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Model-Free Feature Screening for Ultrahigh
Dimensional Discriminant Analysis

Hengjian Cul, Runze LI, and Wei ZHONG

This work is concerned with marginal sure independence feature screening for ultrahigh dimensional discriminant analysis. The response
variable is categorical in discriminant analysis. This enables us to use the conditional distribution function to construct a new index for
feature screening. In this article, we propose a marginal feature screening procedure based on empirical conditional distribution function.
We establish the sure screening and ranking consistency properties for the proposed procedure without assuming any moment condition on
the predictors. The proposed procedure enjoys several appealing merits. First, it is model-free in that its implementation does not require
specification of a regression model. Second, it is robust to heavy-tailed distributions of predictors and the presence of potential outliers.
Third, it allows the categorical response having a diverging number of classes in the order of O(n*) with some x > 0. We assess the finite
sample property of the proposed procedure by Monte Carlo simulation studies and numerical comparison. We further illustrate the proposed
methodology by empirical analyses of two real-life datasets. Supplementary materials for this article are available online.
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1. INTRODUCTION

Variable selection plays an important role in high-
dimensional data analysis. Marginal feature screening becomes
indispensable for ultrahigh dimensional data and has received
much attention in the very recent literature. Various feature
screening procedures have been proposed for linear models,
generalized linear models, and robust linear models (Fan and
Lv 2008; Fan, Samworth, and Wu 2009; Wang 2009; Li et al.
2012). These authors demonstrated that their procedures enjoy
sure screening property in the terminology of Fan and Lv (2008).
Feature screening procedures have been further proposed for
nonparametric regression models in the literature. Fan, Feng,
and Song (2011) proposed a nonparametric marginal screen-
ing procedure for additive models based on B-spline expansion.
Fan, Ma, and Dai (2014) further extended the nonparametric
B-spline method for varying coefficient models and proposed a
marginal sure screening procedure. Liu, Li, and Wu (2014) pro-
posed a local kernel-based marginal sure screening procedure
for varying coefficient models and further established its sure
screening property. The aforementioned model-based screen-
ing procedures perform well when the underlying models are
correctly specified, but their performance may be quite poor
in the presence of model mis-specification. Specifying a cor-
rect model for ultrahigh dimensional data may be challenging.
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Thus, model-free sure screening procedures are appealing and
have been developed by several authors (Zhu et al. 2011; Li,
Zhong, and Zhu 2012; He, Wang, and Hong 2013). Li, Zhong,
and Zhu (2012) developed a sure independence screening proce-
dure based on the distance correlation which is model-free. Its
sure screening property requires subexponential tail probabil-
ity conditions on predictors and response, and it is not robust to
very heavy-tailed data with extreme values. Mai and Zou (2013)
developed a sure feature screening procedures with ultrahigh di-
mensional predictors based on the Kolmogorov distance, but it
is studied only for binary classification problems. Pan, Wang,
and Li (2013) proposed a pairwise sure screening procedure for
linear discriminant analysis with a diverging number of classes
and ultrahigh dimensional predictors. However, it is based on
mean difference and cannot perform well for heavy-tailed data.
This work aims to develop an effective model-free and robust
feature screening procedure for ultrahigh dimensional discrim-
inant analysis with a possibly diverging number of classes.

In this article, we propose an effective sure screening proce-
dure for discriminant analysis. We further study its theoretical
properties and establish the sure screening and rank consistency
properties without assuming the moment conditions on predic-
tors under the settings of ultrahigh dimensional discriminant
analysis with a diverging number of response classes. Our nu-
merical studies show that the proposed procedure has excellent
performance. It enjoys several appealing properties. It is model-
free since its implementation does not require specification of
the regression model. Its corresponding marginal utility may be
easily evaluated without involving numerical optimization.

Due to its nature, the proposed procedure can be directly ap-
plied for continuous response with categorical predictors. This
indeed is also very useful in the genomics-wide association
study (GWAS), in which the phenotypes (i.e., the responses) are
continuous, and the single-nucleotide polymorphisms (SNPs) as
predictors are categorical. Thus, it is also of interest to develop
an effective feature screening procedure for setting in which
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the response is continuous, while the predictors of interest are
categorical. In this article, we further extend our procedure for
such settings. Some further extensions are also discussed in
Section 4.

The rest of this article is organized as follows. In Section
2, we propose a new marginal utility for feature screening and
further study its theoretical properties. In Section 3, we conduct
Monte Carlo simulation studies to examine the finite sample
performance of the proposed procedure. We further illustrate
the proposed methodology by empirical analyses of real data
examples. Section 4 presents some extensions of the proposed
methodology. Technical proofs are given in the Appendix.

2. ANEW FEATURE SCREENING PROCEDURE

2.1 A New Index Based on Conditional Distribution
Function

Let Y be a categorical response with R classes
{y1, y2, ..., yg}, and X be a continuous covariate with a sup-
port Ry. To investigate the dependence relationship between X
and Y, we naturally consider the conditional distribution func-
tion of X given Y, denoted by F(x|Y) = P(X < x|Y). Denote
by F(x) = P(X < x) the unconditional distribution function of
X and F,(x) = P(X < x|Y = y,) the conditional distribution
function of X given ¥ = y,. If F,.(x) = F(x) for any x € Ry

andr =1,2,..., R, then X and Y are independent. This moti-
vates us to consider the index
MV(X|Y) = Ex[vary(F(X|Y))] (2.1)

to measure the dependence between X and Y. The following
proposition provides the properties of the MV(X|Y).

Proposition 2.1. Let Y be a categorical random variable with
R classes {y1, y2,...,yg}and p, =P(Y =y,) > 0forallr =
1,..., R. Let X be a continuous random variable with support
Ryx.Denote F(x) =P(X <x)and F,(x) = P(X < x|Y = y,),
then

(1) MV(X|Y) =Y/, p, [[F(x) = F()PdF(x).
(2) MV(X1Y) =0 if and only if X and Y are statistically
independent.

The proof of this proposition is given in the Appendix. The
results in (1) implies that the MV(X|Y) can be represented as
the weighted average of Cramér-von Mises distances between
the conditional distribution function of X given ¥ = y, and the
unconditional distribution function of X. The second remarkable
property motivates us to use the MV (X|Y) as a marginal utility
for feature screening to characterize both linear and nonlinear
relationships for ultrahigh dimensional discriminant analysis.

Let {(X;, Y;) : 1 <i < n}be arandom sample of size n from
the population (X, Y). Define p, = 1 3" | I{Y; = y,} with I{:}
being the indicator function, F (x) = ,112?:1 I{X; < x}, and
EF.(x)= ﬁz;’:l I{X; <x,Y; =y,}/p,. It is natural to use its
sample counterpart to estimate MV(X|Y) as follows:

__ 1 S . R
MV(X|Y) = ~ SO hIEX) - FXHP. (22
r=1 j=1

To get insights into MV(X|Y), let us consider a simple exam-
ple. Let X be a univariate standard normal random variable and
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generate random variables Z; with k =1,2 by Z; =cX + ¢
and Z, = cX*+ ¢, where ¢ ~ N(0, 1) and ¢ is a constant
to control the signal-to-noise ratio. Then, we equally dis-
cretize each Z; to a categorical variable Y; with four classes.
That is, Y, = I(Zy < qi1) +21(gx1 < Zi < qr2) + 31 (qia <
Zi < qi3) +41(Z > qi3), k = 1,2 where {qi1, qx2, qr3} are
the first, second, and third quartiles of Zj, respectively. Thus,
the response Y} depends on X through a linear term ¢ X, while
Y, depends on X through a quadratic term cX?. We set sam-
ple size n = 200 and ¢ = 0, 0.5, 1, and 2. Note that ¥; and X
are independent for each k = 1, 2 when ¢ = 0. Then, we com-
pute the variance of conditional distribution function of X given
Yy, that is, vary, [F(x|Yy)], for x € [-2, 2] and each c. Panels
(a) and (c) in Figure 1 are boxplots of vary, [F(x|Y})] against
different ¢ values for k = 1, 2, respectively, where the star in-
dicates W(X |Yy). Panels (b) and (d) in Figure 1 demonstrate
how vary, [ F(x|Y,)] with k = 1, 2 varies across x € [—2, 2] for
different c values. It is shown that as the signal-to-noise ratio in-
creases, MV (X|Y) increases. When ¢ = 0, that is, X and Y} are
independent, W(X |Yy) are nearly close to zero; When ¢ > 0,
they are remarkably different above from zero. Consequently,
the MV(X1Y) should be an effective measure to characterize
and strengthen both linear and nonlinear dependence between a
continuous covariate and a categorical response.

2.2 Sure Independence Screening Using MV(X1Y)

We now propose a new model-free sure independence
screening using MV(X1Y) for ultrahigh dimensional discrim-
inant analysis. Let ¥ be the response with discrete support
{vi,y2,...,yg}withR > 2andx = (X1, ..., XI,)Tbethepre-
dictor vector, where p >> n and n is the sample size. Without
specifying a regression model, define the active predictor subset
by

D={k : F(y|x) functionally depends on X; for some y=y,},

and denote by Z =1{1,2,...
subset.

The goal is to select a reduced model with a moderate scale
which can almost fully contain D using an independence screen-
ing method for ultrahigh dimensional discriminant analysis. To
this end, we apply the MV index for each pair (X, Y):

, p} \ D the inactive predictor

wp = MV(X,[Y)

as a marginal utility to measure the importance of X; for the
response, where k = 1, 2, ..., p. Note that w; = Oif and only if
Xy and Y are statistically independent. As a motivation, we can
see that, if the partial orthogonality condition (Huang, Horowitz,
and Ma 2008; Fan and Song 2010) holds, that is, {X; : k €
D} are statistically independent of {X; : k € Z}, then wy is a
naturally effective measure to sperate the active and inactive
predictor subsets because wy; > 0 for k € D and wy, = 0 for k €
7. It also implies that the MV-based variable screening is model-
free in that it is defined through conditional and unconditional
distribution functions and able to characterize both linear and
nonlinear relationships between the response and predictors.
For a random sample {(x;, Y;):1 <i <n}, we can easily
estimate wy by setting & = W(X «|Y) according to Equation
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Figure 1. (a) Boxplot of vary, [ F(x|Y;)] against ¢ with the star indicating the mean; (b) plot of vary, [ F(x|Y,)] against x for different ¢ values;
(c) boxplot of vary, [ F(x|Y,)] against ¢ with the star indicating the mean; (d) plot of vary, [ F(x|Y>)] against x for different ¢ values.

(2.2). Then we propose to use @&y to choose a submodel

D={k:dy>cn", forl <k < p},

where ¢ and 7 are predetermined thresholding values defined
in Condition (C2). In practice, for a given size d < n, one can
select a reduced model:

= {k : @ is among the top d largest of all}.

We refer this procedure to the MV-based sure independence
screening, MV-SIS for short.

Next, we study the theoretical properties of the proposed M V-
SIS. Fan and Lv (2008) and Ji and Jin (2012) demonstrated that
the two-stage procedure combining independence screening and
penalized estimation can outperform an one-step penalized es-
timation approach, such as LASSO. The effectiveness of the
two-stage procedure is guaranteed by the sure screening prop-
erty. That is, all active predictors can be included in the reduced
model with high probability. Thus, we first establish the sure
screening property for MV-SIS with assuming the following
conditions:

(C1) There exist two positive constants ¢; and ¢, such
that ¢;/R, < minj<,<g, pr < MaX|<,<p, Pr < C2/Ry. As-
sume that R, = O(n*) forx > 0.

(C2) There exists positive constants ¢ > 0 and 0 <7 < 1/2

such that mingcpwy > 2cn™".

Condition (C1) requires that the proportion of each class of the
response cannot be either too small or too large. R, = O(n") as-
sumed in Condition (C1) allows the diverging number of classes
of the response, where the subscript n in R, is used to empha-

size R, being allowed to be diverging with the sample size n.
Condition (C2) assumes that the minimum true signal cannot be
too small and it is in the order of n~" which allows the minimum
true signal to vanish to zero as the sample size n approaches the
infinity. Such an assumption is typical in the feature screening
literature (e.g., Condition 3 in Fan and Lv (2008), Condition
(C3) in Wang (2009), Condition (C2) in both Li, Zhong, and
Zhu (2012), and He, Wang, and Hong (2013) etc). The follow-
ing theorem presents the sure screening property of MV-SIS and
its proof is provided in the Appendix.

Theorem 2.1. [Sure Screening Property] Under Condition
(Cl)andforany 0 < xk < 1 — 27, there exists a positive constant
b depending on ¢, ¢y, and c¢;, such that

]P’( max |&; — wi| > an)

I<k<p

<0 (p exp{—bn'"%") 1 (1 4 k) log n}) . (23)
Under Conditions (C1) and (C2), we have that

P(D S D)>1- 0 (s,exp{—bn'~@™ + (1 +«)logn}),

2.4)
where s, is the cardinality of D.

The sure screening property holds for MV-SIS under milder
conditions than those for the SIS (Fan and Lv 2008) and DC-
SIS (Li, Zhong, and Zhu 2012) in that we do not require the
regression function of Y onto x to be linear and it needs little
assumption on the moments of predictors. It is worth noting
that MV-SIS is robust to heavy-tailed distributions of predictors
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and the presence of potential outliers because MV(X|Y) inher-
its the robustness property of conditional distribution function.
Furthermore, the sure screening property also holds for the cat-
egorical response with a diverging number of classes. Thus, the
MV-SIS provides a unified alternative to existing model-based
sure screening procedures for ultrahigh dimensional discrimi-
nant analysis.

According to Theorem 2.1, we know that MV-SIS can handle
the NP-dimensionality log p = O(n*), where o« < 1 — 27 —«
with 0 <7 < 1/2 and 0 < ¥ < 1 — 27, which depends on the
minimum true signal strengthen and the number of response
classes. If R, is fixed, that is, x = 0, then the result of Theorem
2.1 is improved and its first part can be rewritten as

P {lmkax |k — wi| > cn_r} < O(pexp{—bn'~*" +1logn}),
<k<p

for some constant b > 0. In this case, we can handle the even

larger NP-dimensionality log p = O(n®), where o < 1 — 2t

with0 <7 < 1/2.

Remark. Condition (C1) can be relaxed in the way that c; is
allowed to tend to zero in a certain rate. To be specific, we assume
thatcy = O(n~ ") with 0 < n < 2t + «. Under the relaxed con-
dition, the sure screening property remains as essentially same
as before, but the convergence rate becomes relatively slower.
That is,

]P’( max |y — wy| > cn_f>
I<k=p

< O (pexp{—bn'"" 4 (1 + k) logn}).

Then, a smaller NP-dimensionality log p = O(n*) with o <
1 — 2t — k — n is allowed. For the proof, refer to Appendix A
in the online supplement.

Another interesting property for independence screening is
ranking consistency property in the terms of Zhu et al. (2011).
To investigate the ranking consistency property of MV-SIS, we
additionally assume the following condition:

(C3) lim inf{minw, — maxwy} > c3, where c¢3 > 01is a constant.
p—oo  keD kel

It is easily shown that under the partial orthogonality condi-
tion (Huang, Horowitz, and Ma 2008) that w; > 0 for k € D
and wy = 0 for k € Z, Condition (C3) naturally holds. Thus,
Condition (C3) is a relatively weaker assumption than partial
orthogonality condition. It requires the MV index is able to
sperate active and inactive predictors well in the population
level. The following theorem justifies the ranking consistency
property of MV-SIS.

Theorem 2.2. [Ranking Consistency Property] If Conditions
(C1) and (C3) hold for R, log(n)/n = o(1) and R, log(p)/n =
o(1), then lim inf{min®; — maxdy} > 0, a.s.

n—oo  keD kel

Although it requires a more restrictive condition on the differ-
ence between active and inactive signals, Theorem 2.2 demon-
strates a stronger theoretical result than sure screening property.
That is, the sample MV(X,|Y) values of active predictors are
always ranked beyond those of inactive ones with high probabil-
ity. Thus, with an ideal thresholding value, one might separate
the active predictors and inactive predictors.
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3. NUMERICAL STUDIES

In this section, we first assess the finite sample performance
of the proposed MV-SIS by Monte Carlo simulation studies.
Then, we conduct empirical analyses of two real data examples
to illustrate the proposed MV-SIS procedure. Some additional
numerical results are given in the supplementary material.

3.1 Monte Carlo Simulations

We use the minimum model size (MMS) to include all ac-
tive predictors to measure the effectiveness of each screening
approach. In addition, the proportion including a single active
predictor X ;, denoted by P, and the proportion including all ac-
tive predictors, denoted by P,, are computed for a given model
size d = [n/logn], where n is the sample size and [x] denotes
the integer part of x. All numerical studies are conducted using
R code.

Example 3.1. (Ultrahigh Dimensional Linear Discriminant
Analysis) In this example, we consider a linear discriminant
analysis problem with ultrahigh dimensional predictors by fol-
lowing the similar settings in Pan, Wang, and Li (2013). For
each ith observation, the categorical response Y; is generated
from two different distributions: (i) balanced, a discrete uniform
distribution with R categories where P(Y; =r) = 1/R with
r=1,..., R; (ii) unbalanced, the sequence of probabilities
pr=PY;=r)=2[1+ (@ —1)/(R — 1)]/3R is an arithmetic
progression with max;<,<gp, = 2 min;<,<gp,. For instance,
when Y is binary, p; = 1/3 and p, = 2/3. Given Y¥; = r, the ith
predictor X; is then generated by letting X; = u, + &;, where
the mean term u, = (i1, ..., Uyp) € RP is a p-dimensional
vector with rth component w,, = 3 but other components are
all zero, and &; = (&;1, ..., &ip) is a p-dimensional error term.
Here, we consider two cases of the error term: (1) &;; ~ N(0, 1);
(2) &;j ~ t(2) independently for each j =1, ..., p. Note that
the Case (2) makes each predictor heavy-tailed, which is de-
signed to examine the robustness of an independence screening
method. To systematically examine MV-SIS and other competi-
tors, we will consider 2000 predictors and a binary response
with n = 40, and a 10-categorical response with n = 200 for
each case, respectively. That is, (R, n, p) = (2,40, 2000) and
(10, 200, 2000).

First, we compare the performance of MV-SIS with SIS (Fan
and Lv 2008), SIRS (Zhu et al. 2011), DC-SIS (Li, Zhong, and
Zhu 2012), Kolmogorov filter (Mai and Zou 2013), and PSIS
(Pan, Wang, and Li 2013) for the binary response, where X; and
X, are the active predictors. Table 1 summarizes the median
of MMS with its associated robust estimate of the standard
deviation (RSD =1IQR/1.34) in the parentheses, ij withj =1,2
and P, for the given model size d = [n/logn] for each method
based on 500 simulations.

Next, we consider the response with 10 categories, where
X1, Xo, ..., Xy are active. Note that a value of the response Y
is a nominal number, which makes SIS, SIRS, and Kolmogorov
filter unapplicable. However, MV-SIS is proposed for variable
screening with a multiple categorical response. To make DC-
SIS applicable for this problem, we transfer the 10-categorical
response to 9 dummy binary variables, which are together con-
sidered as a new multiple response. Note that Li, Zhong, and
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Table 1. Simulation results for linear discriminant analysis with binary response
Case (1): &5 ~ N(0, 1) Case (2): g ~ 1(2)

Dr Method MMS Py P3 P MMS Py P3 Pa
SIS 2.0 (0.0) 1.00 1.00 1.00 2.5(9.1) 0.79 0.88 0.71
SIRS 2.0 (0.0) 1.00 1.00 1.00 8.0(20.5) 0.71 0.76 0.55

Balanced DC-SIS 2.0 (0.0) 1.00 1.00 1.00 2.0(0.0) 0.99 0.98 0.97
KF 2.0 (0.0) 1.00 1.00 1.00 2.0(0.0) 0.99 0.99 0.98
PSIS 2.0 (0.0) 1.00 1.00 1.00 2.5(9.1) 0.79 0.88 0.71
MV-SIS 2.0 (0.0) 1.00 1.00 1.00 2.0(0.0) 1.00 0.99 0.99
SIS 2.0 (0.0) 1.00 1.00 1.00 5.5(48.8) 0.75 0.75 0.55
SIRS 2.0 (0.0) 1.00 0.99 0.99 17.0(123.3) 0.67 0.64 0.44

Unbalanced DC-SIS 2.0 (0.0) 1.00 1.00 1.00 2.0(1.1) 0.95 0.96 0.92
KF 2.0 (0.0) 1.00 1.00 1.00 2.0(0.7) 0.96 0.99 0.95
PSIS 2.0 (0.0) 1.00 1.00 1.00 5.5(48.8) 0.75 0.75 0.55
MV-SIS 2.0 (0.0) 1.00 1.00 1.00 2.0(0.7) 0.96 0.99 0.95

Zhu (2012) claimed that DC-SIS can be applied for the mul-
tiple response. Pan, Wang, and Li (2013) proposed a pairwise
sure independence screening (PSIS) to deal with the categori-
cal response. PSIS uses |fi, ; — fi,,;| as the marginal signal of
predictor X ; for each pair of classes (71, ) each time, where
f1; denotes the sample average of X;; fori € {i : ¥; =r}. Es-
sentially, we consider max,, -, |fi, j — fir,;| as the marginal
signal of predictor X ;, where r1,7» = 1,2, ..., 10, denoted by
PSIS*. Table 2 summarizes the median of MMS with its as-
sociated robust standard deviation in the parentheses, P; with
j=1,2,...,10and P, for the given model size d = [n/logn]
based on 500 simulations.

In addition, we will compare the postscreening estimation
and prediction performance between PSIS and MV-SIS for the
binary response from a discrete uniform distribution. Here, we
generate p = 2000 predictors and a binary response with dif-
ferent sample sizes n = 40 and n = 80. We replicate each sim-
ulation experiment a total of 500 times. For the rth simulation,
we follows Pan, Wang, and Li (2013) to choose the model size
using the BIC criterion, which uses the equivalence between the
LDA problem and a least squares one in Mai, Zou, and Yuan

(2012). Then, we define the model size (MS), percentage of
correct zeros (CZ), incorrect zeros (IZ), coverage probability
(CP), and the root of the sum squared error (RSSE) as follows,
respectively,

p—1DUD;
P —Sn
CP, = I(D C D), RSSE, = |7} — yll,

DD
Dl

MSV = |D:|7CZr = 3IZr =

where D} is the selected model in the rth replication, s, = 2 is
the cardinality of D, and yp = 1 — o = (3, =3,0,...,0) is
the true difference between two true means, and 7, = &1, — o,
is the postscreening estimator of y; in the rth replication based
on the selected model. Furthermore, to assess the prediction
performance, an independent testing dataset is generated with
the same sample size in the each simulation. The classification
accuracy (CA) of the postscreening estimator is computed in
each simulation. Also the classification accuracy based on the
true means, denoted by CAy, and the ratio CA/CA, is evaluated
for comparison. We report the median of MS with its robust

Table 2. Simulation results for linear discriminant analysis with 10-categorical response

P P P P Ps Pio Pa

(i) Balanced probabilities and Case (1): &;; ~ N(0, 1)

1.00 1.00 1.00 1.00 1.00 0.99 0.99
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00

(i) Balanced probabilities and Case (2): &;; ~ (2)

0.97 0.98 0.99 0.99 0.99 0.98 0.74
0.75 0.75 0.75 0.73 0.76 0.79 0.05
0.99 1.00 1.00 0.99 0.99 0.99 0.95

(ii) Unbalanced probabilities and Case (1): &;; ~ N(0, 1)

1.00 1.00 1.00 1.00 1.00 1.00 0.82
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00

(ii) Unbalanced probabilities and Case (2): &;; ~ #(2)

Method MMS Py P; P3 P

DC-SIS 10.0¢0.0) 1.00 1.00 1.00 1.00
PSIS* 10.0(0.0) 1.00 1.00 1.00 1.00
MV-SIS 10.0(0.0) 1.00 1.00 1.00 1.00
DC-SIS 15.0(21.8) 0.86 0.99 0.99 0.99
PSIS* 362.5(563.6) 0.73 0.75 0.76 0.73
MV-SIS 11.0(3.7) 1.00 1.00 1.00 0.99
DC-SIS 13.0(14.9) 0.82 1.00 1.00 1.00
PSIS* 10.0(0.0) 1.00 1.00 1.00 1.00
MV-SIS 10.0(0.0) 1.00 1.00 1.00 1.00
DC-SIS 126.5(248.3) 0.35 0.90 0.93 0.93
PSIS* 343.5(444.9) 0.68 0.66 0.56 0.58
MV-SIS 13.0(9.8) 0.93 0.98 0.98 0.98

0.96 1.00 0.99 1.00 1.00 1.00 0.22
0.64 0.63 0.60 0.73 0.61 0.67 0.05
0.98 1.00 1.00 1.00 1.00 1.00 0.85
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Table 3. Simulation results for estimation and prediction performance in linear discriminant analysis with binary response with 500 simulations

n Method MS(RSD) CZ(%) 1Z(%) CP(%) RSSE CA(%) CAy(%) RCA
Case (1): & ~ N(0, 1)
40 PSIS 3.0 (2.9) 99.89 0.00 100.00 1.31 95.20 98.41 96.76
MV-SIS 3.0(2.2) 99.91 0.00 100.00 1.16 95.34 98.41 96.90
80 PSIS 2.0 (1.5) 99.94 0.00 100.00 0.70 97.31 98.31 98.98
MV-SIS 2.0 (0.8) 99.95 0.00 100.00 0.62 97.47 98.31 99.15
Case (2): ;5 ~ 1(2)
40 PSIS 6.0 (2.9) 99.76 19.50 65.00 3.65 73.42 89.91 81.81
MV-SIS 5.0(3.1) 99.83 3.00 94.00 2.74 78.92 89.91 87.87
80 PSIS 7.0 (4.4) 99.71 7.00 86.40 2.56 79.17 89.95 88.04
MV-SIS 3.0(2.9) 99.87 0.00 100.00 1.56 84.80 89.95 94.30

standard deviation in the parentheses, and the averages of other
performance measures over all 500 simulations in Table 3.
Both Tables 1 and 2 indicate that the proposed MV-SIS is
superior to other competitors for variable screening in the lin-
ear discriminant analysis. When the error term is heavy-tailed
and the number of the response categories increases, MV-SIS
has much smaller minimum model sizes (MMS) and signifi-
cantly higher probabilities to include all active predictors in the
selected model than other independent screenings. Thus, the
robustness of our MV-SIS is an important feature, which can
make it more useful in practice. The same pattern can be ob-
served from Table 3. MV-SIS has the very close estimation and
prediction performance of PSIS when the error term is normal.
However, when the error deviates from a normal distribution,
PSIS deteriorates while MV-SIS still performs reasonably well.

3.2 Real Data Examples

Example 3.2. Lung cancer data were previously analyzed for
classification between malignant pleural mesothelioma (MPM)
and adenocarcinoma (ADCA) of the lung in Gordon et al. (2002)
and Fan and Fan (2008). There are 12,533 genes and 181 tissue
samples from two classes: 31 in class MPM and 150 in class
ADCA. The training dataset contains 32 of them (16 MPM and
16 ADCA), while the remaining 149 samples (15 MPM and 134
ADCA) are used for testing.

Before classification, we first standardize the data to zero
mean and unit variance. Fan and Fan (2008) showed that their
features annealed independence rules (FAIR) selected 31 impor-
tant genes and made no training error and 7 testing errors, while
the nearest shrunken centroids (NSC) method proposed by Tib-
shirani et al. (2002) chose 26 genes and resulted in no training
error and 11 testing errors. Then, we consider DC-SIS, PSIS,
and our MV-SIS approach (denoted by MV-SIS1) following by
LDA for this ultrahigh dimensional classification problem. Note
that FAIR used the diagonal linear discriminant analysis after
the r-test screening. To make a fair comparison, we add a pro-
cedure combining #-test screening with LDA as well, denoted
by FAIR*. Furthermore, the penalized LDA method (denote by
PenLLDA) proposed by Witten and Tibshirani (2011) and the
sparse discriminant analysis (denoted by SDA) in Clemmensen
et al. (2011) are also implemented in this example for com-
parison. In addition, we combine our MV-SIS with SDA and
consider this two-stage method as another potential approach,

denoted by MV-SIS2. Similar to Example 3.1, the BIC crite-
rion is applied to determining the model size for all competing
methods in this binary classification problem. We summarize
the classification results in Table 4. The MV-SIS followed by
LDA (i.e., MV-SIS1) makes O training error and five testing
errors using only five top genes, and the MV-SIS with SDA
(i.e., MV-SIS2) performs even better than MV-SIS1 and SDA to
achieve the smallest testing errors using only seven genes. Thus,
the two-stage approaches combining MV-SIS with LDA or SDA
are superior to other competitors in terms of classification errors
and the selected model size for this ultrahigh dimensional lung
cancer data.

To further evaluate the prediction performance, we randomly
partition all 181 tissue samples into two parts: the training set
including 100 samples and the testing set of the rest 81 sam-
ples. The above procedures are applied to the training data,
and their performances are evaluated by the classification er-
rors in both training and testing sets. For a fair comparison, we
choose the best model sizes for all methods using the same BIC
criterion. We repeat the experiment 100 times, summarize the
means with associated standard deviations (in the parentheses)
of the training and testing classification errors and the numbers
of selected genes in Table 5, and display their distributions in
Figure 2. In the result, the MV-SIS with LDA method (i.e., MV-
SIS1) performs reasonably well and has both small training and
testing errors using averagely around 12 genes. Among all the
methods, the SDA method classifies the training samples per-
fectly and achieves a small testing error rate. However, SDA
tends to select a considerably large number of genes and thus
may lose some model interpretability. It is worth noting that

Table 4. Classification errors for lung cancer data in Example 3.2

Method Training error ~ Testing error ~ No. of selected genes
NSC 0/32 11/149 26
FAIR 0/32 7/149 31
FAIR* 0/32 7/149 14
PenLDA 0/32 9/149 8
SDA 0/32 6/149 17
PSIS 1/32 34/149 4
DC-SIS 0/32 6/149 7
MV-SIS1 0/32 5/149 5
MV-SIS2 0/32 3/149 7
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Table 5. Performance evaluation for lung cancer data in Example 3.2

Training Testing No. of
Method error(%) error(%) selected genes
NSC 0.87(0.90) 1.86(1.91) 17.52(11.36)
FAIR 3.07(1.32) 3.51(1.93) 13.72(7.37)
PenL.DA 0.88(0.92) 1.95(1.97) 18.95(18.14)
SDA 0.00(0.00) 1.42(1.21) 39.83(2.84)
PSIS 0.06(0.24) 2.14(1.57) 26.49(6.85)
DC-SIS 0.08(0.27) 2.63(2.30) 15.54(12.53)
MV-SIS1 0.15(0.44) 1.77(1.91) 11.99(9.53)
MV-SIS2 0.20(0.40) 1.41(1.10) 11.74(6.71)

the MV-SIS with SDA (i.e., MV-SIS2) can achieve the smallest
testing error rate with a much smaller number of genes. This
further demonstrates the merit of the two-stage approach com-
bining MV-SIS with SDA.

Example 3.3. This human lung carcinomas data was ana-
lyzed by using mRNA expression profiling (Bhattacharjee et al.
2001). There are 12,600 mRNA expression levels in a total
of 203 snap-frozen lung tumors and normal lungs. The 203
specimens are classified into five subclasses: 139 in lung ade-
nocarcinomas (ADEN), 21 in squamous cell lung carcinomas
(SQUA), 6 in small cell lung carcinomas (SCLC), 20 in pul-
monary carcinoid tumors (COID), and the remaining 17 normal
lung samples (NORMAL). Before classification, we first stan-
dardize the data to zero mean and unit variance. To evaluate
the prediction performance of the proposed method, we ran-
domly select approximately 1007% of the observations from
each subclass as the training samples and the rest 100(1 — 7)%
observations as the testing samples, where t € (0, 1).

Note that the aforementioned NSC and FAIR are proposed
only for binary classification problems, thus they are not appli-
cable in this multiple classes discriminant analysis. PSIS, DC-
SIS, and MV-SIS with LDA are applied to the training set and
their performances are evaluated by the testing samples. For the
DC-SIS and MV-SIS (denoted by MV-SIS1) with LDA proce-
dures, the leave-one-out cross-validation is applied to choosing

(a) MisClass.Error for Training Data

(b) MisClass.Error for Testing Data
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the optimal model size for the raining data. Besides, we also
consider the penalized LDA (denoted by PenLLDA) and MV-SIS
followed by SDA (denoted by MV-SIS2) for comparison, and
use the 10-folded cross-validation rather than the leave-one-out
cross-validation to choose the best model size in order to reduce
the computation time. Although SDA can be directly applied
to multiple-class discriminant analysis for a given model size,
searching the best model size for SDA is remarkably computa-
tional expensive for multiple-class ultrahigh dimensional data.
Thus, we use MV-SIS to reduce dimensionality and then follow
by SDA (i.e., MV-SIS2) instead of SDA alone in the example.

Next, we choose T = 0.9, 0.8 and repeat each experiment
100 times. Following Example 3.2, the means of the training
and testing classification errors and the corresponding numbers
of selected genes with their associated standard deviations (in
the parentheses) are reported in Table 6. We can clearly ob-
serve that, although all methods perform reasonably well in
the tumors’ classification, the MV-SIS procedure with LDA or
SDA are significantly better than other methods in terms of
both training and testing classification errors and the number
of selected genes. Specifically, the MV-SIS+SDA (i.e., MV-
SIS2) procedure achieves the best performances using a small
number of top genes. Furthermore, we find that the top genes
selected by MV-SIS are not normally distributed and contain
potential outliers. This observation explains why other methods
perform relatively worse and confirms the robustness feature of
the proposed MV-SIS. This example further demonstrates that
the two-stage approach combing the MV-SIS method with a dis-
criminant analysis is more favorable for ultrahigh dimensional
data in practice.

4. SOME EXTENSIONS

The MV-SIS approach is proposed to screen important predic-
tors for the ultrahigh dimensional discriminant analysis where
the response is categorical, but its applications can be easily
extended to some other settings. In this section, we discuss two
natural extensions of MV-SIS and use simulation studies to show
their excellent performances.

(c) Number of Selected Genes
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Figure 2. Lung cancer data in Example 3.2. (a) Boxplots of classification errors in the training sets over 100 random partitions of 181 samples;
(b) boxplots of classification errors in the testing sets; (c) boxplots of numbers of selected genes.
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Table 6. Classification errors for lung carcinomas data with five
classes in Example 3.3

Training Testing No. of

T Method error(%) error(%) selected genes
PenLDA 21.88(2.24) 21.71(3.87) 25.76(21.04)
PSIS 3.54(0.79) 9.43(5.65) 107.54(15.71)

0.9 DC-SIS 6.85(1.35) 11.81(6.40) 32.08(3.85)
MV-SIS1 3.65(1.15) 7.71(4.99) 20.56(8.02)
MV-SIS2 3.65(1.15) 7.62(5.09) 31.76(10.24)
PenLDA 22.12(2.10) 22.40(4.37) 25.04(21.81)
PSIS 3.08(1.11) 7.90(3.89) 101.88(15.72)

0.8 DC-SIS 6.33(2.16) 13.15(5.32) 32.18(5.39)
MV-SIS1 3.74(1.09) 8.35(4.12) 21.34(7.42)
MV-SIS2 3.74(1.09) 6.70(4.24) 27.20(9.11)

4.1 Genome-Wide Association Studies

First, we can apply MV-SIS to ultrahigh dimensional prob-
lems with categorical predictors. In such situations, feature
screening can be done by using MV(Y|X}), where X; is cat-
egorical for k = 1,2, ..., p. Under Conditions (C1) and (C2),
we can establish the sure screening property and ranking con-
sistency property for @y = MV(Y|X;) with imposing Condi-
tion (C1) on each categorical SNP instead of the response. In
genome-wide association studies (GWAS), modern genotyp-
ing techniques allow researchers to collect genetic data which
usually contain an extremely large number of single-nucleotide
polymorphisms (SNPs). In general, the SNPs as predictors are
categorical with three classes, denoted by {AA, Aa, aa}. In Ex-
ample 4.1, we consider applying the proposed MV-SIS for the
ultrahigh dimensional GWAS problem to identify important
SNPs, and compare its performance with other independence
screening approaches.

Example 4.1. (Genome-Wide Association Studies) To mimic
SNPs with equal allele frequencies, we denote Z;; as the indi-
cators of the dominant effect of the jth SNP for ith subject and
generate it in the following way

1, leU < {1
Zij = 0, ifq <Xij <gqs,
-1, ifX;;>q

where X; = (Xi1,..., Xip) ~ N0, ¥), where ¥ = (0;j)pxp
with p;; = 0.5, i=1,...,n,j=1,..., p, and g and g3
are first and third quartiles of a standard normal distribution,
respectively. Then, we generate the response (some trait or dis-
ease) by

Y =B1Z1+ BoZy 4+ 2B3Z10 + 2BaZro — 2B5|Z 10| + &,

where B; = (—1)Y(a +|Z|) for j=1,...,5, where a=
2logn//n, U ~ Bernoulli(0.4) and Z ~ N(0, 1), the error
term & follows N(O, 1) or 7(1). There are five active SNPs,
that is, Zy, Z», Z10, Z20, and Zgp, for the response. The first
four active SNPs are linearly correlated with the response Y,
while the SNP Zoy and Y are nonlinearly correlated. It is inter-
esting to note that the absolute value of dominant effect | Z;¢o| is
the corresponding additive effect in genetics. Here, we consider
five different independence screening approaches: SIS, DC-SIS,
SIRS, RRCS (Li et al. 2012), and MV-SIS, and set n = 200 and
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Table 7. Simulation results for Example 4.1 —GWAS model

& Method MMS Pf Pé PfO PEO Pfo() Pa

SIS 1058.0(786.9) 0.96 0.97 1.00 0.99 0.02 0.02
DCSIS 10.0(40.1) 0.96 0.95 1.00 0.99 0.79 0.72
N(,1) SIRS 1074.0(834.8) 0.94 0.95 1.00 0.98 0.03 0.02
RRCS  1031.0(801.6) 0.96 0.96 1.00 0.99 0.03 0.03
MVSIS 8.0(34.3) 0.96 0.94 0.99 098 0.89 0.78
SIS 1427.0(530.4) 0.26 0.28 0.42 0.42 0.02 0.00

DC-SIS  124.0(284.8) 0.78 0.75 0.92 0.91 0.53 0.32
t(1) SIRS 1050.0(672.5) 0.86 0.84 0.97 0.96 0.02 0.01
RRCS 993.0(725.5) 0.87 0.84 0.98 0.96 0.02 0.01
MV-SIS  46.0(139.1) 0.79 0.79 0.94 0.94 0.79 0.46

p = 2000 and repeat each experiment 500 times. We summarize
the simulation results for d = [n/log(n)] in Table 7.

According to Table 7, when the error follows a normal dis-
tribution, all five independence screening are able to select the
first four active SNPs effectively because they are linearly cor-
related with the response. However, only DC-SIS and MV-SIS
can choose Zjoo which nonlinearly contributed to Y. When the
error is generated from #(1) which is largely heavy-tailed, it is
not surprising that all independence screening methods perform
worse than before. However, the performance of MV-SIS is still
the best one. Thus, we can conclude that MV-SIS can effectively
select active categorical SNPs which are linearly or nonlinearly
correlated with the response.

4.2 Nonparametric Additive Models

In this section, we further consider the application of MV-
SIS for an ultrahigh dimensional nonparametric additive model
to evaluate MV-SIS. Although both the response and predic-
tors are generally continuous, we can discretize each predictor
X into a categorical variable to make MV-SIS applicable. To
be specific, we can define X7 using percentiles {zi, ..., 7x,}
of X; by Xl*] = kl(tx < Xij < Tk41), where I(-) is an indica-
tor function, i =1,...,n, j=1,...,p, k=1,..., K, with
K, = O(n'/3). Then, we can apply MV-SIS to the discretized
predictors and use MV(Y | X ;f) as the marginal screening utility
to measure the importance of X ;. In practice, the sample size in
each discretized class cannot be small to ensure an accurate es-
timation of conditional distribution function. On the other hand,
the number of classes cannot be small to retain as much infor-
mation of the continuous variable as possible. According to our
empirical experiences, we suggest that the number of samples in
each class should be greater than 20 to obtain a decent estimator
of the MV index. One can also consider the number of classes as
a tuning parameter and apply the cross-validation technique to
choose an optimal number of classes. The following simulation
example numerically examines the performance of the proposal.

Example 4.2. (Nonparametric Additive Model) Following
Meier, Geer, and Buhlmann (2009), we define the following
four functions

fix) = —sin2x), fr(x) = x* —25/12, f5(x) = x,
fa(x) = e —2/5 - sinh(5/2).
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Table 8. Simulation results for Example 4.2—nonparametric additive

model
3 Method MMS Py P; P3 Pi P.
SIS 1084.5(690.3) 0.17 0.02 1.00 1.00 0.00
NIS 4.000) 1.00 099 1.00 1.00 0.99
DC-SIS 50.5(55.2) 047 0.79 1.00 1.00 0.37
N(,1) SIRS 1178.0(668.6) 0.15 0.01 1.00 1.00 0.00

QaSIS 5.04.5) 099 093 099 1.00 091
RRCS 1112.5(673.9) 0.16 0.03 1.00 1.00 0.00

MV-SIS 4.0(1.5) 099 095 1.00 1.00 0.95
SIS 1508.0(538.1) 0.04 0.01 044 0.51 0.00
NIS 1056.5(932.2) 0.25 0.15 0.22 0.37 0.08
DC-SIS ~ 205.0(280.1) 0.20 0.33 0.96 0.96 0.07
t(1) SIRS 1222.5(645.5) 0.12 0.01 1.00 1.00 0.00

QaSIS 16.037.7) 093 0.79 093 1.00 0.69
RRCS 1212.0(688.1) 0.14 0.01 0.99 1.00 0.00
MV-SIS 11.0(24.8) 093 0.81 0.99 1.00 0.75

Then we consider the following additive model

Y =3f1(X1) + f2(X2) — L5 f3(X3) + fa(X4) + &,

where the predictors are generated independently from
Uniform[—2.5, 2.5]. To examine the robustness of each inde-
pendence screening approach, we consider two cases for the
error term & = (&1, ..., &,): (1) & ~ N(0, 1); (2) & ~ t(1) for
i=1,2,...,n. In this example, besides the five approaches
in Example 4.1, we further consider the nonparametric inde-
pendence screening (NIS) proposed for sparse ultrahigh dimen-
sional additive models by Fan, Feng, and Song (2011), and the
quantile-adaptive sure independence screening (QaSIS) with
quantile T = 0.5 proposed by He, Wang, and Hong (2013). We
setn = 200 and p = 2000 and repeat each experiment 500 times
for each error case. In our simulation, we discretize each pre-
dictor into a four-categorical variable using first, second, and
third quartiles as knots for our MV-SIS. Simulation results are
reported for the given model size d = [n/log(n)] in Table 8.

Table 8 indicates that MV-SIS performs very well after dis-
cretizing each predictor. When the error term is normal, NIS
performs best followed by MV-SIS and QaSIS. Although DC-
SIS may detect the nonlinearity, it occasionally misses X; and
X,. The probable reason is the distance correlation between
Y and the first two predictors are relatively weak. When the
error term follows Cauchy distribution, which makes the data
heavy-tailed and generates some extreme points, NIS quickly
deteriorates and yet QaSIS performs well to detect the true sig-
nals. On the other hand, MV-SIS still can effectively select the
active predictors and performs even better than QaSIS, which
presents its robustness merit again.

5. DISCUSSION

In this article, we have developed a new sure screening proce-
dure for ultrahigh dimensional discriminant analysis, in which
the response is allowed to have a diverging number of categories.
We further established the sure screening property and the rank-
ing consistency property of the proposed procedure without
assuming any moment condition on predictors. The proposed
procedure has several appealing properties. It is easily imple-

Journal of the American Statistical Association, June 2015

mented, and it is robust to model specification (i.e., model-free)
and robust to outliers or heavy tails of the predictors. The pro-
posed procedure is also highly useful for analysis of data col-
lected in GWAS, in which the phenotype may be multivariate
continuous, while the predictors are categorical SNPs.

In the numerical studies, we applied linear discriminant analy-
sis on the selected model by MV-SIS in the second-stage study.
The linear discriminant analysis methods are widely used in
practice and did perform reasonably well in our real data analy-
sis. However, it is also interesting to propose a model-free and
robust discriminant analysis after a model-free variable screen-
ing approach. This is out of scope of this work, but is an inter-
esting topic for future research. Some work have been done on
robust discriminant analysis. Related references include regu-
larized discriminant analysis by Friedman (1989), robust LDA
based on S-estimators by He and Fung (2000), penalized linear
discriminant analysis by Witten and Tibshirani (2011), semi-
parametric sparse discriminant analysis by Mai and Zou (2014)
and among others.

APPENDIX

Proof of Proposition 2.1. Note F(x|Y) = P(X < x|Y) is arandom
variable of Y. O

R

Ey[F(x[Y)] =) P(X <x|¥ =y)P(Y =y,)

r=1

R

=Y PX<x,¥=y)=PX <x) =F(),
r=1
R

vary [F(x|Y)] = Y [P(X < x|Y = y,) — FOOPP(Y = y,)

r=1

R
= plFx) — FOP,

r=1
where p, = P(Y = y,). Then
MV(X|Y) = Ex[vary(F(X|Y))]

R
=D / [F,(x) = FQ)PdF (x).
r=1

The second property can be directly implied by the first one. Because
the result that X and Y are statistical independent is equivalent to
that F.(x) = F(x) forany x € Ry andr =1, 2, ..., R, which is also
equivalent to Z,i] pr [IF.(x) — F(x)]*dF(x) = 0 given p, > 0 and
F(x +68)— F(x — ) > 0 forany 6 > 0 and x € Ry. This completes
the proof.

To prove Theorems 2.1 and 2.2, we need the following lemmas.

Lemma A.l. Hoeffding’s Inequality Let X1, ..., X,, be independent
random variables. Assume that P(X; € [a;,b;]) =1 for 1 <i <n,
where a; and b; are constants. Let X = n~! Z:.':l X;. Then the follow-
ing inequality holds
2n’t?

Zfl:l (bi — a;)?

where ¢ is a positive constant and E(X) is the expected value of X.

P(X — E(X)| Zt)SZexp{— } (A1)

LemmaA.2. Bernstein’s Inequality (van der Vaart and Wellner 1996,
Lemma 2.2.9) Let X, ..., X, be independent random variables with
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bounded support [—M, M] and zero means, then the following inequal-
ity holds
2

]P’(le ++Xn| > 1) SZCXP{—W

} . (A2)

forv > var(X; +--- 4+ X,).

We need the following notations for next lemma. Let Fj ,(x) =
P(Xy <x|Y =y) and F(x)=P(Xy <x), for 1 <k=<p, r=
1,..., R and x € Ry. Denote

R
fo= folX V) =3 1Y = y,) / [Fe, () — Fe)PdF(x);
r=1

fr = (X Y) = [Fi,(X0) — F(X))
fr= X Y)=1{Y =y}
Jox = for(Xp, Y) = I{Xy < x};
fro = fraXi, V) = I{X, < x, Y = y,}.
Let {(Xy,Y:)):1<i<n} be a random sample from a popula-
tion (Xy, Y). Define fO = f(Xiu, Yo, [ = foXix, Yi), fO =
Y, =y}, for=HXu <x}, £ =Xy <x,Y =y}, for i =

1,...,n.

Lemma A.3. For any € € (0,1) and 1 < r < R, the following in-
equalities are valid for univariate X,

1 <N - _
P{|- D _Ef|>et <2 —2ne’l; A3
n;]‘, f _e}_ exp{ ne} (A.3)
l n .
P foo(’)—Efo ze} SZexp{—Znez}; (A.4)
n i=1
P 1Xn:f@—Ef S P B S P
niz T 2p +e/3)]
1 n .
Pysup | =3 fox = Efos ze}52(n+1)exp{—2n62};(A.6)
XelR x i=1
1 &
Pisup |= ) fO—Ef|>e€
xeRy n; '
ne?
<2n+1 - A7
<2(n+ )eXP{ 2(pr+6/3)} (A7)

where Eh stands for Eh(Xy, Y) for a function h(Xy, Y) with finite
expected value.

Proof. Since |/ (Xe, V| = [Fi, (X)) — FXOP < 1 and
X, DI =125, 1Y = 3} [1F, () — ROPAF(x)| < 1, we

apply Hoeffding’s inequality to obtain the inequalities (A.3) and
(A4). 0

Since £ = I{Y; = y,} fori =1, ..., n, then ) ~ Bernoulli(p,)
with Ef" = p, and £V + -+ f ~ Binomial(n, p,), which im-
plies var(f" 4 --- 4+ f") = np,(1 — p,) < np, and | £ — p,| < 1.
Thus, by Bernstein’s inequality, we have

. }

1 - @) _ —
P{an, EfrZG}—P{
n2€2
2(np, + ne/3) }

i=1
< 2exp {—

< 2exp{—ne’/Q2p, +€/3))}.

n

Z (fr(i) - pr)

i=1

The inequality (A.5) is proved.

Note that | f\) — Efy.| = [I{Xi < x} — Fu(x)| < 1, then we ap-
ply Hoeffding’s inequality and empirical process theory (Pollard
1984) to obtain (A.6). Note that |f) — Ef,. | = |I{Xy <x,Y; =

639

v} — Fr.(x)p,| <1, then we apply Bernstein’s inequality and em-
pirical process theory (Pollard 1984) to obtain (A.7). This completes
the proof of Lemma A.3.

Lemma A.4. Under Condition (C1), for any € € (0,1/2) and 1 <
k < p, we have

P{léx — wx| > €} < O(m)R, exp {—3‘;—”8} (A8)

n

for some constant ¢4 > 0.

Proof. According the definitions of w; and @y, we have

AN, R
o=y = =3 plFu(X) = FuX P

j=1 r=1

R
->n / [Fir (x) = Fe(0)Pd Fi(x)
. r=1
= Z@( / [Fir () — Fe(x)Pd Fi(x)
r=1
- [t - Fk<x>12dFk(x)>

R
+ 320, = po) [ 1R - AWPdRG)

r=1

R
=Y 5 / (1B @)= F)P = [Fi )= Fu)P ) d (o)

r=1

R
+3 5 / [Fi () — F(oPd[Fi(x) — Fix)]
r=1

R
+> (= po) / [Fir(x) — Fu(o)Pd Fi(x)

r=1

= Iy + Lo + Lis.

We first deal with the term I;;.

|lia] < 2max / £ (x) = Fir(0)] = [F(x) = Fe(0)lld Fi(x)

< 2max sup (|Fy(x) = Fi(0)] + [ Fe(x) = Fu(x)))

xeRy

=: 2(Ji1 + Jr2),

where the first inequality holds by Zf: \ Pr =1and I[Fkr (x) — Frr(x)]
+ [F(x) = F (O] < [Fir (%) = Fip (0] + [Fr(x) = Fr(0)] < 1+1=2,
and the second inequality is implied by [ dFy(x) = 1. Then, we first
deal with the term J;,

Ji = max sup |Fp(x) — Fi(x)]
" xeRy

n

1 .
=D 1B = Ef/ Py

= max sup

" xeRy i—1

L : @ — E rx Ef,. D, —

< max sup |2 X ff" fral L Ef b = il

" xeRy Pr PrPr

|50, 9 — Ef,.| |Ly £ — Ef|

= max sup Py + max _ ,

" xeRy Pr r Pr

where the equality holds due to sup,.g, Efr = sup,cgr, P(Xi <
x,Y =y,) = p,. Thus, under Condition (C1), for any 0 < € < 1/2,
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P{Ju > €}
(l) E rx
< P {max sup n X i |
" xeRy pr
Ly ) _Ef ¢
+max}"z’=1]j’ f’>€ mmp,z—l
" Pr 2R,

+P{min p, < ¢;/2R,}

| R
<P {max sup |— Z f9O—Ef, .
" xeRy i—1 '
AW
1 n (l) Cl
+P max Zf — Ef,| > R,
i=1 "
I &,
<P {max sup |— Zfr('x) —Efi| > e
" xeRy iz ’ 4 n
+2P {max fo(” Ef.| > 4R€

SZ(n—f—l)R,,exp{_ n(cie/4R,)? }

2(Pr + Cle/lan)

n(cie/4R,)?
+2R, exp} ——
2(pr + c1€/12Ry)
c? ne? cL€
< 2("‘%3)R exp {—‘35“}€* <C2'+ ia’)}
n€2
< 2(n+ 3)R, exp —C5R7 s (A9)

for some constant c¢s > 0, where the second inequality holds
because min, p, < c1/2R, implies max, |13 O —Ef,|=
max, |ﬁr - pr| = PDr— ﬁr = cl/Rn - Cl/ZRn = Cl/2Rn llSng Cl/Rn
< min;<,<g, p, in Condition (Cl), the fourth inequality is due to
Lemma A.3, and the fifth inequality follows that max,<,<g, p» < c2/R,
in Condition (C1). Then, we apply inequalities (A.6), (A.3), and (A.4)
in Lemma A.3 to obtain the following three results, respectively,

P{Ji2 > €} = P { sup |F(x)—Fi(x)| = 6} < 2(n+1)exp{—2ne’},
xeRy
(A.10)
R 1 n
P{|L;] > e} =P p | — FO—Ef )| =
{2l = €} erp (an, f) e}
1 _
<P max Zf(’) Ef, >e}
i=1

< 2R, exp{—2n62}, (A.11)

P{|;] > e} =P Z ® Efoze}gzexp{—znez}. (A.12)

Inequalities (A.9)—(A.12) together imply the result of Lemma A 4.

Proof of Theorem 2.1. For the first term of Theorem 2.1, by Lemma
A.4and R, = O(n*), we have

P {maXIwk —wi| = cn r}
1<k<

cactn!=
< O(n)pR, exp TR

< O (pnR,exp{—bn'"""})
<O (pexp{—bn'"*" + (14 «)logn}),

where b > 0 is a constant depending ¢, ¢, and c;.
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Next, we deal with the second part of Theorem 2.1. If D ;(_ D, then
there must exist some k € D such that @, < cn~". It follows from Con-
dition (C2) that |&, — wi| > cn™" for some k € D, indicating that the
events satisfy {D ;(_ D} C {d — wi| > cn~™, for some k € D}, and
hence D, = {max;ep & — | <cn "} C{D C f)}. Consequently,

P{D € D} > P(D,}=1 — P[D;;]:l - P{ min 6 — x| = cn”}
(€
=1—5,P{l&n — x| = en™"})
<1- 0<s,, exp {—bn'_m”) +(1 +K)10gn} ),

where s, is the cardinality of D. This completes the proof of the second
part.

Proof of Theorem 2.2.
P ( in oy — max ) 2
1&%1 Wy 1}(16211)( ) <c3/ }

<P (mind)k —maxc?)k) — <minwk — maxwk> < —c3/2
keD keT keD ke

<P }(mind)k —maxé)k) — (minwk
keD kel

— maxwk>| > c3/2}

keD kel

IA

1<k<p

P{2 max |wk —a)A| > c3/2}

IA

O(n)pR, exp { — c6n/R,,}

for some constant ¢, > 0, where the first inequality follows Con-
dition (C3) and the last inequality is implied by Lemma A.4.
Because R, log(p)/n_o(l) and R, log(n)/n = o(1) imply that
p <exp{%n/R,}, and $n/R, = 4log(n), log(nR,) < 2log(n) for
large n. Then, we have for some 7, Z+°O npR, exp{—cen/R,} <

n=ng
exp{log(nR )+ En/R, — csn/R,} < exp{log(nR,) — 4log(n)} <

;’30 n~? < +o0. Therefore, by Borel Contelli Lemma, we obtain

that lim inf,,_, oo {mingep@r — maxger@y} > c3/2 > 0 a.s.

[Received July 2013. Revised April 2014.]
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