performance given the
relatively large noise level (even at the expense of the six
additional measurements required per iteration). Numerical
analysis of the iterates (for both the polynomial and the
NN) indicate convergence to a fixed as predicted by the
proposition.

As seen in Table I, both the NN and polynomial FA’s pro-
duced good results, although the polynomial was slightly better
in the long run. We also looked at higher order polynomials
and NN’s in controlling this system, but the orders chosen
here seemed to work well. In fact, when using a fourth-

TABLE I
RMS ERRORS FROM NONADDITIVE NOISE

MODEL (MINIMUM ACHIEVABLE RMS = 0:707)

order polynomial function, the controller would often drive
the system into an unstable mode. Higher order NN’s, on the
other hand, were able to keep the system under control, but
performed no better than the NN presented here. The lower
order FA’s may have performed better in the system of (18)
because of the inherent instability of the system (see Yaz
[57]); in higher order FA’s, there is a greater possibility of
poorly initialized parameters (or combinations of parameters)
that may cause the system to go unstable.

We also considered averaging the iteratesover time in
the context of the polynomial DA controller (so the con-
troller used the averaged value instead of the most recent
iterate). This averaging method has been shown theoretically
to yield asymptotically minimum variance estimates in the
general Robbins–Monro SA setting with nontime-varying loss
function (Polyak and Juditsky [37]) and to offer improved
performance in some SPSA settings (Dippon and Renz [10]
and Maryak [27]). By its nature, of course, averaging seems
most appropriate for systems that have stationary—or perhaps
asymptotically very slowly time-varying—dynamics (e.g., the
case of the proposition). In our primary study, we initialized
the averaging at the 50th iteration (so as to ignore the initial
parameter estimates, which will typically not be close to the
optimal ). Unfortunately, however, the averaged results were
slightly poorer than the nonaveraged results (e.g., at iteration
100 the rms value was 0.761 and at iteration 1000 it was
.709 versus 0.746 and 0.708, respectively, for the nonaver-
aged results in Table I). This slightly poorer performance
was consistent even as we varied aspects of the study. For
example, if the initial point for averaging to commence was
changed from iteration 50 to both higher and lower values
or if the target sequence was changed to a constant, the
averaging approach consistently yielded a slightly higher rms
error than the nonaveraging approach. The averaging method
should be most useful in practical finite-sample situations
when the iterate is bouncing approximately uniformly around
the solution. However, we found that the latest SPSA-DA
iterates consistently produced better rms results than the earlier
iterates (which were not bouncing “uniformly” around);
so by using past iterates, the averaging method appears to
be folding in too many relatively poor values. A similar
result is discussed in Wang [54, p. 37] and Maryak [27]. The
numerical results here are in contrast to the numerical results
of Kushner and Yang [20], where it is shown that the averaging
scheme yields significant improvements in a Robbins–Monro
(noncontrol) setting. We expect that in certain other control
problems, this type of averaging may be more effective and
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may offer significant improvements over the nonaveraging
implementations.

V. SUMMARY AND CONCLUSIONS

This paper has considered the problem of controlling nonlin-
ear stochastic systems with unknown process and measurement
equations. Our approach differs fundamentally from conven-
tional methods in adaptive control: rather than modeling
the system and performing a stability analysis en route to
building a controller, this method avoids the construction of
an open-loop model and focuses directly on regulating the
system via the construction of a closed-loop control function.
So, the approach here addresses the shortcoming noted in
Narendra and Parthasarathy [31, p. 19] that “At present,
methods for directly adjusting the control parameters based
on the output error (between the plant and reference [target]
outputs) are not available.” The approach encompasses two
different methods—DA control and ST control—where DA
applies when there is very little information available about the
system dynamics and ST applies when some (still incomplete)
information is available.

Since we are not assuming full knowledge of the structure
of the equations describing the system, it is not possible
to calculate the gradient of the loss function for use in
standard gradient-descent-type search algorithms. Therefore,
we describe a stochastic approximation-based method for the
estimation of the controller, which is based on a “simultaneous
perturbation” approximation (Spall [46]). This method relies
on observing the system at one or (usually) two levels of the
control to each iteration of the algorithm. Both theoretical
and empirical evidence indicate that this SPSA method for
weight estimation is much more efficient (in terms of the
number of system measurements needed) than more standard
Kiefer–Wolfowitz-type SA methods based on finite-difference
approximations to the gradient.

There remain several open problems to address to further
enhance the applicability of the approach here. One, perhaps,
is to develop general conditions for stability and controllabil-
ity, although the extent to which these conditions could be
checked in a specific application is limited by the model-free
framework. Further, it seems that very little work has been
done on such issues for general nonlinear, stochastic, discrete-
time systems (although for deterministic systems, one may
consult Mousaet al. [30], Nijmeijer and van der Schaft [33,
Ch. 14], or references mentioned in Section I). Essentially, we
feel that stability analysis should not be a necessary aspect in
building all controllers since that would prevent the solution
of many real-world problems. In practice, systems can often
be monitored for anomalous behavior and sometimes shut
down or converted to a default control if instabilities are
a threat. Another issue is to develop ways to increase the
rate at which the required parameter estimates approach the
globally optimal values. This is especially relevant in systems
where precise control is needed within a short time since
SPSA has the property of bringing the iterate to within the
vicinity of the optimum in relatively few time points but
then taking a long time to complete the convergence to the
optimum (this property, of course, is common to all first-order

search algorithms, including, e.g., standard gradient descent).
A number of techniques have been proposed to accelerate the
convergence of SA algorithms or to enhance convergence to a
global minimum (see, e.g., Spall [48], Chin [9], or Yakowitz
[55]), and it would be of interest to explore the applicability
of such techniques to SPSA in a control context. Constraints
are usually handled on a problem-dependent basis (such as the
wastewater example in Section IV-A), but general approaches
with SPSA are described in Sadegh [41] and Fu and Hill [15];
these approaches have yet to be implemented in a control
context. Another open problem is one common to many
applications of function approximators: namely, to develop
guidelines for determining the optimal (at least approximately)
structure for the FA, e.g., optimal number of hidden layers and
nodes in a neural network. Related to this is the problem of
allowing for the FA structure to change if, say, the number
of controller inputs or outputs change (Nechyba and Xu [32]
present an approach for neural networks). Although solving
any of the above problems would enhance the SPSA-based
approach to control, the approach as it currently stands still
has broad applicability to many practical systems where little
is known about the equations describing the system.
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