
J
H
E
P
0
2
(
2
0
1
6
)
0
8
6

Published for SISSA by Springer

Received: December 21, 2015

Accepted: February 1, 2016

Published: February 12, 2016

Model independent constraints on four-lepton

operators

Adam Falkowskia and Kin Mimounib

aLaboratoire de Physique Théorique, Bat. 210, Université Paris-Sud,
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1 Introduction

An effective field theory (EFT) provides a model-independent framework to characterize

new physics beyond the Standard Model (SM). It gives an adequate description of physical

processes in current and past experiments if the new particles are much heavier than the

weak scale. Then new physics effects can be represented, without introducing new degrees

of freedom, by operators with canonical dimensions D > 4 added to the SM Lagrangian.

Assuming lepton number conservation, leading effects are expected to originate from D=6
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operators [1]. It is important to understand and describe, with minimal theoretical as-

sumptions, the existing experimental constraints on these operators. While many D=6

operators can be probed at the LHC collider, others can be better constrained by previous

experiments at high and low energies.

The program of systematic characterization of experimental constraints on the Wilson

coefficients D=6 operators was pioneered in ref. [2], and later continued e.g. in refs. [3–

30]. Most often, due to a huge number of independent D=6 operators [31, 32], additional

assumptions about the flavor structure of fermionic operators are made. The exception

was ref. [21] where a completely generally flavor structure was allowed. That work derived

electroweak precision constraints on the subset of D=6 operators that yields the so-called

vertex corrections to Z and W boson interactions with the SM fermions. Only observables

that are not affected at leading order by four-fermion operators were considered, so as

to separate the analysis of vertex corrections from that of (more numerous) four-fermion

operators. Assuming that D=6 operators give the dominant new physics contributions

to observables, and that loop suppressed new physics contributions are sub-dominant,

20 flavor preserving vertex corrections can be simultaneously constrained. A Gaussian

likelihood function in the space of the vertex corrections was given, which can be used

to constrain any particular model beyond the SM predicting a more restricted pattern of

vertex corrections in the low-energy EFT.

In this paper we extend the analysis of ref. [21] so as to also obtain constraints on

some D=6 four-fermion operators. This step is important in order to probe a larger class

of theories than what can be achieved using vertex corrections only. For example, if the

UV theory contains vector boson coupled to the SM fermions but not mixing with the Z

or W boson, then it gives rise only to 4-fermion operators in the low-energy EFT. Again,

the main goal is to derive experimental constraints without assuming anything about the

flavor structure of D=6 operators. We focus on four-lepton operators, leaving four-fermion

operators with quarks for future publication. These operators were probed most precisely

by lepton pair production in LEP-2 and Wmass measurements. However, these observables

leave several unconstrained directions in the space of four-lepton operators. Therefore, we

also include in our analysis low-energy precision experiments, such as neutrino scattering

on electrons, parity violating electron scattering, and leptonic decay of muons and taus.

This way we are able to simultaneously constrain 16 linear combinations of 27 Wilson

coefficients of lepton-flavor conserving four-lepton operators, in addition to the previous

constraints on the vertex corrections. The correlation matrix is given, which allows one to

reconstruct the full likelihood function. Given that, our results can be used to constrain

large classes of models that give rise to an arbitrary pattern of vertex corrections and

4-lepton operators in the low-energy EFT.

The paper is organized as follows. In section 2 we lay out our formalism where the ef-

fects of D=6 operators are parametrized by vertex corrections and four-fermion operators.

In section 3 we discuss how relevant experimental observables are affected by these EFT

parameters. In section 4 we give the confidence intervals for the leptonic vertex corrections

and a subset of lepton-flavor conserving four-lepton operators, together with the full cor-

relation matrix (relegated to appendix C). In section 5 we discuss the consequences of our
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general analysis for particular models with new leptophilic particles. In appendix A we

discuss the relationship between our formalism and the more familiar oblique parameters,

and in appendix B we review current constraints on lepton-flavor violating operators.

2 Formalism

We first summarize our conventions. The SU(2) × U(1) gauge couplings of the SM are

denoted by gL, gY . The photon coupling strength is e = gLsθ, where sθ = gY /
√

g2L + g2Y
is the weak mixing angle. The vacuum expectation value (VEV) of the SM Higgs field

H is 〈H†H〉 = v2/2. The SM fermions are written using the two-component spinor no-

tation, and we follow the conventions of ref. [33]. The left- and right-handed charged

leptons are denoted by eI = (e, µ, τ ), ecI = (ec, µc, τ c), while the neutrinos are denoted by

νI = (νe, νµ, ντ ), where I = 1 . . . 3 is the flavor index. We work in the basis where these

fermions fields are mass eigenstates.

We consider an EFT with the Lagrangian

Leff = LSM +
1

v2
LD=6, LD=6 =

∑

i

ciOD=6,i. (2.1)

Here LSM is the SM Lagrangian, and OD=6,i is a complete basis of SU(3) × SU(2)× U(1)

invariant operators of canonical dimension D=6 constructed out of the SM fields. The

Wilson coefficients ci are formally O(v2/Λ2) where Λ is the scale of new physics that sets

the EFT expansion. We assume here that OD=6,i conserve the baryon and lepton number.

Below we also assume that individual U(1)e×U(1)µ×U(1)τ lepton numbers are conserved;

see appendix B for the discussion of lepton flavor violating operators. In eq. (2.1) we

omit higher-dimensional operators with D > 6. While these are always present in an EFT

derived as a low-energy description of specific UV models, throughout this paper we will

assume that their contribution to the relevant observables is negligible. This assumption is

generically true when the scale Λ of new physics is much larger than the electroweak scale

v, since the Wilson coefficients of higher dimensional operators are formally O(v4/Λ4) or

smaller. Consequently, our analysis will be performed at O(Λ−2), that is to say, we will

take into account the corrections to observables that are linear in ci, and ignore quadratic

corrections which are formally O(Λ−4). We do not impose any constraints on the Wilson

coefficients ci. In particular, all D=6 operators can be simultaneously present in the

Lagrangian, and the Wilson coefficients of fermionic operators can be flavor dependent.

Rather than parametrizing the theory space by the Wilson coefficients of D=6 oper-

ators, we find it more convenient to work directly with parameters describing interactions

of mass eigenstates after electroweak symmetry breaking. Our formalism follows that in

refs. [13, 34]. Without any loss of generality, Leff can be brought to a form where the kinetic

terms of all mass eigenstates are diagonal and canonically normalized. Then the quadratic

Lagrangian for the electroweak gauge boson and lepton mass eigenstates is given by

Lkin
eff = −1

2
W+

µνW
−

µν − 1

4
ZµνZµν − 1

4
AµνAµν +

g2Lv
2

4
(1 + δm)

2
W+

µ W−

µ +
(g2L + g2Y )v

2

8
ZµZµ

+iēI σ̄µ∂µeI + iν̄I σ̄µ∂µνI + iecIσµ∂µē
c
I . (2.2)
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One flavor (I = 1 . . . 3) Two flavors (I < J = 1 . . . 3)

[Oℓℓ]IIII = 1
2(ℓ̄I σ̄µℓI)(ℓ̄I σ̄µℓI) [Oℓℓ]IIJJ = (ℓ̄I σ̄µℓI)(ℓ̄J σ̄µℓJ)

[Oℓℓ]IJJI = (ℓ̄I σ̄µℓJ)(ℓ̄J σ̄µℓI)

[Oℓe]IIII = (ℓ̄I σ̄µℓI)(e
c
Iσµē

c
I) [Oℓe]IIJJ = (ℓ̄I σ̄µℓI)(e

c
Jσµē

c
J)

[Oℓe]JJII = (ℓ̄J σ̄µℓJ)(e
c
Iσµē

c
I)

[Oℓe]IJJI = (ℓ̄I σ̄µℓJ)(e
c
Jσµē

c
I)

[Oee]IIII = 1
2(e

c
Iσµē

c
I)(e

c
Iσµē

c
I) [Oee]IIJJ = (ecIσµē

c
I)(e

c
Jσµē

c
J)

Table 1. The full set of lepton flavor conserving 4-lepton operators in the D=6 EFT Lagrangian.

Here, δm parametrizes the relative correction to the W boson mass that may arise in the

presence of D=6 operators. By construction, there is no correction to the Z boson mass: a

possible shift due to D=6 operators has been absorbed into the definition of the electroweak

parameters gL, gY and v. For the sake of our analysis we need to define the interactions

of leptons with the SM gauge fields in the effective Lagrangian:

Lvℓℓ
eff = −eAµ(ēI σ̄µeI + ecIσµē

c
I) +

gL√
2

[

W+
µ ν̄I σ̄µ(1 + δgWeI

L )eI + h.c.
]

+
√

g2L + g2Y Zµ (2.3)

×
[

ν̄I σ̄µ

(

1

2
+ δgZeI

L + δgWℓI
L

)

νI + ēI σ̄µ

(

−1

2
+ s2θ + δgZeI

L

)

eI + ecIσµ

(

s2θ + δgZeI
R

)

ēcI

]

,

Here, the effects of D = 6 operators are parameterized by the vertex corrections δg. All δg’s

in eq. (2.3) are independent parameters, which in general may depend on the lepton flavor.

By construction, there is no vertex corrections to photon interactions. The parameters δg

can be related by a linear transformation to Wilson coefficients of D=6 operators in any

particular basis, see ref. [34] for a map to popular bases used in the literature. Therefore,

δg’s are O(Λ−2) in the EFT expansion. Note that the vertex corrections to neutrino

interactions with Z in eq. (2.3) are expressed by the other vertex corrections: δgZνI
L =

δgZeI
L + δgWeI

L . This relation is a consequence of the linearly realized SM gauge symmetry

and the absence of operators with D > 6 in the Lagrangian, and holds independently of

the basis of D=6 operators employed in eq. (2.1).

The main focus of this paper is on the lepton-flavor conserving 4-lepton operators in

eq. (2.1) summarized in table 1. Overall, there is 3 × 3 + 3 × 6 = 27 such operators.

Three of those, denoted [Oℓe]IJJI , are complex, in which case the corresponding Wilson

coefficient is complex, and the Hermitian conjugate operator is included in eq. (2.1). The

goal of this paper is to derive simultaneous constraints on the Wilson coefficients of (as

many as possible) 4-lepton operators and the leptonic vertex corrections in eq. (2.3). In

our framework, the remaining parameter introduced above - the W mass correction δm in

eq. (2.2) - is related to the leptonic vertex corrections and one 4-lepton operators [34]:

δm =
δgWe

L + δgWµ
L

2
− [cℓℓ]1221

4
. (2.4)

Again, this relation is a consequence of the linearly realized SM gauge symmetry and

the absence of operators with dimensions greater than 6. It also ensures that the Fermi
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constant GF measured in muon decays is given at tree-level by GF = 1/
√
2v2. This way,

the tree-level relations between the electroweak parameters gL, gY and v and the input

observables αem, mZ and GF are the same as in the SM.

3 Experimental input

In this section we discuss observables that will allow us to place constraints on 4-lepton

operators and leptonic vertex corrections.

3.1 Z- and W-pole observables

The leptonic vertex corrections in eq. (2.3) can be probed by measurements of leptonic de-

cays of on-shell Z and W bosons. Precise measurements of observables ultimately related to

various Z andW partial decay widths were performed in LEP-1 (Z) [35] and LEP-2 (W) [36].

The dependence of these observables on leptonic and quark vertex corrections is correlated.

On the other hand, the dependence on four-fermion operators is suppressed by ΓV /mV and

can be neglected [2]. Simultaneous constraints on all flavor-preserving vertex corrections

were derived recently in ref. [21], and we use directly these results. Marginalizing the like-

lihood over the quark vertex corrections, the constraints on the leptonic ones are given by:









































δgWe
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δgWµ
L
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L

δgZµ
L
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R
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R
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−1.00± 0.64

−1.36± 0.59

1.95± 0.79

−0.026± 0.028

0.01± 0.11

0.016± 0.058

−0.037± 0.027

0.00± 0.13

0.039± 0.062









































× 10−2, (3.1)

with the correlation matrix

ρ =









































1. −0.12 −0.63 −0.1 −0.03 0.01 0.07 −0.06 −0.04

. 1. −0.56 −0.11 −0.04 0.01 0.08 −0.06 −0.04

. . 1. −0.1 −0.03 0.01 0.07 −0.05 −0.04

. . . 1. −0.1 −0.07 0.17 −0.05 0.03

. . . . 1. 0.07 −0.06 0.9 −0.04

. . . . . 1. 0.02 −0.03 0.41

. . . . . . 1. −0.08 −0.04

. . . . . . . 1. 0.04

. . . . . . . . 1.









































. (3.2)
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Note that all leptonic vertex corrections are strongly constrained by the data in a model-

independent way. In particular, the constraints on charged leptons couplings to Z (domi-

nated by LEP-1) are at a per-mille level, while the constraints on lepton couplings to W

(dominated by LEP-2) are at a percent level.

3.2 W mass

The W boson mass was measured very precisely at LEP-2 and the Tevatron. We use

the result from ref. [37], mW = (80.385 ± 0.015)GeV, where the SM prediction is mW =

80.364GeV. This trivially translates into the constraint on the parameter δm in eq. (2.2),

δm = (2.6± 1.9)× 10−4 . (3.3)

By virtue of eq. (2.4), this result constrains a combination of leptonic vertex corrections

and one four-lepton operator.

3.3 Fermion pair production in LEP-2

The LEP-2 experiment measured differential cross sections for the processes e+e− → ℓ+ℓ−,

ℓ = e, µ, τ at energies above the Z boson resonance. Away from the Z-pole, these processes

probe not only Z couplings to leptons but also 4-lepton operators, and the effect of the

latter increases with increasing center-of-mass energy.

Let us first focus on the processes e−e+ → µ−µ+ (e−e+ → τ−τ+ is analogous).

For the experimental input, we will use the total cross-sections and forward-backward

asymmetries measured at 12 different center-of-mass energies between
√
s ≈ 130GeV and√

s ≈209GeV [36]. We are interested in O(Λ−2) corrections to these observables from

D=6 operators, which translates to linear corrections in the vertex corrections and Wilson

coefficients of 4-fermion operators (i.e. the interference term between SM and new physics).

At that order, the observables are affected by 5 four-leptons operators [Oℓℓ]1122, [Oℓℓ]1221,

[Oee]1122, [Oℓe]1122, and [Oℓe]2211. In the limit of vanishing fermion masses, their effect on

the forward (σF ) and backward (σB) e
−e+ → µ−µ+ cross sections is given by

δ (σF + σB) =
1

24πv2
{

e2 ([cℓℓ]1122 + [cℓℓ]1221 + [cee]1122 + [cℓe]1122 + [cℓe]2211) (3.4)

+
s(g2L+g2Y )

s−m2

Z

[

(gZe
L,SM)2 ([cℓℓ]1122 + [cℓℓ]1221) + (gZe

R,SM)2[cee]1122 + gZe
L,SMgZe

R,SM ([cℓe]1122 + [cℓe]2211)
]

}

,

δ (σF − σB) =
1

32πv2
{

e2 ([cℓℓ]1122 + [cℓℓ]1221 + [cee]1122 − [cℓe]1122 − [cℓe]2211)

+
s(g2L+g2Y )

s−m2

Z

[

(gZe
L,SM)2 ([cℓℓ]1122 + [cℓℓ]1221) + (gZe

R,SM)2[cee]1122 − gZe
L,SMgZe

R,SM ([cℓe]1122 + [cℓe]2211)
]

}

,

where gZe
L,SM = −1

2 + s2θ, g
Ze
R,SM = s2θ are the couplings of the Z to left- and right-handed

electrons. The effect of the vertex corrections δgZe
L , δgZe

R , δgZµ
L , and δgZµ

R is also taken

into account in the fit, but is not displayed here. The operator [Oℓe]1221 does not interfere

with the SM due to the different helicity structure; thus it enters only at the quadratic

(O(Λ−4)) level and is neglected in this analysis.

One observes that measurements of the total cross section and asymmetry in e−e+ →
µ−µ+ in principle can constrain 3 linear combinations of the 5 four-lepton operators that
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enter in eq. (3.4). [Oℓℓ]1122 and [Oℓℓ]1221 are indistinguishable for this process because their

parts involving charged leptons are related by a Fierz transformation. [Oℓe]1122 and [Oℓe]2211
are also indistinguishable in this process, which can be traced to lepton flavor universality of

the SM couplings. Accidentally, the LEP-2 observables depend very weakly on the combi-

nation [Oℓℓ]1122+[Oℓℓ]1221−[Oee]1122 due to the fact that, numerically, (gZe
L,SM)2 ≈ (gZe

R,SM)2.

We move to the process e−e+ → e−e+ (Bhabha scattering). In ref. [36], LEP-2 quotes

the differential cross sections for the scattering angle cos θ in the interval [−0.9, 0.9], and

the center-of-mass energies from 189GeV to 207GeV. Bhabha scattering is affected by

the three four-leptons operators [Oℓℓ]1111, [Oee]1111 and [Oℓe]1111. In the limit of vanishing

fermion masses their effect on the differential cross section is given by

δ
dσ

d cos θ
= 1

8πs
1
v2

{

u2
[

e2([cℓℓ]1111 + [cee]1111)

(

1

s
+

1

t

)

+ (g2L+g2Y )
(

(

gZe
L,SM

)2
[cℓℓ]1111+

(

gZe
R,SM

)2
[cee]1111

)

(

1

s−m2
Z

+
1

t−m2
Z

)]

+ t2

[

[cℓe]1111
e2

s
+ [cℓe]1111

(g2L + g2Y )g
Ze
L,SMgZe

R,SM

s−m2
Z

]

+s2

[

[cℓe]1111
e2

t
+ [cℓe]1111

(g2L + g2Y )g
Ze
L,SMgZe

R,SM

t−m2
Z

]}

, (3.5)

where t = − s
2(1 − cos θ) and u = − s

2(1 + cos θ). Again, the dependence on the vertex

corrections δgZe
L , δgZe

R is taken into account in our analysis but not displayed here. In prin-

ciple, Bhabha scattering at LEP-2 constrains independently all 3 four-electron operators,

but again an approximate flat direction along the direction [Oℓℓ]1111 − [Oee]1111 arises due

to the numerical accident (gZe
L,SM)2 ≈ (gZe

R,SM)2.

3.4 Low-energy neutrino scattering

Interactions of SM leptons can be probed by neutrino scattering on electrons. We focus on

processes with muon neutrinos: νµ e− → νµ e−, and muon anti-neutrinos: νµ e− → νµ e−,

which were studied at center-of-mass energies far below the Z-pole by the CHARM [38],

CHARM-II [39], and BNL-734 [40] experiments. The results are usually presented as

constraints on the vector (gV ) and axial (gA) coupling strength of the Z boson to electrons:

Experiment Ref. gV gA

CHARM-II [39] −0.035± 0.017 −0.503± 0.0017

CHARM [38] −0.06± 0.07 −0.54± 0.07

BNL-E734 [40] −0.107± 0.045 −0.514± 0.036

(3.6)

where the SM predicts gV = −0.0396, gA = −0.5064 [41].

In the presence of D=6 operators, the scattering cross sections measured in these

experiments are sensitive not only to the Z boson couplings but also to the four-leptons

operators involving the 2nd generation doublet: [Oℓℓ]1122 and [Oℓe]2211. Nevertheless, at

energies below the Z-pole, the measurements of gV and gA can be easily recast as constraints

– 7 –
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on the parameters in our framework. At the linear level, the vector and axial couplings are

effectively modified as

δgV = δgZe
L + δgZe

R +
3g2Y − g2L
g2L + g2Y

(

δgZµ
L + δgWµ

L

)

− [cℓℓ]1122 + [cℓe]2211
2

,

δgA = δgZe
L − δgZe

R −
(

δgZµ
L + δgWµ

L

)

− [cℓℓ]1122 − [cℓe]2211
2

. (3.7)

Notice that the dependence on the four-lepton operators is different than for the LEP-2

observables discussed in the previous subsection. Therefore, low-energy neutrino scattering

provides us with complementary information that will allow us to constrain additional

directions in the space of D=6 Wilson coefficients.

Experimental results on low-energy scattering of electron neutrinos [42] and anti-

neutrinos [43] on electrons are also available. These probe the 4-electron operators [Oℓℓ]1111
and [Oℓe]1111. However, the current experimental accuracy is worse than for muon neu-

trinos scattering, and including this additional input would not affect the global fit in an

appreciable way.

3.5 Parity violating electron scattering

The SLAC E158 experiment made a precise measurement of parity-violating asymmetry in

Møller scattering e−e− → e−e− [44]. The asymmetry is defined as APV = (σR−σL)/(σR+

σL) where σL(R) is the cross-section for incident left- (right-) handed electrons. The E158

experiment used a polarized electron beam of energy E ≈ 50GeV against an electron target

at rest which corresponds to a center-of-mass energy of
√
s ≈

√
2meE ≈ 0.2GeV, far below

the Z pole. The results are presented as a measurement of the weak mixing angle at low

energies:

s2θ(Q
2 = 0.026GeV2) = 0.2397± 0.0013, (3.8)

where the SM predicts s2θ(Q
2 = 0.026GeV2) = 0.2381± 0.0006 [45].

APV in Møller scattering is sensitive to the four-electron operators [Oee]1111 and

[Oℓℓ]1111 ([Oℓe]1111 cancels out in σR − σL). At the linear order in the EFT parameters

and leading order in s/m2
Z , the effect of these operators and the vertex corrections can be

effectively represented as a shift of the measured weak mixing angle:

δs2θ = 2(gZe
R,SMδgZe

R − gZe
L,SMδgZe

L )− 1

4
([cee]1111 − [cℓℓ]1111) (3.9)

Although Møller scattering probes the same 4-electron operators as LEP-2, cf. eq. (3.5),

its importance rests in the sensitivity to the combination that is accidentally very weakly

constrained by unpolarized electron scattering in LEP-2.

3.6 Tau and muon decays

The leptonic tau decays τ− → e−ντ ν̄e, τ
− → µ−ντ ν̄µ, and the conjugates provide additional

information on 4-lepton operators involving τ . In particular, the provide the only constraint
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we are aware of on lepton-flavor conserving 4-lepton operators with muons and taus. The

decays can be described by the following effective Lagrangian:

L = −4Gτf√
2

(ν̄τ σ̄ρτ)(f̄ σ̄ρνf ) + h.c., (3.10)

where f = e, µ. At the linear level, the relative strength of the Fermi constant measured

in the tau decays normalized to that measured in the muon decay is affected by the vertex

corrections and four-lepton operators as

Ae ≡ G2
τe

G2
F

= 1 + 2δgWτ
L + 2δgWe

L − 4δm− [cℓℓ]1331,

Aµ ≡
G2

τµ

G2
F

= 1 + 2δgWτ
L + 2δgWµ

L − 4δm− [cℓℓ]2332, (3.11)

where the W mass corrections δm can be expressed by other EFT parameters, cf. eq. (3.3).

The experimental values quoted by the PDG are [46]

Ae = 1.0029± 0.0046,

Aµ = 0.981± 0.018, (3.12)

and the SM prediction is Af = 1.

For the muon decay, µ− → e−νµν̄e and the conjugate, the total rate defines the SM

input parameter v and by itself it does not probe new physics. However, additional infor-

mation can be extracted from differential distributions in (polarized) muon decay. Custom-

arily, these measurements are presented in the language of Michel parameters [47]. From

the EFT perspective the most interesting are the so-called η and β′/A parameters, because

they are the only ones that may receive contributions at O(1/Λ2) [48, 49]:

η =
Re[cℓe]1221

2
, β′/A = − Im[cℓe]1221

4
. (3.13)

These parameters have been measured in an experiment in the PSI [50]:

η = −0.0021± 0.0071, β′/A = −0.0013± 0.0036. (3.14)

Analogous limits from tau decays are much weaker.

4 General fit

We now do a global fit to all the data discussed above so as to simultaneously constrain D=6

operators in the EFT Lagrangian that give rise to leptonic vertex corrections and 4-lepton

interactions. Previously, constraints on 4-lepton (and other 4-fermion) operators were

obtained in refs. [2, 3] and recently updated in ref. [28], assuming the Wilson coefficients

are the same for all 3 fermion generations. The novel aspect of our analysis is that we

allow for a completely general flavor structure of the D=6 operators.
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We combine the following experimental inputs discussed in section 3:

• Z boson production and decay in LEP-1 and leptonic W decays in LEP-2,

• W mass measurement,

• Two-lepton production in LEP-2,

• Muon-neutrino scattering on electrons,

• Parity violation in low-energy Møller scattering,

• GF measurements in τ decays.

We consider the EFT Lagrangian with operators up to D=6, neglecting possible con-

tributions of D=8 operators.1 Consistently, in our analysis we only include corrections

to observables that are linear in Wilson coefficients of D=6 operators. These are formally

O(v2/Λ2) in the EFT counting, and come from interference between tree-level SM and D=6

contributions to the relevant amplitudes. We also ignore loop-suppressed effects propor-

tional toD=6Wilson coefficients. We use the experimental results, the SM predictions, and

the analytic expression for D=6 contributions discussed in section 3 to construct a global

Gaussian likelihood in the space of the relevant Wilson coefficients. With this procedure,

1In the EFT expansion, Wilson coefficients of D=8 operators are suppressed by another factor of v2/Λ2

compared to those of D=6 operators. Thus, they are generically subleading when the EFT approach is

valid, that is when the new physics scale Λ is greater than the electroweak scale. Exceptions to that rule

could occur if symmetries or fine-tuning in the UV theory lead to a suppression of some D=6 (but not the

corresponding D = 8 or higher) Wilson coefficients in the low-energy EFT. Our results are not valid in such

situations; see ref. [28] for a discussion relevant to these cases.
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we get the following global constraints:
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−0.037± 0.027
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1.5± 1.3

140± 170

−0.55± 0.64

−150± 180

3.0± 2.3

















































































































× 10−2, (4.1)

with the correlation matrix written down in eq. (C.1).

A few general comments are in order:

• In the global fit, the constraints on the leptonic vertex corrections are the same as the

ones in eq. (3.1) determined from on-shell Z and W data. The additional experimental

input considered in this analysis constrains 4-lepton operators without affecting the

limits on the vertex corrections in an appreciable way. Nevertheless, the correlations

between vertex corrections and 4-lepton operators are non-negligible in some cases,

as can be observed in eq. (C.1).

• Not all 4-lepton operators can be constrained by the current data. In particular, we

are not aware of any experiments probing four-muon or four-tau interactions. On the

other hand, most of the Wilson coefficients of 4-lepton operators involving electrons

are constrained, in a model-independent way, at a percent level accuracy.
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• In eq. (4.1), the limits on the electron-tau 4-fermion operators [Oℓℓ]1133 and [Oee]1133
are very weak. Actually, the combination [Oℓℓ]1133 + [Oee]1133 is constrained at a

percent level. However, τ -pair production in LEP-2 is accidentally insensitive to

[Oℓℓ]1133−[Oee]1133, as discussed in section 3.3, and this is reflected in our fit by the −1

value of the corresponding correlation coefficient. Moreover, only the sum [Oℓe]1133+

[Oℓe]3311 can be probed in LEP-2. We note that both flat directions would be absent

if polarization of the colliding electrons was known. Measurements with polarized

e± beams in future linear colliders [51, 52] will provide additional information that

will break these degeneracies and greatly improve model-independent constraints on

electron-tau 4-fermion operators. For electron-muon operators the corresponding flat

direction is absent in eq. (4.1) thanks to including the experimental input from muon

neutrino scattering on electrons. From this point of view, it would be extremely

interesting to sturdy tau neutrino scattering on electrons, although we are not aware

of any realistic experimental plans in this direction. For 4-electron operators, the

direction [Oℓℓ]1111 − [Oee]1111 is also practically unconstrained by LEP-2, but in this

case the degeneracy is lifted thanks to parity violating Møller scattering.

• In eq. (4.1) we do not give any constraints on [cℓe]IJJI with I 6= J . That is because, in

the limitmeI = 0, the corresponding operators do not interfere with the SM, thus they

contribute to the observables at O(Λ−4) and are neglected. However, as discussed

in section 3.6, they contribute at O(Λ−2) to the Michel parameters η and β′/A in

eI → eJνν decays (which are in fact defined only for meI > 0). The experimental

limits on the Michel parameters measured in muon decays translate to

Re([cℓe]1221) = (−0.4± 1.4)× 10−2, Im([cℓe]1221) = (0.5± 1.4)× 10−2. (4.2)

One can also constrain the analogous operators with tau leptons. Translating the con-

straints on the form factor gSRR in leptonic tau decays [46] one obtains: Re([cℓe]2332) =

0.19 ± 0.15, and |[cℓe]1331| < 0.70, |[cℓe]2332| < 0.72 at 95% confidence level (CL).

Stronger limits may arise via 1-loop contributions of these operators to anomalous

electric and magnetic moments [53], however in this case the limits concern in fact for

a linear combination of [cℓe]IJJI and the Wilson coefficients of D=6 dipole operators

in the effective Lagrangian.

• Combining the results from this paper with the ones in ref. [21] one could also perform

a global analysis of leptonic parameters together with quark vertex corrections. How-

ever, correlations between 4-lepton operators and quark vertex corrections are small:

we find that the correlation coefficients are typically of order 0.01, and the largest is

0.07. All in all, the constraints on the quark vertex corrections and their correlations

with the leptonic vertex corrections quoted in [21] are not affected by the combination.

Using the results in eq. (4.1) and the correlation matrix ρ one can reconstruct the

complete Gaussian likelihood function in the space of leptonic vertex corrections and four-

lepton operators:

χ2 =
∑

ij

[x− x0]iσ
−2
ij [x− δx0]j , (4.3)
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Four-lepton operators: one by one

Figure 1. Summary of the 68% CL intervals for the Wilson coefficients of 4-lepton operators, as-

suming that only 1 such operator is present at a time and that leptonic vertex corrections are absent.

where σ−2
ij = [[∆x]iρij [∆x]j ]

−1, ~x is a 14-dimensional vector collecting the δg’s and c’s as

in eq. (4.1), and ~x0, ∆~x are the corresponding central values and 1 σ errors. In specific

extensions of the SM only a subset of the general EFT parameters will be generated. In

such a case, constraints on the model parameters can be obtained by restricting the full

likelihood to the smaller subspace, and then minimizing the restricted likelihood. In the

next section we perform this procedure for a handful of scenarios beyond the SM that affect

only leptonic observables.

5 Leptophilic models

5.1 One by one

Before we attack specific models, we first discuss a general scenario where only one four-

lepton operator and no vertex corrections is generated by new physics. Setting all but one

Wilson coefficient to zero in the likelihood in eq. (4.3), and then minimizing the resulting

function we obtain the constraints summarized in figure 1. The strongest constraint, at

a per-mille level, is the one on [cℓℓ]1221. The reason is that the corresponding operator

affects the measurement of the Fermi constant GF in muon decays, and this way, unlike

other 4-fermion operators, it affects the electroweak precision observables very accurately

measured in LEP-1. The constraints on the remaining operators containing electrons are

dominated by lepton pair production in LEP-2 and are somewhat weaker. Finally, the

muon-tau four-lepton operators are only weakly constrained by tau decays.

We also visualize these constraint in terms of the new physics scale probed by each

operator. To this end, we write ci = ±g2∗/Λ
2
i , where Λi can be interpreted as the mass scale
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Figure 2. 95% CL lower limits on the scale suppressing 4-lepton operators in the EFT Lagrangian,

assuming that only 1 such operator is present at a time and that leptonic vertex corrections are

absent.

of new particles and g∗ their coupling strength. Then we derive the 95% CL lower limit on

the ratio Λi/g∗. In general, the limit depends on the sign of the Wilson coefficient, and for

our presentation we always choose the lower one of the two possibilities. The results are

shown in figure 2. Current data allow one to probe new particles with masses up to 5TeV

if they are coupled to the SM with order one strength.

5.2 Z prime

We now consider a model with a new neutral vector boson Vµ of mass mV coupled to

leptons as

L ⊃ Vµ

(

κL,I ℓ̄I σ̄µℓI + κR,Ie
c
Iσµē

c
I .
)

(5.1)

We assume the vector does not mix with the Z-boson, and does not couple to quarks.

In such a case, it can be constrained neither by Z-pole observables nor by LHC dilepton

resonance searches. However, it is constrained by the off-Z-pole observables discussed here.

Integrating out the vector we get an effective theory with the Wilson coefficient of 4-lepton

operators:

[cℓℓ]IIJJ = −κL,IκL,J
v2

m2
V

,

[cee]IIJJ = −κR,IκR,J
v2

m2
V

,
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Figure 3. Left: 68 % CL (darker green) and 95 % CL (lighter green) regions for the ratio of the

couplings over mass for the leptophilic Z’ vector boson coupled to electrons only. Right: the same

for Z’ coupled universally to all leptons.

[cℓe]IIJJ = −κL,IκR,J
v2

m2
V

. (5.2)

Plugging these expressions in the general likelihood in eq. (4.3) we obtain the likelihood as a

function of κ/mV . In figure 3 we show examples of this likelihood for 2 scenarios: one where

the vector couples to electrons only, and another one where the vector couples universally to

all leptons, κL/R,I = κL/R. In both cases, we find that κ/mV . 0.1-0.3/TeV, depending on

the ratio of the left- and right-handed couplings. We can also observe that the vector-like

couplings, κL ≈ κR, are more strongly constrained than the axial ones, κL ≈ −κR.

5.3 Vector triplet

Consider a model with a new triplet of vector bosons V i
µ of mass mV coupled to left-handed

leptons as

L ⊃ κIV
i
µ ℓ̄I σ̄µ

σi

2
ℓI . (5.3)

Integrating out the triplet we get the following 4-lepton operators in the EFT:

Leff ⊃ −κIκJ
8m2

V

(ℓ̄I σ̄µσ
iℓI)(ℓ̄J σ̄µσ

iℓJ). (5.4)

These operators were not introduced previously. The reason is that they are related to

other 4-lepton operators in table 1 via Fierz transformations. Using, the identity

(ℓ̄I σ̄µσ
iℓI)(ℓ̄J σ̄µσ

iℓJ) = 2(ℓ̄I σ̄µℓJ)(ℓ̄J σ̄µℓI)− (ℓ̄I σ̄µℓI)(ℓ̄J σ̄µℓJ), (5.5)

one identifies the Wilson coefficients in the low-energy EFT as

[cℓℓ]IIII = −κ2I
v2

4m2
V

,
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[cℓℓ]IJJI = −κIκJ
v2

2m2
V

, I < J,

[cℓℓ]IIJJ = κIκJ
v2

4m2
V

, I < J. (5.6)

When the triplet couples to electrons only, κ1 6= 0 and κ2,3 = 0, only one four-lepton

operator [Oℓℓ]1111 is generated. Plugging the above expression in the general likelihood in

eq. (4.3) one obtains the following bound on the ratio of the vector mass and coupling:

mV

κ1
≥ 2.9 TeV, @95%CL. (5.7)

The limit is stronger than what might be inferred from the one-by-one limits plotted in

figure 2, because the model predicts the negative sign of the Wilson coefficient [cℓℓ]1111, for

which the experimental constraints are stronger than for the positive one. On the other

hand, when the triplet couples with the same strength to all leptons, κI = κ, we find a

slightly stronger bound:
mV

κ
≥ 3.7 TeV, @95%CL. (5.8)

5.4 Inert Higgs

The last example we study is a model with a scalar S of mass mS transforming, much like

the SM Higgs, as 21/2 under SU(2)L ×U(1)Y , and coupled to leptons as

L ⊃ −S†YIℓIe
c
I + h.c.. (5.9)

We assume that S does not get a VEV. Integrating out the scalar we get the following

4-lepton operators in the EFT:

Leff ⊃ Y ∗
I YJ
m2

S

(ℓ̄I ē
c
I)(ℓJe

c
J). (5.10)

Once again these operators do not appear in table 1, but using the Fierz transformation,

σ̄α̇α
µ σµ

ββ̇
= 2δαβ δ

α̇
β̇
we can rewrite them as

Leff ⊃ Y ∗
I YJ
2m2

S

(ℓ̄I σ̄µℓJ)(e
c
Jσµē

c
I). (5.11)

This way, we identify the Wilson coefficients of the 4-lepton operators induced in the EFT

by integrating out the scalar S:

[cℓe]IJJI = Y ∗
I YJ

v2

2m2
S

. (5.12)

When the scalar couples to electrons only, Y1 6= 0 and Y2 = Y3 = 0, its mass over coupling

is constrained as
mS

|Y1|
≥ 2.6 TeV, @95%CL. (5.13)

When the scalar couples to all 3 generations of leptons then the constraints on the Michel

parameters discussed around eq. (4.2) can be relevant. If the couplings YI are the same
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for all 3 generations, YI = Y , then these constraints have a small effect, and the bound

mS/|Y | is the same as in eq. (5.13). However, if YI are proportional to fermion’s mass,

YI = Y3meI/mτ , then the constraint on [cℓe]2332 from tau decays is the dominant one,

leading to mS/|Y3| > 60GeV at 95% CL.

6 Conclusions

In this paper we discussed constraints on 4-lepton D=6 operators in the EFT beyond

the SM. For the first time, the analysis was performed without any assumptions about

the flavor structure of the D=6 operators. We presented our results such that they can

readily be recast as constraints on specific models beyond the SM that, after integrating

the new heavy particles, lead to leptonic vertex corrections and 4-lepton operators in the

low-energy EFT. Our results are particularly relevant in relation to models where lepton

flavor universality is not preserved.

We find that the typical current experimental sensitivity to the scale suppressing 4-

lepton operators is of order a few TeV. In the best case, one can probe 50TeV particles

provided they interact strongly with the SM leptons (g∗ ∼ 4π), and they generate the best

constrained operator [Oℓℓ]1221 (e.g, via exchange of an SU(2)L triplet of vector bosons). Our

analysis also reveals several blind spots where the current sensitivity is weaker, which would

be interesting targets for future experiments. In particular, certain linear combinations of

4-lepton operators involving electrons and taus are very weakly constrained. This can

be cured by future e+e− colliders once polarization information about the initial state is

available. Moreover, experimental information on 4-lepton operators involving muons and

taus is currently very limited. Bounds on two such operators involving left-handed doublets

could be improved by more precise measurements of the rate and differential distributions

in τ → µνν decays; probing the remaining operators would be one of the strong points of

the physics program of a future µ+µ− collider.

Including the available experimental information about e+e− → jets in LEP-2 and

pp → leptons and jets at the LHC, as well as about low energy scattering on nuclei one can

generalize this analysis so as to also constrain 4-fermion operators involving quarks. This

is left for a future publication.
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A Relation to universal theories

In this paper we used the formalism where new physics effects in the D=6 EFT were

represented by vertex corrections and 4-fermion operators. At the same time, the quadratic

terms of electroweak gauge bosons in the Lagrangian were assumed to be the same as in

the SM, except for a correction to the W boson mass. That can always be achieved without

loss of generality, via field redefinitions and integration by parts. On the other hand, in
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the literature, precision constraints on new physics are often expressed in the language of

oblique parameters, such as the Peskin-Takeuchi S, T , U parameters [54]. These are, on

the contrary, defined via corrections to kinetic terms of electroweak gauge bosons. In this

appendix we discuss the relationship between the two formalisms.

Oblique parameters fully characterize the new physics effects for the so-called universal

theories [4, 55]. The theory is universal if one can recast it to a form where new physics

affects only propagators of the SM gauge bosons. Before introducing the oblique parame-

ters, we first define the momentum expansion of the 2-point functions of electroweak gauge

bosons:

M(V1,µ → V2,ν) = ηµν

(

Π
(0)
V1V2

+Π
(2)
V1V2

p2 +Π
(4)
V1V2

p4 + . . .
)

+ pµpν (. . . ) , (A.1)

where p is the 4-momentum of the incoming gauge boson. We are interested in corrections

δΠ
(n)
V1V2

with respect to the 2-point function in the SM. Two-point functions are not directly

measurable, but certain combinations of δΠV1V2
affect measurable quantities. Up to order

p2, the physical combinations are the 3 Peskin-Takeuchi oblique parameters:

αS = −4
gLgY

g2L + g2Y
δΠ

(2)
3B, αT =

δΠ
(0)
11 − δΠ

(0)
33

m2
W

, αU =
4g2Y

g2L + g2Y

(

δΠ
(2)
11 − δΠ

(2)
33

)

. (A.2)

At order p4 one can define [4] further oblique parameters:

αV = m2
W

(

δΠ
(4)
11 − δΠ

(4)
33

)

, αW = −m2
W δΠ

(4)
33 , αX = −m2

W δΠ
(4)
3B, αY = −m2

W δΠ
(4)
BB.

(A.3)

Compared to ref. [4], we rescaled these parameters by α = e2/4π.

Now we want to relate the oblique parameters defined above to the vertex corrections

and 4-fermion operators in the EFT Lagrangian of eq. (2.1). In universal theories, by defi-

nition, the new physics effects in the EFT Lagrangian can be represented by only bosonic

operators with D > 4. These operators may lead to corrections to the gauge boson propa-

gators, and one can relate their Wilson coefficients to the oblique parameters in eq. (A.2)

and eq. (A.3). It turns out that, in an EFT with operators up to D=6, only the parameters

S, T , W , Y can be generated at tree level [4]. Using field redefinitions and integration by

parts we can get rid of the corrections to the gauge boson propagators, trading them for

flavor diagonal vertex corrections and flavor conserving four-fermion operators as in our

eq. (2.1). Completing this procedure, we obtain the following map:

δgZfI = α







T 3
f

T −W − g2
Y

g2
L

Y

2
+Qf

2g2Y T − (g2L + g2Y )S + 2g2Y W +
2g2

Y
(2g2

L
−g2

Y
)

g2
L

Y

4(g2L − g2Y )







,

[cℓℓ]IIJJ = α

[

W − g2Y
g2L

Y

]

, [cℓℓ]IJJI = −2αW, I < J,

[cℓℓ]IIII = −α

[

W +
g2Y
g2L

Y

]

,
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[cℓe]IIJJ = −2g2Y
g2L

αY, [cee]IIJJ = −4g2Y
g2L

αY,

[c′ℓq]IIJJ = −αW,

[cℓq]IIJJ =
g2Y
3g2L

αY, [cℓu]IIJJ =
4g2Y
3g2L

αY, [cℓd]IIJJ = −2g2Y
3g2L

αY,

[ceq]IIJJ =
2g2Y
3g2L

αY, [ceu]IIJJ =
8g2Y
3g2L

αY, [ced]IIJJ = −4g2Y
3g2L

αY. (A.4)

Thus, the oblique parameters S, T , W , Y correspond to a special pattern of vertex cor-

rections and 4-fermion operators [55]. In our language, the theory can is universal if the

pattern of vertex corrections and 4-fermion operators can be matched to that in eq. (A.4).

Note that both leptonic and quark operators are necessarily present in universal theories.

Our formalism is more general and applies to a large class of models, as we don’t need

to make any assumptions about the pattern of vertex corrections or 4-fermion operators.

None of the specific models discussed in section 5 is universal, and cannot be properly

described by the oblique parameters.

The current constraints on the oblique parameters are
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. (A.5)

These constraints are dominated by the leptonic observables discussed in this paper. To

derive eq. (A.5), we also used the experimental input from the hadronic observables e+e− →
qq̄, bb̄, cc̄ in LEP-1 and LEP-2 [35, 36] and atomic parity violation [56]. If, instead, we

plugged in eq. (A.4) directly in the likelihood function of eq. (4.3), the result would be very

similar as in eq. (A.5), up to a small O(0.05) shift of the central values. Setting W = Y = 0

one obtains the constraints on S and T alone: S = 0.06 ± 0.08, T = 0.09 ± 0.07 with the

correlation coefficient +0.92, which is very close to the result in ref. [57] using the Z-pole

and mW measurements alone.

B Lepton flavor violating operators

Among four-lepton operators [Oℓℓ]IJKL, [Oee]IJKL, [Oℓe]IJKL with general flavor indices

there exist 66 complex ones that violate lepton flavor. Moreover, 9 complex lepton flavor vi-

olating vertex corrections [δgZe
L,R]IJ , [δg

We
L ]IJ with I 6= J may arise from D=6 operators in

the EFT. These operators do not interfere with the SM and thus, at the leading order, they

do not affect the constraints on flavor conserving operators discussed in section 4. In this

appendix, for completeness, we review experimental constraints on some lepton flavor vio-

lating vertex corrections and four-lepton operators. See also [53, 58, 59] for recent reviews.
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B.1 From lepton flavor violating Z decays

Lepton flavor violating Z boson vertices can be probed by on-shell Z decays at LEP and

the LHC, as recently discussed ref. [21]. The current experimental limits are:

Observable 95% CL limit Ref.

Br(Z → eµ) 7.5× 10−7 [60]

Br(Z → eτ) 9.8× 10−6 [61]

Br(Z → µτ) 1.2× 10−5 [62]

At tree level, this translates to the following constraints on the vertex corrections:
√

|[δgZe
L ]12|2 + |[δgZe

R ]12|2 < 1.2× 10−3,
√

|[δgZe
L ]13|2 + |[δgZe

R ]13|2 < 4.3× 10−3,
√

|[δgZe
L ]23|2 + |[δgZe

R ]23|2 < 4.8× 10−3. (B.1)

B.2 From lepton flavor violating lepton decay

Searches for lepton flavor violating muon and tau decays have, so far, all given negative

results and set tight constraints on lepton flavor violating operators. In what follows, we

perform a tree-level computation, neglecting the masses of the daughter leptons.

The 90% CL constraints on the branching ratios given by PDG [46] are:

Decay mode 90% CL bound

µ− → e−ν̄µνe 1.2 %

µ− → e−e+e− 1.0× 10−12

τ− → e−e+e− 2.7× 10−8

τ− → µ−µ+µ− 2.1× 10−8

τ− → µ−e+e− 1.8× 10−8

τ− → e−µ+µ− 2.7× 10−8

τ− → e+µ−µ− 1.7× 10−8

τ− → µ+e−e− 1.5× 10−8

(B.2)

• µ− → e−ν̄µνe
This process can be induced by the operators [Oℓℓ]1212 and [Oℓe]1212. We get, at 90%

CL:
√

4|[cℓℓ]1212|2 + |[cℓe]1212|2 < 0.219. (B.3)

• µ− → e−e+e−

This process can be induced by the operators [Oℓℓ]1112, [Oℓe]1112, [Oℓe]1211 and

[Oee]1112 but also by vertex corrections. At 90% CL:
{

2
∣

∣[cℓℓ]1112 + 4gZe
L,SM [δgZe

L ]12
∣

∣

2
+ 2

∣

∣[cee]1112 + 4gZe
R,SM [δgZe

R ]12
∣

∣

2
(B.4)

+
∣

∣[cℓe]1112 + [cℓe]1211 + 4gZe
R,SM [δgZe

L ]12 + 4gZe
L,SM [δgZe

R ]12
∣

∣

2
}1/2

< 2.0× 10−6.
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• τ− → e−e+e−

We get, at 90% CL:

{

2
∣

∣[cℓℓ]1113 + 4gZe
L,SM [δgZe

L ]13
∣

∣

2
+ 2

∣

∣[cee]1113 + 4gZe
R,SM [δgZe

R ]13
∣

∣

2
(B.5)

+
∣

∣[cℓe]1113 + [cℓe]1311 + 4gZe
R,SM [δgZe

L ]13 + 4gZe
L,SM [δgZe

R ]13
∣

∣

2
}1/2

< 7.8× 10−4.

• τ− → µ−µ+µ−

We get, at 90% CL:

{

2
∣

∣[cℓℓ]2223 + 4gZe
L,SM [δgZe

L ]23
∣

∣

2
+ 2

∣

∣[cee]2223 + 4gZe
R,SM [δgZe

R ]23
∣

∣

2

+
∣

∣[cℓe]2223 + [cℓe]2322 + 4gZe
R,SM [δgZe

L ]23 + 4gZe
L,SM [δgZe

R ]23
∣

∣

2
}1/2

< 6.9× 10−4. (B.6)

• τ− → µ−e+e−

This process can be induced by the operators

[Oℓℓ]1123, [Oℓℓ]1321, [Oℓe]1123, [Oℓe]1321, [Oℓe]2113, [Oℓe]2311 and [Oee]1123 but also

by vertex corrections At 90% CL:

{

|[cℓℓ]1123 + [cℓℓ]1321 + 4gZe
L,SM [δgZe

L ]23|2 + |[cee]1123 + 4gZe
R,SM [δgZe

R ]23|2 +

|[cℓe]1123+[cℓe]1321+4gZe
L,SM [δgZe

R ]23|2+|[cℓe]2311+[cℓe]2113+4gZe
R,SM [δgZe

L ]23|2
}1/2

< 6.4× 10−4. (B.7)

• τ− → e−µ+µ−

We get, at 90% CL:

{

|[cℓℓ]1322 + [cℓℓ]1223 + 4gZe
L,SM [δgZe

L ]13|2 + |[cee]1223 + 4gZe
R [δgZe

R,SM ]13|2 +

|[cℓe]2213+[cℓe]2312+4gZe
L,SM [δgZe

R ]13|2+|[cℓe]1322+[cℓe]1223+4gZe
R,SM [δgZe

L ]13|2
}1/2

< 7.8× 10−4. (B.8)

• τ− → e+µ−µ−

This process can be induced by the operators [Oℓℓ]2123, [Oℓe]2123, [Oℓe]2321 and

[Oee]2123 but is not affected at first order by vertex corrections. At 90% CL, we have:

√

2|[cℓℓ]2123|2 + 2|[cee]2123|2 + |[cℓe]2123 + [cℓe]2321|2 < 6.2× 10−4. (B.9)

• τ− → µ+e−e−

We get, at 90% CL:

√

2|[cℓℓ]1213|2 + 2|[cee]1213|2 + |[cℓe]1213 + [cℓe]1312|2 < 5.8× 10−4. (B.10)
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B.3 From lepton decay parameters

In experiments studying lepton decays ℓ → ℓ1νν̄ such as ref. [63], the two emitted neutrinos

are not detected and are assumed to conserve lepton flavor. A more general analysis of

muon decay allowing lepton number violation was presented in ref. [64]. The authors show

that there is a one-to-one correspondence between the form factors gγǫµ defined e.g. in

ref. [63] in the lepton flavor conserving case and combinations of parameters in the lepton

number violating case.

In our D=6 EFT framework, for the decay ℓI → ℓJνν̄, this correspondence is:

|gSRR|2 →
∑

k≥l

|[cℓe]klJI |2,

|gVRR|2 →
∑

k<l

|[cℓe]klJI |2,

|gSLL|2 →
∑

k>l

|alk[cℓℓ]JIlk|2, (B.11)

where aJI = 2 and akl = 1 in all other cases.

The limits given by PDG [46] are:

|gSRR| < 0.035, |gVRR| < 0.017, |gSLL| < 0.550, for µ− → e−ν̄ν at 90% CL.

|gSRR| < 0.70, |gVRR| < 0.17, |gSLL| < 2.01, for τ− → e−ν̄ν at 95% CL,

|gSRR| < 0.72, |gVRR| < 0.18, |gSLL| < 2.01, for τ− → µ−ν̄ν at 95% CL. (B.12)

The constraints are quite weak for tau decays parameters, but give constraints better than

0.1 for Wilson coefficient of nine four-lepton operators. Explicitly they are:

√

|[cℓe]1112|2+|[cℓe]2112|2+|[cℓe]3112|2+|[cℓe]2212|2+|[cℓe]3212|2+|[cℓe]3312|2 < 0.035,
√

|[cℓe]1212|2 + |[cℓe]1312|2 + |[cℓe]2312|2 < 0.017, (B.13)

at 90% CL.
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