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Abstract— With the proliferation of modular Unmanned
Aerial Vehicles (UAVs) cheap and scalable control methods
are needed to ensure operability. Using adaptive control it
seems that these requirements could be met. In this paper
applicability of parameter adaptation and control methods are
demonstrated within the model identification adaptive control
framework, implementing several methods and evaluating their
performance. As a plant a non-linear simulation model of an
F-16 aircraft is used.

I. INTRODUCTION

Continuous demand for increasing aircraft performance

has lead to the introduction of flight control systems which

now have become tremendously complex.

Typically applied control design methods (e.g. gain

scheduling, dynamic inversion) require a precise dynamic

model of the system, with a sophisticated aerodynamics

analysis using numerical and experimental methods and

flight testing well beyond the extent necessary to ensure

compliance with regulations. With the proliferation of mod-

ular UAVs rapid, less expensive, scalable design methods

are needed, leading to the field of self-tuning, adaptive

controllers.

Adaptive controllers do not need a precise model of the

plant, they can adjust for deviations in configuration as well

as flight conditions. This way the robustness of the control

system can be enhanced.

Design of an adaptive controller is less expensive, and an

already applied controller can be easily tailored to fit the

requirements of the given configuration of the aircraft.

The framework of model identification adaptive control

(MIAC, also referred to as indirect adaptive control) was

chosen for this paper (instead of model reference adaptive

control applied more often) because of its wider applicability

region (arbitrary zero-pole location may be accommodated)

and due to the fact that it can be introduced in stages. Once

the correct operation of model identification is ascertained,

online control redesign can be applied to complete adapta-

tion.

The aim of this paper is to investigate the applicability

of MIAC for non-linear multi-input multi-output (MIMO)

systems, primarily focusing on identification and parameter

adaptation, which would lead to adaptive control design. For
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analysis a wide range of techniques were implemented to

evaluate their performance and applicability.

Applicability of identification and control methods is

evaluated using a non-linear simulation model of the F-16

aircraft. The F-16 was chosen as the reference plant because

it is a high-manoeuvrability, relaxed stability aircraft widely

researched with an elaborate simulation model publicly avail-

able.

The F-16 is a single-place supersonic multirole fighter

aircraft powered by a single turbofan engine with afterburner.

The cropped-delta wing has a leading edge flap, which

enables high angle of attack manoeuvres, and is adjusted

automatically. Control in roll, pitch and yaw is provided by

conventional flying control surfaces, ailerons, elevators and

a rudder.

II. MODEL IDENTIFICATION ADAPTIVE

CONTROL FRAMEWORK

Adaptive control provides a framework for the automatic,

real-time adjustment of controllers based on the estimation

of the current state of the controlled plant. Since most control

techniques assume a linear plant, for the control of non-linear

systems their simplified, linearised model is used at a given

operating point. This simplification causes slow but a priori

incalculable changes in the plant parameters. The overall goal

is to track the evolution of these parameters with the accuracy

within the robustness bounds of the linear controller.

A model identification adaptive controller consists of an

adjustable predictor (identified system model), and adjustable

controller and two adaptation mechanisms as shown in

Figure 1.
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Fig. 1. Framework for model identification adaptive control (based on [1])

The adjustable predictor is the identified discrete model of

the plant, and is expected to predict the plant output based

on plant input sufficiently accurately.
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Parameters of the predictors are adjusted based on the

output error (system identification part of the adaptive control

system). Adaptation mechanisms are described in Section III.

Based on identified system dynamics, the control system

can be designed. Within the scope of the paper two methods

have been investigated, R-S-T and GPC, both described in

Section IV.

Indirect adaptive control has already been successfully

applied for flight control system design. A self-designing

SISO receding horizon optimal controller has been designed

as described in [2], for pitch rate control. The performance

of the control design has been evaluated by simulation on

the non-linear F-16/MATV model, initialised at a given

trim condition. Results show that parameter adaptation and

control remain effective even after effector impairment.

Comparison of performance of receding horizon con-

trollers is done in [3], however only for the longitudinal

dynamics. Superiority of adaptive RHC is demonstrated over

LTI control design; however, adaptive model parameters

in this case are scheduled according to flight condition

dependent parameters.

For the SISO longitudinal dynamics of F-16 a linear

quadratic regulator was designed in [4]. The adaptive control

system is based on a nominal model, and uses a robust

adaptation law to track parameter changes. The performance

of the adaptive control law was compared to the classical

gain scheduling control, with the adaptive having better

performance.

A fault tolerant concept based on subspace system identifi-

cation and model predictive control is presented in [5]. The

controller designed uses a cascade controller with sliding-

mode control for the inner-loop, which is then identified

using subspace system identification, so that a GPC can be

designed for the outer loop. The system shows robustness to

modelling errors and disturbances, and demonstrates sensor

and effector fault tolerance.

III. PARAMETER ADAPTATION METHODS

An essential part of the model identification adaptive

control framework is the parameter adaptation algorithm to

adjust the predictor. Several approaches exist for deriving

parameter adaptation algorithms [1], in this paper all methods

presented are based on either the gradient technique or the

least squares minimisation. The aim is to investigate whether

current parameter adaptation techniques are robust and fast

enough to provide a linearised model of a non-linear plant

adequate for control purposes.

Although for continuous adaptation an online algorithm

is needed, an attempt has been made to use an offline grey-

box identification method. Rather than treating the system

as a black box and identifying the dynamics in a general

transfer function form, grey-box identification attempts to

determine the coefficients of a differential equation with a

given structure. If the differential equations are the equations

of motion, parameters are meaningful from an aerodynamics

perspective, making identification transparent. The method

applied is based on a least squares formulation and is further

described in [6].

A. Online, recursive algorithms

For real-time adaptation, probably for a long period it is

beneficial to use recursive algorithms since they incorporate

data compression by formulation. The general structure of

recursive algorithms is given by Equation (1), showing

why they may be regarded as discrete integrators with the

corrective term as an input.

[

new estimated

parameters

]

=

[

previous estimated

parameters

]

+

[

adaptation

gain

]

×

[

measurement

function

]

×

[

prediction

error

]

(1)

B. Gradient-based method

The principle of gradient-based methods is to minimise

error by taking subsequent steps towards the negative gradi-

ent of an error function with respect to the parameter vector

[1]. Usually, the identification problem (of a transfer function

or a state space) is transformed to regressor form as given

by Equation (2).

y(t +1) = θ T φ (t) (2)

In Equation (2) y(t +1) is the output at the next time step,

θ is the parameter vector containing the system parameters

and φ is the measurement vector comprising past inputs and

outputs.

The minimisation problem is given by Equation (3).

min
θ̂(t+1)

ε (t +1) = min
θ̂(t+1)

(y(t +1)− ŷ(t +1))2
(3)

In Equation (3) ε (t +1) is the a posteriori prediction error,

ŷ(t +1) is the predicted output at the next time step based

on the parameter vector at time step t +1.

The parameter adaptation algorithm is given by Equation

(4).

θ̂ (t +1) = θ̂ (t)+
F φ (t) ε0 (t +1)

1+φ T (t) F φ T (t)
(4)

In Equation (4) F is the adaptation gain matrix (a positive

definite matrix) and ε0 is the a priori prediction error, which

can be calculated according to Equation (5) using the a priori

prediction
(

ŷ0 (t +1)
)

based on the parameter vector before

adaptation (θ̂ (t)).

ε0 (t +1) = y(t +1)− ŷ0 (t +1) (5)

C. Recursive prediction error method

Gradient-based methods suffer from convergence prob-

lems around the optimum (slow convergence, overshoot,

etc.), the recursive prediction error method tries to mitigate

this by modifying the gradient using Newton’s method. The

general idea is to estimate system states together with system

parameters to minimise prediction error [7]. The innovation

model in state space form is given by Equations (6) and (7).



x̂(t +1, p) = A(p) x̂(t, p)+B(p)u(t, p)+K (p)ε (t) (6)

ŷ(t) =Cx̂(t, p) (7)

In Equations (6) and (7) p is the parameter vector of

elements of the matrices, K is the Kalman matrix (estimated

during adaptation) and ε is the a priori prediction error.

The parameter adaptation formula is given by Equation

(8).

p̂(t) = p̂(t−1)+ γ (t)R−1 (t)Ψ(t, p̂)Λ−1ε (t, p̂(t−1)) (8)

In Equation (8) Λ is the weighting matrix (design parame-

ter), γ is the forgetting factor, R is the weighted sample mean

and Ψ is the gradient matrix. Evolution of γ , R and Ψ are

governed by separate formulae as given in [7].

D. Recursive least squares

Another method applied during the investigations was the

recursive least squares algorithm. This algorithm aims at

minimising the the sum of prediction errors using the current

parameter estimate vector (Equation (9)) [8].

min
θ̂(t)

t

∑
i=1

[

y(i)− θ̂ T (t)φ (i−1)
]2

(9)

The parameter adaptation algorithm is summarised in

Equations (10) - (13)

θ̂ (t +1) = θ̂ (t)+F (t +1) (10)

F−1 (t +1) = F−1 (t)+φ (t)φ T (t) (11)

F (t +1) = F (t)−
F (t)φ (t)φ T (t)F (t)

1+φ T (t) F φ T (t)
(12)

ε (t +1) =
y(t +1)−θ T (t)φ (t)

1+φ T (t) F φ T (t)
(13)

It is a necessary condition that the matrix defined by

Equation (14) is invertible, which is the excitation condition.
[

t

∑
i=1

φ (i−1)φ T (i−1)

]

(14)

From Equation (11) it can be seen that gain is decreasing

constantly, which should be avoided for continuously chang-

ing parameter plants, therefore a modified equation is used

(Equation (15)).

F−1 (t +1) = λ1F−1 (t)+λ2φ (t)φ T (t) (15)

E. Directional forgetting

Persistent excitation is difficult to satisfy for an aircraft

without degrading flight performance, as a remedy direc-

tional forgetting may be utilised. Using the directional for-

getting algorithm the information matrix corresponding to

the parameters is decomposed to a part in the direction of

the new information due to excitation and one orthogonal

to it, forgetting is applied only in the direction of the new

information [9]. Moreover, a threshold (ε) is introduced on

the amount of new information making the method more

robust. The algorithm is summarised in Equations (16) - (23).

θ̂ (t +1) = θ̂ (t)+K (t +1)
[

y(t +1)− θ̂ (t)φ (t)
]

(16)

K (t +1) = P(t +1)φ (t) =
P(t)φ (t)

1+φ T (t)P(t)φ (t)
(17)

P(t) = P(t)+
1−µ

µ

φ (t)φ T (t)

φ T (t)R(t)φ (t)
if |φ (t)|> ε (18)

P(t) = P(t) if |φ (t)|< ε (19)

P(t +1) = P(t)−
P(t)φ (t)φ T (t)P(t)

1+φ T (t)P(t)φ (t)
(20)

R(t +1) = [I−M (t +1)]R(t)+φ (t)φ T (t) (21)

M (t +1) = (1−µ)
R(t)φ (t)φ T (t)

φ T (t)R(t)φ (t)
if |φ (t)|> ε (22)

M (t +1) = 0 if |φ (t)|< ε (23)

All of the above techniques have been investigated both for

state space and transfer function identification when possible.

IV. CONTROL TECHNIQUES

Two discrete control techniques have been compared, the

R-S-T controller and generalised predictive control.

The R-S-T controller was chosen because its structure

properly fits the structure of the identified model using XOE

(model dynamics and disturbance model). The controlled

plant dynamics follow a reference model, which can be

specified based on the performance standards.

Performance of R-S-T is compared to the GPC controller,

which is optimal with respect to a given cost function

providing an appropriate reference.

R-S-T control is a discrete pole placement technique

decoupling tracking and regulation tasks [1]. The general

architecture of an R-S-T controller is given by Equation (24).

S
(

q−1
)

u(t)+R
(

q−1
)

y(t) = T
(

q−1
) Bm

(

q−1
)

Am (q−1)
r (t) (24)

In Equation (24) r is the reference, q−1 is the delay

operator the polynomials Am and Bm provide the reference

model, and R, S and T are the control polynomials.

Generalised predictive control intends to minimise a

quadratic cost function (J) penalising deviation from de-

sired output (e), deviation form steady state input (u∗)
and changes between input values (∆u) using a predictor

[10]. The quadratic cost function defined is given by Equa-

tion (25) with weighting matrices (Wy,Wu,Ru) and horizons

(ny and nu).

J =
ny

∑
k=1

∥

∥Wyek

∥

∥

2

2
+

nu

∑
k=1

‖Wuu∗k‖
2
2 +‖Ru∆uk‖

2
2 (25)

Horizons were selected based on estimated settling times.



The predictor is a transfer function given in a CARIMA

form (Equation (26)).

a
(

q−1
)

yk = b
(

q−1
)

uk +T
(

q−1
) ζk

∆
(26)

This way the input increments can be calculated according

to Equation (27).

∆uk =
(

HT H +λ I
)−1

HT
[

−→r k+1−P
←−
∆uk−1−Q←−y k

]

(27)

In Equation (27) the vectors −→r k+1 ,
←−
∆uk−1 and ←−y k are

future references, previous input increments and previous

outputs respectively, while H, P and Q are Toeplitz matrices

constructed from model parameters and λ contains the

weights corresponding to control channels.

V. SIMULATION MODEL

To verify the applicability of the control methods a lin-

earised and a non-linear model of the F-16 aircraft was

used based on the data in [11] and published in [12], [13].

The model was extended to enable control development and

evaluation.

The simulation model and the equations of motion therein

assume that the aircraft is a constant mass rigid body, its

motion can be described using Newton’s equations. The mass

distribution is symmetric to the longitudinal plane. The Earth

is non-rotating and flat, an inertial reference system. The

atmosphere is steady, variation of characteristics is described

using the ISA standard atmosphere.

Using the above assumptions the full non-linear equations

of motion of an aircraft can be developed, which can be

linearised around trim points, according to [14]. Euler angles

are used as coordinates to describe aircraft motion.

The simulation model had to be extended to enable the

design of a discrete flight control system, therefore a zero-

order hold and an anti-aliasing filter have been added. Data

flow diagram can be seen in Figure 2.

VI. RESULTS

As an initial step an assessment of the identification

methods was carried out, both for the linearised model and

the full non-linear model. A pseudo-random binary sequence

was added as a dither to input to satisfy the excitation

condition.

A. Grey-box identification

Considering the benefits of an aerodynamically meaning-

ful identification application of the grey-box identification

was attempted both with the structure being the general

linear equations of motion based on aeroderivatives and a

general state space model. For the linearised verification

model results showed good convergence even after a few

seconds of simulation data, probably because of the appro-

priate specification of the model structure. However, when

the method was applied for the off-trim input-output values

of the non-linear model the algorithm did not converge, even

though both a coupled and a decoupled longitudinal/lateral-

directional model was specified as a structure. The reason

for the discrepancy is probably that the method estimates

the disturbance model as well, thus the problem has several

solutions making calculations ill-conditioned for this case.

Results indicate that the method cannot be used to estimate

the linearised dynamics of a highly non-linear aircraft.

B. Recursive prediction error method

For the recursive prediction error method the same dither

was used to identify the system model. The identification

model structure was specified as the controllability canonical

state space form to reduce the number of parameters to

be determined. The method has been applied for both the

linear and the non-linear model. Simulation results show

that if the parameter values are not estimated well enough

in advance results diverge leading to an unstable estimation

when the algorithm fails. The same behaviour was experi-

enced regardless the choice of the forgetting factor limits,

excitation amplitude and parameter weighting matrix. A pos-

sible explanation may be that the algorithm only guarantees

convergence to a local optimum, thus if the initial estimate

is not close enough to the truth values the method fails

to converge. Appropriate explanation of the phenomenon

required further analysis.

C. Recursive least squares

Since the attempts to identify system dynamics directly in

a state space form have not been practically applicable due to

the lack of accurate enough estimations, output error methods

to identify the transfer function matrix have been adopted.

Investigated techniques included filtered output error (FOE),

adaptive filtered output error (AFOE) and extended filtered

output error (XOE), with the last one providing the most

accurate results. The main advantage of XOE is that it also

estimates the parameters of the disturbance model given

in ARMAX form, which supports effective R-S-T control

design.

Assuming all states are measurable the RLS method has

proved working for the identification of the transfer function

matrix of the system when verified with the linear aircraft

model, even if parameters are initialised as zero. The transfer

function matrix then could be transformed to a state space

form more conventionally used for control design for MIMO

systems.

Changing the verification model to the non-linear one the

parameters converge to values corresponding to an unstable

system regardless of whether the total or just the off-trim

input-output values are provided for the algorithm.

Since none of the above mentioned MIMO identification

methods were suitable for control design, SISO models have

been identified according to Table I. When providing the total

input and output values for the algorithm convergence was

slow, in the order of a few minutes which is impermissible

for adaptive control. When using the off-trim values only

convergence was achieved in a few seconds for arbitrary

input values indicating that the methods need to be combined
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Fig. 2. Dataflow diagram of the simulation model

either with a static map of trim condition values or a separate

method to estimate trim.

SISO channels were chosen by analysing the impulse

response of the aircraft for each input, and correspond to

traditional pairs.

TABLE I

SINGLE-INPUT-SINGLE-OUTPUT CHANNELS

Controlled plant input Controlled plant output

Thrust τ Forward velocity U

Elevator η Pitch rate q

Aileron ξ Roll rate p

Rudder ζ Yaw rate r

Identification of the SISO channels using the PRBS dither

showed that identification accurate enough can be achieved

fast to enable adaptive control, however, identified values

were highly sensitive to the initial values of the PRBS signal,

especially when adaptation is performed on all channels si-

multaneously. Initially setting the forgetting factor dynamics

parameters as λ1 = λ2 = 1 for constant parameter estimation

using standard recursive least squares a sensitivity analysis

was carried out to determine which algorithm and parameters

provided the best performance. Of all the forgetting factor

dynamics, directional forgetting performed the best in terms

of parameter adaptation rate and accuracy with a parameter

selection of µ = 0.99 and ε = 0.001. Using the XOE identi-

fication combined with directional forgetting for the separate

channels simultaneously, based on the identified models the

R-S-T and the GPC controllers could be redesigned automat-

ically, providing the automatic control design tool without

relying on any a priori knowledge of system dynamics.

R-S-T reference dynamics were determined according to

the Defence Standard 00-970 [15], GPC horizons were set

based on settling time evaluation as ny = 20 and nu = 10.

Identification and parameter adaptation can be seen in Figure

3.

D. Performance evaluation

Performance of the designed controllers, both for tracking

and regulation was verified using the linear model and eval-

uated using the non-linear model according to virtual flight

tests following the Defence Standard 00-970 [15]. According

to the standard the F-16 aircraft can be classified as a Class

IV High manoeuvrability aeroplane. The Flight Phase chosen
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Fig. 3. Identification on the elevator (η) - pitch rate (p) channel (using
XOLOE estimation technique)

is Category A, which means a non-terminal flight phase that

requires rapid manoeuvring, precision tracking or precise

flight path control. SPPO, roll and spiral mode compliance

is Level 1, however, for Dutch roll the compliance is only

Level 2, showing that better identification for the damping

of the coupled mode would be necessary to achieve better

results.

Control performance of the automatically designed con-

trollers was also evaluated qualitatively, analysing the track-

ing performance of a single channel while inspecting the

regulation on the coupled one. The roll rate reference track-

ing and the yaw rate regulation are shown in Figure 4.

CONCLUSION

In this paper the applicability of model identification

adaptive control for a high manoeuvrability modular UAVs

was investigated, evaluating the performance on an F-16 sim-

ulation model. In search of a suitable parameter adaptation

method several algorithms were implemented to identify the

off-line and on-line operating point linearised dynamics of

the aircraft.

Although providing satisfactory results for an off-line

linearised MIMO plant, grey-box identification, recursive

prediction error method and recursive least squares failed

to identify linearised dynamics of the non-linear plant based
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on off-trim input and output quantities thus automatic control

design and adaptation was not possible. The most probable

reason for that is that all methods presented are based on

output error adaptation, therefore if both non-linearity and

coupling between the channels is present, they cannot be

distinguished based on their effect on the output. Uncertainty

due to the operational point linearisation is supposed to be

included in the disturbance model, while coupling effects

are attempted to identified in the coupling transfer func-

tions, however, without an appropriate filtering method no

discrimination is possible resulting in significant limitations

of applicability.

After decoupling dynamics to SISO channels model iden-

tification and self-tuning control redesign became possible,

showing acceptable performance according to the standard.

In case of a SISO channel identification both the coupling

effects and the uncertainty due to non-linearity is included in

the disturbance model. Effect of uncertainties and unwanted

coupling effects can thus be cancelled with appropriate robust

control design. Both R-S-T and GPC control designed based

on the identified model showed acceptable performance and

robustness.

Several open questions remain however. Since identifi-

cation shows great sensitivity to the initial value of the

dither sequence, dynamics of parameter convergence should

be further investigated. A major drawback of the presented

methods is that for the non-linear plant satisfactory results

could only be obtained using the off-trim input-output values,

therefore integration with a trim point estimator is necessary.

Although results obtained using directional forgetting show

potential to relax the excitation condition during operation,

the initial discovery phase and corresponding optimal dither

should also be investigated. Since it is not realistic to add

a proper PRBS dither to the input, parameter convergence

characteristics using initial trajectory modulation techniques

have to be investigated to determine whether (combined

with directional forgetting) they are sufficient to estimate the

parameters with the necessary accuracy. To apply the method

for the MIMO plant a method to distinguish between the

effects of coupling, non-linearities and disturbance should

be formulated.
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