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ABSTRACT

Motivation: A number of unsupervised gene set screening methods

have recently been developed for search of putative functional

gene sets based on their expression profiles. Most of the methods

statistically evaluate whether the expression profiles of each gene

set are fit to assumed models: e.g. co-expression across all samples

or a subgroup of samples. However, it is possible that they fail to

capture informative gene sets whose expression profiles are not fit

to the assumed models.

Results: To overcome this limitation, we propose a model-

free unsupervised gene set screening method, Matrix Information

Enrichment Analysis (MIEA). Without assuming any specific models,

MIEA screens gene sets based on information richness of their

expression profiles. We extensively compared the performance of

MIEA to those of other unsupervised gene set screening methods,

using various types of simulated and real data. The benchmark tests

demonstrated that MIEA can detect singular expression profiles that

the other methods fail to find, and performs broadly well for various

types of input data. Taken together, this study introduces MIEA as

a broadly applicable gene set screening tool for mining regulatory

programs from transcriptome data.
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1 INTRODUCTION

Recently, a number of gene set screening methods have been

introduced successfully to analyze regulatory programs hidden in

transcriptome data. While classical microarray analyses focus on

individual genes, gene set screening methods search a prescribed

gene set library for gene sets with informative expression profiles

in given transcriptome data. By treating a gene set as a unit, these

methods enhance statistical power as well as make results easier to

biologically interpret. For example, Gene Set Enrichment Analysis

(GSEA), which finds gene sets showing differential expression

between two sample groups (Subramanian et al., 2005), has become

one of the pivotal tools for transcriptome analysis. A lot of other

methods employing similar supervised approach are used to search

∗To whom correspondence should be addressed.

for gene sets associated with given sample labels (Huang et al.,

2009).

However, if we want to globally search for putatively functional

gene sets, irrespectively of association with sample labels, we need

another approach that does not rely on supervision of sample labels,

i.e. the unsupervised approach. For this purpose, Segal et al. (2004)

proposed a method to find a set of genes whose expressions are

induced or repressed in any samples based on a hypergeometric

test. Although their pioneering method realizes an unsupervised

approach, this method can also be regarded as a kind of supervised

method in that it tests differential expression between a single sample

and the others. We recently proposed an unsupervised method,

Extraction of Expression Module (EEM) to search for gene sets that

have significantly large subsets of genes coherently expressed in the

input transcriptome data (Niida et al., 2009a). Kim et al. (2007)

also proposed a method termed Gene Set Expression Coherence

Analysis (GSECA), which selects gene sets based on expression

coherence. GSECA is different from EEM in that GSECA measures

expression coherence, taking into account all the members in the

gene set rather than focusing on the coherent subset. Since EEM

assumes that a significant gene set is co-expressed across all samples,

it is possible that EEM fails to capture gene sets that exhibit coherent

expression patterns across only a subset of samples. To overcome

this limitation, we also developed an extended version of EEM

termed Biclustering-based EEM (BEEM), which takes advantage

of a biclustering algorithm (Bergmann et al., 2003) to identify gene

sets coherently expressed in a subgroup of samples (Niida et al.,

2010).

Compared with the supervised approach, few gene set screening

methods have so far employed the unsupervised approach, and also

there remain some problems to be solved in the existing methods. For

example, although EEM and BEEM evaluate expression coherence

of an input gene set based on specific models, i.e. co-expression

across all samples or a subgroup of samples, it is possible that

such a model-based method fails to capture informative expression

profiles that do not fit to the assumed model. To address this

problem, we developed a novel model-free method termed MIEA

(Matrix Information Enrichment Analysis). Without assuming any

specific model, MIEA evaluates information in expression profiles;

therefore, it could be used to search for gene sets associated with

any types of informative expression profiles.

In order to reveal the properties of MIEA and other unsupervised

gene set screening methods, we extensively performed benchmark

tests to compare their performances using both simulated and

3090 © The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
6
/2

4
/3

0
9
0
/2

8
9
2
8
0
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Model-free unsupervised gene set screening

real data. These benchmark tests showed that MIEA can capture

significant gene sets which the other methods miss, and is broadly

applicable to various types of transcriptome data and gene sets.

Together with the other unsupervised gene set screening methods,

MIEA would be a useful gene set screening tool for mining

regulatory programs from transcriptome data.

2 METHODS

2.1 MIEA

Let E and M denote an ng ×ns input expression matrix and a gene set of |M|

genes, respectively. The rows and columns of E index genes and samples, and

the elements of each row vector are normalized so that the mean is 0 and the

variance is 1. From E, we extract the row vectors corresponding to the genes

in M and obtain a |M|×ns sub-matrix EM . Generally, to evaluate informative

patterns in EM , unsupervised gene set screening methods employ statistics

based on their own specific models. For example, EEM uses the maximal-

sized coherent subset of M in EM as the test statistic. Namely, EEM assumes

a specific model for informative patterns in EM : informative patterns should

be coherent expression of a large subset of M. Note that it is possible that

model-based methods like EEM fail to detect informative patterns in EM if

the patterns do not fit to the assumed model, or are too complex to explain

based on one simple model. To overcome this limitation, we proposed a

model-free method, MIEA. The MIEA statistic scores information richness

of EM without assuming any specific model, but taking advantage of singular

value decomposition (SVD).

Let X denote an n×m matrix and its rank is r. Note that, without loss of

generality, we assume n≥m, and therefore r ≤m holds. The SVD theorem

states (Press et al., 1992):

X=USVT ,

where U is an n×m matrix whose columns are the left singular vectors

uk , and V is an m×m matrix whose column are the right singular vectors

vk . The left and right singular vectors form an orthonormal set, i.e. vT
i vj =

uT
i uj =1 for i= j and vT

i vj =uT
i uj =0 for i �= j. An m×m diagonal matrix S

has diagonal elements s1 ≥s2 ...≥sm ≥0, which are called singular values.

Furthermore, sk >0 for 1≤k ≤r, and sk =0 for r+1≤k ≤m.

One important result of the SVD of X is that

X(l) =

l
∑

k=1

ukskvT
k

is the matrix of rank-l that minimizes the sum of the squares,
∑

ij(Xij −X
(l)
ij )2.

This result can be used for data compression of X. If the singular values sj

rapidly approach to zero for j≥ l+1, we can obtain a good approximation of

X by X(l). In other words, if the singular values are uneven, we can assume X

has so much redundancy that can be compressed. When applying hierarchical

clustering to the matrix, this information can be visualized as non-random

pattern in the heatmap. Therefore, by measuring unevenness of the singular

values, we can know how much information the gene expression matrix has.

To measure unevenness of the singular values, we define an entropy of the

matrix X by

d(X)=−

m
∑

k=1

pk log(pk),

where pk =sk/
∑m

l=1 sl . Using d(X), we can compare information richness

between matrices of the same dimension; i.e. the less d(X) is, the more

information X should have. We can assume that d(X)=0 corresponds to

the most information-rich case that can only be achieved when X=X(1),

while d(X)= log(m) corresponds to the most information-poor case where

all singular values are equal and X has no information to be compressed.

MIEA employs the entropy of EM , d(EM ), as a test statistic, and its

statistical significance is evaluated by an empirical approach. That is, an

empirical null distribution can be generated by repeatedly sampling random

gene sets whose sizes are equal to that of M, |M|. The P-value of d(EM )

is obtained by the ratio of the null statistics which are smaller than d(EM ).

Namely, the tested null hypothesis is that d(EM ) is equal to entropies of equal-

sized random sub-matrices from E. However, relying only on this empirical

approach leads to intensive computational time. Fortunately, we found that,

when |M| is large enough, the empirical null distribution is well approximated

by the normal distribution. Based on this observation, we first sample 1000

null statistics and apply the Shapiro test to validate their normality. If the

P-value of the Shapiro test is greater than the cutoff of 0.01, we calculate the

MIEA P-value by fitting the normal distribution to the 1000 null statistics.

Otherwise, we continue resampling until obtaining 104 null statistics, and

empirically calculate the P-value from them. Note that, even in the latter

case, computational time is not serious, because gene sets that reject the null

hypothesis of the Shapiro test have relatively small sizes and, for such small

gene sets, computation can be finished quickly.

2.2 Other methods compared with MIEA

In this study, we compare the performance of MIEA with those of other gene

set screening methods employing unsupervised approach: EEM, BEEM,

GSECA and SSA. Here, we give belief explanations of the competitive

methods.

2.2.1 EEM From the input gene set, M, EEM finds the maximal-sized

subset of M that shows coherent expression across all samples under the

given radius parameter r (Niida et al., 2009a). A coherent subset of M is

represented as:

SM
c ={i|i∈M,

ns
∑

j=1

(Eij −cj)
2 ≤r},

where c= (c1,...,cns )T is the vector of the center parameters. The EEM

algorithm is designed to find ĉ=arg max
c

|SM
c |, and the maximal-sized

coherent subset is given as SM
ĉ

. EEM uses |SM
ĉ

| as a test statistic to evaluate

expression coherence of M. It is clear that the results of EEM depend on the

value of the radius parameter r. Assuming Sall
ĉ

, the maximal-sized coherent

subset for all ng genes, r can be converted to the relative radius rR so that

rR =|Sall
ĉ

|/ng. We tested relative radius parameters of 0.05,0.10 and 0.15,

chose the one which leads to the smallest P-value, and corrected the P-value

for multiple testing.

2.2.2 BEEM While EEM measures expression coherence across all

samples, BEEM measures expression coherence in a subset of samples

by employing a biclustering algorithm, ISA (Bergmann et al., 2003). We

assumed a bicluster as a subset of genes that exhibits higher or lower

expressions than a predefined threshold across a subset of samples, and vice

versa. BEEM obtains a subset of M which is associated with a bicluster

in E, and statistically evaluates the size of the bicluster-associated subset.

ISA requires three parameters for specifying two thresholds controlling

the bicluster size and the targeted bicluster types (i.e. upregulated or

downregulated). We performed BEEM with 18 different parameter settings

and obtained multiple testing-corrected P-values as described by Niida et al.

(2010).

2.2.3 GSECA GSECA is similar to EEM in that GSECA tests expression

coherence of EM . However, although EEM uses the size of the maximal-

sized coherent subset of M to evaluate expression coherence, GSECA uses

the mean of expression correlation values between every pair of genes in M

as the test statistic e (Kim et al., 2007):

e=
2

|M|(|M|−1)

∑

i,k∈M,i �=k

ns
∑

j=1

EijEkj .

The P-value for this statistic is calculated based on an empirical approach

described by Kim et al. (2007); an empirical null distribution was produced

by randomly sampling 105 gene sets whose sizes are equal to |M|.
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A.Niida et al.

2.2.4 SSA Segal et al. (2004) proposed a method that screens gene sets

without sample label information, relying on over or underexpression in each

sample. However, their method does not explicitly assign P-value to a single

gene set as the other method does. To make comparison easier, we used a

reformulated version of their method termed SSA, which assigns a single

P-value to each gene set (Niida et al., 2010).

The j-th column vector of E, Ej = (E1j,...,Eng j)
T scores how much each

gene is over or underexpressed in the j-th sample, compared with the average

across all samples. Based on Ej , we obtain the top 5% of the upregulated

genes in the j-th sample, denoted as Uj . SSA tests overlap between the input

gene set M and Uj based on the hypergeometric test, and a P-value, pu
j , for

upregulation of M in the j-th sample is obtained. Similarly, a P-value, pd
j , is

also calculated for downregulation of M in the j-th sample. By calculating

pu
j and pd

j for each sample, we obtain a P-value vector of length 2×ns,

p= (pu
1,p

d
1 ,...,pu

ns
,pd

ns
)T . SSA finally combines p using Fisher’s method

(Fisher, 1932) to obtain a single P-value to M; if this combined P-value

is small, it means that M is over or underexpressed in any of the ns samples.

2.3 Generation of simulated data

We simulated expression matrices and gene set libraries for the input data.

Generally, the transcriptome contains sets of co-regulated genes called

expression modules. Genes that belong to the same expression module behave

together at the expression level. We simulated expression matrices of 4000

genes ×100 samples, each of which harbors different types of expression

modules. A simulated gene set library contains positive gene sets, which

have significant overlaps with any of the expression modules, and negative

gene sets, which were randomly sampled from the 4000 genes. Unsupervised

gene set screening can be regarded as a process to search for gene sets that

are associated with expression modules; the positive gene sets should be

identified by unsupervised gene set screening, while the negative gene sets

should not.

To simulate expression matrices, we assumed three different models:

• Coherent model. We assumed that an expression matrix has non-

overlapping 20 modules, each of which consists of 200 module genes.

For each module, we first chose one gene and generated its expression

values across samples by the standard Gaussian distribution. That is,

assuming that we chose gene k, we have Ekj ∼N(0,1) for j=1,...,100.

The other module genes were generated so that they gather around

gene k. The expression value of gene i who is a member of the module

generated from gene k is

Eij =scEkj +(1−sc)ηij,

where ηij ∼N(0,1) and sc is a parameter specifying signal strength.

• Bicluster model. We assumed that an expression matrix has 50

modules, each of which consists of 200 module genes, and is allowed to

overlap with each other. We randomly selected 200 genes from the 4000

genes to define module genes of each expression modules. We assumed

the 200 module gene constitute a bicluster, and randomly chose 100rs

samples as samples that constitute the bicluster in the module. Here,

rs is a parameter specifying the ratio of the samples that constitute a

bicluster. Let Bij be an indicator variable, where Bij takes 1 if and only

if the expression value of gene i in sample j, Eij , belongs to any of the

defined bicluster, or 0 otherwise. We set

Eij =sbBij +ζij,

where ζij ∼N(0,1) and sb is a parameter specifying signal strength.

• Sine-wave model. We assumed that an expression matrix has non-

overlapping 20 modules, each of which consists of 200 module genes.

For each module, we randomly shuffled indices of samples. The

expression value of the i-th module gene and the sample associated

with the shuffled sample index j was then defined as follows:

Eij =sc sin{
π

8
(i+ j)}+(1−sc)ǫij,

where ǫij ∼N(0,1), and sc is a parameter specifying signal strength.

We next generated gene set libraries that make pairs with each of the

expression matrices. Each gene set library includes 10 positive and 10

negative gene sets. A positive gene set includes 200rg genes sampled from

one expression module, and randomly sampled 200(1−rg) genes. Here, rg is

a given parameter specifying the ratio of module genes in the positive gene

set. Ten negative gene sets were prepared by randomly sampling 200 genes.

We additionally simulated another type of gene set library for the

expression matrices of the coherent and bicluster models. For a given

parameter K , the alternative gene set library was prepared so that the 200rg

genes in a positive gene set consist of equal-sized K groups whose members

were sampled from different K modules; i.e. a positive gene set with a larger

K value has a more complex expression profiles. Hereafter, we refer to the

paired set of these alternative gene set libraries and the expression matrices

from the coherent and bicluster models as the composite coherent model and

the composite bicluster model, respectively. Note that the models with K =1

are identical to the normal coherent and bicluster models.

2.4 Preparation of real data

We also measured performance of each method using real data. The real

data used in this study include seven expression datasets and five gene set

libraries.

To prepare the expression datasets, we obtained seven datasets from public

resources. The information of the seven datasets is summarized in Table 1.

The data preprocessing was done as described by Niida et al. (2009a). Briefly,

they were scaled to the logarithmic scale, and normalized in each sample.

After the probe set IDs were converted to gene symbols, expression profiles

of 6000 or 8000 genes (depending on the original numbers of genes) with

the largest variance were extracted and normalized across samples.

The five gene set libraries have various types of sources as listed in Table 2.

The PWM gene set library was prepared by predicting downstream target

genes of cis-regulatory motifs, using the proximal promoter sequences and

position weight matrices (PWMs) obtained from the TRANSFAC database

(Matys et al., 2006; Niida et al., 2010). The locus gene set library was

prepared by collecting genes located next to each other on the chromosomes.

To collect such genes, we set a window containing 100 genes adjacent on

the genome, moved the window by 10 genes and kept genes covered by the

window at each position (Niida et al., 2009a). The miRtarget gene set library

was prepared from the MicroCosm Targets database (Griffiths-Jones et al.,

2008); genes in each gene set were predicted to have miRNA binding sites

in their 3′UTR with P < 10−3. The curated and GO gene set libraries are

downloaded from MSigDb, a database used in GSEA (Subramanian et al.,

2005). Note that not all genes in each gene set were used for our analysis; the

intersection of each gene set and genes in each expression dataset was used

as an actual input gene set. In each gene set screening, we also discarded

gene sets for which the intersection is less than 10.

3 RESULTS

3.1 Simulated data test

We performed a simulation study to compare the performance of

MIEA with those of the four other unsupervised gene set screening

methods: EEM, BEEM, GSCEA and SSA. We simulated input

data based on the five models: the coherent, composite coherent,

bicluster, composite bicluster and sine-wave models (See examples

in Supplementary Figure S1). Each of which model has several

arbitrary parameters: i.e. rg and sc for the coherent and sine-

wave models; rg, sc and K for the composite coherent model;
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Model-free unsupervised gene set screening

Fig. 1. The AUCs of MIEA, EEM, BEEM, GSECA and SSA when applied to data from the five simulation models. For each of the five simulation models,

data were generated using several different parameter settings. The AUCs computed by applying the five methods to them are presented.

rg, rs and sb for the bicluster model; and rg, rs, sb and K for

the composite bicluster model. We used various combinations of

parameter values for each model; therefore, in total, we assumed 53

types of data simulators employing different models and different

parameter settings. We generated 20 Monte Carlo datasets from each

data simulator, and applied each of the five methods to each of

the 20 datasets. From the results pooled across the 20 simulations,

we calculated specificity and sensitivity for each method over the

whole range of significance cutoffs to depict receiver operating

characteristic (ROC) curves. Specificity was calculated as the

proportion of negative gene sets whose significance is below the

cutoff, while sensitivity is calculated as the proportion of positive

gene sets whose significance is above the cutoff. We then computed

the area under the curves (AUCs) as a measure of the performance

of each method, since the AUC assesses the overall discriminative

ability of the method at determining whether a given gene set is

associated with an expression module. The results are summarized

as follows:

• Coherent model. This model assumes that genes in the same

expression module are coherently expressed across all samples,

and a subset of a positive gene set overlaps with any single

expression module. This type of expression modules should

be efficiently captured by EEM. Expectedly, EEM performs

best among the five methods, while BEEM, GSECA and MIEA

follow EEM (Fig. 1A).

• Composite coherent model. This model also assumes coherent

expression modules, but differs in that a positive gene set

is assumed to harbor K subsets overlapping with different

expression modules. Also for the composite coherent model

with K =2, EEM works best among the five methods; however,

the performance is attenuated compared with that for the

coherent model. For BEEM and GSECA, we also observed

similar trends; their performances are worse than those for the

Fig. 2. The performances of MIA, EEM, BEEM, GSECA and SSA when

applied to various types of real data. We applied the five methods to the

combinations of the seven microarray datasets and the five gene set libraries.

The ratios of significant gene sets in all the 175 gene set screenings are

visualized as a heatmap (high ratio: red, low ratio: blue).

coherent model. On the other hand, MIEA does not show any

distinct difference between the results for the two models, and

keeps relatively good performance (Fig. 1B). This observation

prompted us to inspect dependency of these method on the

value of parameter K . We found that the performance of MIEA

is the most robust to the changes of K , and MIEA performs

best for larger K (K =5, 10 and 20 in Fig. 1C).

• Bicluster model. In this model, module genes are assumed to

be overexpressed in a subset of samples. Since this type of

expression module is a target of BEEM, BEEM performs best

for this model. The other methods except SSA also show good

performance (Fig. 1D).
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A.Niida et al.

Table 1. Expression datasets

ID The number The number Description Reference

of genes of samples

breastGray 6000 118 Breast tumors Chin et al. (2006)

breastGrayCell 6000 54 Breast cancer cell lines Neve et al. (2006)

breastMiller 8000 251 Breast tumors Miller et al. (2005)

gliomaPhillips 8000 100 Glioma tumors Phillips et al. (2006)

NCI60 8000 60 Various cancer cell lines Shankavaram et al. (2007)

GNF 8000 79 Various tissues Su et al. (2004)

StemCells 6000 291 Various stem cells Müller et al. (2008)

Table 2. Gene set libraries

ID The number Description Reference

of gene sets

PWM 200 Having common TF binding motifs Matys et al. (2006), Niida et al. (2010)

locus 1813 Adjacent on the genome Niida et al. (2009a)

GO 1454 Associated with common GO terms Subramanian et al. (2005)

curated 1892 Curated from the literature Subramanian et al. (2005)

miRtarget 851 Having common miRNA binding motifs Griffiths-Jones et al. (2008)

• Composite bicluster model. This model is based on the same

expression module model as the bicluster model, but assumes

that positive gene sets have two subsets associated with

different expression modules. As compared with the bicluster

model, the performance of BEEM is substantially impaired for

the composite bicluster model with K =2. On the other hand,

MIEA, EEM and GSECA remain good choices, although the

performance of EEM is slightly attenuated (Fig. 1E). We also

confirmed that MIEA performs best for large K values in this

model (Fig. 1F).

• Sine-wave model. In this model, expression values of module

genes are defined by the sine function whose phase depends

on the sum of gene and sample indices. A singular expression

module generated from this model seems a difficult target

if the method is based on simple expression module model

like expression coherence and bicluster. A model-free method,

MIEA, successfully retrieves a gene set associated with this

singular expression module. EEM also performs comparably

well, suggesting that EEM is powerful enough to capture

coherent patterns hidden in singular expression modules. The

other three methods hardly work at all (Fig. 1G).

Taken together, MIEA demonstrates relatively good performance

for all the five models. Especially, it should be noted that MIEA

performs better than the other methods in complex expression

profiles generated from the sine-wave model or the composite

models with large K values. This observation suggests that MIEA

is broadly applicable for various types of input data, which is what

we would expect for a model-free method. EEM shows superior

performance for all the five models, especially for the coherent and

composite coherent models. GSECA is also a good choice except for

the sine-wave model. BEEM is effective for the bicluster model, as

expected. SSA shows the worst performance for all the five models.

3.2 Real data test

Next, we evaluated the practical performance of the above methods

using real data. The real data include seven microarray datasets and

five gene set libraries listed in Tables 1 and 2. We performed gene

set screenings by applying MIEA EEM, BEEM, GSCEA and SSA

to every combination of the expression datasets and the gene set

libraries: i.e. (5 methods) × (7 expression datasets) × (5 gene set

libraries) = (175 gene set screenings) were performed.

In each gene set screening, we considered gene sets whose

P-values are less than a cutoff of 10−4 as significant gene sets. To

evaluate the performance of each method, we calculated the ratio

of significant gene sets in each gene set screening (Supplementary

Fig. S2). A heatmap of the performance profiles across input data

(Fig. 2) reveals that the performance of the four methods except

SSA has similar dependency on the input data while, on average,

GSECA has slightly better performance than others. The four

methods other than SSA show outstandingly high performance for

the combination of the breastGrayCell expression dataset and the

locus gene set library. This observation presumably reflects the fact

that in breast cancer cell lines there are some chromosomal regions

whose copy numbers are frequently altered, and the genes residing

on such regions behave together in the transcriptome. Note that

some methods take substantial ratios of the locus gene set library

for expression data from clinical tumor samples, i.e. breastGray

breastMiller and gliomaPhillips. However, it is reasonable that the

data from monoclonal cell lines have much higher signal strength

than those from the mixture of heterogeneous tumor tissues.

On average, the curated and GO gene set libraries tend to contain

more significant gene sets across the seven expression datasets.

Although substantial ratios were observed for the PWM gene set

library with some expression datasets, the miRtarget gene set library

contains few significant gene sets in most of the expression datasets.

This observation suggests that expression regulations by miRNAs
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Model-free unsupervised gene set screening

Fig. 3. The 15 groups of expression-gene set pairs taken as significant by

MEIA, EEM, BEEM and GSECA. A total of 7267 expression-gene set pairs

significant in any of the four methods were divided into 15 groups based

on which method takes them as significant, and visualized using a Venn

diagram.

are hard to be detected at the transcriptome level, consistent with

the previous reports that miRNAs regulate their target genes at

both the transcriptional and post-transcriptional levels (Carthew and

Sontheimer, 2009). Among the five methods, SSA shows the worst

performance in most of the gene set screenings. Although it shows

high performance for PWM gene set library, this observation might

be only a statistical artifact caused by gene set-size dependency, as

described previously (Niida et al., 2010).

The breastMiller dataset whose matrix size is the largest

(8000 genes × 251 samples) is most associated with significant

results. Based on this observation, we checked how much the matrix

size affects the performance of each method. For the breastMiller

and GNF datasets, we downsized expression matrices by randomly

sampling 50, 25 and 12.5% of genes or samples. We then applied

the five methods to the combination of the curated gene set library

and each of the downsized matrices, and compared the results

with those from the original matrices. This analysis demonstrated

that the performance of each method is relatively robust to the

sample-wise downsizing while the gene-wise downsizing decreases

the performance more severely, especially for SSA (Supplementary

Fig. S3). Among the five methods, EEM seems the most robust to

both types of the downsizing. Thus, the performance variance is

partially caused by the different sizes of input expression matrices,

and also would reflect data qualities and biological properties of

them.

Next, we tried to characterize performance difference by focusing

on each gene set. We omitted SSA from this analysis, because

it shows the worst performance in the above analyses. Since

each library includes hundreds to thousands of gene sets, all the

combinations of the seven expression datasets and five gene set

libraries yields 350 26 pairs of expression datasets and gene sets.

Hereafter, we refer to each of the pairs simply as an expression-gene

set pair. When we applied MIEA, EEM, BEEM and GSECA to the

35 026 expression-gene set pairs, 7267 pairs scored P-values less

than a cutoff of 10−4 in any of the four methods. We divided the 7267

pairs into 15 groups based on in which methods they are significant.

The Venn diagram visualizing the 15 groups demonstrates that

expression-gene set pairs targeted by the four methods are largely

overlapping, while each method, especially MIEA and GSECA,

has unique expression-gene set pairs which are retrieved by only

one method, but not others (Fig. 3). We also examined which

expression dataset and gene set library is associated with the 15

group of expression-gene set pairs. For each group, we calculated a

hypergeometric P-value for enrichment of the expression-gene set

pairs associated with each expression dataset or each gene set library.

Namely, the P-value for the enrichment was calculated as follows:

p=1−

|F∩G|−1
∑

i=0

⎛

⎜

⎝

N −|F|

|G|−i

⎞

⎟

⎠

⎛

⎜

⎝

|G|

i

⎞

⎟

⎠
/

⎛

⎜

⎝

N

|G|

⎞

⎟

⎠
,

where G is the group of expression-gene set pairs, F is a set of

expression-gene set pairs associated with a particular expression

dataset or gene set library, and N is the total number of expression-

gene set pairs, i.e. 35 026. Figure 4 shows the association P-value

p in minus log scale. Negative associations (i.e. depletion of the

expression-gene set pairs associated with each expression dataset or

each gene set library) can be measured by 1−p, which are shown in

Supplementary Figure S4. We found that the degree of association to

each expression dataset or each gene set library substantially varies

among the 15 groups. For example, expression profiles of gene

sets in the GNF expression dataset tend to be targeted uniquely by

BEEM. For the gliomaPhillips dataset, MIEA performs relatively

poor while EEM performs better. For the breastGray expression

datasets, MIEA performs well; it retrieves gene sets that the other

methods fail to find. Taken together, these observations suggest that

the four methods have different characteristics to target different

types of expression profiles of gene sets.

4 DISCUSSION

In this study, we introduced a new unsupervised model-free gene set

screening method, MIEA, and extensively compared its performance

with those of the four existing unsupervised gene set screening

methods: SSA, EEM, BEEM and GSECA.

SSA is a reformulated version of the classical gene set screening

method proposed by Segal et al. (2004). SSA shows by far the worst

performance in all the benchmark tests. This result seems reasonable

when considering that SSA tests over or underexpression of a gene

set in each single sample individually, while the other methods

take into account expression profiles of a gene set across multiple

samples.

On the other hand, EEM, which tests expression coherence

across all samples, performs broadly well for various types of

input data. BEEM, which tests over or underexpression in a

subgroup of samples, works well for the GNF expression dataset,

confirming our previous report (Niida et al., 2010). However, in

the other expression datasets, EEM outperforms BEEM; bicluster-

type expression modules targeted by BEEM are less common

than coherent expression modules targeted by EEM in most real

expression datasets. The feature of these methods is that they are

based on the rigid model assumptions. There are pros and cons

about this feature. A notable advantage of this feature is that it can be

utilized for not only gene set screening, but also expression module

discovery. If a gene set is taken as significant by EEM and BEEM,

a subset of genes should be co-expressed across all samples or in

a subgroup of samples. EEM and BEEM can extract the subset as

an expression module. This expression module discovery approach
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A.Niida et al.

Fig. 4. The association of the 15 expression-gene set pair groups with the types of input data. We measured associations of each group of expression-gene

set pairs with the seven expression datasets or the five gene sets using hypergeometric tests. Each row of the table represents each group and colored cells

indicate which methods take it as significant. P-values from the association tests are presented in minus log scale.

brings us much biological knowledge, especially when combined

with additional analyses of the extracted module information (Niida

et al., 2009a, b, 2010). However, note that EEM and BEEM

potentially fail to capture expression profiles which do not fit to

their expression module models.

Similarly to EEM, GSECA assumes expression coherence of

input gene sets as an indication of its functionality. However, while

EEM tests existence of a coherent subset in the input gene set,

GSECA evaluates overall coherence by calculating the sum of

correlations for all gene pairs in the gene set (Kim et al., 2007).

In the real data test, this approach retrieves the largest number

of gene sets as significant, possibly by capturing loosely coherent

patterns that cannot be detected by EEM. An example of such an

expression profile is given in Supplementary Figure S5A. However,

note that GSECA cannot capture a gene set containing subsets whose

expressions are anti-correlated, because the coherence signals cancel

each other out. Supplementary Figure S5B shows an example taken

as significant by MIEA, EEM and BEEM, but not GSECA. This

case was also shown in the simulated data test using the sine-wave

model (Supplementary Fig. S1E and G) .

The newly introduced method, MIEA, is designed to detect

any informative expression profiles of the input gene sets without

assuming any specific models. This notable feature endows the

method with the broad applicability so that it can capture complex

expression profiles that the other model-based methods fail to detect.

Supplementary Figure 5C and D shows such complex expression

profiles, which are hard to be captured by any simple models.

However, note that this broad applicability comes at cost: in case

where a model-based method would be appropriate, the model-free

method has less power, demonstrated by the simulated data test using

the coherent and bicluster model. (Fig. 1A and D) .

Collectively, we conclude that MIEA is broadly applicable to

various types of gene sets and expression datasets, while EEM

and GSECA also have comparably broad applicability. Since

EEM and GSECA have biased preferences for their targets,

they might perform better than MIEA when applied to their

favorite target. Although each method alone seems to have enough

performance, combining these different methods would enable more

comprehensive screenings for functional gene sets. This study not

only introduced MIEA but also revealed unique characteristics of

the novel and existing unsupervised gene set screening methods

by performing extensive benchmark tests. Taken together with our

previous studies (Niida et al., 2009a, b, 2010), this study provides

a foundation for unsupervised gene set screening analysis, a novel

paradigm in transcriptome data analysis.
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