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Model-Free Reinforcement Learning with Continuous Action in Practice

Thomas Degris, Patrick M. Pilarski, Richard S. Sutton

Abstract— Reinforcement learning methods are often con-
sidered as a potential solution to enable a robot to adapt to
changes in real time to an unpredictable environment. However,
with continuous action, only a few existing algorithms are
practical for real-time learning. In such a setting, most effective
methods have used a parameterized policy structure, often
with a separate parameterized value function. The goal of
this paper is to assess such actor–critic methods to form a
fully specified practical algorithm. Our specific contributions
include 1) developing the extension of existing incremental
policy-gradient algorithms to use eligibility traces, 2) an empir-
ical comparison of the resulting algorithms using continuous
actions, 3) the evaluation of a gradient-scaling technique that
can significantly improve performance. Finally, we apply our
actor–critic algorithm to learn on a robotic platform with a
fast sensorimotor cycle (10ms). Overall, these results constitute
an important step towards practical real-time learning control
with continuous action.

I. PRACTICAL LEARNING IN ROBOTS

It is often desirable in robotics to allow the behaviour

to change in real time in reaction to changes in the envi-

ronment. A typical example is a robot vacuum cleaner that

would adapt the parameters of its servo-motors depending

on the floor texture to improve performance and save energy.

Anticipating all the possible types of floor and adding sensors

to determine when to change parameters would be difficult, if

not impossible, and expensive. An alternative is to use online

learning to track environmental changes and adapt to them

(e.g., see [1]). If learning is in real time and continual, then

the robot can constantly tune its internal parameters from

its current experience while cleaning the room, continually

adapting to changes in floor properties.

There have been surprisingly few reinforcement learning

algorithms that have actually learned in real time on robotic

platforms. For example, Kohl and Stone used reinforcement

learning methods to improve the gait of a robot dog, but

updated the policy only in an offline (though incremental)

manner [2]. Similarly, the dynamic walking robot of Tedrake

et al. used reinforcement learning to improve its policy, but

made updates only at the end of each step cycle [3]. Peters

and Schaal learned a swinging baseball task, but the policy

was changed only at the end of one or more episodes [4].

A last example is Abbeel et al., who learned to fly an

autonomous helicopter from offline data [5]. In addition to

not being real-time learning, all these examples learn from

a policy already well adapted to the problem: using pattern-

generator-type policies [2][3] or imitation [4][5]. Depending

on the problem, such policies may not be available.

P. M. Pilarski and R. S. Sutton are with the University of Alberta,
Edmonton, Canada. T. Degris is with INRIA Bordeaux Sud-Ouest, France.

The clearest example of real-time reinforcement learning

in robots we know of is that by Benbrahim et al. in 1993,

who applied actor–critic methods with discrete action to a

physically implemented “ball on a beam” balancing task;

this system learned in real time at approximately 55ms

per cycle [6]. The first work with real-time reinforcement

learning on a conventional mobile robot seems to have been

that by Bowling and Veloso in 2003 [7]. Their work also

used discrete action and a time cycle of 100ms.

In practice, it can be difficult to apply reinforcement

learning to real-time learning in robots. In robotics, actions

are often continuous, whereas the overwhelming majority of

work in reinforcement learning concerns discrete actions.

Moreover, in order to be able to learn in real time, a

reinforcement learning algorithm should ideally satisfy two

key requirements. First, its per-time-step computational com-

plexity should be linear in the number of learned weights

in the policy parameterization. For example, the natural

actor–critic algorithm [4] is not well suited to real-time

use; it is often more sample efficient than a regular actor–

critic algorithm, but its quadratic complexity is problematic

when the number of weights is large or when the problem

requires a fast update cycle. Second, the algorithm should

be strictly incremental in that its per-time-step computational

requirements do not increase with time [8].

In this paper, we bring together key contributions to

form a fully specified practical algorithm. In particular,

we build on the theoretical work of Bhatnagar et al. [9],

extending their algorithms to continuous action, as pio-

neered by Williams [10], and to eligibility traces similar

to Kimura et al. [11]. This paper is structured as follows.

First, we introduce the algorithmic setting and theoretical

framework. Within this framework, we describe a set of easy-

to-implement algorithms, all with linear complexity. Then,

we use an architecture based on tile coding [12] to examine

the performance of the algorithms in two empirical studies.

Finally, we demonstrate that our tile-coding architecture,

with only limited a priori knowledge, is practical for real-

time learning and control on a robot, and that, with adaptive

exploration, the system is able to adapt its policy in a noisy

non-stationary environment at a fast time scale (10ms).

II. THE POLICY GRADIENT FRAMEWORK

We consider a standard reinforcement-learning setting [12]

except with a continuous action space A. The state space S
is assumed to be discrete just to simplify the presentation of

the theory; in our experiments the state space is continuous.

We use the policy-gradient framework in which a stochastic

policy π is implicitly parameterized by a column vector of



weights u ∈ R
N , such that π(a|s) denotes the probability

density for taking action a ∈ A in state s ∈ S . An

objective function J(π) maps policies to a scalar measure of

performance. The principal idea in policy gradient methods

is to improve the performance of a policy by updating its

weight vector approximately proportionally to the gradient:

ut+1 − ut ≈ αu∇uJ(π), (1)

where αu ∈ R is a positive step-size parameter, and

∇uJ(π) ∈ R
N is the gradient of the objective function with

respect to the policy weights u.

A. Settings

Depending on the nature of the problem, two different set-

tings can be considered when defining the objective function.

First is the average-reward setting, in which the interaction

between the agent and its environment is continuing, without

interruption or episodic termination. In this case, policies are

evaluated according to the expectation of average reward per

time step: J(π) = limt→∞
1
t
Eπ [r1 + r2 + . . .+ rt].

Second is the starting-state setting, in which the agent

seeks to maximize the total reward over an episode from

a designated starting state s0 up to a special terminal state.

Policies are evaluated by the expectation of total discounted

reward from s0 until termination at time T (a random

variable): J(π) = Eπ

[

∑T

t=1 γ
t−1rt

∣

∣

∣
s0

]

where γ ∈ [0, 1]

is known as the discount-rate parameter.

In either setting, we seek algorithms that approximate (1)

on each time step. The rest of this section presents a theo-

retical forward-view analysis. The next section will convert

the forward view to a backward view to produce online

algorithms incorporating eligibility traces.

B. Forward View

The policy-gradient theorem [13] extends naturally to

continuous actions as follows:

∇uJ(π) =
∑

s∈S

dπ(s)

∫

A

∇uπ(a|s)Qπ(s, a)da, (2)

where, for the average-reward setting, dπ is the limit-

ing, stationary distribution of states under π, dπ(s) =
limt→∞ P (st = s|s0, π), whereas, for the starting-state set-

ting, dπ(s) =
∑∞

t=0 γ
tP (st = s|s0, π), the discounted state

occupancy under π. The action-value function Qπ is defined

by Qπ(s, a) = Eπ

[
∑∞

t=1 γ
t−1rt − r̄(π)|s0 = s, a0 = a

]

where, for the average-reward setting, γ = 1 and r̄(π) =
J(π) is the average-reward of the policy, whereas, for the

starting-state setting, r̄(π) is always 0. Finally, because
∫

A
∇uπ(a|s)da = 0, the policy-gradient equation can be

generalized to include an arbitrary baseline function (e.g.,

see [9]), which we denote as b : S → R, to yield

∇uJ(π) =
∑

s∈S

dπ(s)

∫

A

∇uπ(a|s) [Qπ(s, a)− b(s)]da.

(3)

While using a baseline does not change the equality, it often

decreases the variance of the gradient estimation. When a

policy π is executed, the observed states are distributed

according to dπ(s), and the actions taken are according to π.

In this case, (3) can be written as an expectation:

∇uJ(π) = Eπ

[∇uπ(at|st)
π(at|st)

(Qπ(st, at)− b(st))

]

, (4)

where the expectation is over s and a sampled from their

distributions, denoted s ∼ dπ(·) and a ∼ π(·|s). The

vector
∇uπ(a|s)
π(a|s) has been called the vector of compatible

features [9], in other words, a gradient vector compatible

with the features used to estimate the policy distribution. The

next step is to write (4) as an expectation of returns [12]:

∇uJ(π) = Eπ

[∇uπ(at|st)
π(at|st)

(Rt − b(st))

]

, (5)

where st ∼ dπ(·), at ∼ π(·|st), and the return Rt = rt −
r̄(π)+γrt+1−r̄(π)+γ2rt+2−r̄(π)+· · · . The right-hand side

of (5) now depends only on direct observations accessible

while executing π.

III. ALGORITHMS

The return, Rt, is not directly available at time t because

it depends on rewards that will be received on future time

steps. As a first step toward solving this problem, the return

can be approximated by the λ-return [12]:

Rλ
t = rt+1 − r̄t + γ(1− λ)v(st+1) + γλRλ

t+1, (6)

where λ ∈ [0, 1], r̄t is either an estimate at time t of the

average reward, r̄(π), (for the average-reward setting) or uni-

formly 0 (for the starting-state setting), and finally v(st+1)
is an estimate of the value of state st+1 under π. From (5),

we can now define a general forward-view algorithm for

updating the policy weights:

ut+1 − ut = αu

(

Rλ
t − b(st)

) ∇uπ(at|st)
π(at|st)

= αuδ
λ
t

∇uπ(at|st)
π(at|st)

(7)

where st, at are the state and action at time t, and δλt =
Rλ

t − b(st). While any function dependent only on the state

could be used as a baseline, a natural choice is to use the

estimate of the state value v(st) for the policy, maintained

by the critic of an actor–critic algorithm.

A. Backward View

Using the λ-return does not immediately solve the problem

of the return depending on future rewards; note that, in

(6), Rλ
t depends on its own future values, and thus it too

depends on all the future rewards. Using eligibility traces

and the backward view solves this problem. Using these,

an incremental online update using only quantities available

at each time step can closely approximate the forward view

update (7). In this approach, the algorithm maintains a vector

of traces e
u

t ∈ R
N of the eligibilities of each policy weight.

We switch from the forward view to the backward view by

ut+1 − ut = αuδ
λ
t

∇uπ(at|st)
π(at|st)

= αuδte
u

t (8)



where e
u

t is the trace of the compatible features
∇uπ(at|st)
π(at|st)

,

updated by e
u

t = γλeut−1+
∇uπ(at|st)
π(at|st)

, and δt is the TD error

defined as: δt = rt+1 − rt + γv(st+1)− v(st).

B. Online Algorithms with Linear Complexity Per-time-step

We now present two algorithms with the following conven-

tion: for the average-reward setting, γ = 1 and 0 < αr < 1
is the step-size for the estimate of the average reward, and

for the starting-state setting, γ ∈ [0, 1] and αr = 0.

From the backward view (8), it is straightforward to define

an actor–critic algorithm with eligibility traces, denoted AC.

AC is defined by:

Actor-critic Algorithm (denoted AC, and A when αv = 0)

Choose a according to π(a|s)
Take action a in s, observe s′ and r
δ ← r − r + γvT

x(s′)− v
T
x(s)

r ← r + αrδ
e
v ← γλev + x(s)

v← v + αvδe
v

e
u ← γλeu + ∇uπ(a|s)

π(a|s)
u← u+ αuδe

u

AC first updates its estimate of the average reward r (which

can be considered as a trace of the immediate reward r).

The state values are then estimated by the linear combination

v(s) = v
T
x(s), where v is a weight vector for the critic and

x(st) is a feature vector corresponding to state s. First, the

critic updates the weight v using the TD(λ) algorithm [14];

αv > 0 is its step-size parameter. Then, the policy weights

u of the actor are updated based on the TD error δ and the

eligibility trace e
u.

Algorithm AC is similar to that introduced by Kimura [11]

(without the theoretical justification presented in this paper).

AC without a critic (αv = 0), which we call A, is similar to

REINFORCE and to OLPOMDP [15].

Our second algorithm, which we call the incremental

natural actor–critic algorithm, or INAC, is new to this paper:

Incremental Natural Actor-critic Algorithm

(denoted INAC)

Choose a according to π(a|s)
Take action a in s, observe s′ and r
δ ← r − r + γvT

x(s′)− v
T
x(s)

r ← r + αrδ
e
v ← γλev + x(s)

v← v + αvδe
v

e
u ← γλeu + ∇uπ(a|s)

π(a|s)

w← w − αv
∇uπ(a|s)
π(a|s)

∇uπ(a|s)
π(a|s)

T

w + αvδe
u

u← u+ αuw

INAC extends an algorithm introduced by Bhatnagar

et al. [9] to include eligibility traces. It uses the

natural gradient ∇̃uJ(π) = G(u)−1∇uJ(π), where

G(u) is the Fisher information matrix, G(u) =
∑

s∈S dπ(s)
∫

A
π(a|s)∇uπ(at|st)

π(at|st)
∇uπ(at|st)
π(at|st)

T

. As in the pre-

vious algorithm, the critic weights are updated with TD(λ).

Then, the vector w is updated and used as an estimate of

the natural gradient to update the actor weights.

Both algorithms AC and INAC converge for λ = 0, given

some restrictions about the problem and the value of the

parameters [9]. A convergence proof for λ 6= 0 is outside

the scope of this paper, but Bhatnagar et al. [9] mention that

their proof should extend to this case.

IV. POLICY DISTRIBUTION FOR CONTINUOUS

ACTIONS

The algorithms mentioned above are independent of the

structure of the policy distribution used in the policy. For

discrete actions, the Gibbs distribution is often used. In this

paper, for continuous actions, we define the policy such

that actions are taken according to a normal distribution,

as suggested by Williams [10], with a probability density

function defined as N (s, a) = 1√
2πσ2(s)

exp
(

− (a−µ(s))2

2σ2(s)

)

where µ(s) and σ(s) are respectively the mean and standard

deviation of the distribution π(·|s).
In our policy parameterization, the scalars µ(s) =

uµ
T
xµ(s) and σ(s) = exp

(

uσ
T
xσ(s)

)

are defined as

linear combinations, where the parameters of the policy are

u = (uµ
T,uσ

T)
T

, and the features vector in state s is

xu(s) = (xµ(s)
T
,xσ(s)

T
)
T

.

The compatible features
∇uπ(a|s)
π(a|s) depend on the structure

of the probability density of the policy. Given that our policy

density is a normal distribution, the compatible features for

the mean and the standard deviation are [10]:

∇uµ
π(a|s)

π(a|s) =
1

σ(s)2
(a− µ(s))xµ(s) (9)

∇uσ
π(a|s)

π(a|s) =

(

(a− µ(s))
2

σ(s)2
− 1

)

xσ(s) (10)

where
∇uπ(a|s)
π(a|s) = (

∇uµπ(a|s)

π(a|s)

T

,
∇uσπ(a|s)

π(a|s)

T

)
T

.

The compatible feature in (9), used to update the param-

eters uµ of the policy, has a 1
σ(s)2 factor: the smaller the

standard deviation is, the larger the norm of
∇uµπ(at|st)

π(at|st)
is,

and vice-versa. We observed that such an effect can cause

instability, particularly because limσ→0
(a−µ(s))
σ(s)2 =∞.

Williams [10] suggested the use of a step size of the

form αuσ
2 for the gaussian distribution, scaling the gradient

with respect to the variance of the distribution. We denote

the actor–critic algorithm and the incremental natural actor–

critic algorithm with this scaling gradient technique as,

respectively, AC-S and INAC-S.

V. EMPIRICAL STUDY

We now present an empirical study evaluating how the

ideas described above affect performance. This study in-

cludes using a critic, the natural gradient, eligibility traces

and scaling the gradient estimate with respect to the variance.

In this paper, we used an architecture based on the

tile-coding technique [12] to convert a continuous state to

feature vectors. Tile coding takes an observation from the



Mountain car

αu αv αn τ Reward

A .05 na na 1 −3575±42
.005 na na 32 −3297±47

AC .005 1.0 na 1 −340±2
.01 1.0 na 2 −189±.5

AC-S .1 .5 na 1 −567±40
.01 1.0 na 2 −308±1

INAC .1 1.0 .0005 1 −435±33
.001 .5 .01 4 −386±5

INAC-S .01 1.0 .05 1 −286±16
.0005 1.0 .05 2 −518±30

Pendulum

αr αu αv αn τ Reward

A .5 .01 na na 1 −.53±.006
.05 .005 na na 8 .34±.004

AC .01 .005 .5 na 1 .42±.003
.05 .01 .01 na 4 .53±.001

AC-S .01 .05 .5 na 1 .76±.001
.01 .05 .1 na 2 .79±.001

INAC .005 .005 .5 .001 1 .49±.003
.001 .001 1.0 .005 4 .58±.003

INAC-S .005 .005 .5 .005 1 .64±.002
.005 .005 .05 .005 8 .70±.003

Fig. 1. Top: learning curve with standard error bars for the best parameters. Bottom: best parameter values and average reward per
run with standard error. The best performing algorithms were AC and AC-S with eligibility traces. Gradient scaling often improved
performance. INAC did not perform better than AC.

environment as an input and expand it into a large sparse

feature vector x which can then be linearly combined with a

weight vector to represent non-linear functions. It is outside

the scope of this paper to compare function approximation

architectures, but tile coding has key advantages for real-

time learning. First, tile coding is computationally efficient

because computing the feature vector x does not depend on

the size of x itself. Second, the norm of x is constant (i.e.,

the number of tilings). Finally, as we will show in the next

section, tile coding is robust to noise.

The first problem is the mountain car problem [12], in

which the goal is to drive an underpowered car to the top

of a hill (starting-state setting). Actions are continuous and

bounded in [−1, 1]. The reward at each time is −1 and the

episode ends when the car reaches the top of the hill on

the right or after 5,000 time steps. State variables consist of

the position of the car (in [−1.2, 0.6]) and its velocity (in

[−.07, .07]). The car was initialized with a position of -0.5

and a velocity of 0. We used γ = 1.

The second problem is a pendulum problem [16], in which

the goal is to swing-up a pendulum in a vertical position

(average-reward setting). The reward at each time is the

cosine of the angle of the pendulum with respect to its

fixed base. Actions—the torques applied to the base—are

restricted to at ∈ [−2, 2]. State variables consist of the angle

(in radians) and the angular velocity (in [−78.54, 78.54]).
The pendulum was initialized and then reset every 1000 time

steps in a horizontal position with an angular velocity of 0.

In both problem, we used ten 10×10 tilings over the joint

space of both state variables, and a single constant feature.

We used the same feature vector x(s) for the critic and for the

mean and standard deviation of the actor (x(s), xµ(s), and

xσ(s)). We performed 30 runs of a parameter sweep for the

algorithms described above (A, AC, AC-S, INAC, and INAC-S)

and for the parameters αr, αv and αu with the following set

of nine factors, {10−4, 5 · 10−4, 10−3, . . . , .5, 1}, divided by

the number of active features in x(s) (i.e., 10 + 1 = 11).

The parameter λ represents the rate at which the traces

are decaying. Often, it is more intuitive to think about it

in terms of the number of steps a trace will last. We use

τ = 1
1−λ

to denote the decaying rate. We used the values

{1, 2, 4, 8, 16, 32} for τ in the parameter sweep. All the

vectors and the average reward r were initialized to 0. In

the starting-state setting, eligibility traces are reset to 0 at

the beginning of each episode.

Figure 1 shows a summary of results. For readability each

point is an average of the previous 10 episodes for mountain

car and 10,000 time steps for the pendulum. We observe that,

first, a critic drastically improved the performance. Second,

the best performance for every algorithms was almost always

with eligibility traces (τ > 1), with only the exception

of INAC-S on mountain car. Third, the scaling gradient

technique often improved the performance, particularly on

the pendulum problem. Last, the natural gradient used in

INAC and INAC-S did not improve performance (compared

to AC and AC-S), despite the additional step size αn to set.

VI. REAL-TIME POWER CONSERVATION ON A

MOBILE ROBOT

As a practical demonstration, we evaluated the effective-

ness of AC-S on a robot. As mentioned in the introduction,

an interesting continuous-action problem domain is power



Fig. 2. Left: Comparison of performance (total reward per episode) of the AC-S algorithm on the robot acceleration task at two different
cycle times: 10ms and 250ms. Results are averaged over six independent runs at each cycle time. The average running time for the 800
episodes is 14.3 minutes. Right: Learning during the transition (episode 200) from suspended motion to moving on the ground in terms of
(a) the return per episode, (b) the sum of the current squared per episode, and (c) the time steps until termination per episode; average
of two runs. As shown in (d) for a single example run, the agent’s learned σ value (i.e., level of exploration) increases after the transition
to facilitate policy change. The average running time for the 800 episodes is 19.7 minutes.

conservation on an autonomous mobile robot—for example,

on a domestic service or remote search robot, where effective

use of battery power can have a pronounced effect on the

ability of the robot to carry out its task. During periods of

acceleration, tradeoffs must be made between a robot’s rate

of acceleration to a desired set-point and the electrical current

draw that this rate demands. Distinct environments may

demand a different power/acceleration balance, making it

essential to flexibly adapt motor control to new environments,

even those unknown to designers.

The robot used in these experiments was a sensor-rich

mobile robot with three omnidirectional wheels. The learning

task was framed in an episodic fashion: each episode began

with the robot in a stopped state and terminated when the

measured speed ẋt of one of the robot’s three wheels reached

or exceeded a target velocity level ẋt ≥ ẋ∗. The agent was

given control of a rotational motor command sent to the

robot, allowing it to spin freely in either direction or remain

stopped. The reward function for this problem was set as

rt = −
(

1{ẋt<ẋ∗} + 0.5|i2t |
)

, where 1{ẋt<ẋ∗} is an indicator

function and it is the wheel current draw at time t. The

task therefore was to balance two conflicting constraints in

real-time: reaching ẋ∗ quickly (to avoid a negative reward

on every time step) while at the same time minimizing the

current used by its wheels. The velocity and current, ẋt and

it, constitute the available observations at each time step.

The feature vectors were created from the observa-

tions and the last action from joint tilings over their re-

cent values. At each time t, we formed 10 tilings over

〈ẋt, it, at−1〉, 10 tilings over 〈ẋt−1, it−1, at−2〉 and so on up

to 〈ẋt−4, it−4, at−5〉, for a total of 50 tilings overall. Each

tiling had a resolution 10 × 10 × 10, for a total of 50,000

features. Adding a single constant feature resulted in 50,001

binary features, exactly m = 51 of which were active at any

given time. We used: αv = 1.0/m,αu = 0.1/m,αr = r0 =
0, γ = 0.99, and λ = 0.7. In the actor, only the update of the

mean was multiplied by the variance. Weight vectors were

initialized to 0; uσ was initialized such that σ = 40, and

bounded by σ ≥ 1.

A. Experiment 1: Learning a Control Policy in Real Time

To explore AC-S learning performance at different degrees

of real time operation, the robot acceleration task above was

run with two different cycle times: 10ms and 250ms, where

cycle time is the frequency at which actions are taken and the

weight vectors updated. Each run lasted 800 episodes, and

six runs were performed at each time cycle. This experiment

demonstrated the ability of the AC-S algorithm to optimize

a motor control policy when learning and action choice

occured in real time.

At both cycle times, in less than 15 minutes (in average),

AC-S learned in real-time viable control policies to deal

with the constraints imposed by the reward function and the

physical limits of each cycle time. We observed a statistically

significant difference between asymptotic learning perfor-

mance for the 10ms and 250ms cycle times (Figure 2, left).

Learning at the faster 10ms cycle time led to higher long

term reward; the robot used less current and demonstrated

shorter acceleration periods, more effectively using battery

power during acceleration.

B. Experiment 2: Online Control Policy Adaptation

One advantage of normal-distribution-based actor–critic

methods is the role that σ plays in modulating exploration.

This next experiment showed how AC-S was able to adapt its

policy in response to an unexpected environmental change,

while learning in real time (10ms cycle time). The experien-

tial setup was similar to the previous experiment. However,

at the beginning of the run, the robot was suspended so that

its wheels did not touch the ground. After 200 episodes,

the robot was moved so that it could spin in full contact

with the ground. In this condition, the robot’s mass and

wheel friction played additional roles in making the trade-off

between current draw and episode length different.

Figure 2 (right) shows how AC-S was able to successfully

adapt the σ value used in action selection, modulating

the degree of its exploration to deal with environmental



change. Results are shown here for the average of two

independent runs, with each datapoint showing the binned

average of twenty values. As shown in Figures 2a–c, AC-

S converged on a policy for its initial environment (first

200 episodes). This was followed by a rapid decrease in

reward per episode after the environmental change (episode

200), and then steady improvement as it learned a new

policy for grounded movement (episodes 201–800). Upon

encountering new environmental conditions—the transition

from suspended movement to grounded movement—there

was a significant increase in σ and a resulting change in

behaviour. As AC-S learned to maximize return in this new

situation (Figure 2a), it gradually adjusted the behaviour of

the robot to decrease the number of time steps per episode

(Figure 2c) while increasing the current per episode (Figure

2b). For one of the two runs (shown in Figure 2d), we found

that σ increased a second time after encountering a superior

policy choice near episode 600.

VII. DISCUSSION

The algorithms presented in this paper were all run on a

standard laptop. Nevertheless, they still provided a response

time more than sufficient to meet the real-time requirements

of the problem, while taking decisions and learning. This is

a key advantage of linear complexity actor–critic algorithms.

Also, no model were required. No noise reduction filter was

necessary to obtain the results presented in the paper.

A normal-distribution-based actor–critic allowed the robot

to automatically adapt its policy in response to unexpected

changes in the environment. For both robot application

experiments, we found that the magnitude of σ decreased as

AC-S converged to a new policy, but increased in response to

new or altered environment dynamics. These results highlight

the ability of actor–critic to adapt its exploration rate online

in response to changes in the environment.

A problem with these methods is that it is necessary to

determine the value of their step-size parameters. In practice,

the following procedure can be used to set the parameters

of AC and AC-S. First, for the average reward, αr should be

low (e.g., 0.001). Second, the rule of thumb of using 10%

of the norm of the feature vector x can be used to set the

critic step size αv (while keeping αu = 0). Once the critic

is stable, αu can be progressively increased. Note that the

reward function and the norm of the feature vector need be to

bounded and normalized. An advantage of using tile coding

is that it provides feature vectors with a constant norm.

Finally, robots often have more than one degree of free-

dom. While this work has been extended to an action space of

two dimensions by Pilarski et al. [18], we do not think it can

scale to high-dimension action space as such. However, we

think that this work is a promising approach easily applicable

to adapt time-dependent parameters in complex and/or non-

stationary environments.

VIII. CONCLUSION

In this paper, we extended existing policy-gradient algo-

rithms with eligibility traces and a gradient-skewing tech-

nique. We conducted an empirical study of existing and new

algorithms on simulated and robotic tasks with continuous

actions. The introduction of eligibility traces and gradient-

scaling often improved performance, but the use of the

natural gradient did not. Finally, this paper demonstrates that

actor–critic algorithms with tile coding are practical to use

for real-time learning with continuous action and state spaces

to track unexpected environment changes.
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