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Model-free norm-based fixed structure controller synthesis

A.J. den Hamer, S. Weiland and M. Steinbuch

Abstract— This paper presents a method to perform model-
free fixed structure controller synthesis. Based on frequency
response data of the plant, the parameters of a predefined con-
troller structure are optimized directly with respect to closed-
loop performance specifications. As a result, no parametric
plant model is required such that time consuming iterative
identification-synthesis procedures can be omitted.

A framework is presented to both assure stability and
optimize closed-loop performance based on frequency response
data. Furthermore, based upon these results, a cost-function
is formulated that can be exploited to converge from a
destabilizing- to the stabilizing controller parameter region.
Both the stability guarantee and performance optimization
procedures are combined in one optimization algorithm that
is illustrated by means of an example.

I. INTRODUCTION

Application of model-based optimal control synthesis

methodologies require a low order parametric model of the

plant. When only input-output data of a system is available,

the most appropriate procedure to obtain such a model

is via system identification. However, it has been widely

recognized in system identification literature [10], [24] that

a model can only approximate the real system behavior. To

“tune” the model such that it contains closed-loop relevant

aspects, iterative identification-synthesis procedures are pro-

posed [10], [24]. Most recent work also includes closed-loop

relevant uncertainty modeling [19], therefore handling misfit

via robustness of the controller.
As an alternative for these iterative procedures, this pa-

per considers controller synthesis based upon plant input-

output data only without parametrization of the plant. The

main advantage of a data-based approach is that the actual

parametrization is performed in terms of the controller. As a

result, closed-loop relevant aspects are taken into account au-

tomatically. This results in a straightforward design approach

for norm-based controller synthesis, i.e. no identification-

synthesis iterations are required.
Several model-free approaches can be found in literature.

In [7], [21], a time domain LQG approach is deduced that

is based on a plant description in terms of impulse response

coefficients. Similar to this approach, [25] describes an H∞

synthesis method for 2-block control problems. Contrary to

these time-domain approaches, [1] describes a method to

find the set of stabilizing parameters of 3-term controllers.

The approach described in [12] contains aspects that can be

applied in a non-free setting as well. In the context of fixed

structure controller design, the line of work initiated by [13]

proposes an iterative experimental scheme to locally opti-

mize the controller parameter set of a predefined controller

This work is supported by PHILIPS Apptech
A.J. den Hamer and M. Steinbuch are with the Control Systems Tech-

nology Group, Eindhoven University of Technology, The Netherlands.
S. Weiland is with the Control Systems Group, Eindhoven University of

Technology, The Netherlands.

structure. Virtual Reference Feedback Tuning (VRFT) is an

other method to optimize parameters of a fixed controller

structure without the need of a parametric model [3].

This paper proposes a frequency domain method to opti-

mize fixed-structure controllers that are optimal in the sense

of closed-loop norm specifications and are tuned based on

experimental data only. The main contribution of this paper

is a general framework to assure closed-loop stability based

on a criterion formulated in terms of frequency response

coefficients. A method is given that enables convergence

from a destabilizing controller parameter set to a stabiliz-

ing parameter set. Furthermore a procedure is described to

locally optimize performance for fixed structure controllers

in the sense of H∞ norm specifications.

The presented work can be seen as an extension and

generalization of the work presented in [5]. Specific details

about generalizations and extensions compared to results

presented previously are given in the text.

The outline of the paper is as follows. Section II starts

with the formal problem definition of this paper. Section III

described how classical results from complex function theory

are exploited and extended to formulate a stability criterion in

terms frequency response data. Based on this result, Section

IV presents a cost-function that can be used to converge to a

stabilizing parameter set. Section V describes a performance

optimization procedure that minimizes the largest singular

values of the closed-loop frequency response matrices over

all frequencies. In Section VI, both stability and performance

optimization is combined in one optimization algorithm and

applied for controller synthesis. A simulation example is

given to illustrate the approach.

II. PROBLEM FORMULATION

In order to property formulate the problem statement, the

following definitions are introduced:

Definition 1:

Define s ∈ C, whereas C
+ := {s | Re(s) > 0} and C

− :=
{s | Re(s) < 0}. Let P (s) be a real rational function C 7→ C

analytic in C
+. C(s, θ) is a real rational complex function

C 7→ C with coefficients θ ∈ R to be optimized. Ω is a

set of real-values equidistant points ωi. The points Pi and

Ci(θ) are defined as Pi := {P (jωi) | ωi ∈ Ω} and Ci :=
{C(jωi, θ) | ωi ∈ Ω} respectively

The problem definition considered in this paper can be

stated as:

Problem statement 1:

Given: evaluations Pi of the unknown transfer function P (s),
where Pi represents the frequency response behavior of the
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data-generating system obtained on the frequency grid ωi ∈
Ω.

Find: the parameters θ of a predefined controller struc-

ture C(s, θ) that result in a feedback interconnection

LFT
(

P (s), C(s, θ)
)

that is optimal in the sense of (1):

min
θ∈Θstabilizing

‖LFT
(

P (s), C(s, θ)
)

‖∞ (1)

where Θstabilizing represents the set of all controller param-

eters that correspond to stabilizing controllers.

The problem statement represents the fixed structure con-

troller optimization problem that is performed based on

frequency response data of the plant. This frequency response

data can be obtained via means of experiments [14].

A. Approach

Problem 1 describes an optimization problem in terms

of the H∞ norm of the closed-loop system. On the other

hand, the plant behavior is only known at finite grid points

in the set Ω. Under the assumption of smoothness of the

closed-loop transfer functions, i.e. the poles of the closed-

loop transfer function are contained in {C−
ς | ς < 0}, Eq.(1)

can be approximated with:

min
θ∈Θstabilizing

max
ωi

σ̄
(

LFT(P (jωi), C(jωi)
)

(2)

where σ̄ represents the maximum singular value at ωi. The

approach to solve this problem is twofold:

1) Since the set Θstabilizing is not known on beforehand,

the approach is to describe the set of stabilizing con-

troller parameters in terms of a test on the frequency

response points of the closed-loop. Hence, the opti-

mization over the set Θstabilizing can be replaced with

an optimization under an additional stability constraint

formulated in terms of the frequency response points.

2) The controller parameters appear in a non-convex man-

ner in the linear fractional transformation described in

(2). Via a local linearization approach, that will be

described in Sec.V, a local performance optimization

can be performed. By increasing the number of starting

points, the chance to convergence to global optimum

increases.

The first aspect is discussed in more detail. To check stability

of the closed-loop system, the Youla parameter Q is exploited

[8], [26]. This Youla parameter describes a bijective mapping

between set of stabilizing controllers and set of stable

systems.

This mapping can be evaluated point wise such that:

Q = { Qi = Ci(I + PiCi)
−1 | C(s) ∈ Cstab} (3)

Cstab = { Ci = Qi(I − PiQi)
−1 | Q(s) ∈ Q} (4)

With Cstab the set of all stabilizing controllers. It is well

known that Q = RH∞ [8]. Section III will derive a criterion

to verify stability of Q(s) based on it’s frequency response

coefficients Qi.

Remark that the Youla parametrization can be applied in

the generalized plant framework as well [26]. Without loss of

generality, P is considered to be SISO to reduce notational

aspects.

III. CLOSED-LOOP STABILITY CONDITION

Closed-loop stability is a primary requirement to be met

during synthesis of feedback control systems. Since the

dynamical behavior of the plant is only described by ex-

perimental input- output-data, the location of closed-loop

poles can not be obtained by directly computation. Hence,

closed-loop stability has to be obtained based upon frequency

response points only. In this section, we formulate a criterion

to guarantee that all poles are contained in C
− based on

frequency response data. It has to be emphasized that we do

not try to identify the location of the poles itself.

Although the transfer function of the data-generating sys-

tem is unknown, frequency response points are obviously

coupled to the locations of the poles by the frequency

response function of the system. Mathematical properties of

real rational functions, i.e. transfer functions under consid-

eration, are exploited to uncover poles located in C
+ based

on frequency response points. From a mathematical point of

view, a real rational complex function belongs to the class

of holomorphic functions. For this class of functions, the

imaginary part and real parts of a complex function do not

behave as independent variables. Based on this elementary

property, the Cauchy Residue Theorem is well known. Based

upon this theorem, the derivation of the stability condition

is started.

As a first step, it is assumed that frequency response data

are given for a continuum of frequency points. Afterwards,

it is checked under which conditions this relation can be

discretised. We start by stating the main result of this section.

Theorem 1. A strictly proper system Q(s) is stable if and

only if:
∫ ∞

−∞

Q(jω)

s − p∗
j dω = 0, ∀p∗ ∈ C

− (5)

where p∗ is a manually added pole which is located in C
−.

Proof. A detailed proof of Thm. 1 can be found in [5].

The proof Thm.1 is based onto Cauchy Residue Theorem

which is exploited extensively in literature and has been the

basis for the derivation of many analytical properties [9],

[18], [23]. It is however important to remark that during these

derivations, stability is a pre-assumed property rather than

a guaranteed property of the transfer function. Contrary to

this assumption, Thm.1 presents a condition that guarantees

stability. This is possible by adding a series of poles in C
−.

The resulting stability condition is very interesting from a

data-based control synthesis perspective.

The presented approach can be considered as an extension

of the work presented in [5] by proposing a method to

compute of a gradient towards the stabilizing controller

parameter region as will be described in Section IV.

Remark 1: • As a practical rule of thumb, it is sufficient

to chose the number of test points p∗ much larger than

the expected order of Q(s).
• Due to practical constraints, frequency response data is

only available on the finite frequency points contained

in Ω. In order to be able to exploit Theorem 1, (5) has

to be approximated by a discrete series approximation.
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We refer to the convergence proof presented in [5]

which proves that (5) can be well approximated by a

finite series approximation under the assumption that
|Re(pi)|

∆ >> 1. Here, Re(pi) represents the real part of

the poles of Q(s) and ∆ is the spacing between the

discrete equidistant grid points contained in Ω.

IV. GRADIENT TO STABILIZING REGION

The use of many starting points θ0 ∈ Θstabilizing are

helpful in trying to find the global optimum of the fixed

structure controller synthesis problem via gradient based

optimization. However, the set of stabilizing controllers

Θstabilizing is commonly unknown on beforehand. Even

when one stabilizing controller is known, the entire set of

stabilizing controller controllers can not be derived since this

set is not convex and even not necessary connected.

The theory given in Section III is exploited to check if a

chosen starting point θ0 satisfies θ0 ∈ Θstab. However, local

minima with high performance could possibly be located in

a small stabilizing parameter sets. This require a high density

of starting points in order find these region. For these cases,

it is valuable to have an algorithm that converges from a

destabilizing starting point θ0 to a neighboring stabilizing

parameter-set. As a result, the density of starting points can

be reduced which subsequently lowers computational costs.

Theorem 1 presents a qualitative test for stability. How-

ever, to compute a gradient, a qualitative measure is required.

Construction of such a cost-function is not trivial since all

system norms explode if poles move to the imaginary axis.

Hence, choosing a cost-function that is based on a norm,

results in a barrier for poles moving from C
+ to C

−.

A cost-function that defines the required gradient can be

constructed by exploiting the theory presented in the previous

section. The novel idea here is to define the cost-function as

a fraction of 2-norms. This eliminates the barrier and creates

a gradient towards Θstab. This will be discussed in a formal

manner.

The approach is as follows. As a first step, the gradient

is computed in terms of the poles of Q(s). Afterwards, the

gradient in terms of θ is computed by taking partial derivative

of Q along controller parameters θ.

The main result of this section is directly posed by the

following theorem:

Lemma 2. Given a transfer-function with one conjugate pole

pair. Then the gradient of the cost-function φ, defined as:

φ =
‖Q∗

δ‖
2
2

‖Q‖2
2

(6)

represents a global region of attraction towards the stabiliz-

ing region. Here,

Q∗
δ(jω) =

1

2πj

∫ ∞

−∞

Q(jω)

jω − p∗
j dω, p∗ ∈ jω + δ, δ ∈ R

−

(7)

Proof. Write Q(s) in its partial fraction expansion as:

Q(s) =
∑

i

αi

s − pi

(8)

with αi the residue corresponding to pi. The 2-norm of Q

can be obtained via [4], [6]:

‖Q‖2
2 =

1

2π

∫ ∞

−∞

Q(jω)Q†(−jω)dω (9)

where Q† represents the complex conjugate of Q which

can be obtained by taking the complex conjugate of all

coefficients.

Under the assumption that Q(jω) has at least relative

degree 2, the integral described in (9) can be computed by

considering a contour integral over the Nyquist D-contour

and applying Cauchy’s Residue Theorem [16]. Hence, (9)

can be computed by taking the sum of the residues of the

integrant corresponding the poles in C
+. Via this method, it

can be derived that [4]:

‖Q‖2
2 =

∑

n

∑

m

αnα†
m

pn + p
†
m

(10)

The same approach can be used to compute ‖Q∗
δ‖2.

However by Theorem 1 it can be shown that the value of

‖Q∗
δ‖

2
2 depends on the location of the poles of Q.

Q∗
δ(jω) =

1

2πj

∫ ∞

−∞

Q(jω)

s − p∗
jdω, p∗ = jω + δ, δ ∈ R

−

(11)

=
∑

pi∈C+

αi

jω − (pi − δ)
(12)

Hence:

‖Q∗
δ‖

2
2 =

∑

pn∈C+

∑

pm∈C+

αnα†
m

(pn − δ) + (p†m − δ)
(13)

By substitution of (9) and (13), the following expression

can be found for φ:

φ =

∑

pn∈C+

∑

pm∈C+

αnα†
m

(pn−δ)+(p†n−δ)
∑

n

∑

m
αnα

†
m

(pn+p
†
m)

(14)

which can be simplified if Q contains one conjugated pole

pair such that p2 = p
†
1 and α2 = α

†
1 which gives:

φ =
Re(p)(Re(p)2 + Im(p)2)

(Re(p) − δ)
(

(Re(p) − δ)2 + Im(p)2
) (15)

The function φ is plotted as function of Re(p) in Fig.1. It

can be proved that:

dφ

d Re(p)
=

−δ(3a4 − 6a3δ + 3a2δ2 + b2δ2 + b4)

(a − δ)2(a2 − 2aδ + δ2 + b2)2
(16)

with a = Re(p) and b = Im(p). Since δ < 0 and Re(p) >
0, the denominator is never negative and the nominator is

always positive. Hence, function is monotonically increasing

in C
+. This results in a gradient towards stabilizing set which

proves Lemma 2.

The result presented in Lemma 2 can be generalized to-

wards the case that Q contains several pole pairs, albeit with

local convergence properties instead of global convergence.

Lemma 3. Given an arbitrary real rational transfer function

Q =
∑

i
αi

s−pi
. Then the gradient of the cost-function φ

presented in (6) represent a local region of attraction towards

the stabilizing region.
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Fig. 1. Behavior of the function φ for δ = −2

By observing (14), it can be seen that φ is not only

reduced by moving unstable poles to imaginary axis but

also by moving stable poles to the imaginary axis which

increases the denominator term. However, if instable poles

are located close to the imaginary axis, φ is dominated by

the corresponding term αα†

p+p†
. Hence, the steepest descend

direction is expected to shift the corresponding poles over

the imaginary axis. This result in a local region of attraction

for instable poles located closely near the imaginary axis.

Remark 2: To enable practical evaluation of φ based on

experimental data, the integrals required to compute the

‖Q∗
δ‖

2
2 and ‖Q‖2

2 have to be approximated by a series ap-

proximation. Via the approach described in [5], the integrals

can be approximated by discrete sums.

V. NORM MINIMIZATION

Complementary to the results presented in Section III

and IV that focus on stability, this section will focus on

performance optimization. Both parts are combined into one

optimization algorithm presented in Section VI.

According to the problem statement and approach pre-

sented in Section II, the H∞ norm minimization problem

can be approximated by a point wise minimization of the

maximum singular values over all ωi ∈ Ω. This section

presents a method to compute a gradient in the parameter

space that reduces the maximum singular value.

We start by making (2) more explicit by rewriting the plant

using the generalized plant framework given by:
[

z
y

]

=

[

P11 P12

P21 P22

] [

w
u

]

(17)

where [w, u]T are the exogenious disturbances and controller

output respectively and [z, y]T represent the performance

variables and controller input.

To reduce the complexity of derivations, the Youla param-

eter is introduced which appears affine in the performance

optimization problem:

min max
ωi

σ̄
(

P11(jωi) + P12(jωi)Q(jωi)P21(jωi)
)

(18)

Minimization of the maximum singular values over all fre-

quencies is achieved by the following optimization problem:

min γ (19)

s.t. : Ti ≻ 0, ∀ωi ∈ Ω (20)

with

Ti =

[

γI P11i
+ P12i

QiP21i

(P11i
+ P12i

QiP21i
)† γI

]

(21)

Although the problem is affine in Q, the controller param-

eters appear in a non-linear manner in this set of matrix

inequalities. This makes that the optimization problem in

this form is not directly useful for optimization.
It can however be proved that (20) can be locally ap-

proximated by a set of Linear Matrix Inequalities (LMI’s).

Based upon these LMI’s, methods from interior points LMI

solvers can be used to compute the gradient of the direction

that reduces the maximum singular value. The proposed

optimization algorithm is as follows:

1) Locally approximated (21) around the current param-

eter θ(k) with an LMI.

2) Compute the gradient via LMI optimization tools and

make one iteration to obtain θ(k + 1).

The proposed approach has similarities with the path fol-

lowing algorithm proposed by [11]. However, contrary to this

approach, the assumption of small deviations is automatically

fulfilled since the closed-loop system is linearized around

θ(k) obtained from the previous iteration. This omits the

assumption of low-authority controllers.
The following Lemma is used to prove that (20) can be

locally approximated by a set of LMI’s.

Lemma 4. A non-linear matrix inequality, as described in

(20), can be locally approximated around θ̄ by:

T (θ) = T (θ̄) +
∑

n

∂T (θ̄)

∂θn

(θn − θ̄n) + ǫ (22)

where ǫ converges to zero if θ̄ − θ is sufficiently small, if

det(I +PC) is sufficiently large and if a controller structure

is chosen such that the frequency response function C(jω)
behaves smooth with respect to θ.

In order to prove Lemma 4, Ti is written as a Taylor

expansion. To compute this expansion, matrix differential

calculus is exploited. We use the notation introduced by [20]

and further described in [15].
According to [15], [20], a matrix derivative is notated by:

dF (X)

dX
:=

∂ vec F (X)

∂ vec XT
(23)

Using this definition, the chain rule for Y = F (X) respec-

tively equals:

dG(F (X))

dX
=

dG(Y )

dY

dY

dX
(24)

Furthermore, it can be derived that the derivative of the

inverse of a matrix equals [15]:

dF−1

dX
= −F−1 dF

dX
F−1 (25)

Based upon these derivations, Lemma 4 can be proven.

Proof. Using (24), the first order derivative of T (jωi) can

be computed as:

dTi(θ)

dθ
=

dTi(Qi)

dQi

dQi(Ci)

dCi

dCi(θ)

dθ
(26)

The right hand terms are computed separately:

dTi

dQi

=

[

0 P12i
IP21i

P12i
IP21i

0

]

(27)

Without loss of generality, it is assumed that C is a SISO

controller to reduce notation. As a consequence, Q is SISO
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such that:

Qi(Ci) = Ci(I + P22i
Ci)

−1 (28)

dQi

dCi

= −(1 + P22i
Ci)

−1P22i
(1 + P22i

Ci)
−1 (29)

The partial derivative of
dCi(θ)

dθ
depends on the chosen

controller structure and is therefore not given explicitly.

However, in order to obtain a smooth relation between Ci

and θ, a minimum distance between the poles of C and the

imaginary axis is required.

In a similar manner, high order derivatives can be com-

puted. It can be shown that the contribution of high order

derivatives in the Taylor expansion converge to zero if

limn→∞
1
n! (det(I + PC))n 6= ∞ and C(jω) is behaving

smooth with respect to the parameters θ.

This shows that for small perturbations (θ̄−θ), the Taylor

expansion is dominated by the first order derivative which

finishes the proof.

Given the LMI approximation formulated in (22), the

gradient can be computed using gradient computation of

interior points LMI barrier solvers. The gradient can be

computed by [2], [17]:

gn,i = tr(S−1
i

∂Ti(θ̄)

∂θn

) (30)

where gn,i denotes the gradient in the direction of θn for

frequency ωi and S = Ti(θ̄) −
∑

n
∂Ti(θ̄)

∂θ̄n
. The gradient of

the entire problem formulated in (20) can be obtained by

taking the sum of the gradient obtained for all frequencies.

Remark 3: The number of frequency points contained in Ω
is typically large. This makes that the optimization algorithm

has to take into account a large number of LMI constraints.

Due to the barrier-function used to compute the gradient

of the LMI, the gradient will be dominated by frequencies

where σ̄ is relatively large. Hence, from a practical point of

view, it is sufficient to take into account LMI’s corresponding

to frequencies with large singular values only. This can

significantly reduce computational costs.

VI. OPTIMIZATION PROCEDURE

This section combines the stability condition described in

Section III with the performance optimization step described

in Section V. It is shown that it is allowed to split the

optimization process into two sequential steps to makes

optimization procedure easier to implement.

The following Lemma is used for this purpose:

Lemma 5. During minimization of a closed-loop norm that

implies robust stability, e.g. the four-block control problem

[22], stability is automatically maintained.

Proof. If det(I + PC) = 0, one of the closed-loop poles of

the system is located on the imaginary axis. Since no pole-

zero cancelations occur simultaneously in all terms of the

performance criterion, the norm of the closed-loop system

goes to infinity if poles cross the imaginary axis. This can

not occur since σ̄ is minimized.

Application of Lemma 5 allows the following sequential

procedure:

1) Test if the starting point θ0 corresponds to a stabilizing

controller using Theorem 1.

yes: proceed with step 2).

no: converge to a neighboring stabilizing region with

the approach presented in Section IV.

2) Once a stabilizing parameter set is reached, the per-

formance optimization procedure discussed in Section

V is applied. By sequentially linearizing and making a

small steps in the steepest descent direction, the maxi-

mum singular value over all frequencies is minimized.

Some practical remarks have to be made about this pro-

cedure. Since LMI interior points solvers exploit barrier

functions [2], [17], the optimization can only be started using

a feasible starting point. These points can be easily achieved

by choosing:

γ = max
ωi

σ̄
(

P11 + P12Q(θ)P21

)

+ ǫ (31)

where ǫ represents a small offset required to avoid numerical

problems.
The usual approach to apply concordance of barriers is not

applicable in this setting due to the sequential linearization

procedure. However by applying (31) after each iteration, it

is guaranteed that convergence speed is maintained.
The linearized matrix inequality only holds in the vicinity

of θ̄. If the norm of (θ(k + 1) − θ(k)) is large, perfor-

mance can be deteriorated or even a parameter-value outside

Θstabilizing can be found. By checking high order terms of

Taylor approximation, applying proper step-size control (e.g.

via backtracking [2]), and regularly checking stability, it is

expected that these problems do not occur in practice.

VII. SIMULATION STUDY

To illustrate the proposed approach, a simulation example

is given that contains both the stability and performance

optimization step. The following system is considered for

evaluation:

P =
0.0002s2 + 0.1585s + 0.25

1.2s4 + 0.7629s3 + 550s2 + 0.1585s + 0.5
(32)

To mimic experimental data, points Pi are generated by

substitution of s = jωi into P (s) with Ω = {n∆ |
∆ = 0.1, n ∈ {−1000, . . . ,−1, 0, 1, . . . 1000}}. It has to be

emphasized that this data is only generated from the transfer

function to allow evaluation with the analytical results. In

practice, such data can be obtained from the experimental

setup by frequency response experiments [14].
The chosen controller structure with the parameters to be

optimized is given by:

C(s, θ) = kp + kds (33)

with θ = [kp, kd]
T is the parameter vector to be optimized.

Fig.2 depicts the cost-function φ is computed via (6) for δ =
−5. It can be observed that, although Q contains several pole

pairs, the gradient of φ is in the direction of the stabilizing

region as depicted in Fig.3. Fig.3 show the top-view of φ
over the parameter kp and kd. The dark region corresponds

to φ < 0.01 and therefore corresponds to the stabilizing

parameter region. The analytical boundary of the stabilizing

region is depicted by the black dots. It can be observed that

the data-based stability boundary matches very well with that

analytical result.
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Fig. 2. φ as function kp and kd
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Fig. 3. Top view of Fig.2 with analytical computed boundary of
Θstabilizing

One iteration of the performance optimization step is

depicted in Fig.4. Each ellipse depicts the non-feasible region

of Ti. The arrow represents one iteration computed using

(22). It can be observed that the computed iteration converges

to the region of improved performance, i.e. a region of lower

γ.
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Fig. 4. Feasible set of controller optimization problem with iteration
towards region of improved performance.

VIII. CONCLUSIONS

This paper presents a method to optimize the parameters

of a fixed order controller based on frequency response

data. The resulting controllers are optimal with respect to

the H∞ norm of the closed-loop system. This approach

has the advantage that no low-order parametric plant model

is required such that time-consuming plant identification-

controller synthesis iterations can be omitted.
Both generic tools for stability and performance optimiza-

tion are presented that can be applied by using frequency

response data only. A stability criterion in terms of frequency

response points is given and cost-function for convergence

to a stabilizing parameter set is presented. Stability and

performance optimization are combined in one optimization

algorithm. Simulation results are given to illustrate and

validate the presented approach.
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