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Abstract
Model-free data-driven computational mechanics replaces phenomenological constitutive functions by numerical simulations
based on data sets of representative samples in stress-strain space. The distance of strain and stress pairs from the data set is
minimized, subject to equilibrium and compatibility constraints. Although this method operates well for non-linear elastic
problems, there are challenges dealing with history-dependent materials, since one and the same point in stress-strain space
might correspond to different material behaviour. In recent literature, this issue has been treated by including local histories
into the data set. However, there is still the necessity to include models for the evolution of specific internal variables. Thus, a
mixed formulation of classical and data-driven modeling is obtained. In the presented approach, the data set is augmented with
directions in the tangent space of points in stress-strain space. Moreover, the data set is divided into subsets corresponding
to different material behaviour. Based on this classification, transition rules map the modeling points to the various subsets.
The approach will be applied to non-linear elasticity and elasto-plasticity with isotropic hardening.

Keywords Data-driven computing · Tangent space information · Transition rules · Inelasticity · Data science

1 Introduction

The simulation of boundary-value problems in solidmechan-
ics typically combine two different types of equations;
conservation and constitutive laws. The conservation laws
are derived fromuniversal principles containing an axiomatic
character. Whereas the constitutive laws are formulated
through modeling based on experimental observation. Mate-
rial modeling aims to find these phenomenological models
representing the data in the best way possible. Nevertheless,
the process of modeling adds error and uncertainty to the
solutions, especially in systems with high-dimensional com-
plexity.

One approach to overcome this problem is the usage of
machine learning techniques, especially artificial neural net-
works, to model material behaviour [1–3]. The network is
built directly from experimental data to recognize and learn
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the underlying nonlinear relations between strain and stresses
without the construction of an explicit model. The perfor-
mance of this approach is studied well for many kind of
problems including plasticity [4], high-performance mate-
rial [5] andmultiscale analysis [6]. In relation, various neural
network architectures have found applications in prediction
[7–9], modeling [10–13], control and identification design
[14,15] areas of materials science. Despite their good reli-
ability, neural networks rely on hidden layers. Therefore
it is unclear on how much each independent variable is
influencing the dependent variables, especially for higher-
dimensional cases.

The model-free data-driven method by Kirchdoerfer and
Ortiz [16] incorporates experimental material data directly
into numerical calculations of boundary-value problems. The
method is based on a nearest neighbors approach. Particular
in continuum mechanics, the optimization problem consists
of calculating the closest point in thematerial data set consis-
tent with the field equations of the problem i.e. compatibility
and equilibrium. Therefore the data-driven method provides
an alternative formulation of the classical initial-boundary-
value problem completely bypassing the empirical material
modeling step. For a variety of elasticity problems like
non-linear material behaviour [16–20], dynamics [21], finite
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strain [22] and material data identification [23] the approach
is elaborated and the associated convergence properties are
well analyzed. However, problems arise when dealing with
history-dependent data as present in inelastic materials, pro-
vides one uses nearest neighbor clustering only. Therefore,
Eggersmann et. al. [24] include local histories into the data
set, investigating materials with memory, differential mate-
rials and history variables. The data-driven paradigm then
consists of minimizing the distance between the evolving
data set and a time-dependent constraint set.Nonetheless, it is
still necessary to resort to additional models for the evolution
of internal variables. Thus, a mixed formulation is obtained
consisting of a combination of classical and data-drivenmod-
eling. In addition to that a variation of the scheme has been
proposed by Karapiperis et. al. [25] considering multiscale
modeling. The framework emphasizes the parametrization of
material history and the optimal sampling of the mechanical
state space.

Recently, the data-driven scheme was extended by the
tangent space, which improves the learning of the underly-
ing data structure. Ibanez et. al. [26,27] introduce a method
based on amanifold learning approach mapping the data into
a lower-dimensional space to use locally linear embedding.
A similar second order data-driven scheme, formulated by
Eggersmann et. al. [28], uses tensor voting [29] to obtain
point-wise tangent space. This enables the search for addi-
tional states close to the original data.

This paper presents a new approach by augmenting the
tangent space directly into the distance-minimizing data-
driven formulation and classify the underlying data structure
into subsets corresponding to different material behaviour.
Former leads to a much more concise system of equations
and the integration of the tangent space enables interpola-
tion in regions of sparse data sampling, whilst ensuring the
internal states to cohere with the data set. The data subset
classification allows to to deal with loading paths arising in
inelasticity avoiding the reliance of models for the evolution
of history variables. To operate on the data classifications,
transition rules will be defined to map the internal states
of the system to the various subsets. As a consequence, the
extended data-driven paradigm evaluates the closest point in
the transitioned material data subset consistent with the field
equations of the problem and additionally closest to the local
tangential direction. In the present study, we assume that all
needed data is given. Furthermore, the question about data
generation and accessibility from experiments remains open.
This is a crucial topic that we are going to address in further
research.

To provide a general setting, Sect. 2 introduces the
basic definitions and derivation of the classical distance-
minimizing data-driven computing method. Section 3
presents the extension to inelasticity predicated on the exten-
sion of the data sets by tangent space information and the

classification of the data into subsets corresponding to dif-
ferent material behaviour. Additionally transition rules are
defined to map the modeling points to the various data
subsets. Section 4 demonstrates the performance of the sug-
gestedmethod via numerical examples employing non-linear
elasticity and elasto-plasticity with isotropic hardening. At
the end, Sect. 5 summarizes the results and gives recommen-
dations concerning future research topics.

2 Classical data-driven computing paradigm

In the following the ordinary data-driven computational
mechanicsmethodwill be summarized for the readers conve-
nience based on the definitions and formulations in [16,24].
Let � ⊂ R

d with d ∈ N be a discretized system encounter-
ing displacements u = {ui ∈ R

ni }ni=1 subjected to applied
forces f = { f i ∈ R

ni }ni=1, where n ∈ N is the number of
nodes and ni the dimension at node i . The internal state is
characterized by strain and stress pairs ze = (εe, σ e) ∈ R

2de

with de ∈ N being the dimension of stress and strain at mate-
rial point e = 1, . . . ,m, where m ∈ N is the number of
material points. The internal state of the system is subject to
the compatibility and equilibrium condition

εe = Beue, ∀e = 1, . . . ,m, (1)
m∑

e=1

weBT
e σ e = f . (2)

In this case we is a positive weight and Be is a strain-
displacement matrix. Defining z = {(εe, σ e)}me=1, the con-
straints (1) and (2) define a subspace

C :=
{
z ∈

mą

e=1

R
2de : (1) and (2)

}
, (3)

denoted as constraint set with
Ś

being the Cartesian prod-
uct. Since the set is material-independent, the connectivity
between εe and σ e is still missing. Instead of using a func-
tional relationship, the information about thematerial is given
by means of a data set

D :=
{
ẑ ∈

mą

e=1

De

}

with De := {(ε̂i , σ̂ i ) ∈ R
2de }nei=1, (4)

where ne ∈ N being the number of local data points; which
classically consists of experimental measurements or data
achieved from small scale simulations. To define the data-
driven problem the local space R

2de will be metricized by
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means of norms

‖ze‖e := 1

2
Ee‖εe‖22 + 1

2
E−1
e ‖σ e‖22, (5)

with numerical scalar Ee ∈ R
+, typically being of the type of

an elastic stiffness, e.g., a representative Young’s modulus.
One might remark that this metric differs from the metric
proposed in [16]. The corresponding local distance function

de(ze, ẑe) := ‖ze − ẑe‖e (6)

with ze, ẑe ∈ R
2de , can be used to define a distance for z, ẑ ∈

Śm
e=1R

2de in the global space by

d(z, ẑ) :=
m∑

e=1

wede(ze, ẑe). (7)

The distance-minimizing data-driven problem, introduced by
[16], reads

argmin
ẑ∈D

argmin
z∈C

d(z, ẑ) = argmin
z∈C

argmin
ẑ∈D

d(z, ẑ), (8)

i.e. the aim is to find the closest point consistent with the
kinematics and equilibrium laws to a material data set, or
equivalently find the point in the data set that is closest to
the constraint set. The approach as well as the convergence
and well-posedness have been studied on non-linear elastic
material behaviour (cf. [16,18]). In the following the data-
driven paradigm will be extended by the tangent space.

3 Extension by tangent space

In the following, we will suggest an extension of the data-
driven paradigm by including tangent space information in
order to deal with inelastic materials. This is a non-trivial
task, since the same point in stress-strain space might corre-
spond to different material behavior. Whereas it is proposed
in [24] to include local histories into the data set, we will
extend the data set by the tangent space information. For this
purpose, let us introduce the extended data set

Dext =
mą

e=1

Dext
e

with Dext
e := {( ẑi ,C i ) | ẑi ∈ De,C i ∈ R

de×de }nei=1, (9)

where C i represents the total stiffness matrix at (ε̂i , σ̂ i ),
including potential inelastic effects. Thus, the actual inde-
pendent data is given by ((ε̂i , σ̂ i ),C i ), i.e. strain, stress and
stiffnessmatrix.We are fully aware, thatmeasuringC i exper-
imentally might be a formidable task. However, it might very

well be possible combining information on nearby strain and
stress pairs and employing material symmetry. We plan to
elaborate on this in a subsequent paper. For now, we will
simply assume C i to be available.

The tangent space extension allows to operate on the
underlying structure of the phase space of strain and stress
pairs. In the following, we will introduce a way to incorpo-
rate the tangent space directly into the data-driven computing
paradigm.

3.1 Data-driven formulation

Recalling the distance-minimization problem (8), we start
by evaluating the data point ( ẑ,C) = {( ẑe,Ce)}me=1 in the
extended data set closest to the constraint set, i.e.

argmin
( ẑ,C)∈Dext

d(C, ẑ). (10)

Then, each local optimal data point and its corresponding
tangent can then be used to define a map ye : Rde → R

de

with

ye(xe) = σ̂ e + Ce(xe − ε̂e) ∀e = 1, . . . ,m, (11)

parametrizing the tangent space as subset of the phase space.
Thus, the data sets on which the data-driven paradigm oper-
ates can be written as

D� =
mą

e=1

D�
e

with D�
e := {(xe, ye(xe)) | xe ∈ R

de }. (12)

This definition allows to incorporate the local tangent spaces
directly into the distance-minimization formulation, i.e.

argmin
z∈C

d(z,D�), (13)

using the underlying data structure. For this purpose, the
remaining step is the determination of the material state
z = {(εe, σ e)}me=1 ∈ C closest to the data setsD�. For given
optimal data sets � ẑe = (xe, ye(xe)) ∈ D�

e , e.g. from a
previous iteration, the minimization problem (13) can then
be written as

Minimize
m∑

e=1

wede(ze,� ẑe)

s.t. εe = Beue and
m∑

e=1

weBT
e σ e = f .

(14)

Taking the Cartesian product structure of z ∈ Śm
e=1R

2de

into account, it is reasonable to interchange the summation
and the minimization. Therefore it is enough to calculate
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Fig. 1 Visualization of
data-driven method extended by
tangent space. Modeling points
zk+1
e minimize distance to the
tangent space associated with
data points ẑke , respecting
compatibility and equilibrium
constraints. Data points ẑk+1

e
minimize distance to modeling
points zk+1

e . Iterations are
repeated until the local data
assignments remain unchanged
or the global distance is less
than a certain tolerance

min
ze∈R2de

de(ze,� ẑe)

= min
ze∈R2de

‖ze − � ẑe‖e ∀e = 1, . . . ,m, (15)

where we used the definition of the distance function. One
can notice that the minimizing state can be found by evaluat-
ing the material state ze = � ẑe. Enforcing the compatibility
constraint by expressing the material strains in terms of dis-
placements ze = (Beue, σ e) it follows

εe = Beue = xe ∀e = 1, . . . ,m, (16)

σ e = ye(xe) = σ̂ e + Ce(xe − ε̂e) ∀e = 1, . . . ,m. (17)

Substitution of (16) into (17) leads to

σ e = σ̂ e + Ce(Beue − ε̂e) ∀e = 1, . . . ,m. (18)

Now using the equilibrium constraint we have

m∑

e=1

weBT
e (σ̂ e + Ce(Beue − ε̂e)) = f . (19)

Finally reordering leads to a standard linear problemgiven by

(
m∑

e=1

weBT
e CeBe

)
u = f −

m∑

e=1

weBT
e (σ̂ e − Ceε̂e). (20)

Solving the equation system for u and make use of (16) and
(17), we can calculate the closest local material states to the
local data sets ensuring the compatibility and equilibrium
condition.

Since we assumed given optimal data points, it remains to
determine the stress, strain and tangent space pairs ( ẑe,Ce)

in the local data sets Dext
e that result in the closest possible

satisfaction of compatibility and equilibrium. The determi-
nation of the optimal points can be done iteratively. For given
data points {( ẑke,Ck

e)}me=1 at iteration k the modeling points
{zk+1

e }me=1 are calculated using the data-driven scheme. Next,

we calculate the closest local data points in the extended set
to the latest modeling points. The iterations are performed
until the data assignment remain unchanged or the global dis-
tance d(z, ẑ) is lower than a predefined tolerance, we reached
convergence. A visualization of a single algorithmic loading
step is given in Fig. 1 and the detailed extended data-driven
scheme is summarized in Algorithm 1.

Due to the usage of the tangent-space structure, only a
few or even just one iteration are required. This constitutes
a considerable increase of efficiency in comparison with
the traditional data-driven algorithm introduced in [16]. We
realize that the issue about the accessibility of data and its
corresponding tangent space is crucial. Asmentioned before,
we are assuming that all required data is given. The question
about data generation and availability will be addressed in
further research.

3.2 Transition rules

To simulate inelastic material behaviour, the main task is
to capture history dependence. This is achieved by associ-
ating different tangent spaces to data points with different
history. Assuming an underlying data structure, as proposed
in [28], the local material data sets Dext

e are classified into
subsets corresponding to different material behaviour, e.g.
elastic and inelastic:

Dext
e =

⋃̇

p

Dext, p
e with p = {elastic, inelastic}. (21)

Thus, data points with close or even the same strain and
stress values may possess vastly different tangent spaces; in
the elastic case essentially determined by the elastic stiffness
and in the plastic case by the hardeningmodulus. It should be
emphasized that it is easily possible to distinguish experimen-
tally between elastic and plastic material behaviour. Based
on the classification, transition rulesmap themodeling points
to the various subsets.
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Algorithm 1 Extended data-driven solver
Require: matrices {Be}me=1, weights {we}me=1, load f , tolerance tol

Data: data points {( ẑe,Ce)}me=1, data sets {Dext
e }me=1

function DDsolver({Dext
e }me=1, {( ẑe,Ce)}me=1, f )

Set iteration k = 0
{ ẑke ,Ck)}me=1 ← {( ẑe, e)}me=1
while true do

Solve equation system:
(

m∑

e=1

weBT
e C

k
eBe

)
uk+1 = f k+1 −

m∑

e=1

weBT
e (σ̂

k
e − Ck

e ε̂
k
e)

for e = 1 → m do
εk+1
e = Beuk+1,

σ k+1
e = σ̂

k
e + Ck

e(ε
k+1
e − ε̂

k
e)

end for
for e = 1 → m do

min{de(zk+1
e , ẑk+1

e ) | ( ẑe,Ce) ∈ Dext
e }

end for
if d(zk+1, ẑk+1

) ≤ tol then
{ze}me=1 ← {zk+1

e }me=1

else
k ← k + 1

end if
end while
return {ze}me=1

end function

In the following, a transition mapping is derived for the
case of elasto-plasticity with isotropic hardening. The kine-
matics of elasto-plasticity is governed by a yield condition
of the form

σcom(σ ) ≤ σy, (22)

where σcom(σ ) is a comparison stress dependent on the cur-
rent stress state, e.g. σcom(σ ) = √

3/2 ‖devσ‖ in the case of
von Mises (J2) plasticity, and σy denotes the yield stress, a
material property depending on the loading history in the case
of isotropic hardening. For σcom(σ ) < σy, we have elastic
behaviour, for σcom(σ ) = σy plastic behaviour.

Given values of modeling points {ze}me=1 using the data-
driven Algorithm 1, the transition mapping for material state
e = 1, . . . ,m at time step t + 1 can be formulated as:

1. assign local data set D̃ext
e = Dext, p

e by

p ≡
{
elastic, if σcom(σ e) < σy,e

inelastic, otherwise; (23)

2. if p ≡ inelastic, set new yield stress at σy,e := σcom(σ e);

Algorithm 2 Data-driven transition rules for inelasticity at
time step t + 1
Require: load f , yield stresses {σy,e}me=1

Data: data points {( ẑe,Ce)}me=1,

data subsets {(Dext, elastic
e ,Dext, inelastic

e )}me=1

{ze}me=1 = DDsolver({D̃ext
e }me=1, {( ẑe,Ce)}me=1, f )

for e = 1 → m do
if σcom(σ e) < σy,e then

D̃ext
e ≡ Dext, elastic

e
else

D̃ext
e ≡ Dext, inelastic

e
σy,e = σcom(σ e)

end if
min{de(ze, ẑe) | ( ẑe,Ce) ∈ D̃ext

e }
end for
t + 1 ← t + 2

3. find closest data point {( ẑe,Ce)}me=1 in data set D̃�
e to

modeling point ze by

min{de(ze, ẑe) | ( ẑe,Ce) ∈ D̃ext
e }. (24)

While step 1 maps the modeling points to the correspond-
ing data sets, steps 2 and 3 define a new yield limit and
find the closest data point inside these sets for the next load-
ing increment. These formulations give rise to corresponding
representational scheme in the context of data-driven inelas-
ticity, which are summarized in Algorithm 2.

4 Numerical examples

In this section the performance of the presented data-driven
solver extended by the tangential space information will be
illustrated in two typical benchmark examples considering
the stress analysis of non-linear elasticmaterial and an elasto-
plastic von Mises material with isotropic hardening. Based
on this, we discuss the accuracy and convergence regarding
the number of data points. In this scope,we clarify how to add
noise to a data point and how to calculate the error between
the numerical and the reference solution.

Noisemostly occurs during the collection of data and indi-
cates uncertainties of the measurement. To simulate these
uncertainties in our data sets, we add some random noise
to each data point. Based on this, adding noise to a tensor
A ∈ R

d×d can be done by Anoise = A + n p(A ◦ �), where
n p ∈ [0, 1] denotes the percentage of noise, � ∈ R

d×d is
a random tensor with elements �i, j ∈ [−1, 1] and ◦ is the
element-wise product.

The error between a data-driven solution zk and its cor-
responding reference solution zk,ref shall be calculated by
means of the root-mean-square deviation of strain and stress
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Fig. 2 Discretization and
boundary conditions for a
cylindrical tube under internal
pressure

Fig. 3 RMSD Error of
data-driven solver for normal
and uniform distributed data
points. a Convergence with
respect to data size. b
Dependency of the error on
applied noising for a data set of
size 163 with normal and
uniform distribution. The
shaded areas show the spread of
the error arising from the
different data set realizations

(a) (b)

defined by

RMSD(z)2 =
∑T

k=0 Error(z
k)2

T
, (25)

where T ∈ N is the number of total loading steps,
zke = (εke, σ

k
e) the local data-driven states and zk,refe =

(ε
k,re f
e , σ

k,ref
e ) the local reference states at step k ≤ T . The

error is given by

Error(zk)2 =
∑m

e=1 we‖zke − zk,refe ‖2
∑m

e=1 we‖zk,refe ‖2 , (26)

with ‖ · ‖ given by definition (5).

4.1 Non-linear elastic cylindrical tube under internal
pressure

The first example is the classical benchmark problem con-
sidering a non-linear elastic cylindrical tube under internal
pressure p. Figure 2 illustrates the geometry and the bound-
ary conditions for this particular problem. The tube has
thickness r2 − r1 with inner and outer radii r1 = 1m and

r2 = 2m. Two symmetry planes can be identified and there-
fore the solution domain need only cover a quarter of the
geometry, shown by the shaded area. The domain is dis-
cretized by quadratic triangles.

Modeling the tube as a two dimensional plane-strain prob-
lem, the corresponding material parameters of the reference
solid used for the reference solution and data sets areYoung’s
modulus E = 70 · 103 Pa, Poisson’s ratio ν = 0.3 and elas-
ticity tensor

C = λI ⊗ I + 2μI, (27)

where I is the second-rank identity tensor, I is the symmetric
part of the fourth-rank identity tensor and λ = Eν

(1+ν)(1−2ν)

and μ = E
2(1+ν)

are the Lamé constants. The response is
computed using a non-linear relation

σ (ε) = λ f (tr(ε))I + με + C : ε (28)

with f (x) := c1 arctan(c2x), parameters c1 = 3.0 · 10−2,
c2 = 1.0 ·102. For the data-driven computation two different
types of data distributions are investigated. The first data set
is created by a zero-mean normal distribution with a stan-
dard deviation of 0.01 and the second data set is created by a
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(e) (f)

(c) (d)

(a) (b)

Fig. 4 Comparison of stress components σxx (a, b), σyy (c, d) and σxy (e, f) in [Pa] between the reference model (left) and the data-driven algorithm
(right) based on a normal distribution of size 163
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Fig. 5 Discretization and boundary conditions for a rectangular plate with a circular hole under loading

Fig. 6 Geometry and discretization of an example virtual test of a plate with random holes to generate suitable data sets

uniform distribution within [−0.02, 0.02] for strains in each
direction. The corresponding local tangents C are calculated
analytically using equation (28) and enduedwith some noise.
Finally, the simulation of problem in Fig. 2 is performed by

applying a pressure p(t) = 5 · 104√
3

log

(
r2
r1

)
· t progres-

sively increased with 100 incremental steps using a constant
normalized time step of �t = 1. Due to the random nature
of the data distribution, each simulation returns a different
error. To cover a wide spectrum of the errors produced, we
run 100 simulations corresponding to independent realiza-
tions of both, normal and uniform distribution.

The error plot in Fig. 3a shows a linear rate of convergence,
which corresponds to the data-driven convergence analysis
of elastic problems in [16]. Figure 3b shows the dependence
of the error from noising ranging from 1% to 10% of the
maximum values of strains and stresses applied to the vari-

ous data sets. The shaded areas show the spread of the error
arising from the different data set realizations used in the
independent simulation runs. Note, that apparently both data
sets realizations, normal and uniform distribution, yield simi-
lar results and convergence performances. Figure 4 illustrates
the occurring stress components σxx , σyy and σxy in the non-
linear elastic cylindrical tube under pressure. In addition, it
compares the stress distribution produced by the non-linear
reference model and the data-driven paradigm based on a
normal distribution of size 163.

4.2 Elasto-plastic plate with a circular hole

This example illustrates the performance of the data-driven
method extended by transition rules by considering an elasto-
plastic von Mises material with isotropic hardening for the
boundary value problem in Fig. 5. The plate with a hole has
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(a) Reference solution

(b) Data-driven solution

Fig. 7 VonMises stress distribution at maximum loading at each Gaussian integration point using a J2-plasticity model and b data-driven algorithm

the dimensions of � = 1m, h = 0.2m and r = 0.05m, is
clamped at its left edge and subjected to a uniform vertical
load q at its right edge. The applied load increases from 0
to 1.8 · 107 Pa, decreases to 0 and then increases again to
2 · 107 Pa, using a constant normalized time step of �t = 1.

Thematerial parameters of the reference solid used for the
reference solution and data sets are Young’s modulus E =
200 · 109 Pa, Poisson’s ratio ν = 0.3, isotropic hardening
modulus H = E/20, initial yield stress σy0 = 250 · 106 Pa
and elasticity tensor given by

C =
(

κ − 2

3
G

)
I ⊗ I + 2GI, (29)

where I is the second-rank identity tensor, I is the symmetric
part of the fourth-rank identity tensor and κ = E

3(1−2ν)
and

G = E
2(1+ν)

are the bulk and shear moduli. The response is
computed using a J2-plasticity model based on an iterative
return mapping algorithm embedded in a Newton-Raphson
global loop restoring equilibrium.

Following [24], a virtual test employing the geometry
depicted in Fig. 6 is used to generate an accurate coverage
of suitable local material states and loading paths of various
set sizes. As mentioned before, the corresponding tangents
are assumed to be given and therefore calculated analytically
using the plasticity model. To ensure uncertainties we endure
the total stiffness matrices with some noise.

Figure 7 shows the data-driven solution at the maximum
loadingmagnitude using a data sample containing 104 points.
The convergence of the maximum displacement to the ref-
erence displacement based on a J2-plasticity model can be
seen in Fig. 8a. Moreover, Fig. 8b confirms a linear conver-
gence rate towards the reference solution by increasing the
number of data points. For better representation, the conver-
gence of the displacement is shown for only one virtual test.
However, the convergence of the error is shown for various
virtual tests leading to a deviation visualized by the shaded
area.

5 Conclusions

Wepresent an approach extending themodel-free data-driven
computing method of problems in elasticity of Kirchdoerfer
and Ortiz [16] to inelasticity. The original method uses near-
est neighbor clustering and therefore challenges arise dealing
with history-dependent data. This issue is treated in this work
by extending the formulation by including point-wise tan-
gent spaces and classifying the data structure into subsets
corresponding to different material behaviour. Based on the
classification, transition rules are defined to map the mate-
rial point to the classified data subsets, which incorporates
with the idea that data points are connected by an under-
lying structure to each other. Additionally, minimizing the
distance to local tangent spaces ensures data point connectiv-
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Fig. 8 Convergence property of
the extended data-driven method
using transition rules for
elasto-plastic material
behaviour. a Maximum
displacement (vertical
displacement of lower right
vertex versus traction (resultant
load of right edge) for different
data resolution. b RMSD Error
for each data resolution. The
shaded area shows the deviation
of the error arising from
different independent virtual
tests

(a)

(b)

ity and enables interpolation in regions lacking information
of data. Furthermore, the presented scheme can be easily
applied to non-linear elasticity as well, noticing that the
resulting system of equations of the minimization problem is
reduced, leading to greater efficiency. A numerical example
has been presented to demonstrate the application to data-
driven inelasticity and its numerical performance.

Generally, it can be concluded that improvements in accu-
racy of the presented approach increase for larger data sets

and it correlates with the convergence analysis of data-
driven elasticity. Nevertheless, it should be mentioned that
the ensurance of specific quality of the data such as good
coverage of material states and loading paths constitutes a
critical issue concerning the availability of real experimen-
tal data. Another issue concerns the classification of the data
into subsets corresponding to material behaviour. This could
be done by efficient machine-learning algorithms e.g. spec-
tral or density based clustering. These generalizations of the
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data-driven paradigm suggest important directions for future
research in the area of machine-learning methods, especially
physics-informed neural networks. By defining appropriate
loss-functions, these networks can not only be trained to
satisfy training data but to find optimal solutions for given
physics governing equations. Since the data-driven paradigm
bypasses thematerial modeling step but still relies on solving
governing equations, a coupled formulation of themodel-free
data driven and the physics-informed neural networkmethod
is conceivable.
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