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Model-free inference of direct network interactions
from nonlinear collective dynamics
Jose Casadiego1,2, Mor Nitzan3,4,5, Sarah Hallerberg2,6 & Marc Timme1,2,7,8

The topology of interactions in network dynamical systems fundamentally underlies their

function. Accelerating technological progress creates massively available data about collec-

tive nonlinear dynamics in physical, biological, and technological systems. Detecting direct

interaction patterns from those dynamics still constitutes a major open problem. In particular,

current nonlinear dynamics approaches mostly require to know a priori a model of the (often

high dimensional) system dynamics. Here we develop a model-independent framework for

inferring direct interactions solely from recording the nonlinear collective dynamics gener-

ated. Introducing an explicit dependency matrix in combination with a block-orthogonal

regression algorithm, the approach works reliably across many dynamical regimes, including

transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos.

Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g.,

three point) interactions, this framework may thus open up nonlinear dynamics options of

inferring direct interaction patterns across systems where no model is known.
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T
he collective dynamics of many natural systems ranging
from regulatory circuits and metabolic systems1–7 to
communication, distribution, and supply networks8,9 is

derived from the direct interactions of their parts. Determining
how such systems are connected may help us in understanding
and controlling their function10,11. Current nonlinear dynamics
approaches may recover direct interactions from the collective
dynamics of a system if a mathematical model is provided in
advance and only their unknown parameters, network links, and
nonlinear terms are to be determined11–19. Such models, how-
ever, are usually not at hand under most experimental conditions,
thereby constraining the applicability of these methods to a
limited number of examples. Recent works20,21 on low-
dimensional systems suggest that approximating the dynamics
through expansions in basis functions may reveal the interaction
patterns, if such dynamics admits a sparse representation in the
proposed basis. A more recent model-free approach that takes
into account the nonlinear network dynamics requires to exter-
nally drive the systems in a controlled way, thus enabling
reconstruction from experimental settings for one particular
range of settings22. Common model-free approaches not
considering the nonlinear system dynamics construct functional
links by detecting statistical dependencies (e.g., correlations,
mutual information, Granger causality, and extensions
thereof)23–31 and thus are prone to recover indirect interactions
among the units of a network, for instance, due to
common external inputs or decorrelating effects induced by
other units in the network11,27,28,32–34. Although latest efforts
have focused on filtering indirect connections27,28 from
pairwise statistical dependencies, recent studies show that these
functional links can only match direct connections under specific
homogeneity conditions35, which rarely occur in real-world
systems.

In this article, we propose a novel concept for inferring direct
interactions in coupled dynamical systems, relying only on their
nonlinear collective dynamics, with neither assuming specific
dynamic models to be known in advance nor assuming the
dynamics admits a sparse representation, nor imposing controlled
drivings, nor expecting statistical dependencies to faithfully reveal
direct, physical interactions. To achieve this goal, we here change
the perspective and ask which units j of the network provide
direct physical interactions to a given unit i and appear on the
right hand side of its differential equation, rather than asking for
details of the interaction functions among those units. We
demonstrate that the problem of inferring direct interactions
based on observed nonlinear dynamics may be posed as a mul-
tivariate regression problem by introducing an explicit depen-
dency matrix and thereby systematically decomposing each units
dynamics into pairwise, three-point, and higher-order interac-
tions with other units in the network. Such decompositions
provide restricting equations for mapping the collective dynamics
to direct interactions. We validate and characterize the predictive
power of our approach by successfully revealing the structure of
generic as well as specific biological model systems. These model
systems may exhibit complex noisy dynamics such as transient
dynamics toward steady states, periodic and non-periodic
dynamics, or chaos, and have standard pairwise as well as
hypernetwork (such as three point) interactions. Interaction
networks may even be revealed if some units are not measured
(and thus hidden during observation).

Results
Mapping time series to direct interactions. To understand
which information a time series contains about the direct inter-
actions in networks, consider a system whose time evolution is

given by

x ¼ FðxðtÞÞ þ ξðtÞ ð1Þ

where xðtÞ ¼ x1ðtÞ; :::; xNðtÞ½ �2RN is the state of the entire system
consisting of units with variables xi(t), x ¼ dxðtÞ=dt denotes its
temporal derivative, ξðtÞ ¼ ξ1ðtÞ; ¼ ; ξNðtÞ½ � 2 RN represents
external noise acting on the whole system, and F : R

N ! R
N is

any smooth, typically nonlinear function that we assume to be
unknown. Common examples are the regulation functions in
models for gene regulatory networks3,5,7 or rate laws in metabolic
systems36.

Given a multivariate time series

xi;m :¼ xi tmð Þ ð2Þ

recorded at discrete time points tm =mΔt + t0, system identifica-
tion aims to reveal the exact functional form of F and to exactly
predict the systems future37. Owing to the high dimensionality of
most networks, such identification is typically restricted or even
impossible. Here we address the problem in a slightly yet
essentially different manner, asking only: which of the variables xj
directly acts on a given unit i and thus explicitly appears on the
right hand side of Eq. (1)? We aim to reveal not only pairwise
network interactions, specified by terms of the form _xi ¼ :::þ
g ij xj
� �

þ g iij xi; xj
� �

þ ¼ ; but also higher-order hypernetwork
interactions, induced, for instance, by terms of the form _xi ¼
:::þ g ijk xj; xk

� �
þ g iijk xi; xj; xk

� �
þ ::: where two or more units j

and k different than i jointly influence unit i directly.
To distinguish among units and at the same time treat all

orders of interactions simultaneously, we introduce explicit
dependency matrices Λi

∈ {0, 1}N×N, diagonal matrices defined by

Λi
jj ¼

0 if ∂Fi
∂xj

� 0

1 if ∂Fi
∂xj

≠0

0

@ : ð3Þ

Hence, if a unit j directly acts on unit i, we have Λi
jj equals 1, and

Λi
jj equals 0 otherwise. With this notation, the dynamics of the

units becomes

_xi ¼ fiðΛ
ixðtÞÞ þ ξiðtÞ; ð4Þ

where fi : R
N ! R is a smooth function that specifies the

deterministic evolution of component i and ξiðtÞ 2 R represents
external noise acting on i.

The explicit dependency matrix Λ
i selects which variables xj

directly control the rate of change of xi, thus going beyond the
related graph-theoretical notions of adjacency and incidence
matrices and thereby emphasizing aspects of the dynamics: first,
it offers a uniform representation of pairwise and higher-order
interactions; and second, it is thus suitable for generic dynamical
systems representations, as it appears exactly once in the right
hand side of Eq. (4).

The resulting generic model (Eq. (4)) links state space points x
(t) at time t to their rate of change _xiðtÞ. In particular, the
complemented system state siðtÞ ¼ xðtÞ; _xiðtÞ½ �2RNþ1 is an
element of a higher-dimensional “dynamics space” Di for each i
formed by the state space and the rate of change of unit i.
Therefore, the fi specifying the dynamics defines a smooth
manifold Mi � Di, with the Λi

jj indicating whether or not Mi is
constant in direction xj. cf. Fig. 1.

In practical scenarios, the functions fi are generally not
accessible. We address this challenge in two stages. First, we
functionally decompose the dynamics of units i ∈ {1, 2, ..., N} into
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interaction terms with the entire network as

_xi ¼ fi Λ
ix

� �
¼

PN

j¼1

Λi
jjg

i
j xj
� �

þ
PN

j¼1

PN

s¼1

Λi
jjΛ

i
ssg

i
js xj; xs
� �

þ
PN

j¼1

PN

s¼1

PN

w¼1

Λi
jjΛ

i
ssΛ

i
wwg

i
jsw xj; xs; xw
� �

þ ¼ þ ξi;

ð5Þ

where g ij : R! R, g ijs : R
2 ! R, g ijsw : R

3 ! R and, in general
g ij1j2 ¼ jK

: R
K ! R, represent the (unknown) K-th order interac-

tions between units jk for all k ∈ {1, 2, …, K} and unit i.
Specifically, the decomposition (Eq. (5)) separates contributions
to unit i arising from different orders, e.g., pairwise and higher-
order interactions with other units in the system. The Λi are
defined such that, if Λi

rr � 0, all functions g ij1;j2;:::;jK with any of the
indices jk = r disappear from the right hand side of Eq. (5).

Given that functions g ij1;j2;:::;jK are taken to not be accessible, we
decompose each g ij1;j2;:::;jK into basis functions h as

_xi ¼
PN

j¼1

Λi
jj

PP1

p¼1

cij;phj;p xj
� �

þ
PN

j¼1

PN

s¼1

Λi
jjΛ

i
ss

PP2

p¼1

cijs;phjs;p xj; xs
� �

þ
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s¼1
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Λi
jjΛ

i
ssΛ

i
ww

PP3

p¼1

cijsw;phjsw;p xj; xs; xw
� �

þ ¼ þ ξi;

ð6Þ

where Pk indicates the number of basis functions employed in the
expansion, c.f. ref. 38. Thus, provided a time series (2) where Δt is
sufficiently small such as to reliably estimate time derivatives _xi;m,
revealing direct interactions becomes identifying the non-zero
coefficients in the right hand side of Eq. (6) that best fit the
estimated _xi;m. Such expansions (Eq. (6)) differ qualitatively from
those developed in refs. 15,16,18,20 since ours do neither require
the functions g ij1;j2;:::;jK to be represented exactly by the basis
functions chosen nor the condition to admit a sparse representa-
tion in the basis. Instead, we only require the functions h to form
any basis of a relevant function space, thereby additionally
allowing the investigator to choose basis functions not appearing
explicitly in any of the g i: . In particular, this reduced requirement
implies that, for instance, all coefficients cij;p � 0 are (indis-
tinguishable from) zero for all p if there is no functional
dependency g ij xj

� �
¼

P
p c

i
j;phj;pðxjÞ � 0.

This weaker requirement is sufficient to impose a structure of
blocks of zero and non-zero coefficients in Eq. (6), representing
absent and existing interactions, respectively, thereby posing a

mathematical regression problem with grouped variables38–42. To
solve such structured problems, we developed the Algorithm for
Revealing Network Interactions (ARNI) (Supplementary Note 1),
a greedy approach based on the Block Orthogonal Least Squares
(BOLS) algorithm40. Specifically, our approach takes the time
series of all units in the network as inputs and returns a ranked
list of interactions indicating the order in which interactions in
the right hand side of Eq. (6) were identified as most strongly
lowering a cost function (see text below and Supplementary
Note 1/Supplementary Fig. 3). We remark that here we do not
intend to recover the actual functional form of interactions, but
instead we aim at determining the existence or absence of
interactions between units. So, even if our scheme infers an
optimal model from a given time series, it is not guaranteed that
such a model would agree with an actual model generating the
dynamics43. Indeed, the fact that we only ask for the units
interacting with a given unit and not for details of the coupling
functions enables robust performance across systems (compare
Figs. 1, 2, 3, 4, 5, and 6).

Revealing direct links in model systems. To demonstrate the
robustness of our approach, we inferred the interactions of model
systems and compared our results to those obtained from
thresholding correlations11,44, partial correlations45, and transfer
entropy46. In particular, we have selected such quantities because
they are model independent, and they have been traditionally
used to quantify interactions in networked systems. We tested our
framework on systems displaying diverse types of collective
dynamics, such as transient dynamics toward steady states, non-
periodic dynamics, and chaotic and noisy dynamics, as emerging
in models of Michaelis Menten kinetics in gene regulation, gen-
eric heteroclinic, and generic chaotic oscillatory dynamics. We
measured the quality of reconstruction in terms of area under the
receiver-operating-characteristic curve (AUC) score (Supple-
mentary Note 3). The AUC score equals 1 for perfect recon-
struction and it equals 1/2 for predictions equivalent to random
guessing.

Predictions improve with longer time series as well as by
composing one long time series out of different short ones, as
illustrated for non-periodic dynamics in Fig. 1c. This indicates
that sampling sufficient parts of state space is essential for
revealing direct network interactions. Generally, we found that if
long time series are not available (or not preferred, see the
following), compositions of short time series are at least equally
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appropriate for reconstruction, see, e.g., Fig. 1c. Exemplary tests
demonstrate that even time series as short as m = 5 time points
recorded from dynamics from different trajectories evolving
toward a steady state might be sufficient. Moreover, reconstruc-
tion quality improves with the total number of available
recordings M = S ×m where S is the number of experiments, in
contrast to inferences from thresholding correlations, partial
correlations, and transfer entropy, which cannot predict existing
interactions under these minimal sampling conditions (Fig. 2a–c).
Moreover, inference studies on collections of short time
series extracted from non-periodic dynamics further confirms
that larger numbers M = S ×m of recordings improve quality
(as expected). Again, correlations, partial correlations, and
transfer entropy are in general less capable of capturing
the intrinsic structure of interactions under equally minimal
conditions (Fig. 2d–f). Finally, interactions may still be
recovered in networks of higher-dimensional units by extending
Eq. (5) to include all components xdi ðtÞ of i ∈ {1, 2, …, N}, where
d ∈ {1, 2, …, Di} and Di is the number of components of unit i,
Fig. 3a–c.

Performance. To further characterize the performance of our
approach, we carried out systematic reconstructions of various
networks of different sizes, numbers of incoming connections per
unit, noise levels, fraction of higher-order (hypernetwork) inter-
actions, and number of hidden units (Fig. 4). We report four
classes of results. First, the number Mθ of time points necessary
for AUC scores larger than a threshold θ scales sublinearly with
the size of the network, Fig. 4a, and linearly with the number of
incoming connections per unit, Fig. 4b. Moreover, inferring the
incoming connections of single units in large sparse networks (N
= 1000, ni = 10) in conventional hardware (Intel® CoreTM i5-
2430M) takes 65± 26 s per unit. Such results highlight the
potential applicability of our approach in combination with
parallel computing for revealing interactions in real-world net-
works, which are often large in size and sparsely connected.
Second, Mθ depends supralinearly on the noise level η, Fig. 4c.
Here, sampling longer time series (more data) improves recon-
struction quality. These results indicate that inference is still
viable for highly noisy dynamics at the expense of recording
longer time series. Third, systematic reconstructions of
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starting from different initial conditions and created composite longer time series as in Fig. 1. Thus M= S ×m, where S is the number of distinct transient

dynamics. a–c Revealing interactions from transients toward steady state. a Adjacency matrix of a network of N= 100 units under Michaelis–Menten
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squares) per unit. e Example of derivatives for several oscillators. f Quality of reconstruction from short trajectories with respect to M= S ×m with m= 10

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02288-4

4 NATURE COMMUNICATIONS |8:  2192 |DOI: 10.1038/s41467-017-02288-4 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


hypernetwork interactions in exemplary models of phase-coupled
oscillators (Supplementary Note 4) suggest that our results are
independent of the probability of having hypernetwork interac-
tions ph, Fig. 4d, e. This is a consequence of treating pairwise and
higher-order interactions equally, by decomposing the coupling
into orders of jointly acting units via explicit dependency matrices
(Eq. (3)). Thus the approach is insensitive to the appearance of
higher-order interactions. Finally, even if some units of the net-
work are not measured (hidden units), existing and non-existing
links among measured units may still be reliably inferred, Fig. 4f.
To compute AUC scores, we compare our predictions for the
existence and absence of links among the measured units with
those actually existing and not existing among those units,
making no statement about indirect interactions mediated by
hidden units. As more units are hidden, the quality of recon-
struction decreases because the hidden units act upon the mea-
sured units in an unknown way. Still, sampling longer time series
again improves reconstruction quality. Thereby, the model-free
approach provides accurate predictions even if only a fraction of
the network is recorded.

Proper basis functions and learning curves. Selecting an
appropriate class of basis functions to represent the network
interactions in system (Eq. (6)) is vital for any such approach.
Choosing basis functions that capture the intrinsic nature of
interactions (e.g., h(xi), h(xi, xj), h(xi, xj, xw), and so on) by
construction yields optimal results. However, to exactly pick the
correct interaction function requires prior knowledge of the
potential functions involved in coupling units of the system under
consideration. To overcome this limitation, we aim at appropriate
classes of coupling functions only but do not require to pick a
correct function (that would enable prediction of time series).
While the former implies to find basis functions of correct order,
the latter implies to find a unique set of basis functions capable of
fitting the recorded dynamics (see below for further con-
sequences). We remark that a particularly chosen basis function
constitutes a representative of an entire class of appropriate
functions. For instance, the functions indexed a–d in Table 1 are
all equally appropriate representatives of the class of pairwise
functions g iij xi; xj

� �
, Fig. 5.

We investigated the effects of selecting different basis
functions. For the example shown in Fig. 5, we studied networks
of phase-coupled oscillators and divided the time series in a
training set (60% of time points) for inferring interactions and a
validation set (40% of time points) for evaluating the predictions;

we tracked the evolution of a fitting cost function with respect to
the l-th discovered interaction. Specifically, the fitting cost
function is defined as

CiðlÞ :¼
1

Ms

XMs

m¼1

_xi;m � b_xi;mðlÞ
� �2

; ð7Þ

where Ms is the number of time points in the set and b_xi;mðlÞ 2 R
is the prediction by our approach of a computed _xi;m using the
inferred interactions up to the l-th discovered interaction.

The functional forms of the cost function Ci(l), depending on
the number l of interactions considered, are either L-shaped,
indicating the number of incoming connections at the knee l* of
the L (basis functions a–d of Table 1, Fig. 5a–d), or not, thereby
not revealing any features of the network (basis functions e and f
of Table 1, Fig. 5e, f). Simultaneously to reveal the number of
incoming connections, the first l* interactions actually chosen
provide the full information about which units j directly act on
unit i. We remark that, for sufficiently short sampling intervals,
both the time derivative _xi;m as well as its estimator b_xi;m are
obtainable from recorded dynamics data without any model
assumption.

These findings confirm that basis functions that merely capture
the essential structure of the interactions but not necessarily
exactly represent the full dynamics are sufficient to reveal
network connectivity. As a consequence, reconstruction of direct
network interactions is possible without preknowlegde about a
system model.

Effects of noise and hidden units. In experimentally relevant
biological settings, there may be several uncontrolled factors
affecting the recorded time series. For instance, in gene networks,
noisy dynamics is simultaneously present at several different
levels (e.g., gene-intrinsic, network intrinsic, and cell-intrinsic)2.
Fundamentally, noise complicates the inference process by cor-
rupting measurements of units dynamics, thereby masking net-
work interactions. Moreover, one may not have complete access
to measure all units in the network. This may induce correlating
or decorrelating effects among units, thus promoting the recovery
of indirect interactions34,47.

To test the robustness of our approach against the combination
of both noise and hidden units, we simulated transients toward
steady states under the external influence of Gaussian noise and
recorded the dynamics of only a subset of randomly selected units
in the network. Results indicate that both noise and hidden units
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moderately reduce the performance of our approach, Fig. 6.
However, the inference quality still increases withM, Fig. 6d, such
that larger sampling collections may still reveal interaction
topology. Moreover, systematic reconstructions of different sets
of recorded units indicate that our predictions generally outper-
form those extracted from correlations, partial correlations, and
transfer entropy.

Robust inference of biological networks. Next we establish the
potential of our framework to reconstruct interactions for bio-
logical system settings. Specifically, we demonstrate results on two
networked model biological systems: glycolytic oscillator in
yeast48 and circadian clock in Drosophila49. The glycolytic
oscillator, exhibiting one of the classical examples for cellular
oscillations, accounts for the main reactions of glycolysis. Here we
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focus on a model for anaerobic glycolytic oscillations in yeast,
containing the influx of glucose and outflux of pyruvate and/or
acetaldehyde48 (see Supplementary Note 5 for an extended
description). The circadian clock underlies the biological response
to the day–night cycle, and the oscillations it exhibits in Droso-
phila are driven by a negative feedback between two genes and the
complex that is formed by the proteins they code for. The model
equations for the circadian clock are based on ref. 49 (see Sup-
plementary Note 5).

Employing the above approach of combining a dynamics space
representation, expanding in suitable families of basis functions,
and solving the resulting linear regression problem by an
orthogonal least squares method, we reconstructed the interac-
tions between the different components of the glycolytic oscillator
(Fig. 7a, b) and the circadian clock (Fig. 7c, d) from transient
dynamics toward their periodic orbits. As for the other systems’
settings, the results confirm that larger number M of observations
improve the predictions. Moreover, the reconstruction quality by
this method again outperforms those resulting from correlations,
partial correlations, and transfer entropy.

Discussion
We proposed a model-free framework for inferring direct inter-
action networks from only the time series of collective nonlinear
system dynamics. First, defining the notion of explicit depen-
dency matrices enabled us to systematically decompose each
units’ dynamics into pairwise, three-point, and higher-order
interactions and at the same time treat present influences from
one unit to another on the same footing independently of the
interaction order. Second, by capturing the structure (but not
necessarily the exact functional form) of the dynamical influences
through appropriately chosen basis functions, we posed the
reconstruction problem based on nonlinear dynamics as a
mathematical regression problem with grouped variables. Given
that the reconstructions of the sets of incoming connections to
different units of the network are mathematically independent
(despite using overlapping recorded dynamical data), the frame-
work is scalable (see Supplementary Note 2) and computationally
parallelizable for large networks. Reconstruction is robust across a
wide range of dynamical regimes, combined pairwise and
hypernetwork interactions, noise, and hidden units.

The main advantage of our framework is its minimal sampling
conditions. For instance, in systems during transients to steady
states (such as in gene regulation3,5,7) or periodic orbits (such as
in glycolytic oscillations48), we reconstructed direct interactions
without the need to know the actual strength or actual distributed
patterns of perturbations from those states. In contrast to several
previous studies1,11,13,49, our framework in general does not
require to apply external driving signals and if a system is
externally driven, e.g., to create transients, these signals need not
be controlled; thus our framework might be suitable for systems
not easily accessible for controlled driving or external driving at
all. Moreover, collections of very short time series, in practice
potentially resulting from different experiments on the same
system, are sufficient for reconstruction. In particular, collective
dynamics that is transient, stochastically driven, or otherwise
sufficiently complex helps revealing interactions, whereas certain
stable dynamics on low-dimensional subsets of state space only
sample limited regions of the dynamics space and thus in

Recorded unit

6
1e–3 1e–2

X
i

1.0
0.5
0.0

–0.5

1.0

0.8

M
e
a
n
 (

A
U

C
)

0.6

1.0

0.8

M
e
a
n
 (

A
U

C
)

0.6

ARNI Corr PCorr TE

1.0

0.8

M
e
a
n
 (

A
U

C
)

0.6

ARNI Corr PCorr TE

ARNI Corr PCorr TE

1.0

0.8

M
e
a
n
 (

A
U

C
)

0.6

ARNI Corr PCorr TE

0.0

R = 0.25

R = 0.65

R = 0.40

R = 0.80

2.0 3.0 4.0

Time

1.0

4
2
0
0.0 1.0

1.0

0.8

0.6

20 200 400 600

M
A

U
C

 s
c
o
re

2.0 3.0 4.0

Time

ARNI

Corr

TE

PCorrRecoverable

link

Unrecoverable

link

Hidden unit

X
i

a b c

d e

Fig. 6 Reconstructions are still viable if units are hidden and measurements are noisy. Revealing direct interactions within a subset of units from noisy

transients toward steady states. The network size is fixed at N= 100. a Representation of a network with a subset of measured units (green) and a subset

of hidden units (red). b, c _xi in noise-free and noisy transients. d Quality of reconstruction versus number of measurements employing our approach

(ARNI), correlations (Corr), partial correlations (PCorr), and transfer entropy (TE) on a subset of 40 (randomly selected) recorded units. e Systematic

reconstruction over different collections of subsets. The variable R indicates the fraction of recorded units. Averages over 50 random subsets of R< 1

indicate that our approach outperforms correlations, partial correlations, and transfer entropy across different R values

Table 1 Interactions may be represented in different basis

functions

Index Basis function

a hiij;pðxi; xjÞ ¼ ðxj � xiÞ
p

b hiij;p1p2 ðxi; xjÞ ¼ x
p1
i x

p2
j

c hiij;pðxi; xjÞ ¼ sin p xj � xið Þð Þ and hiij;pðxi; xjÞ ¼ cos p xj � xið Þð Þ
d hiij;pðxi; xjÞ ¼ 1þ xij � xij;p

�� ��2; xij ¼ xi; xjð Þ and xij;p ¼ xi;p; xj;p
� �

e hij;pðxjÞ ¼ x
p
j

f hij;pðxjÞ ¼ sin pxjð Þ and hij;pðxjÞ ¼ cos pxjð Þ

Different basis functions can be employed to represent a specific interaction. Basis functions of

correct order are more likely to reveal true interactions than functions of incorrect order (see

also Supplementary Note 6), Fig. 5. Basis function d belongs to a class of radial basis functions,

so xij,p represent the p-th center of the expansion56
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principle do not provide full information about network inter-
actions. Lower-dimensional dynamics may in particular be
induced by symmetries or other invariants represented by alge-
braic conditions, such as z(x) = 0. For instance, in systems evol-
ving in synchronized states, the existence and directionality of
interactions are impossible to extract from time series32. Fur-
thermore, the number of independent measurements required for
successful reconstruction grows linearly with the local number of
interaction partners and sublinearly with the number of units in
the network, providing an advantage for reconstructing large
systems. As we illustrated by examples, our framework may be
easily combined with learning curves derivable from recorded
data only and thus enables researchers to determine the accuracy
of inferences when there is no ground truth available.

Previous studies on inferring the direct interaction structure
from time series have focused on the reconstruction of networks
with known local dynamics and coupling functions11,12,14–18.
Such prior knowledge reduces the task to a standard linear
algebra problem, where one has to solve linear systems of equa-
tions to reveal the network connections, cf. ref.11 for a compre-
hensive review. Recent work on low-dimensional dynamical
systems20, based on expanding the system dynamics in basis
functions, requires the dynamics to admit a sparse representation
in the proposed basis. Moreover, a work21 applying an extension
of the method described in ref. 20 on models for gene regulation
also suggests that such approaches scale supralinearly with the
dimensionality of the network for both the number of candidate
coupling functions and the time points necessary for successful

reconstruction. The theory presented above does neither require
prior knowledge of parameters and coupling functions involved
in the network dynamics nor does it require these functions to
admit a sparse representations in any basis chosen; it is not
limited to low-dimensional networked systems, also because the
number of necessary time points for successful reconstruction
scales sublinearly with network size.

Taken together, this model-free, robust framework can be
based on collections of short time series, noisy data, partially
inaccessible units, and essentially arbitrary nonlinear dynamics
and may thus enable the reconstruction of direct interaction
networks from dynamical data from a new range of times series
from coupled dynamical systems where no model is known.

Methods
Overview. To generate dynamical trajectories displaying transients toward steady
states, we simulated dynamical systems employing Michaelis–Menten kinetics
(Supplementary Note 4), systems frequently used to model gene regulation3,5,27. To
generate dynamical trajectories exhibiting transients to periodic dynamics, we
employed two biological model systems: (i) glycolytic oscillations in yeast48 and
circadian clock in Drosophila49 (Supplementary Note 5), which possess hyper-
network interactions, where two units jointly and directly influence a third such
that their interaction function cannot be disentangled into sums of pairwise
interactions. To study the effects of non-periodicity, we simulated networks of
phase-coupled oscillators (Supplementary Note 4) whose coupling stems from a
simple model of weakly coupled populations of biological neurons51–54. Finally, to
test robustness against chaos and noise, we simulated networks of noisy and
asynchronous Rössler oscillators (Supplementary Note 4), prototypical systems for
studying chaos55.
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In what follows, we provide a brief description of each model (see
Supplementary Notes 4 and 5 for further details).

Gene regulatory circuits. To simulate systems mimicking gene regulation, we
simulated networks of dynamical systems having Michaelis–Menten kinetics3,27

_xi ¼ �xi þ
1

ni

XN

j¼1

Jij
xj

1þ xj
þ ξi; ð8Þ

having ni randomly-selected incoming connections per node. Here Jij of J 2 R
N ´N

represents a weighted and directed link from unit j to i.

Networks and hypernetworks of phase-coupled oscillators. To generate non-
periodic dynamics, we simulated a model52 of phase-coupled oscillators with
coupling functions having two Fourier modes

_xi ¼ ωi þ
1

ni

XN

j¼1

Jij sin xj � xi � 1:05
� �

þ 0:33 sin 2 xj � xi
� �� �� �

þ ξi; ð9Þ

with constant natural frequencies ωi.
We extended this model to hypernetworks of the form

_xi ¼ ωi þ
1

ni

XN

j¼1

XN

k¼1

Ei
jk sin xj � xk � 1:05

� �
þ 0:33 sin 2 xj � xk

� �� �� �
þ ξi: ð10Þ

Differently from (Eq. (9)), here we introduce the second-order interaction
matrix Ei 2 RN ´N for all i = {1, 2, …, N}. Specifically, the element Ei

jk quantify how
strongly units j and k jointly and directly influence unit i.

Networks of Rössler oscillators. To generate chaotic dynamics, we simulated
networks of coupled Rössler oscillators55. The dynamics of each oscillator xi ¼
x1i ; x

2
i ; x

3
i

� �
2 R3 is set by three differential equations

_x1i ¼ �x2i � x3i þ
1

ni

XN

j¼1

Jij sin x1j

� �
þ ξ1i ; ð11Þ

_x2i ¼ x1i þ 0:1x2i þ ξ2i ; ð12Þ

_x3i ¼ 0:1þ x3i x1i � 18:0
� �

þ ξ3i ; ð13Þ

where ξki with k ∈ {1, 2, 3} represent external noisy signals acting on the unit’s
components.

Glycolytic oscillator model. To test performance on biological model systems, we
first simulated the glycolytic oscillator defined as48

_S1 ¼ J0 �
k1S1S6

1þ ðS6=K1Þ
q ð14Þ

_S2 ¼ 2
k1S1S6

1þ ðS6=K1Þ
q � k2S2ðN � S5Þ � k6S2S5 ð15Þ

_S3 ¼ k2S2ðN � S5Þ � k3S3ðA� S6Þ ð16Þ

_S4 ¼ k3S3ðA� S6Þ � k4S4S5 � κðS4 � S7Þ ð17Þ

_S5 ¼ k2S2ðN � S5Þ � k4S4S5 � k6S2S5 ð18Þ

_S6 ¼ �2
k1S1S6

1þ ðS6=K1Þ
q þ 2k3S3ðA� S6Þ � k5S6 ð19Þ

_S7 ¼ ψκðS4 � S7Þ � kS7 ð20Þ

where S1 represents the concentration of glucose, S2 that of glyceraldehydes-3-
phosphate and dihydroxyacetone phosphate pool, S3 that of 1, 3-bispho-
sphoglycerate, S4 that of cytosolic pyruvate and acetaldehyde pool, S5 that of
NADH, S6 that of ATP, and S7that of extracellular pyruvate and the acetaldehyde
pool.

Circadian clock. A second biological model system we have studied is the circadian
clock, underlying the response to the day–night cycle. It is defined as49:

_Mp ¼ vsP
Kn
IP

Kn
IP þ Cn

N

� vmP
MP

KmP þMP
� kdMP ð21Þ

_P0 ¼ ksPMP � V1p
P0

K1P þ P0
þ V2p

P1

K2P þ P1
� kdP0 ð22Þ

_P1 ¼ V1p
P0

K1P þ P0
� V2p

P1

K2P þ P1
� V3p

P1

K3P þ P1
þ V4p

P2

K4P þ P2
� kdP1 ð23Þ

_P2 ¼ V3P
P1

K3P þ P1
� V4p

P2

K4P þ P2
� k3P2T2 þ k4C � vdP

P2

KdP þ P2
� kdP2 ð24Þ

_MT ¼ vsT
Kn
IT

Kn
IT þ Cn

N

� vmT
MT

KmT þMT
� kdMT ð25Þ

_T0 ¼ ksTMT � V1T
T0

K1T þ T0
þ V2T

T1

K2T þ T1
� kdTo ð26Þ

_T1 ¼ V1T
T0

K1T þ T0
� V2T

T1

K2T þ T1
� V3T

T1

K3T þ T1
þ V4T

T2

K4T þ T2
� kdT1

ð27Þ

_T2 ¼ V3T
T1

K3T þ T1
� V4T

T2

K4T þ T2
� k3P2T2 þ k4C � VdT

T2

KdT þ T2
� kdT2

ð28Þ

_C ¼ k3P2T2 � k4C � k1C � k2CN � kdCC ð29Þ

_CN ¼ k1C � k2CN � kdNCN ð30Þ

where MT andMP are tim and per mRNAs, respectively. T0, T1, and T2 are forms of
the TIM protein, P0, P1, and P2 are forms of the PER protein, and C and CN are
forms of the PER–TIM complex.

Data availability. All data reported in this study are available from the corre-
sponding authors upon request. Example codes for simulating and reconstructing
network dynamical systems may be found at https://github.com/networkinference/
ARNI.
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