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Abstract
Infectious disease ecology has recently raised its public profile beyond the scientific community due to the

major threats that wildlife infections pose to biological conservation, animal welfare, human health and

food security. As we start unravelling the full extent of emerging infectious diseases, there is an urgent need

to facilitate multidisciplinary research in this area. Even though research in ecology has always had a strong

theoretical component, cultural and technical hurdles often hamper direct collaboration between theoreti-

cians and empiricists. Building upon our collective experience of multidisciplinary research and teaching in

this area, we propose practical guidelines to help with effective integration among mathematical modelling,

fieldwork and laboratory work. Modelling tools can be used at all steps of a field-based research pro-

gramme, from the formulation of working hypotheses to field study design and data analysis. We illustrate

our model-guided fieldwork framework with two case studies we have been conducting on wildlife infec-

tious diseases: plague transmission in prairie dogs and lyssavirus dynamics in American and African bats.

These demonstrate that mechanistic models, if properly integrated in research programmes, can provide a

framework for holistic approaches to complex biological systems.

Keywords
Field ecology, infectious diseases, mathematical models, statistical models, study design, wildlife

epidemiology.

Ecology Letters (2012) 15: 1083–1094

INTRODUCTION

Concluding a report on the controversy surrounding Ross and

Waite’s pioneering mathematical models for malaria transmission, the

British Medical Journal pointed out, in 1911, ‘the paradox that quanti-

tative work based on false postulates may, by stimulating biologists

and field workers to a closer scrutiny of the facts, sometimes lead

more certainly to the discovery of the truth, than non-quantitative

investigations resting on impeccable foundations’. A hundred years

later, and despite the ubiquity of mathematical models in all fields of

life sciences, the statement retains remarkable pertinence. By describ-

ing mathematically the unobserved mechanisms hypothesised to be

causing biological phenomena (e.g. the boom-and-bust nature of

epidemics or the cyclical fluctuations of animal populations) in a

Newtonian fashion, Ross and other early modellers finally brought life

sciences on a par with physical sciences. Mechanistic models have

come to form the backbone of modern teaching and research in eco-

logy. The mainstream use of mathematical models in ecology, some-

times referred to as strategic modelling (Gurney & Nisbet 1998), aims

to formulate simple descriptions of universal drivers of population

dynamics. Over the last century, this approach has provided useful

insight into general principles of ecology and has helped ecologists

generate testable hypotheses. However, it is not always clear to scien-

tists working on a particular system what added value such generic

models can bring. This stems from the conceptual, technical and, at

times, cultural difficulties faced when trying to match models with

empirical information, as experienced by anyone working at the inter-

face of theoretical and empirical research.

In principle, mathematical models can be embedded in

broader frameworks for scientific investigation based on hypothesis
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generation and experimental falsification or validation. It is almost

50 years since Platt (1964) laid out the principles of strong infer-

ence and advocated an iterative process of formulating multiple

alternative hypotheses, generating testable predictions, gathering

experimental evidence and then revisiting the hypotheses in view of

the evidence. Along the same lines, mechanistic models should

evolve with the experimental evidence generated through the scien-

tific process. Various textbooks, such as Hilborn & Mangel’s (1997)

Ecological Detective, have greatly contributed to promoting model

integration in population ecology. This iterative process has been

put into practice in ecology in various contexts, notably experimen-

tal planktonic prey–predator systems, where the systematic use of

mathematical models has helped ascertain and quantify the respec-

tive roles of diverse factors, including resource availability

(Fussmann et al. 2000) and genetic composition (Becks et al. 2010),

in the generation of complex trophic dynamics. Extending such

approaches to natural populations poses many challenges, but there

are examples of iterative implementation of observations, theory

and experiments in field settings. Many of these have aimed to

determine the drivers of population cycles, following a tradition set

by Volterra (1926), and have encompassed a broad range of ecologi-

cal factors and interactions: from the iconic Canadian lynx-hare

predator–prey system (Krebs et al. 2001) to the Soay sheep popula-

tion of St Kilda island (Coulson et al. 2001), and from the British

red grouse and its parasites (Hudson et al. 1998) to the California

red scale (a pest of citrus trees) and its parasitoid (Murdoch et al.

2006). However, the common thread to all these examples is that

only after long time series (several years if not decades) of data had

been collected did theoretical questions appear, leading ultimately to

a cycle of mathematical models and experimental validation. Ecolo-

gists have generally failed to harness the power of mechanistic mod-

els for study design and data integration during early phases of field

studies, which can limit the power of data analysis and inference at

later stages.

What can we learn from retrospective studies to improve the flow

of exchange between empirical and theoretical methods at the onset

of a new programme of field-based research? This question is par-

ticularly topical in infectious disease ecology. Indeed, beyond the

academic motivation of integrating pathogens into ecological frame-

works (Lafferty et al. 2008), wildlife infections have recently received

a surge of attention in broader scientific and political communities

because of the various threats they pose at the global level (Daszak

et al. 2000): to the conservation of the species affected (Blaustein &

Kiesecker 2002; Haydon et al. 2006; Frick et al. 2010); to ecosystem

stability (Rizzo & Garbelotto 2003); to the viability and trade of

livestock infected from wildlife reservoirs (Siembieda et al. 2011)

and to public health in human populations affected by zoonotic dis-

eases (Kuiken et al. 2005). From a scientific point of view, infec-

tious diseases in wildlife are particularly challenging ecological

systems because their dynamics are determined by processes operat-

ing at multiple scales (Table 1), and because of practical difficulties

with data collection in populations that are often difficult to

observe or sample. Understanding these key processes requires

input from many disciplines, using multiple methodologies and anal-

ysing diverse datasets to triangulate the causal drivers of disease

dynamics (Plowright et al. 2008).

In this study, we emphasise the benefits of integrating mathemati-

cal and statistical models with empirical and experimental

approaches at all stages of a research project, with the first iteration

preceding data collection. This not only improves hypothesis gener-

ation and study design but also increases the quantity and quality of

information gained from empirical studies. To this aim, we present

a practical framework called model-guided fieldwork (MGF), which

demands a rational dialogue between researchers from multiple dis-

ciplines through a series of iterative steps, ultimately leading to

improved causal inference and predictive power. While the vast

majority of ecologists are aware of the usefulness of mathematical

models, a lack of interdisciplinary expertise within research teams all

too often prevents models from being used to their full potential.

We aim to provide guidelines for ‘good practice’ in multidisciplinary

ecological research, largely inspired by our own experience in

wildlife disease ecology.

In the MGF framework, biologists and modellers collaborate at

all stages of the study, from initial model formulation and field

study design, to data collection and analysis. The MGF approach

recognises that there is often uncertainty in system structure and

drivers, and utilises a priori mechanistic models to ensure field

efforts can address this uncertainty. A key strength of the MGF

approach is the planned iterative refinement of fieldwork, laboratory

experiments and modelling throughout the project, ensuring empiri-

cal studies are more focused and models are data driven and appro-

priate to the specific system. Compared to after-the-fact modelling

approaches, MGF helps to focus field studies on the most impor-

tant structures and drivers of dynamics. Furthermore, the necessary

continuous dialogue between collaborators throughout the project

lifespan fosters a multidisciplinary, multidirectional flow of informa-

tion (Fig. 1). It is important to underline that we envisage the

framework shown in Fig. 1 as a strategic master plan that may

unfold over several years, and which would be broken down into a

number of smaller studies. However, it would be misleading to con-

sider the large multidirectional framework as the mere juxtaposition

of separate unidirectional studies. In the MGF programme, model-

lers and biologists are involved in all steps, creating feedback loops

that are missing from too many studies.

Below we describe the MGF framework in detail, emphasising

the practical contributions that modellers can make to the concep-

tion, design, implementation and analysis of field studies. As illus-

trated in Fig. 1, the five key stages presented here should not be

Table 1 Multiple scales at which the dynamics of wildlife infectious diseases can

be modelled

Level Example References

Within host Effect of maternal antibodies on

demography

Kallio et al.

(2010)

Within groups of

hosts

Social network governing infectious

contacts between animals

Drewe (2010)

Between groups Metapopulation dynamics Haydon et al.

(2006)

Across

landscapes

Spatiotemporal waves of infection guided

by natural barriers

Russell et al.

(2005)

Between host

species

Environmental reservoirs Haydon et al.

(2002)

Pathogen-mediated competition Tompkins et al.

(2003)

Between parasite

species

Interactions within parasite communities Telfer et al.

(2010)

From wildlife to

humans

Risk factors for zoonotic emergence Jones et al.

(2008)
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seen as a linear process, but as steps on a cycle of interactions that

can be initiated from any point and reiterated multiple times. We

then present two case studies illustrating different components of

the MGF framework. Finally, the discussion summarises the scien-

tific benefits of the approach and casts light on the inner workings

and the challenges faced when breaking barriers between traditional

disciplines. The level of involvement required from all parties goes

against the high level of specialisation prevalent in science; we

provide some suggestions about planning and organisation in a

multidisciplinary context, with insight from social sciences.

DESCRIPTION OF THE MGF FRAMEWORK

Ecological model generation: from the conceptual to the

mathematical

Mechanistic models are a formalisation of the hypothesised pro-

cesses that drive the observed dynamics of a biological system.

Some of these processes may be measured in real time in the field

(e.g. births), others may be measured in controlled conditions (e.g.

duration of infectious period), while others may not be observable

(e.g. transmission of infection from individual to individual). The

first step of MGF is to integrate the evidence-based, qualitative and

quantitative descriptions of these processes into a formal mathemat-

ical model that attempts to describe the dynamics of observed vari-

ables—in disease ecology, typically numbers of individuals in

different categories (e.g. age, sex, infectious or immunological sta-

tus). Particularly when limited information is available about the

nature of a process, one should consider multiple hypotheses in a

strong inference approach (Platt 1964): instead of trying to falsify a

single hypothesis, it is often more informative to formulate a com-

prehensive set of biologically plausible, alternative hypotheses and

assess their relative merits to explain available data. For example,

the relative importance of multiple routes of transmission (Webb

et al. 2006; Rohani et al. 2009) or multiple drivers of epidemic

cycles (Wearing & Rohani 2006) can be assessed using mechanistic

modelling approaches once data have been collected. Although

more heuristic methods for hypothesis generation can be used,

MGF forces researchers to be extremely specific in detailing their

questions of interest and underlying assumptions. This specificity

helps to ensure that the data collected will be appropriate for the

analyses planned later (Fig. 1).

Once a conceptual mechanistic model of the system has been

proposed and formalised in diagrams and verbal description, theore-

ticians translate it into a mechanistic mathematical model, checking

the appropriateness of every assumption with the interdisciplinary

team. Where existing modelling frameworks do not appear suitable,

novel, tailor-made model structures can be designed, or a combina-

tion of models may be used for different parts of the system.

Designing model structures (i.e. equations describing the temporal

or spatiotemporal changes in biological variables) will high-

light essential parameters and appropriate methods of estimation:

either direct measurement or indirect inference by fitting models

to the data. Identification of the parameters in itself guides the

experimental and field study design (Fig. 1).

Modellers must ensure that the parameters are correctly inter-

preted. For quantities that can be measured in the field, it is impor-

tant to check that the mathematical parameters have the same

Figure 1 Schematic diagram of our model-guided fieldwork framework, emphasising feedback loops between empiricists and modellers. Numbers refer to the five key

steps described in the text; however, it is possible to initiate the collaborative cycle at any stage. Dark grey boxes represent tasks led by modellers, light grey rounded

boxes tasks led by biologists and a gradient indicates shared responsibility (online version in colour: blue for modellers’ tasks, green for biologists’ tasks).
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dimension as the measurements. Conversely, when the model

includes parameters that cannot be measured directly, the team

should try to find practical ways in which the estimates of those

parameters, once fitted, can be validated indirectly. For example, in

a model for epidemics, the transmission rate in itself is typically of

little practical use, but it can be combined with other parameters to

form the basic reproductive rate of the epidemic, which has an intu-

itive interpretation and practical implications. Because the correct

interpretation of a parameter depends on the way it is included

mathematically in the equations, it is also important to discuss

the choice of alternative functions describing key processes in the

ecological system considered. Partially specified models (Wood

2001) can also be considered when there is uncertainty in the choice

of mathematical functions.

In some cases, the choice of model structure may not be straight-

forward. For example, most models for the population dynamics of

infectious diseases assume that individuals will go through a small

number of discrete states during the process of infection, typically:

susceptible (uninfected), latent (infected but not infectious), infec-

tious and recovered (often with lifelong protective immunity). Even

if the studied infection follows this general progression, individuals

may not be unambiguously assigned to a single status (McClintock

et al. 2010); for example, it is often impossible to know from a mea-

sured antibody titre whether the animal is currently infected or

whether it is immune against future infection. Complementary

experimental data are often needed to provide this kind of informa-

tion, and further model refinement may be required to incorporate

this biological richness (Charleston et al. 2011). The most relevant

level of aggregation of individuals into discrete categories must be

discussed carefully, taking into account the accuracy of the measure-

ments available, the complexity of the model and the corresponding

statistical methods. If not considered properly, these issues can lead

to an ill-posed question, i.e. a situation where the results are of no

practical use, as reviewed by Loehle (2011).

Model exploration

Once a draft model is constructed, its dynamics must be explored

over a wide range of parameter values and alternative assumptions

using mathematical analysis and numerical simulations (e.g. Plo-

wright et al. 2011). Patterns that the model can generate, and quali-

tative features expected in the data (Duke-Sylvester et al. 2010) can

be identified, such as the existence and stability of equilibrium

states, steady or waning oscillations (Hampson et al. 2007) or extinc-

tion of either the host or the infectious agent (Lloyd-Smith et al.

2005). As described in the next section, this initial analysis will

inform the design of the field study (e.g. how many observations or

samples are required to detect hypothesised changes in disease

dynamics?), and can highlight flaws in the model (e.g. if it fails to

replicate known dynamics, such as oscillations, or predicts an unre-

alistic prevalence of infection). This ‘feasibility assessment’ stage

(Fig. 1) helps the scientific team identify aspects of the system that

are poorly understood and need further empirical study or updates

to the model structure.

Sensitivity analysis is another essential process that helps focus

data collection effort on the most important parameters, by deter-

mining how changes in parameters affect model output (Blower &

Dowlatabadi 1994; Cariboni et al. 2007). Highly sensitive parameters

may require more measurement effort because the model output is

more dependent on these parameters. From a mathematical view-

point, sensitivity analysis should explore most of the parameter

space. The biological range of some parameters can be quite wide,

especially when considering a variety of environmental conditions.

In many cases, however, the most relevant biological information

results from a more local sensitivity analysis in the parameter space,

which can be loosely determined from previous knowledge. Local

sensitivity analysis is useful because there is often interdependence

in parameter values and sensitivities, and this informed process

can help to reduce data collection effort by focusing on the most

relevant region of the parameter space. Determining interactions

between parameters can also help pre-empt issues with identifiability

that may appear at a later stage, by suggesting simplifications in the

model. A typical example would be a pair of parameters governing

reproduction and mortality in perfectly symmetric ways, which

could result in population dynamics affected by the ratio (or the

difference) of the two parameters rather than their absolute values:

the pair of parameters can then be replaced with a single aggregate

parameter.

Study design

The design of ecological studies should aim to maximise the

information that can be obtained from the data within the practical

constraints imposed by the system. Although sample size calculations

have become a standard practice in life sciences, mechanistic models

are rarely used at this stage of empirical research. Once a priori

models have been developed, as outlined in the previous section,

they can help suggest how field data should be collected to optimise

integration with other data sources. For example, De Jong & Bouma

(2001) described a practical experimental framework for the measure-

ment of vaccine-induced herd immunity in animal populations, based

on a generic mathematical model for disease transmission.

Using mechanistic models ahead of field studies can improve the

reliability of data collection. Craft et al. (2009) built a network

model based on data describing the social interactions among Seren-

geti lions, and used it to run simulations of disease outbreaks. They

quantified the impact of several properties of the empirically derived

network on the outcome of the simulations, and highlighted poten-

tial biases caused by the way data had been collected. Although this

analysis was conducted on a post hoc basis, such advice can help with

the design of future field studies.

Furthermore, modelling exercises can suggest additional measure-

ments that had been overlooked. Rohani et al. (2009) demonstrated

theoretically that environmental transmission could play a more sig-

nificant role than previously acknowledged during outbreaks of

avian influenza, which should encourage measurements for the pres-

ence of influenza viruses in the environment. In another example,

Plowright et al. (2011) developed a metapopulation model to simu-

late the dynamics of Hendra virus within fruit bat populations, thus

providing a mechanistic explanation of increasing spillover from

fruit bats into domestic horses in Australia. The inclusion of waning

maternal immunity in the model improved the temporal match of

simulated outbreaks to the observed ones. Although the presence

of maternally derived antibody (MDA) has been reported, measure-

ment of waning immunity itself in wild animals may not be feasible;

instead experimental studies on captive bats could be carried out to

test the hypothesis that MDA is protective and to derive empirical

estimates of the rate of MDA decline.
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Model fitting

A crucial step of MGF comes when the model has been designed

and the data have been collected: matching the two together with

the help of statistical modelling. The first objective is usually to esti-

mate the value of model parameters that were not known at the

time of model construction. In the case where alternative hypothe-

ses have been incorporated into different models, an additional

objective is to assess which hypothesis provides the ‘best fit’ of the

model to the data. What is meant by ‘best fit’ is an essential ques-

tion that needs to be addressed by all the parties involved, biolo-

gists, modellers and statisticians, even before the data have been

collected. Although a number of methods for curve fitting, such as

smoothing, least squares or non-linear forecasting, have been tradi-

tionally employed for ecological time series (Kendall et al. 1999),

they tend to consider the sources of error and variability as black

boxes. In contrast, likelihood-based models can incorporate specific

error-generating mechanisms (e.g. demographic stochasticity, sam-

pling methods, imperfect assays), and therefore generate more reli-

able predictions (Clark & Bjørnstad 2004). Combined with

information criteria (such as Akaike’s Information Criterion), they

also allow multiple model comparison and weighting (Burnham &

Anderson 2001). Likelihood-based methods allow the computation

of confidence intervals on parameter estimates, providing evidence

to compare the relative importance of the mechanisms considered.

The last two decades have seen considerable advancement in the

statistical methods available to fit dynamic models to empirical data,

especially in the field of infectious diseases (Becker & Britton 1999).

An increasingly popular approach is to use a Bayesian framework,

which offers several advantages. First, all model parameters follow

probability distributions rather than being treated as fixed quantities.

This enables measures of parameter uncertainty to be generated.

Second, the Bayesian framework allows prior information (e.g.

parameter ranges obtained from available data sources, such as pub-

lished papers) to be incorporated into the model structure. This is

somewhat controversial as poor choices of priors can unduly influ-

ence the final estimates. However, where reliable information is

available, a careful use of priors can help to ensure that the parame-

ter estimates obtained are realistic. Indeed, certain combinations of

parameter values that fall outside of meaningful biological ranges

might happen to produce a perfect fit to the data by virtue of the

mathematical properties of the model, but the use of prior informa-

tion can help maintain parameters within biologically appropriate

ranges. Third, in the Bayesian framework, any missing information

in the data (e.g. due to incomplete observations or long time inter-

vals between repeated measurements) can be treated as extra param-

eters in the model, and estimated as part of the model fitting

process (O’Neill & Roberts 1999; Clark & Bjørnstad 2004). Recent

methods have also been developed to deal with missing information

within a frequentist framework (Ionides et al. 2006). Other new

techniques, such as approximate Bayesian computation, provide a

natural framework to estimate parameters in stochastic ecological

models (Hartig et al. 2011), which are particularly relevant for infec-

tious disease dynamics.

Whether using Bayesian or frequentist statistical models, a constant

dialogue must be maintained between all parties involved. Indeed,

the fitting process must be informed by the biologists to ensure the

data are correctly interpreted and meaningfully analysed. It is not

uncommon that data collection differs in various degrees from the

initial plans because of logistical issues or unexpected field condi-

tions. This may require a reassessment of the fitting procedures to

account for missing data. It also is essential to submit every output

from data analysis to a reality check by the field biologists: for

example, unrealistic parameter estimates might reveal flaws in mod-

els, guiding the selection of alternative models or the revision of

unsuitable assumptions. As a result, it is not unusual for the process

of fitting models to data to take several months to complete. The

numerical algorithms involved are often very complex, with risk of

human error, and can take several days to run, even on modern

computers.

Model validation

The first step of validation is the assessment of the ‘goodness of

fit’ of the model(s). Even though model fitting procedures aim to

minimise the difference between observations and model predic-

tion and to select the best-supported model, substantial discrepan-

cies may remain. Statistical tests can be used to assess whether

the remaining differences (or residuals) between the fitted model

and the actual data may be attributed to random noise. However,

such tests must be interpreted with caution: statistical support does

not guarantee that the model assumptions are correct; conversely, a

statistically significant discrepancy should not necessarily lead to a

rejection of the mechanistic model as a whole. The value of any

model lies in its ability to improve our understanding of specific

processes, which does not necessarily require a perfect match to all

the mechanisms of the real system. Therefore, a subjective assessment

of model dynamics, informed by biological knowledge, remains

important—this is another ‘reality check’ at the core of the MGF

process (Fig. 1). Predictions from a fitted model should always be dis-

cussed critically in the context of both the model structure and the

data collected.

The second step of validation confronts predictions of the model

with an independent set of data, i.e. data not used in the fitting pro-

cedure. For example, if the same variables have been measured in

two different locations that differ in known characteristics, once the

model has been fitted to the data from one site, it can be used to

predict the observations in the other location by modifying certain

parameter values accordingly. Alternatively, where several variables

have been measured in a single study, it is possible to fit the model

to a subset of variables and then use the model to predict the

dynamics of the remaining variables. If successful, this step is strong

evidence that some fundamentally important aspects of the system

have been captured by the mechanistic model. This allows the

researchers to draw conclusions about the causes of observed pat-

terns. Thus, once a valid model is produced, it will help assess the

original set of hypotheses. If the model fails this step of validation,

it is worth reconsidering alternative models that may have been pro-

posed in the early stages and discarded on the basis of the original

fitting procedure. However, as in the previous step of validation,

some discrepancies should be expected when confronting model

predictions to independent data: again, this should not trigger an

automatic rejection of the model, but rather encourage a critical

assessment of its assumptions through discussion between modellers

and empirical biologists. In particular, the magnitude of the discrep-

ancies that can be accepted should be informed by the biology of

the system, by potential uncertainties introduced by data collection

procedures, and by the type of model-generated predictions sought.
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This step of validation can result in modifications of the model as

well as additional experiments; these iterative improvements are at

the core of the MGF philosophy.

Lastly, a third component of model validation is an assessment of

the relative importance of the model parameters. There are two

relatively common approaches for this. The first one uses an infor-

mation criterion framework that penalises the explanatory power of

models by their complexity (number of parameters), as described in

step 4 above for model selection. Once the best model has been

identified, it may still be possible to simplify it further, e.g. by set-

ting the values of some parameters to zero and assessing the effect

on the information criterion. The second approach is to use sensi-

tivity analysis on a single validated model to determine the relative

importance of different processes incorporated in that single model.

In this approach, parameters are associated with particular processes

of interest (e.g. transmission pathways). Parameters that strongly

affect the behaviour of models (i.e. which have high sensitivity) are

associated with relatively important processes.

By submitting fitted models to detailed scrutiny, the scientific

team should aim to identify any remaining discrepancies and issues,

leading to further iterations of model improvement and data collec-

tion. Components of the models that failed the validation tests can

be more informative than those that passed, which echoes the 1911

quote cited in the opening of this study. Indeed, a key aspect of

MGF is that the model is not an end point. As in a strong infer-

ence perspective (Platt 1964), the inference drawn from the model

should generate new questions and hypotheses that can be investi-

gated through another cycle of MGF (Fig. 1).

CASE STUDIES

The MGF framework represents a flexible and modular set of

guidelines for ambitious, long-term research programmes in ecology.

In most cases, such programmes will progress through a series of

specific research objectives corresponding to subsets of the whole

framework. Appreciating from the onset how mathematical models

can contribute to those different steps is not an obvious task, but

one that requires patience and commitment from all parties

involved. As mentioned in the introduction, the MGF framework

is not meant as a rigid, one-size-fits-all set of rules, but as a guide-

line for multidisciplinary integration. To demonstrate how MGF

research can be implemented from different premises, we present

detailed accounts of this process using two case studies from our

own research. Whereas the first case study (plague transmission in

prairie dogs, Fig. 2) followed steps 1–5 quite naturally, the second

one (lyssaviruses in bats, Figs 3 and 4) combines two initially inde-

pendent projects which started at different points along the cycle

until it was realised they could complement each other within an

MGF approach.

Plague transmission in prairie dogs

Black-tailed prairie dogs (Cynomys ludovicianus) are extremely suscepti-

ble to plague and exhibit epizootic die-offs resulting in the apparent

extinction of prairie dog towns. Researchers wished to determine

the mechanisms underlying these spectacular die-offs to better

understand how they occur and might be managed. According to

Figure 2 Application of MGF to plague (Yersinia pestis) in prairie dogs (Cynomys ludovicianus). The aim was to assess the relative importance of different routes of

transmission of Y. pestis in causing observed extinctions of prairie dog towns.
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Figure 3 Application of MGF to bat rabies virus in big brown bats (Eptesicus fuscus). This study aimed at assessing the role of seasonal hibernation and birth pulses in the

persistence of rabies virus in bat populations. Here, most data were collected before a formal mathematical model was developed.

Figure 4 Application of MGF to Lagos bat virus (LBV) in straw-coloured fruit bats (Eidolon helvum). This ongoing research programme is investigating the interactions

between bat life history (age structure, migrations, seasonal birth pulses) and the circulation of LBV. The modelling framework is being developed in conjunction with

data collection and with input from the project on rabies virus in big brown bats.
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the dominant paradigm in the literature, Yersinia pestis, the aetiologi-

cal agent of plague, forms a biofilm that blocks the proventriculus

of fleas feeding on mammals; transmission occurs when infectious

bacteria from the blockage are regurgitated. Models that assumed

blocked flea transmission as the only process predicted flea loads

that were inconsistent with those observed in the field (Lorange

et al. 2005; Webb et al. 2006). From these results and other observa-

tions, field researchers questioned the relevance of the dominant

assumption to the prairie dog system, especially because the para-

digm was based on transmission in a peridomestic system that dif-

fers in several important features from plague outbreaks in wildlife

populations (Gage & Kosoy 2005).

Plague has a rich and long scientific literature including many

older studies with valuable information from detailed laboratory and

field observations for different species of rodent hosts and flea

vectors. Under closer scrutiny by empirical researchers and model-

lers, the literature revealed an array of proposed transmission

mechanisms that could broadly be classified into three types:

blocked flea transmission, pneumonic transmission and transmission

from a short-term reservoir. This led to the development of a

mechanistic model that incorporated those three alternative trans-

mission pathways (Webb et al. 2006). Most model parameters were

taken from literature on prairie dogs or closely related species,

although field data were used to estimate three remaining parame-

ters using multiple methods including fitting procedures to the pro-

posed model and estimation separate from the model. A stochastic

version of the model was used to predict the probability of extinc-

tion of prairie dogs and fleas and the time to extinction. These pre-

dictions were validated using an independent 20-year data set of

observed outbreaks. The model achieved a reasonable match to the

observed data, and sensitivity analysis revealed that transmission

from a short-term reservoir was the only route consistent with the

observed data. This led to specific recommendations for data collec-

tion, initiating a new cycle of MGF (Fig. 2). In particular, multiple

hypotheses were consistent with the short-term reservoir scenario

and constraints on the infectious period of the short-term reservoir

predicted by the model, including early-phase transmission before

blockage occurred, transmission from carcasses and transmission

from alternative infected hosts.

Based on the model, a series of experiments established that

early-phase transmission was feasible in a laboratory setting (Eisen

et al. 2006; Wilder et al. 2008), and measured the decay of infec-

tiousness from carcasses. In parallel, data were also collected on

infection rates in alternative hosts (Stapp & Salkeld 2009). This field

and laboratory work corresponds to Phase 3 in MGF (Fig. 2).

Finally, the new data were incorporated into more specific models

that accounted for the newly proposed transmission mechanisms

and which were then validated (Salkeld et al. 2010; Buhnerkempe

et al. 2011), corresponding to Steps 4 and 5 in MGF (Fig. 2). The

two different models that were developed need to be reconciled,

but overall it appears likely that early-phase transmission drives the

initial spread of epizootics with secondary roles for other transmis-

sion routes once host limitation occurs (Buhnerkempe et al. 2011).

Seasonal dynamics of lyssaviruses in bats

The role of bats as reservoirs of zoonotic viral infections is increas-

ingly recognised (Calisher et al. 2006). Rabies virus and related lyss-

aviruses are important pathogens of bat origin (Badrane & Tordo

2001); however, mechanisms of persistence of lyssaviruses in popu-

lations of bats and the drivers thereof have not been well described.

We have recently led two projects investigating the effects of two

different seasonal behaviours on bat lyssavirus infection dynamics:

hibernation in a temperate bat species and migration in a tropical

bat species. In contrast to the previous case study which was a

direct illustration of the MGF guidelines, this one shows the syn-

ergy that can be gained by combining several threads of research

into the MGF framework.

Hibernation and rabies virus infection in big brown bats

The first part of our case study focused on rabies virus persistence

in a big brown bat (Eptesicus fuscus) population roosting in buildings

in Fort Collins, Colorado. In this study, modellers relied on a post

hoc synthesis of field and laboratory data to develop a population-

level model for the seasonal dynamics of rabies virus, which was

then validated with independent data (George et al. 2011). Thus, this

project effectively implemented Steps 3, 4 and 5 of the MGF

framework (Fig. 3). The project was initiated by field and laboratory

scientists aiming to estimate host demographic parameters that were

previously unavailable. From the onset of the 5-year field phase of

the project, empirical estimates of bat demographic and infection-

related parameters were obtained (Step 3). Field work included

radio-tracking of bats and permanently tagging (Wimsatt et al. 2005)

several thousand individual bats at multiple colonies, which pro-

vided estimates of survival rates (O’Shea et al. 2011b). Reproductive

rates were quantified by assessing the breeding status of captured

females (O’Shea et al. 2010). The project also considered epidemio-

logical parameters of the bat population, including determination of

rabies seroprevalence and assessment of infection prevalence. Inter-

pretation of serology data was helped by exposure experiments on

captive big brown bats (Shankar et al. 2004; Davis et al. 2007; Turm-

elle et al. 2010) and a statistical model for estimating the rate of

exposure based on seroprevalence and seroconversion data from

marked bats (George et al. 2011).

The mathematical model consisted of three submodels that

described the hibernation period (when no transmission occurs),

pre-transmission period in early spring and the main transmission

period (when transmission was assumed to follow a classical SEIR

framework). Other structures representing alternative hypotheses

were considered for the pre-transmission period where less was

known. Combined results of demographic and serological sampling

in the field, results of experimental exposure studies and informa-

tion from the literature allowed modellers to estimate or bound

model parameters. The model was validated with independent data

from the study population, including population size (O’Shea et al.

2011a), size of the infectious class (George et al. 2011) and the tim-

ing of the peak number of rabies cases in different age classes

(O’Shea et al. 2011a).

The model suggests that rabies virus is maintained in the popula-

tion because the system is essentially in stasis during the hibernation

period, which allows persistence of infection until the spring birth

pulse (George et al. 2011). Although this project did not begin with

the design of a mathematical model, the field and experimental biol-

ogists had an unusually clear conceptual model initially and worked

closely with modellers as data collection was ending. Although, in

hindsight, this project could have benefitted from an earlier involve-

ment of the modellers, it has demonstrated how empirical research-

ers and modellers effectively iterated several steps of MGF post hoc
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(Fig. 3). The resultant model would not have been possible or com-

pelling without the field and laboratory data generated at different

stages of the project; the modelling allowed integration of empirical

information to ensure that new insights were made with regards to

rabies maintenance in the host population and tested alternative

hypotheses regarding the pre-transmission season. In addition, this

provided us with a starting point to develop a model for our next

study.

Migration and LBV in straw-coloured fruit bats

The second part of our case study on bat-lyssavirus systems con-

cerns Lagos bat virus (LBV), a lyssavirus that has been isolated

from the African frugivorous bat Eidolon helvum (Boulger & Porter-

field 1958). This project exemplifies how emerging infectious dis-

ease research can be undertaken when little prior knowledge exists.

A high prevalence of antibodies against LBV had been detected in

this migratory species (Hayman et al. 2008; Kuzmin et al. 2008),

which led us to formulate three overarching questions. Given that

most lyssaviruses were thought to have high lethality rates in

any mammalian host they infect, could LBV remain endemic in

E. helvum? How would the spatiotemporal structure of bat popu-

lations at the continental scale affect viral persistence? Could

E. helvum act as a reservoir for zoonotic spillover into human and

livestock populations? Eidolon helvum often roosts in enormous colo-

nies reaching several million bats (Sørensen & Halberg 2001), which

have been documented to form and disperse seasonally across sub-

Saharan Africa, in both urban and rural environments. Based on

this prior knowledge, we set out to address our three questions,

with an initial focus on the capital of Ghana, Accra, home to a

large colony of E. helvum in close contact with city-dwellers. We

have concentrated our attention on two main factors: heterogeneity

in host populations (e.g. variations in prevalence with location or

age) and potential seasonal forcing of transmission caused by the

seasonal migratory and reproductive behaviours of E. helvum. We

have been addressing these issues following the MGF framework

(Fig. 4) and using to our advantage the knowledge acquired through

the big brown bat study.

Using the limited knowledge available on the life cycle of

E. helvum (Mutere 1967) and the dynamics of other bat lyssaviruses

(Mondul et al. 2003; Harris et al. 2006), we initiated the project with

a simple ecological model (Fig. 4, Step 1), based on the hypotheses

that LBV infection in E. helvum can be transmitted horizontally

within bat populations and results in protective immunity, given the

high seroprevalence detected. Given the lack of empirical informa-

tion on those two hypotheses, the model-design process generated a

large number of more specific questions concerning, in particular,

the existence of protective maternal antibodies, the duration of

immunity and the lethality of infection. The absence of quantitative

information on the ecology and demography of the bats meant that

demographic studies were also necessary. Thus, over a few years,

we iteratively accrued data and parameter estimates through diverse

field studies of the host, the pathogen and their environment, com-

bined with a series of demographic and epidemiological mathemati-

cal models (Fig. 4, repeated loops between Steps 2 and 3).

We have been conducting in parallel field-based studies of wild

populations, surveys of captive bats maintained in semi-natural con-

ditions and laboratory-based development of immunological and

virological assays (Hayman et al. 2011), all guided by and feeding

back into the modelling framework. The large colony sizes of

E. helvum roosts largely exceed the number of bats that can be stud-

ied using a traditional capture-recapture marking survey. Simulations

based on expected survival rates suggested that radio-telemetry as a

method of redetection of around 100 tagged bats in the colony over

a whole season would give reliable estimates of survival (Hayman

et al. 2012b). Other approaches, such as the estimation of ages using

tooth-cementum ring analyses, have enabled us to estimate age-

specific seroprevalence, and hence infection rates (Hayman et al.

2012a). To address the unresolved issue of protective acquired

immunity in bats, a captive, wild-caught colony is now being stud-

ied. By sampling these bats regularly, we are seeking to determine

whether serological parameters vary over time, whether all individu-

als are born susceptible and whether seropositive bats may be per-

sistently infected. Alongside this ongoing empirical work, we are

now adapting the seasonal model developed by George et al. (2011)

for rabies virus in big brown bats, to LBV in E. helvum. Once data

collection from captive bats is complete, we will be ready to move

to Step 4 and fit our updated transmission model to empirical data.

DISCUSSION

We have presented a detailed framework for MGF and described,

through case studies, different methods of implementation. Key dif-

ferences between MGF and more commonly applied approaches to

modelling ecological dynamics are the early-stage input from both

modellers and biologists into study design, incorporation of multiple

hypotheses and uncertainty about structure in the determination of

the data required and the iterative approach between models and

measurement. Post hoc modelling studies have an important role to

play to complement traditional data analysis and generate new pre-

dictions. However, such studies tend to be limited in their scope

and power if the modellers were not involved in study design.

A lack of mutual understanding or communication between the

modellers and the scientists who collected the data can cause

lengthy adjustments of the model, can result in parts of the data

being unusable due to their inadequate collection or reporting and

may bring into question the reliability of the predictions generated.

When undertaken properly, MGF allows the assessment of multiple

system-specific hypotheses that relate to unobserved mechanisms,

by combining information from different organisational levels (indi-

vidual hosts, populations and landscapes). This information often

comes from diverse sources, such as field surveys, laboratory experi-

ments and surveillance, that can be integrated into the modelling

framework. While we put fieldwork at the core of MGF as the fun-

damental source of data and observations on wildlife ecology, our

framework can incorporate complementary data sources, such as

experiments involving captive animals. As a result of this broader

integration, the data gathered will be exploited to their full potential

and will thus lead to richer and more reliable conclusions and

predictions.

Beyond the technical aspects that we have described in detail,

MGF provides a framework for adaptively managing the human

dimension of interdisciplinary research collaborations. Indeed, the

iterative process allows input from all disciplines at multiple points,

helping to resolve or avoid altogether counter-productive situations

where modellers are asked to develop a model without sufficient

data or where field biologists are handed a model with inappropriate

assumptions. However, even within this framework, there are criti-

cal capabilities that must be developed within the research group as
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a whole to ensure an efficient and durable collaboration. First, the

group must define common goals and questions (Gorman et al.

2011), which is not as easy to achieve as it may sound. Too often

in research, interdisciplinary collaborators draw targets around their

current personal research interests rather than defining superordi-

nate goals and then agreeing on the means to achieve them. The

MGF approach essentially forces participants to develop shared

questions and goals before the research is undertaken. Second,

members of the collaboration need to develop ‘moral imagination’

which involves seeing the problems from the perspective of other

stakeholders (Gorman et al. 2011). Often researchers from different

fields will have fundamentally different perspectives on how to

tackle a problem, aptly described by Gorman et al. (2001) who sta-

ted that ‘most scholars like to share frameworks about as much as

they like to share toothbrushes’. Hence, the third capability, devel-

oping ‘trading zones’ (Galison 1997), is necessary for exchanging

ideas or sharing data and resources. All three of these capabilities

can be facilitated by ‘interactional experts’—individuals who under-

stand enough of the disciplinary cultures and languages to facilitate

a common language, common goals, shared mental models,

exchange of knowledge and a shared framework for investigation

(Gorman 2010). Such expertise has traditionally been gained over

long periods of personal collaborations, but more opportunities are

now available for early-career training through formal courses and

workshops. For example, in MGF, interactional experts would

include veterinarians with post-graduate training in mathematical

modelling, immunologists with training in ecology or mathemati-

cians with a training in epidemiology. Both offer and demand for

such interdisciplinary training need to be encouraged.

Now is an exciting time to implement MGF approaches. There is

increasing emphasis on the need for multi- or interdisciplinary stud-

ies of many systems, particularly regarding the emergence of infec-

tious disease threats to biodiversity and public health (Wolfe et al.

2007; Jones et al. 2008). Many national and international funding

bodies have started to support actively the integration of empirical

research with modelling, or model-guided predictions, not only in

their core programmes but also increasingly in direct response to

emerging epizootics (e.g. white nose syndrome in North American

bats) or zoonoses (e.g. pandemic swine influenza). One area where

real progress can be made at low additional cost through MGF

approaches is pathogen or disease surveillance—a point apparently

overlooked by Kuiken et al. (2005) in their call to arms to tackle

emerging zoonotic infections. Such approaches to surveillance

would potentially increase the return on investment by addressing

traditional surveillance questions as well as more mechanistic ones.

Although we have focused our attention on wildlife infections,

the MGF framework would be equally useful in other areas of

applied ecological research where mechanistic models could help

devise quantitative predictions for intervention, as indicated by ret-

rospective reviews, e.g. on pest management (Murdoch et al. 2006).

Potential applications include the management of invasive species,

conservation of biodiversity in the face of climate change or the

sustainability of human exploitation of natural resources. Advice to

policy makers in these fields all too often relies on ‘expert opinion’,

a euphemism for the subjective synthesis of vast amounts of scien-

tific evidence and personal experience. By providing a rigorous

framework for the construction of such syntheses, the MGF

approach has the potential to become a standard for evidence-based

environmental policies. Explicit embedding of MGF approaches into

policy directed programmes can be achieved using frameworks such

as participatory impact pathways analysis (Alvarez et al. 2010). A

clearly defined pathway towards a successful outcome can provide

incentives for all scientists to engage in what for many could be an

unfamiliar and uncomfortable, albeit hugely exciting, process.
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