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Model-Free Estimation from Spatial Samples: A 
Reappraisal of Classical Sampling Theory1 

J, J. de Gruijter2 and C. J, F. ter Braak2 

A commonly held view among geostatisticians is that classical sampling theory is inapplicable to 
spatial sampling because spatial data are dependent, whereas classical sampling theorv requires 
them to be independent. By comparing the assumptions and use of classical sampling theory with 
those of geostatistical theory, we conclude that this view is both false and unfortunate. In partic­
ular, estimates of spatial means based on classical sampling designs require fewer assumptions for 
their validity, and are therefore more robust, than those based on a geostatistica/ model. 
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INTRODUCTION 

''Classical techniques cannot be used because they are based on independence 
of sample data" (Yfantis et al., 1987). 

These and similar statements have been made time after time in geosta­
tisticalliterature (Russo and Bresler, 1981; Dahiya et a!., 1985; Barnes, 1988). 
Our impression is that many geostatisticians now consider this as an elementary 
fact that need not be reiterated. It seems to be a geostatistical paradigm. But is 
it true? Our answer is: no. The answer has important practical implications for 
spatial sampling, as we will show. 

Independence is indeed a key assumption in classical statistical inference 
(developed by R. A. Fisher and others). But no independence assumptions are 
made in classical sampling theory as developed by J. Neyman and others. This 
is explained in the sequel. 

Modem textbooks on sampling (e.g., Cassel et al., 1977; Krishnaiah and 
Rao, 1988) distinguish two fundamentally different approaches that can be fol­
lowed in spatial inference about population parameters. Following Samdal 
(1978) we refer to these as the design-based and the model-based approach. 
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Synonyms are, respectively, fixed population and superpopulation approach (see 
also Chaudhuri and Vos, 1988). 

The design-based approach uses classical sampling theory. The central no­
tion in classical sampling theory is the population, which is defined as the set 
of all units of interest. In geostatistics, the population is, for example, a region 
A or, more precisely, the set of all possible sampling locations in the region of 
interest. In the design-based approach, a fixed value is associated with each unit. 
Sampling consists of selecting a subset of units. Measuring the characteristic of 
interest reveals the value of each of them. In the extreme case of a sample 
covering the entire population and errorless measurement, there would be noth­
ing more to know. Excluding measurement error, the only variation that plays 
a role in this approach is that resulting from the sampling process. Inference is 
therefore primarily based on the sampling design used: the design defines the 
probability of including any given set of units in the sample and thus enables 
valid inference procedures without any additional assumptions. 

The model-based approach, when applied in a spatial context, boils down 
to the use of geostatistical theory, notably the part of it concerned with pre­
dicting spatial averages. This approach treats the value associated with any given 
location not as fixed but as random. The set of values associated with all pos­
sible locations in the region of interest is thus considered as just one realization 
of an underlying random process. At least some features of this process are 
assumed known and these assumptions are formalized in a geostatistical model. 
This modei plays the role of what is called a superpopulation model in sampling 
theory. If, again in the extreme case, a sample would cover the entire region, 
one realization would be completely known, but uncertainty about the param­
eters in the model would remain. The models used in applications typically 
account for spatial structure, reflecting the fact that measurements at near lo­
cations often tend to yield more similar values than when taken farther apart. 

In the model-based approach, locations need not be selected at random. 
They typically aren't. The only source of stochasticity is then the postulated 
underlying process. In this approach inference is therefore primarily based on 
the model formulated. The nature of the stochasticity involved in the model­
based approach is thus fundamentally different from that in the design-based 
approach where, as we have seen, it originates from a physical sampling pro­
cess. The latter is in our hands. The design-based approach thus requires fewer 
assumptions than the model-based approach. It is therefore advantageous with 
respect to robustness to use the design-based approach whenever possible. 

The purpose of this article is to clarify the distinction between the two 
approaches. Failure in recognising the difference can easily lead to misunder­
standing and fallacy. We discuss the matter in a rather informal way, using the 
terminology and some of the main concepts of Cassel et a!. ( 1977), who de­
veloped a theoretical framework encompassing both approaches. Point-sam­
pling in the plane is used as an illustration. 
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The present paper is wholly confined to inference about population param­
eters such as the spatial mean, and hence is not related to spatial prediction of 
values at individual locations or to contour-mapping. For instance, a spatial 
mean can be predicted in geostatistics by block-kriging with the entire region 
of interest as a single block. 

A CLOSER LOOK AT THE DESIGN-BASED AND THE MODEL­
BASED APPROACH 

To clarify the difference between the design-based and the model-based 
approach we give a hypothetical example using planar point-sampling. Suppose 
an errorless measurement of a quantity z is taken at n points in a region A. The 
values obtained will be denoted by z(xJ, where X; is the vector of coordinates 
of the i1

h sampling point. Either the value or the coordinates (or both) may be 
random variables. To distinguish between random and fixed components we 
use the convention to write random variables in uppercase and nonrandom in 
lowercase. 

In the design-based approach, the n sample points are randomly selected 
according to a sampling design p, and the values are fixed. The variables in­
volved can thus be written as z (X;) ( i = 1, ... , n). They represent random 
variables because the locations (X;) are random. Whether z(X;) and z(Xi) for 
i * j are stochastically independent or not is completely determined by the 
sampling design and not by the spatial variation in A. 

This simple fact seems to have been overlooked by some users of geosta­
tistical techniques. Specifically, if measurements are taken at locations which 
are selected at random and also independently from each other, the correspond­
ing stochastic variables are always mutually independent, not by model-as­
sumption but by design of the observational process. In the example this could 
be verified empirically by repeated Simple Random Sampling with n = 2 (i.e., 
by selecting independently two points from the uniform probability density over 
A), thus producing a long series of pairs of values. If the series is long enough, 
the scatter diagram of the first value against the second will show no depen­
dency, regardless of the spatial variation in A. Dependence between variables 
in the design-based approach need not be disregarded: it can be avoided. 

Suppose that the quantity of interest is the spatial mean: 

m(A) = t z(x) dx It dx ( l) 

The usual estimator of m(A) in combination with Simple Random Sampling 
(srs) is the unweighted sample mean, 

1 n 

Tum=- ~ Z (XJ 
n i=I 

(2) 
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The sampling strategy (srs, Tum) is said to be p-unbiased, since 

(3) 

where EP denotes expectation over repeated sampling under the given design. 
Because of this p-unbiasedness, the p-MSE of Tum equals its p-variance (e.g., 
Cochran, 1977): 

EP [Tum- m(A)]
2 

= VP (Tum) = v(A)jn 

where v(A) denotes the variance between points in A, defined as: 

v(A) = t [ z(x) - m(A) ]
2 dxj t dx 

(4) 

(5) 

In the terminology of classical sampling theory, the set of all locations in 
region A is the population of interest. The locations are termed the units of this 
(infinite) population; the spatial mean m (A) and the spatial variance v (A) are 
parameters of this population. 

To increase efficiency and/or to facilitate the fieldwork, other sampling 
designs may be called for. The formulae given here for Simple Random Sam­
pling can be easily generalized to other classical sampling designs, such as 
Stratified Random Sampling (Cochran, 1977), which also enable model-free 
inference. 

The model-based approach starts with a random function ~ that generates 
random values over A. Sampling at fixed points thus yields in our notation the 
random variables Z (X;) (i = 1, . . . , n). The uppercase for Z stresses that the 
values are random; the lower case for X; that the locations are fixed. Generally, 
Z(x;) and Z(x1) fori =F j are stochastically dependent as determined by the 
random function ~, which is partly specified by the assumed geostatistical model. 

Suppose that ~ is second-order stationary in A. This means that E~Z(x) 
exists and does not depend on x, and that Cov[Z(x), Z(x + h)] exists and 
depends only on h (see Myers, 1989, for a discussion of this and other forms 
of stationarity used in geostatistics): 

E~ Z(x) =It (6a) 

Cov[Z(x), Z(x +h)] = E~ [Z(x) · Z(x +h)] - ~-t 2 (6b) 

= C(h) 

where E~ denotes expectation over realizations from ~. Suppose further that the 
model mean It is unknown and that the covariance function C (h) is known, 
with model variance C(O). In applications, the covariance function or its equiv­
alent, the semivariogram function, usually has to be estimated from the data 
too, but this is immaterial in the present discussion. 
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In the model-based approach, inference about central tendency can be di­
rected to at least two different target quantities: (a) the model mean 11- of Eq. 
6a, or (b) the spatial mean M(A), defined as, 

M(A) = tz(x)dx/Ldx (7) 

The model mean is fixed and can only be estimated. The spatial mean, however, 
being the mean of a realization from ~, is in this approach a random variable 
and can be predicted. 

The quality criterion often used in model-based inference is the ~-MSE. 
Applied to any estimator P, of the model mean, this is defined as 

(8) 

Minimizing this criterion while confining P, to linear combinations of the sample 
data leads to the well-known ~-BLU estimator ii = A~ Zs with 

"~ = ( 1' c; 1 1 ) -
1 

1 ' c; 1 
( 9 ) 

where A~', Zs, and 1, respectively, denote the vector of optimal weights, the 
vector of Z-values at the sample points, and the vector of one's (all n-dimen­
sional if the sample size is n), and Cs denotes the corresponding n X n matrix 
of covariances between the sample points. The ~-variance of ii is: 

v~ ( J1) = ( 1' c; 11) -l ( 10) 

Similarly, the ~-BLU predictor of M(A) is another weighted mean, Twm 
= "A2Z5 , now with weights 

( 11) 

where Cs.A denotes then-dimensional vector of mean covariances between each 
sample point and all points in A. Twm has variance 

(12) 

where CA,A denotes the mean covariance between all pairs of points in A. Both 
ii and Twm are ~-unbiased because, for any given set of sample points, 

E~ (!1- 11-) = E~ [Twm- M(A)] = 0 (13) 

As demonstrated by Corsten (1989), explicit expressions as above for the 
BLUE, BLUP, and their variances can be obtained as Generalized Least Squares 
solutions of the corresponding regression problems. This avoids the use of La­
grange multipliers. The same expressions can also be obtained by substitution 
of the Lagrange multipliers in the usual formulae (in, e.g., Matheron, 1960, 
Sees. 3-4; Joumel and Huijbregts, 1978, Ch. V). 
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If not only the weights, given the locations, but also the locations them­
selves are to be optimized with respect to the ~-MSE criterion, this typically 
leads to purposive sampling rather than some form of random sampling. The 
optimal design ( p ~) for estimating JJ- will differ in general from the optimal 
design ( p M) for predicting M (A). It is important to note here that the strategy 
(PM• Twm) is ~-unbiased but notp-unbiased, whereas, e.g., (srs, Tum) and (srs, 
Twm) are both ~-unbiased andp-unbiased for M(A). 

The example illustrates points that are relevant to the choice of a sampling 
strategy. 

1. Model-based inference may be directed at two different types of quan­
tities (in our example, model means and spatial means) which differ in inter­
pretation, optimal design, and optimal estimator/predictor, and which have dif­
ferent variances (Eqs. 10 and 12). Model quantities may be of interest in process­
oriented studies, whereas spatial means are more relevant to inventory studies. 
It is important to be entirely clear about what type of quantity the study is aimed 
at. 

2. Stochastic dependence or independence is not a property of any popu­
lation or, in our case, of any region. It can be a property of a set of variables 
and is either induced by a sampling design or implied by a model. Confusion 
and misunderstanding about independence may have reached undesirable pro­
liferation in geostatistical literature. Misleading statements in this respect are, 
for instance: 

The conventional statistical approach to describe variability of soil hydraulic properties 
treats the observations of a given property as being statistically independent regardless 
of their spatial position. (Russo and Bresler, 1981) 

In Part I (Dahiya et al., 1984a), spatial variability of some nutrient constituents, viz. 
N03 , K, Mg, and organic C, of a loess soil field was evaluated by applying classical 
statistical analysis (i.e., probability density function, mean, and variance). An implicit 
assumption in that analysis is that the observations of a given soil property are indepen­
dent of one another regardless of their location in the field. (Dahiya et al., 1985) 

The classic development of nonparametric tolerance intervals begins with an assumption 
of independent, identically distributed random variables. This is unrealistic for the geo­
logic environment-in general, geologic site characterization data are not independent. 
(Barnes, 1988) 

The truth is that the design-based approach with its classical sampling the­
ory cannot be dismissed for invalidity of model assumptions because it hasn't 
any, but the model-based approach may. 

3. The selection of a sampling strategy is primarily the selection of a qual­
ity criterion (Siimdal, 1978). Such a criterion may relate to different sources of 
stochasticity: a sampling design or a model of the spatial variation or both. 
(Expressions like "minimum variance" and "unbiasedness" may therefore be 
ambiguous when used without further qualification.) For example, if the ~-MSE 
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criterion is adopted, a model-based strategy will be chosen. On the other hand, 
if p-unbiasedness is judged necessary, a design-based strategy with some form 
of random sampling will be the solution. 

We doubt whether users of results from geostatistical methods are gener­
ally aware of the fact that ~-unbiasedness is only an "internal" guarantee in­
asmuch as it relates to a model, not to the particular region investigated. It 
therefore covers by no means the consequences of biased sampling as might 
arise, for instance, from selecting locations with expectedly high (or low) values 
or with best accessability, or from interference of a regular sampling pattern 
with cyclic variation in the region. 

Such sampling will bias the results of any subsequent inference to an un­
known degree. This is of special concern in the context of quality control and 
legislation with regard to natural resources. 

CONCLUSION 

By ruling out classical sampling theory for its supposed invalid assumption 
of independence, the choice of strategies in spatial sampling is improperly nar­
rowed to those that are model-based. The design-based and model-based ap­
proaches clearly have their own pros and cons. Design-based strategies are in­
applicable if for some reason probability sampling is impracticable. The model­
based approach is inapplicable if reliable identification of a model is prevented 
by lack of data. 

If both approaches are practicable, the primary choice to be made is that 
of the quality criterion to judge alternative strategies. In practical terms, one 
type of criterion relates to what would happen if sampling is repeated in the 
same region, but with other sampling configurations. This type leads to design­
based strategies. The other type of criterion relates to repeated sampling with 
the same configuration, but in other regions. This yields model-based strategies. 
Geostatistical models may form a natural basis for inference in situations where 
part of the region is inaccessible, or measuring has been censored or impaired 
by systematic error (see Laslett and Sandland, 1989). Furthermore, if data are 
available from the vicinity of the region these can be used via the model-based 
approach, as in block-kriging. This is especially relevant if the region is sparsely 
sampled. 

The introduction of randomness in a sampling design may lower its effi­
ciency compared to the optimal model-based strategy when the model is correct 
and the true covariance function is known. However, this loss of efficiency can 
often be reduced by choosing sensible restrictions on the randomization of the 
sample locations (e.g. by stratification of the region). Much of classical sam­
pling theory is devoted to this. The remaining loss might then well be a worth­
while premium for robustness against model errors and for p-unbiasedness. 
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Moreover, model-based strategies depend on estimated covariances or varia­
grams in practice and therefore will not be optimal either. 

In soil science the design-based approach to estimate population parame­
ters has been succesfully practicised for many decades. Webster (1977) dis­
cussed the usefulness of various sampling designs, including nested sampling, 
in pedology. For a study on a specific design with random transects see De 
Gruijter and Marsman (1985). 

Finally, it should be noted that, apart from serving directly as a basis for 
inference and design, spatial models are frequently employed by sampling theo­
rists to evaluate design-based strategies. This hybrid approach uses quality cri­
teria of the ~p-type, based on expectations over repeated sampling under p and 
realizations from~. See Cochran (1946), Quenouille (1949), Das (1950), and 
Matern (1960) for early examples. Diggle and Ter Braak (1982) worked out 
specific cases in ecology. We believe that the practice of survey sampling could 
greatly benefit from more comparative studies on the qualities of different de­
sign-based and model-based strategies, under various models and model devia­
tions. 
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