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Bat. 210, 91405 Orsay, France
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1 Introduction

All existing data indicate that, at the weak scale, fundamental interactions respect the

local SU(3) × SU(2) × U(1) symmetry of the standard model (SM). The discovery of a

125GeV boson at the Large Hadron Collider (LHC) [1, 2] and measurements of its produc-

tion and decay rates vindicate the Brout-Englert-Higgs mechanism, where linearly realized

SU(2) × U(1) symmetry is spontaneously broken to U(1) via a vacuum expectation value

(VEV) of the Higgs field. It is reasonable to assume that any new particles, if they exist, are

much heavier than the SM particles. If that is the case, physics at the weak scale can be ade-

quately described by an effective field theory (EFT) in which the SM Lagrangian is the lead-

ing order term and the effects of new physics are encoded in higher-dimensional operators

constructed out of the SM fields. This way, the EFT framework allows one to parametrize

all possible effects of heavy new physics in a systematic expansion in operator dimensions,

which is equivalent to an expansion in the mass scale of the new particles. Generically, the

leading contributions to physical observables are expected from dimension-6 operators.

The first classification of dimension-6 operators was performed in the 80s [3], and a

complete, non-redundant set was identified in ref. [4]. Much of recent work has been focused

on connecting these operators to observables that can be measured in colliders, and to

derive experimental constraints on their coefficients [5–16]. A complete model-independent

study is complicated by the fact that one needs to deal with the large number of free

parameters: 76 for flavor- universal dimension-6 operators [4], and 2499 for a general flavor

structure [17]. Meanwhile, it is well known that some combinations of these operators are

constrained by electroweak precision observables, in particular by the Z-pole observables
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at LEP-1, and by the gauge boson pair production at LEP-2, Tevatron, and the LHC.

It is of utmost importance to identify the existing constraints on dimension-6 operators,

and understand their consequences for future new physics searches. These constraints

have been discussed in the literature [5, 6, 10, 12, 15, 16, 18–20], however a general and

quantitative analysis that is easily interpretable in the context of different sets of operators

and is therefore easily applicable to different new physics models is still missing.

In this paper we derive model-independent constraints on dimension-6 operators from

precision electroweak observables. We assume that the dimension-6 operators are flavor

universal, but otherwise we do not introduce any other model-dependent assumptions.

In particular, all dimension-6 operators can be present simultaneously with arbitrary co-

efficients. Their magnitude is then determined by comparison with experimental data,

allowing the validity of the EFT approach to be verified a posteriori.

Our constrains are based on precision measurements of the Z and W boson masses

and on-shell decays (we call it the pole observables) and of the W-boson pair production.

These observables have a nice feature that they do not dependent directly on 4-fermion

operators, which greatly reduces the number of relevant parameters and makes the analysis

more tractable. We derive analytical formulas describing how these observables depend on

the coefficients of dimension-6 operators. Rather than choosing a specific basis, we work

with a larger, redundant set of operators, such that our results can be easily applied to

any of the popular bases. We identify the combination of dimension-6 operators that is

probed by each observable. We show that the pole observables constrain 8 combinations

of dimension-6 operators, while the W pair production constrains another 3 combinations.

Our results are presented in a basis-independent fashion, and they can be easily adapted

to any particular basis. Using these results one can constrain possible effects in indirect

new physics searches, such as the studies of the Higgs boson properties, that are affected

by the same dimension-6 operators.

The paper is organized as follows. In section 2 we introduce the effective Lagrangian

relevant for our analysis. In section 3 we discuss the constraints on dimension-6 operators

imposed by the pole observables. In section 4 we discuss further constraints on these oper-

ators from the W-boson pair production in LEP-2. In appendix A we show how to connect

our general results to constraints on dimension-6 operators in specific bases of operators.

2 Effective Lagrangian

We consider an effective theory where the SM is extended by dimension-6 operators:

Leff = LSM + LD=6. (2.1)

The SM Lagrangian in our notation takes the form

LSM = − 1

4g2s
Ga

µνG
a
µν −

1

4g2L
W i

µνW
i
µν −

1

4g2Y
BµνBµν +DµH

†DµH + µ2
HH†H − λ(H†H)2

+i
∑

f∈q,ℓ

f̄ σ̄µDµf+i
∑

fc∈uc,dc,ec

f cσµDµf̄
c−
[

HqYuu
c+H†qYdd

c+H†ℓYℓe
c+h.c.

]

. (2.2)
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The gauge couplings of SU(3) × SU(2) × U(1) are denoted by gs, gL, gY , respectively;

we also define the electromagnetic coupling e = gLgY /
√

g2L + g2Y , and the Weinberg angle

sin θW = gY /
√

g2L + g2Y . Note that we use the convention where the gauge kinetic terms

are normalized by the corresponding gauge coupling. The Higgs field gets the VEV 〈H〉 =
(0, v/

√
2). After electroweak symmetry breaking, the gauge mass eigenstates are defined as

W± = (W 1∓W 2)/(
√
2gL), Z = (W 3−B)/

√

g2L + g2Y , A = (g2Y W
3+g2LB)/gLgY

√

g2L + g2Y .

For the fermions we use the 2-component notation, with all conventions as in ref. [21].

We are interested in the subset of dimension-6 operators that contribute to electroweak

precision observables. To avoid the complication of dealing with a large number of parame-

ters, in this paper we restrict to observables that are not sensitive to 4-fermion operators,1

such as the decay widths of on-shell W and Z bosons and the pair production of W and Z

bosons. Typically, at this point one makes a choice of a basis, that is of a non-redundant set

of operators relevant for studied processes. Our goal in this paper is to discuss electroweak

precision constraints on dimension-6 operators in a way that can be easily adapted to any

of the popular bases. For this reason, we will work with a redundant set of operators, and

identify the combination of operators that are constrained by precision observables. The

relevant operators are given by

LD=6 ⊃
cT
4v2

H†←→DµHH†←→DµH +
cWB

4m2
W

BµνW
i
µνH

†σiH + i
cHW

m2
W

DµH
†σiDνHW i

µν + i
cHB

m2
W

DµH
†DνHBµν

+i
cW
2m2

W

H†σi←→DµHDνW
i
µν + i

cB
2m2

W

H†←→DµH∂νBµν +
c2W

16m2
W

(DρW
i
µν)

2 +
c2B

16m2
W

(∂ρBµν)
2 (2.3)

+i
c′HQ

v2
q̄σiσ̄µqH

†σi←→DµH + i
cHQ

v2
q̄σ̄µqH

†←→DµH + i
cHU

v2
ucσµū

cH†←→DµH + i
cHD

v2
dcσµd̄

cH†←→DµH

+i
c′HL

v2
ℓ̄σiσ̄µlH

†σi←→DµH + i
cHL

v2
ℓ̄σ̄µlH

†←→DµH + i
cHE

v2
ecσµē

cH†←→DµH +
c3W

6g2Lm
2
W

ǫijkW i
µνW

j
νρW

k
ρµ,

where H†←→DµH = H†DµH − DµH
†H. In the following we will often shorthand these

operators by OX defined via LD=6 ≡ cXOX . The operators in eq. (2.3) form a redundant

set because they can be related by equations of motion:

1

g2Y
∂νBµν =

i

2
H†←→DµH +

∑

f

Yf f̄ σ̄µf −
∑

f

Yfcf cσµf̄
c,

1

g2L
DνW

i
µν =

i

2
H†σi←→DµH +

1

2

∑

f

f̄σiσ̄µf. (2.4)

Using these, one finds the operators OW and OB are equivalent to a combination of OT

and the vertex operators OHF Similarly, O2W and O2B can be traded for other operators in

eq. (2.3) and 4-fermion operators. Moreover, certain operators in eq. (2.3) can be related

by integration by parts:

OHB = OB −OWB −OBB, OHW = OW −OWB −OWW , (2.5)

1In practice, one 4-fermion operator enters in our analysis via a shift of the input parameters, since it

affects the measurements of GF via the mu-decay rate, see below eq. (3.1). This can be avoided if one uses

mZ ,mW and α to fix the SM input parameters [12], which is equivalent to treat this as a nuisance parameter.

– 3 –



J
H
E
P
0
2
(
2
0
1
5
)
0
3
9

where the operators OBB = 1
4m2

W

H†HBµνBµν , OWW = 1
4m2

W

H†HW i
µνW

i
µν affect only

Higgs decays but not electroweak precision observables, therefore they are not included in

eq. (2.3). The relations in eq. (2.4) and eq. (2.5) imply that only linear combinations of

these operators affect physical observables. A choice of a basis consists in picking a non-

redundant subset of these operators, such that any single operator can be constrained by

experiment. For example, in the so-called Warsaw basis of ref. [4] the operators OW , OB,

O2W , O2B, OHW , and OHB are dropped, while in the SILH basis [22, 23], the operators

O′
HL, OHL and OWB are dropped. Specific bases are discussed in more detail in appendix A.

The operators in eq. (2.3) contribute to precision observables in a three-fold way.

Firstly, the operators OT , OWB, OW , OB, O2W , and O2B affect the propagators of elec-

troweak gauge bosons (the so-called oblique corrections). We define these via the 2-point

functions of the SM gauge bosons M(Vµ → Vν) = ηµνΠV V (p
2) + pµpν(. . . ), and the mo-

mentum expansion ΠV V (p
2) = Π

(0)
V V + Π

(2)
V V p

2 + . . . . The oblique corrections δΠV V are

deviations of the propagator functions from the canonical form. In the mass eigenstate

basis the oblique corrections are related to those in the electroweak basis by

δΠWW = g2LδΠW 1W 1 = g2LδΠW 2W 2 ,

δΠZZ =
1

g2L + g2Y

(

g4LδΠW 3W 3 − 2g2Lg
2
Y δΠW 3B + g4Y δΠBB

)

,

δΠγγ =
g2Lg

2
Y

g2L + g2Y
(δΠW 3W 3 + 2δΠW 3B + δΠBB) ,

δΠZγ =
gLgY

g2L + g2Y

(

g2LδΠW 3W 3 + (g2L − g2Y )δΠW 3B − g2Y δΠ33

)

. (2.6)

By electromagnetic gauge invariance, δΠ
(0)
BB = −δΠ(0)

W 3B
= δΠ

(0)
W 3W 3 . The dimension-6

operators in eq. (2.3) contribute to the oblique corrections as

δΠ
(0)
W 3W 3 = −cT v

2

8
, δΠ

(2)
W 3B

= −cWB + cW + cB
g2L

,

δΠ
(2)

W iW i =
2cW
g2L

, δΠ
(2)
BB =

2cB
g2L

, δΠ
(4)

W iW i =
c2W
g2Lv

2
, δΠ

(4)
BB =

c2B
g2Lv

2
. (2.7)

The shift of the diagonal kinetics terms of by the operators OW , OB has no physical

consequences but it’s important to keep track of, to properly read off the contributions to

gauge boson self-interactions.

Another effect on precision observables arises due to a shift of the couplings of W and

Z bosons to fermions. In general, the interactions of electroweak gauge bosons with the

SM fermions can be parametrized as

LffV = eAµ

∑

f=u,d,e

Qf

(

f̄ σ̄µf + f cσµf̄
c
)

+
gL√
2
W+

µ [(1 + δgqW,L)ūσ̄µVCKMd+ (1 + δgℓW,L)ēσ̄µν] + h.c.

+
√

g2L + g2Y Zµ

∑

f=u,d,e,ν

(T 3
f − sin2 θWQf + δgfZ,L)f̄ σ̄µf
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+
√

g2L + g2Y Zµ

∑

f=u,d,e

(− sin2 θWQf + δgfZ,R)f
cσµf̄

c (2.8)

The operators in eq. (2.3) induce the following vertex corrections2

δgqW,L = c′HQ, δgℓW,L = c′HL,

δguZ,L =
c′HQ

2
− cHQ

2
, δgdZ,L = −

c′HQ

2
− cHQ

2
, δguZ,R = −cHU

2
, δgdZ,R = −cHD

2
,

δgνZ,L =
c′HL

2
− cHL

2
, δgeZ,L = −c′HL

2
− cHL

2
, δgeZ,R = −cHE

2
. (2.9)

Finally, dimension-6 operators affect WW and WZ pair production by contributing to

anomalous triple gauge couplings (TGCs). In the customary parametrization in refs. [24–

26]:

LTGC = ie(1− δΠ
(2)

W iW i
)
[(

W+
µνW

−
µ −W−

µνW
+
µ

)

Aν + (1 + δκγ)Aµν W
+
µ W−

ν

]

+igL cos θW (1− δΠ
(2)

W iW i
)
[

(1 + δg1,Z)
(

W+
µνW

−
µ −W−

µνW
+
µ

)

Zν + (1 + δκZ) Zµν W
+
µ W−

ν

]

+ie
λγ

m2
W

W+
µνW

−
νρAρµ + igL cos θW

λZ

m2
W

W+
µνW

−
νρZρµ, (2.10)

where the factor δΠ
(2)

W iW i (which cancels in physical observables) arises because modifica-

tions of the kinetic term of the SU(2) gauge bosons by gauge symmetry imply the corre-

sponding shift of TGCs. The operators in eq. (2.3) contribute to the anomalous TGCs as3

δg1,Z = −g2L + g2Y
g2L

(cW + cHW ) , δκγ = cWB − cHW − cHB, λZ = −c3W . (2.11)

while λγ = λZ , and δκZ = δg1,Z − g2Y
g2
L

δκγ .

In the rest of this paper we discuss the current constraints from pole observables and

gauge boson pair production on the dimension-6 operators in eq. (2.3).

3 Precision constraints on Z and W pole

In this section we discuss the constraints on dimension-6 operators from precision observ-

ables that involve a single on-shell Z or W boson. We refer to them jointly as the pole

observables. In order to confront these observables with the SM predictions, numerical

values of the electroweak parameters in the SM have to be determined from some input

observables. As is the common practice, for the input observables we take the muon decay

width Γ(µ → eνν) (directly related to the Fermi constant GF = 1/
√
2v2), the low-energy

electromagnetic constant α(q2 = 0), and the Z boson mass mZ . With this choice, the

electroweak parameters take the values gL = 0.657, gY = 0.341, v = 246.2GeV.

2There is another dimension-6 operator icHUDucσµd̄
cHDµH + h.c. leading to the vertex correction

δgqW,RW
+
µ ucσµd̄

c + h.c.. However, this operator does not interfere with the SM and thus contributes to

observables only at the quadratic level, therefore we ignore it here.
3Note that we take the signs of TGCs in eq. (2.10) opposite to that of ref. [24] because we use a different

convention for the covariant derivatives: D = ∂ − igV .
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Observable Experimental value Ref. SM prediction Definition

mZ [GeV] 91.1875± 0.0021 [27] ×
√

(g2
L
+g2

Y
)v2

4 + δΠZZ(m2
Z)

ΓZ [GeV] 2.4952± 0.0023 [27] 2.4950
∑

f Γ(Z → ff̄)

σhad [nb] 41.540± 0.037 [27] 41.484 12π
m2

Z

Γ(Z→e+e−)Γ(Z→qq̄)
Γ2
Z

Rℓ 20.767± 0.025 [27] 20.743
∑

q Γ(Z→qq̄)

Γ(Z→ℓ+ℓ−)

Aℓ 0.1499± 0.0018 [28] 0.1472
Γ(Z→e+

L
e−
L
)−Γ(Z→e+

R
e−
R
)

Γ(Z→e+e−)

A0,ℓ
FB 0.0171± 0.0010 [27] 0.01626 3

4A
2
ℓ

Rb 0.21629± 0.00066 [27] 0.21578 Γ(Z→dd̄)
∑

q Γ(Z→qq̄)

Ab 0.923± 0.020 [27] 0.93463 Γ(Z→dLd̄L)−Γ(Z→dRd̄R)

Γ(Z→dd̄)

AFB
b 0.0992± 0.0016 [27] 0.1032 3

4AℓAb

Rc 0.1721± 0.0030 [27] 0.17226 Γ(Z→uū)
∑

q Γ(Z→qq̄)

Ac 0.670± 0.027 [27] 0.668 Γ(Z→uLūL)−Γ(Z→uRūR)
Γ(Z→uū)

AFB
c 0.0707± 0.0035 [27] 0.0738 3

4AℓAc

mW [GeV] 80.385± 0.015 [29] 80.364

√

g2
L
v2

4 + δΠWW (m2
W )

ΓW [GeV] 2.085± 0.042 [30] 2.091
∑

f Γ(W → ff ′)

Br(W → had) 0.6741± 0.0027 [31] 0.6751
∑

q Γ(W→qq′)
∑

f Γ(W→ff ′)

Table 1. The pole observables used in this analysis. We take into account the experimental

correlations between the LEP-1 Z-pole observables and between the heavy flavor observables. For

the theoretical predictions we use the best fit SM values from GFitter [28], except for Br(W → had)

where we take the value quoted in [31]. There’s no SM prediction for mZ because we use it as an

input to determine the SM parameters. We do not include sin2 θℓeff(QFB) because of the difficulties

to interpret this measurement in the presence of vertex corrections.

The LEP, SLC, and Tevatron experiments precisely measured the mass and the total

widths of the Z and W boson. Moreover, LEP-1 and SLC measured relative rates and

asymmetries of Z decays into leptons and hadron. In table 1 we summarize the pole

observables used in this analysis, and provide their expression in terms of the Z and W

partial decay widths into SM fermions. Assuming flavor blind couplings and no new light

particles that W and Z can decay into, there are 9 independent partial widths, all of which

can be extracted from the pole observables. In particular, decays into left- and right-handed

fermions can be experimentally separated thanks to the forward-backward and polarization

asymmetry measurements.

The W and Z partial widths together with the W mass measurement make 10 pole

observables (in our formalism, the Z boson mass is used as an input to determine the SM

parameters, therefore it does not provide constraints on new physics). However, the number

of independent constraints is smaller: it turns out that the pole observables constrain

only 8 combinations of dimension-6 operators. Specifically, we will show that all pole

– 6 –
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observables depend on the coefficients of the operators in eq. (2.3) only via the combinations

of parameter ĉ defined as

ĉ′HL = c′HL + cWB + cW + cB −
g2L
4g2Y

cT +
1

4
c2W +

g2Y
8g2L

c2B,

ĉHL = cHL −
1

4
cT −

g4Y
8g4L

c2B,

ĉHE = cHE −
1

2
cT −

g4Y
4g4L

c2B,

ĉ′HQ = c′HQ + cWB + cW + cB −
g2L
4g2Y

cT +
1

4
c2W +

g2Y
8g2L

c2B,

ĉHQ = cHQ +
1

12
cT +

g4Y
24g4L

c2B,

ĉHU = cHU +
1

3
cT +

g4Y
6g4L

c2B,

ĉHD = cHD −
1

6
cT −

g4Y
12g4L

c2B,

ĉll = cll +
1

2
c2W (3.1)

where cll is the coefficient of the 4-fermion operator Oll = −v−2(ēσ̄ρνe)(ν̄µσ̄ρµ) in the

effective Lagrangian. This 4-fermion operator enters indirectly, via the contribution to the

muon decay width, which is one of our input observables. Contributions of all other 4-

fermion operators to the pole observables are suppressed by ΓZ/mZ or ΓW /mW , therefore

they can be neglected at the leading order.

Let us discuss how the pole observables listed in table 1 depend on the coefficients

of dimension-6 operators. One kind of observables are the physical masses of the W

and Z boson. In the presence of new physics corrections these are given by mW =
√

g2
L
v2

4 + δΠWW (m2
W ), mZ =

√

(g2
L
+g2

Y
)v2

4 + δΠZZ(m2
Z). The effect of the dimension-6

operators on the oblique corrections can be read off from eq. (2.7). Moreover, one should

also take into account that new physics contributing to our input observables effectively

shifts the SM electroweak parameters gL, gY and v:

δgL
gL

=
1

g2L − g2Y

(

2
δΠ

(0)
WW

v2
− 2 cos2 θW

δΠZZ(m
2
Z)

v2
+

g2Y
2
δΠ(2)

γγ − g2LδgℓW,L +
g2Lcll
4

)

,

δgY
gY

=
1

g2L − g2Y

(

−2g2Y
g2L

δΠ
(0)
WW

v2
+ 2 sin2 θW

δΠZZ(m
2
Z)

v2
− g2L

2
δΠ(2)

γγ + g2Y δgℓW,L −
g2Y cll
4

)

,

δv

v
= −2δΠ

(0)
WW

g2Lv
2

+ δgℓW,L −
cll
4
, (3.2)

Using eq. (2.7) and eq. (3.2) one finds δmZ = 0, while the W mass is shifted by

δmW = − mW g2Y
g2L − g2Y

(

ĉ′HL −
ĉll
4

)

. (3.3)
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The remaining pole observables are related to the W and Z partial decays widths. These

are given by Γ(Z → ff̄) =
NfmZ

24π g2fZ,eff , Γ(W → ff ′) = Nf
m̂W

48π g
2
fW,eff , where Nf is the

number of colors of the fermion f . The effective couplings are defined as (see e.g. [32])

gfZ;eff =

√

g2L + g2Y
√

1− δΠ′
ZZ(m

2
Z)

[

T 3
f −Qf sin

2 θW

(

1− gL
gY

δΠγZ(m
2
Z)

m2
Z

)

+ δgfZ

]

,

gfW ;eff =
gL(1 + δgfW )

√

1− δΠ′
WW (m2

W )
. (3.4)

such that they capture new physics effects on the vertices and propagators of electroweak

gauge bosons. At the linear level, new physics shifts the partial widths as δΓ(Z →
ff̄) =

NfmZ

12π gfZδgfZ;eff , δΓ(W → ff ′) =
NfmW

24π gLδgfW ;eff , where gfZ =
√

g2L + g2Y (T
3
f −

sin2 θWQf ) is the SM Z coupling to f , and δgfZ;eff = gfZ;eff − gfZ . Using eq. (2.7) and

eq. (2.9) we can trade the oblique and vertex correction in eq. (3.4) for the coefficients of

dimension-6 operators. For the Z-boson couplings we find

δgνZ,L;eff = −

√

g2L + g2Y

2

(

ĉHL −
ĉll
4

)

,

δgeZ,L;eff =

√

g2L + g2Y

g2L − g2Y

(

g2Y ĉ
′
HL −

(g2L − g2Y )ĉHL

2
− (g2Y + g2L)ĉll

8

)

,

δgeZ,R;eff =

√

g2L + g2Y

g2L − g2Y

(

g2Y ĉ
′
HL −

(g2L − g2Y )ĉHE

2
− g2Y ĉll

4

)

,

δguZ,L;eff =

√

g2L + g2Y

g2L − g2Y

(

−(3g2L + g2Y )ĉ
′
HL

6
+

(g2L − g2Y )(ĉ
′
HQ − ĉHQ)

2
+

(3g2L + g2Y )ĉll
24

)

,

δguZ,R;eff =

√

g2L + g2Y

g2L − g2Y

(

−2g2Y ĉ
′
HL

3
− (g2L − g2Y )ĉHU

2
+

g2Y ĉll
6

)

,

δgdZ,L;eff =

√

g2L + g2Y

g2L − g2Y

(

(3g2L − g2Y )ĉ
′
HL

6
−

(g2L − g2Y )(ĉ
′
HQ + ĉHQ)

2
− (3g2L − g2Y )ĉll

24

)

,

δgdZ,R;eff =

√

g2L + g2Y

g2L − g2Y

(

g2Y ĉ
′
HL

3
− (g2L − g2Y )ĉHD

2
− g2Y ĉll

12

)

, (3.5)

and

δgℓW,L,eff = − gL
g2L − g2Y

(

g2Y ĉ
′
HL −

g2Lĉll
4

)

,

δgqW,L,eff = − gL
g2L − g2Y

(

g2Lĉ
′
HL − (g2L − g2Y )ĉ

′
HQ −

g2Lĉll
4

)

, (3.6)

for the W -boson couplings to fermions. This explicitly demonstrates that precisely 8 com-

binations of the dimension-6 operators in eq. (2.3) and the 4-fermion operator Oll can be
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constrained by the pole observables. Clearly, only combinations of fermionic and purely

bosonic operators are constrained, but not the two separately. The technical reason is that

operators containing fermions can be traded for purely bosonic operators using the equa-

tions of motion (2.4). In particular, two combinations of vertex operators can be traded

for the operators OW and OB. The latter do not contribute to fermion couplings to W and

Z, and they contribute to oblique corrections in the same way as OWB. Therefore, these

two combinations of vertex operators cannot be probed by the pole observables [12, 33].

We now move to deriving constraints on the dimension-6 Lagrangian from a global

fit to the pole observables. We construct a χ2 function from the observables listed in

table 1. Using eq. (3.5), we compute corrections to the observables in terms of the relevant

combinations of the parameters in the dimension-6 Lagrangian. We take into account the

correlations between the observables given in [27]. Then we minimize the χ2 function with

respect to ĉHF and cll. With this procedure, we obtain the following constraints:


































ĉ′HL

ĉHL

ĉHE

ĉ′HQ
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ĉHU

ĉHD
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−1.9± 1.1
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0.1± 0.6

−4.7± 1.9
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7.0± 6.9

−31.3± 10.3

−4.7± 3.5



































· 10−3, ρ =



































1 −0.49 0.31 0.17 −0.05 −0.03 −0.04 0.89

· 1 0.42 0.08 0.00 0.06 −0.12 −0.76
· · 1 −0.04 −0.09 0.09 −0.32 0.03

· · · 1 −0.39 −0.73 0.59 0.01

· · · · 1 0.43 0.22 −0.04
· · · · · 1 −0.15 −0.01
· · · · · · 1 −0.06
· · · · · · · 1



































(3.7)

Using these central values ĉ0, the 1-sigma errors δĉ and the correlation matrix ρ one can

reconstruct the χ2 function for the pole observables as a function of the coefficients of

dimension-6 operators: χ2
pole =

∑

ij(ĉi − ĉ0i )σ
−2
ij (ĉj − ĉ0j ), where σ−2

ij = [δĉiρijδĉj ]
−1. If

only a subset of the operators is generated in a particular model, the χ2 function can be

minimized with a smaller number of parameters, and new limits valid in this restricted case

can be obtained. Thus, eq. (3.7) and eq. (3.1) allow one to quickly derive the constraints

from the pole observables on any model with new heavy particles.

Clearly, the combinations of dimension-6 parameters defined in eq. (3.1) are tightly

constrained by the pole observables. In particular, the combinations involving leptonic

vertex corrections are constrained at the level O(10−3), while those involving right-handed

quark are constrained at the level of O(10−2 − 10−3).4 In any basis, the coefficients of

dimension-6 operators must either be very small, or tightly correlated so as to satisfy the

constraints ĉHF ≈ 0. Larger new physics corrections are allowed only on the hyper-surface

in the operator space where these constraints are satisfied. We refer to this hyper-surface

as the flat directions of the pole observables.

Eq. (3.5) shows the possibility to parametrize the effects of the dimension-6 Lagrangian,

using only the modifications of the Z-couplings to fermions. Indeed, it is possible, using

field redefinitions proportional to the equations of motions and by taking appropriate linear

4The preference for a non-zero value of ĉHD is driven by the well-known 2.5σ anomaly in the forward-

backward asymmetry of b-quark production at LEP-1.
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combinations of the dimension-6 operators, to obtain a non-redundant operator basis in

which all propagator corrections vanish, δΠV V = 0, and there are only vertex corrections

δgfZ [12] (modifications to the W couplings are related to the Z couplings by an accidental

custodial symmetry at the level of the dimension-6 Lagrangian, δglL,W = δgνL,Z − δgeL,Z ,

δgqL,Z = δguL,Z − δgdL,Z). Such parametrization is particularly useful to compare with

experiments, and we will further discuss it in appendix A.3.

In the next section we discuss model-independent constraints on these flat directions

from vector boson pair production at LEP-2 and the LHC

4 Constraints from electroweak gauge boson pair production at LEP-2

The e+e− →W+W− process was studied at LEP-2 at several center-of-mass energies. The

total cross sections and differential distributions in the W scattering angle are reported in

ref. [31]. In principle, from these measurements one can extract different tensor structure of

gauge bosons self-couplings and separate the t- and s-channel photon and Z contributions,

thanks to their different angular and energy dependence.

Our first step is to understand which combinations of dimension-6 operators are con-

strained by the WW production. To this end we define a set of effective couplings that

fully describe the e+e− → W+W− process in the presence of new physics. One simpli-

fying assumption we introduce at this point is that there are only up to p2 corrections

to the gauge boson propagators.5 This implies δΠV V (m
2
V ) = δΠ

(0)
V V + m2

W δΠ
(2)
V V , and

δΠ′
V V (m

2
V ) = δΠ

(2)
V V .

The e+e− → W+W− amplitude can be split into t- and s-channel contributions:

M =Mt +
∑

V=γ,ZMV
s . The first piece is the t-channel neutrino exchange amplitude:

Mt = −
g2ℓW,L;eff

2t
ǭµ(pW−)ǭν(pW+)ȳ(pe+)σ̄νσ · (pe− − pW−)σ̄µx(pe−), (4.1)

where t = (pe− − pW−)2, ǫ’s are the polarization vectors of W±, and x, y are the spinor

wave-functions of e± (see ref. [21]). The effective W coupling to leptons gℓW,L;eff is defined

in eq. (3.4), and it includes the effects of vertex corrections and W wave-function renor-

malization due to oblique corrections. It is the same coupling that determines the W decay

width into leptons, therefore this part of the amplitude depends on the same combination

of dimension-6 operators as the pole observables.

The remaining part of the amplitude describes the s-channel photon and Z exchange:

MV
s = − 1

s−m2
V

[geV,L;eff ȳ(pe+)σ̄ρx(pe−) + geV,R;effx(pe+)σρȳ(pe−)] ǭµ(pW−)ǭν(pW+)F V
µνρ,

(4.2)

5This is true for most of the operators in eq. (2.3), except for O2W , O2B . Therefore, in the rest of this

section we will assume that, using equations of motion, these two have been traded for other operators

in eq. (2.3) and 4-fermion operators. Dropping these operators greatly simplifies the discussion of oblique

corrections to the WW production, and avoids dealing with the complicated tensor structure of gauge boson

self-interactions introduced by O2W .

– 10 –



J
H
E
P
0
2
(
2
0
1
5
)
0
3
9

where s = (pe− + pe+)
2. For the photon diagram, the effective coupling is geγ;eff = eeff ≡

e
√

1−δΠ
(2)
γγ

for both left- and right-handed fermions. One finds δeeff = 0: the photon cou-

plings to matter are not affected by dimension-6 operators. For the Z boson diagram, the

effective couplings geZ;eff , defined in eq. (3.4), are again the same as the ones that determine

the Z-boson decay widths into left- and right-handed leptons. Qualitatively new effects of

dimension-6 operators enter via the gauge boson vertex function:

F V
µνρ = g1,V ;eff

[

ηρµp
ν
W− − ηρνp

µ

W+ + ηµν(pW+ − pW−)ρ
]

+κV ;eff [ηρµ(pW+ + pW−)ν − ηρν(pW+ + pW−)µ]

+
gVWWλV

m2
W

[ηρµ (pW+(pW+ + pW−)pνW− − pW+pW−(pW+ + pW−)ν)

+ ηρν
(

pW+pW−(pW+ + pW−)µ − pW−(pW+ + pW−)pµ
W+

)]

. (4.3)

where gγWW = e, gZWW = gL cos θW . The effective TGCs in the first two lines are defined

as

g1,γ;eff = eeff , κγ;eff = eeff [1 + δκγ ] ,

g1,Z;eff =
gL cos θW
√

1− δΠ
(2)
ZZ

[

1 +
gLgY

g2L + g2Y
δΠ

(2)
γZ

]

[1 + δg1,Z ] ,

κZ;eff =
gL cos θW
√

1− δΠ
(2)
ZZ

[

1 +
gLgY

g2L + g2Y
δΠ

(2)
γZ

]

[1 + δκZ ] . (4.4)

These effective TGCs can be directly related to differential distributions that are experi-

mentally observable (unlike the TGCs in the Lagrangian of eq. (2.10) [34]). By calculat-

ing how they depend on the coefficients of dimension-6 operators we can find out which

combinations of dimension-6 operators are probed by the WW production process. In the

presence of dimension-6 operators the effective TGCs are shifted away from the SM value by

δg1,Z;eff

gL cos θW
≡ δĝ1,Z =

(

g2L + g2Y
)

[

cWB + cB − cHW

g2L
− cT

4g2Y
− ĉHL − cll/4

g2L − g2Y

]

,

δκγ;eff
e
≡ δκ̂γ = cWB − cHW − cHB,

λZ = −c3W , (4.5)

δg1,γ;eff = 0,
δκZ,eff

gL cos θW
= δĝ1,Z −

g2Y
g2L

δκ̂γ , λγ = λZ . (4.6)

We can see that the WW production is sensitive to 3 new combinations of dimension-6 op-

erators appearing in δĝ1,Z , δκ̂γ , and λZ in eq. (4.5). At the dimension-6 level, all other new

physics corrections can be expressed either by these three combinations (δκZ,eff and λγ in

eq. (4.6)) or by the combinations that enter in the pole observables (δgℓW,L;eff , δgℓZ,L;eff , and

δgℓZ,R;eff). For vanishing oblique and vertex corrections, the shifts of our effective TGCs in

eq. (4.5) reduce to the usual anomalous TGCs defined by eq. (2.10), which are commonly

used in the literature to parameterize the vector boson pair production. However, our for-

mulation is more general and is also valid in the presence of oblique and vertex corrections.
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It can be used with any basis of dimension-6 operators, also when some anomalous TGCs

do not appear in that basis. For example, in the Warsaw basis of ref. [4], at first sight the

anomalous TGC δg1,Z does not seem to receive any direct contribution from new physics, as

none of the operators in this basis contains the structure appearing in eq. (2.10). Instead,

a combination of vertex and oblique corrections has exactly the same effect as δg1,Z , which

is captured by our formalism. The analogous formalism applies to the WW production at

the LHC, with δgℓW ;eff , δgℓZ;eff replaced by the effective W and Z couplings to quarks.

Thus, the WW production provides qualitatively new information about higher-

dimensional operators in the effective Lagrangian that cannot be extracted from the pole

observables alone. We now discuss, at the quantitative level, the constraints on dimension-

6 operators from the e−e+ →W+W− production data collected by the LEP-2 experiment.

We take into account the total and differential production cross section at different center-

of-mass energies, as reported in ref. [31]. In principle, the e−e+ →W+W− process probes

6 combinations of dimension-6 operators: δĝ1,Z , δκ̂γ , and λZ in eq. (4.5), as well as δgℓW ;eff ,

δgℓZ,L;eff , and δgℓZ,R;eff in eq. (3.5). Using the e−e+ → W+W− data we could constrain

these 6 combinations, and then combine these constrains with the ones obtained from the

pole observables. In practice, however, a simpler procedure is adequate. The constraints

from the pole observables imply δgW,ℓ;eff ≈ δgZ,ℓ;eff . O(10−3), while the accuracy of the

LEP-2 WW measurements is worse, roughly O(10−2). Therefore, for the sake of fitting

the WW data, it is a very good approximation to assume ĉ′HL = ĉHL = ĉHE = ĉll = 0,

which implies δgW,ℓ;eff = δgZ,ℓ;eff = 0. Then one can focus only on the deformations of the

SM along the EFT directions defined by δĝ1,Z , δκ̂γ , and λZ , which are unconstrained by

the pole observables. This simplified procedure is equivalent to fitting the three anomalous

TGCs δg1,Z , δκγ , and λZ in eq. (2.10), assuming vanishing oblique and vertex correction.

From that 3-dimensional fit, using eq. (4.5), one can read off constraint on the coefficients

of dimension-6 operators in any basis. Results of the fits in some particular bases are given

in appendix A; below, we only give the results in the language of the anomalous TGCs.

Our formalism of effective couplings that are directly connected to observable quantities

addresses the concerns raised in ref. [34]. As a cross-check, we also performed a complete

fit where the full non-redundant set of operators contributing to the pole observables and

WW production was allowed to vary freely. Numerically, the results of that fit are very

close to the results of the simplified 3-dimensional TGC fit quoted below, thus validating

our procedure.

To perform the fit, we computed the relevant WW cross sections analytically as a

function of δg1,Z , δκγ , and λZ . We also included the constraints on the closely related

process of single on-shell W boson production in association with a forward electron and

a neutrino [31]. In this case, the corrections due to anomalous TGCs are determined

numerically using aMC@NLO [35]. For the SM predictions we take the numbers quoted

in [31]. At the linear level in dimension-6 operators, we find the constraints

δg1,Z = −0.83± 0.34, δκγ = 0.14± 0.05, λZ = 0.86± 0.38, ρ =









1 −0.71 −0.997
· 1 0.69

· · 1









.

(4.7)
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The constraints are weaker than expected given the LEP-2 precision, with O(1) TGCs

allowed by eq. (4.7). This is related to the approximately blind direction of the LEP-2 WW

data along λZ ≈ −δg1.Z that was pointed out in ref. [36].6 Notice that this blind direction

appears to be a complete accident that occurs for the energy range and the observables

explored by LEP-2. In particular, for s ≫ (200GeV)2, the linear level differential cross-

section is sensitive separately to λZ and δg1.Z . Furthermore, the blind direction appears

only after summing over the polarizations of e± and W±, whereas including polarization

information would remove the blind direction. Single W production data (omitted in [36])

do not remove this blind direction because they constrain mostly δκγ . Including in the

cross-section the quadratic terms we obtain7

δg1,Z = −0.05+0.05
−0.07, δκγ = 0.05+0.04

−0.04, λZ = 0.00+0.07
−0.07. (4.8)

The errors are much smaller than for the linear fit in eq. (4.7), as the quadratic terms lift

the accidental blind direction. This demonstrates the strong sensitivity to the quadratic

terms, which is usually associated with a breakdown of the effective theory expansion

and a potential sensitivity to higher-dimensional operators. However from eq. (4.8) one

sees that the new physics scale associated with these operators, e.g. Λ2 ∼ m2
W /g1,Z ≈

(300GeV)2 > sLEP2 , is within the validity of the EFT approach for the energy used at LEP.

Furthermore even the presence of generic dimension-8 contributions to triple-gauge vertices

cannot invalidate the bounds of eq. (4.8) [37] (whether or not this holds when dimension-8

contributions to the t-channel are present, deserves further investigation). In any case, and

most importantly, eq. (4.7) contains useful information to constrain concrete new physics

models that lead to a subset of dimension-6 operators. In particular, in any model the

operator O3W can only be generated at a loop level, therefore the coefficient c3W = −λZ is

suppressed compared to δĝ1,Z and δκ̂γ in large classes of models. Setting λZ = 0 we obtain

δg1,Z = −0.06± 0.03, δκγ = 0.06± 0.04, ρ =

(

1 −0.50
· 1

)

. (4.9)

The errors are shrunk by a factor of ten, compared to the general case. In this case, in-

cluding or not the quadratic terms does not change the result significantly. Thus, eq. (4.7)

can be readily used to constrain new physics models predicting |λZ | ≪ |δĝ1,Z |, |δκ̂γ |; it

can be also used when λZ is not suppressed but is predicted to be away from the blind

direction λZ ≈ −δĝ1,Z
Finally, we comment on the input from the LHC. One would expect that the LHC may

significantly improve on the LEP-2 constraints; in particular, the blind direction, which

is plaguing the interpretation of the LEP-2 data, should be lifted. So far, ATLAS and

CMS have delivered the constraints on the anomalous TGCs in the WW, WZ, and Wγ

production processes at
√
s = 7TeV [38–40]. However, it is difficult to interpret the existing

6Indeed, along the direction δκ± ≡ (λZ ± δg1.Z)/
√
2, one finds that δκ+ = 0.005 ± 0.055 while δκ− =

1.11± 0.57.
7Note that, in the fits performed so far by experimental collaborations, the quadratic terms are always

included.
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results as constraints on dimension-6 operators in the effective field theory beyond the SM.

First of all, the experimental collaborations quote the limits only for the case when one or

two anomalous TGCs are varied at the same time. This problem is addressed in ref. [16],

where a 3-dimensional fit of the anomalous TGCs to the ATLAS 8TeV WW distribution

is performed. However, there is another problem. The analyses of ATLAS and CMS, as

well as that of ref. [16], focus on the high-pT tail of the distribution of W and Z decay

products, which corresponds to a high center-of-mass energy ŝ of the partonic collision.

If ŝ & Λ, where Λ ∼ v/
√
c6D is the scale suppressing the relevant dimension-6 operators,

the process is outside of the range of validity of the EFT. We find that this is indeed

the case for the magnitude of anomalous TGCs that could produce observable effects in

the currently measured LHC distributions. Specifically, we find that for c6D ∼ 0.1, and

c8D ∼ c26D, the contribution of dimension-8 operators to the the events at the high pT tail

exceeds that of dimension-6 operators. We conclude that these analyses probe dimension-

6 operators in the regime where the EFT expansion is expected to break down; in this

regard are conclusions are not aligned with those of ref. [16]. However, constraints derived

by these methods may be applied only to concrete models beyond the SM [41]. Better

designed observables are needed in order to interpret the V V production at the LHC as

model-independent constraints on dimension-6 operators.

5 Conclusions and outlook

This paper discussed in a general way the constraints from electroweak precision observ-

ables on dimension-6 operators. Starting with a redundant set of operators, we identified

the combinations that are constrained by the pole observables (W and Z mass and on-shell

decays) and by the W boson pair production. To this end, we defined a set of effective

couplings of W and Z bosons to fermions and to itself, which allow one to consistently in-

clude the effects of new physics corrections to gauge boson propagators and vertices. These

effective couplings are directly related to physical observables, such as the partial decay

widths of W and Z bosons or the differential WW production cross section. Dimension-6

operators shift the effective couplings away from the SM value, and by calculating this

shift one can read off their effect on observables. Using this formalism we demonstrated

that the pole observables constrain 8 combinations of dimension-6 operators, while the W

boson pair production constrains another 3 combinations. We obtained numerical con-

straints on these combinations in a form that can be easily adapted to any particular basis

of operators, or any particular model with new heavy particles.

It is worth stressing that there is a synergy between our precision studies and Higgs

precision measurements at the LHC and in future colliders. Indeed, most operators in

eq. (2.3) contain the Higgs field, therefore they contribute to Higgs boson decays and/or

production. Experimental limits on the coefficient of these operators therefore imply con-

straints on possible new physics effect in Higgs observables. For instance, along the flat

directions of the pole observables there are operators that contribute to the h → V f̄f ′

decays (see e.g. ref. [42]), and our analysis shows that these are not necessarily tightly
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constrained. This example show that constraints from electroweak precision observables

may be important in planning the strategy of Higgs measurement.

To derive our results we assumed the coefficients of dimension-6 operators are flavor

blind. It would be interesting to investigate what happens if this assumption is lifted in

a controlled way, for example in the Minimal Flavor Violation scheme.8 Furthermore, we

restricted to observables that do not depend directly on 4-fermion dimension-6 operators.

Lifting this assumption requires dealing with a much larger number of parameters, but also

allows one to include many more precision observables, such as fermion scattering off the

Z-pole at LEP-2, atomic parity violation, parity-violating electron scattering, etc. These

directions will be investigated in a future work.
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A Constraints on dimension-6 operators in particular bases

In the appendix we discuss electroweak precision constraints on the coefficients of

dimension-6 operators in three popular bases of operators.

A.1 Warsaw basis

In so-called Warsaw basis of ref. [4], the set of CP-even operators affecting the pole and

WW observables is chosen as

LEWPT
D=6 =

cT
4v2

H†←→DµHH†←→DµH +
cWB

4m2
W

BµνW
i
µνH

†σiH +
c3W

6g2Lm
2
W

ǫijkW i
µνW

j
νρW

k
ρµ

+i
c′HQ

v2
q̄σiσ̄µqH

†σi←→DµH + i
cHQ

v2
q̄σ̄µqH

†←→DµH + i
cHU

v2
ucσµū

cH†←→DµH + i
cHD

v2
dcσµd̄

cH†←→DµH

+i
c′HL

v2
ℓ̄σiσ̄µlH

†σi←→DµH + i
cHL

v2
ℓ̄σ̄µlH

†←→DµH + i
cHE

v2
ecσµē

cH†←→DµH, (A.1)

Compared to the larger redundant set in eq. (2.3), the operators OW , O2W , O2B, OB are

disposed of via equations of motion eq. (2.4), while the operators OHW , OHB are removed

by integration by parts eq. (2.5). For completeness, we also give the bosonic CP-even

operators that only affect Higgs physics, but not the pole observables or gauge boson pair

production:

LHiggs only
D=6 =

cH
v2

∂µ
(

H†H
)

∂µ

(

H†H
)

− c6H

(

H†H
)3

+
cGG

4m2
W

H†HGa
µνG

a
µν +

cWW

4m2
W

H†HW i
µνW

i
µν +

cBB

4m2
W

H†HBµνBµν . (A.2)

8Ref. [5] made a first step in this direction and included the leading order in the MFV expansion.
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Out of the 10 operators in eq. (A.1), the pole observables constrain 7 combinations.

The constraints can be read off directly from eq. (3.7):





































c′HL + cWB − g2L
4g2

Y

cT

cHL − 1
4cT

cHE − 1
2cT

c′HQ + cWB − g2L
4g2

Y

cT

cHQ + 1
12cT

cHU + 1
3cT

cHD − 1
6cT

cll





































=





































−1.9± 1.1

1.1± 0.7

0.1± 0.6

−4.7± 1.9

0.2± 2.0

7.0± 6.9

−31.3± 10.3

−4.7± 3.5





































· 10−3, (A.3)

with the correlation matrix given in eq. (3.7). After applying the pole constraints , there

are 3 flat directions among the operators in eq. (A.1) that can be parametrized by cWB, cT
and c3W . From eq. (A.3), the vertex corrections should be approximately correlated with

cWB and cT :

c′HL ≈ −cWB +
g2LcT
4g2Y

, cHL ≈
cT
4
, cHE ≈

cT
2
,

c′HQ ≈ −cWB +
g2LcT
4g2Y

, cHQ ≈ −
cT
12

, cHU ≈ −
cT
3
, cHD ≈

cT
6
cT . (A.4)

These relations should be satisfied at the level of O(10−3) for the leptonic vertex correction

(the first line), and at the level of O(10−2) for the quark vertex corrections (the second

line). The flat directions of the pole observables are lifted when constraints from gauge

boson pair production are taken into account. For the sake of studying the constraints from

WW production it is a very good approximation to assume that the relations in eq. (A.4)

hold exactly. Then the relation between the shifts of the effective TGCs in eq. (4.5) and

the dimension-6 parameters along the pole flat direction is given by

δĝ1,Z = (g2L + g2Y )

(

cWB

g2L
− cT

4g2Y

)

, δκ̂γ = cWB, λZ = −c3W . (A.5)

Rewriting the linear level constraints on anomalous TGCs in eq. (4.7) in terms of these

dimension-6 operators we obtain









cWB

cT

c3W









=









0.14± 0.05

0.86± 0.33

−0.86± 0.38









, ρ =









1 0.79 −0.69
· 1 −0.99
· · 1









. (A.6)

In the Warsaw basis the accidental blind direction of LEP-2 occurs along the line cT ≈
−c3W . The current limits are weak, such that O(1) coefficients of dimension-6 operator

are allowed by the data. In other words, the dimension-6 operators may be suppressed by

the scale as small as the weak scale. This signals a potential sensitivity to dimension-8
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and higher operators, if their coefficients take generic value from the EFT point of view.

However, the constraint are much stronger for away from the blind direction. In particular,

for c3W = 0 the constraints following from eq. (A.6) reduce to

(

cWB

cT

)

=

(

0.06± 0.04

0.12± 0.06

)

, ρ =

(

1 0.94

· 1

)

. (A.7)

Note that cWB and cT can be further constrained by Higgs data, together with the operators

in eq. (A.2).

A.2 SILH’ basis

The original strongly interacting light Higgs (SILH) Lagrangian [22] contains only bosonic

operators; in refs. [23] it was extended to include fermions. This precise form is not es-

pecially convenient for the sake of electroweak precision observables because it contains

operators (DρW
a
µν)

2 and (∂ρBµν)
2, which introduce p4 oblique corrections and more com-

plicated tensor structure of the TGCs. Here we use a closely related basis of operators from

refs. [5, 6] where these 2 operators are traded for 4-fermion operators. We call it the SILH’

basis to distinguish from the original one. In the SILH’ basis, the operators contributing

to the pole observables and to gauge boson pair production are the following:

LEWPT
D=6 =

cT
2

(

H†←→DµH
)(

H†←→DµH
)

+ i
v2

m2
W

cW
2

H†σa←→DµHDνW
a
µν + i

v2

m2
W

cB
2
H†←→DµH∂νBµν

+i
v2

m2
W

cHWDµH
†σiDνHW i

µν + i
v2

m2
W

cHBDµH
†DνHBµν +

v2

m2
W

c3W
6g2L

ǫijkW i
µνW

j
νρW

k
ρµ

+ic′HQq̄σ
iσ̄µqH

†σi←→DµH + icHQq̄σ̄µqH
†←→DµH + icHUu

cσµū
cH†←→DµH + icHDdcσµd̄

cH†←→DµH

+icHEe
cσµē

cH†←→DµH. (A.8)

For completeness, we also give the CP-even operators that only affect Higgs physics, but

not the pole observables or gauge boson pair production:

LHiggs only
D=6 =

cH
v2

∂µ
(

H†H
)

∂µ

(

H†H
)

− c6H

(

H†H
)3

+
cGG

4m2
W

H†HGa
µνG

a
µν +

cBB

4m2
W

H†HBµνBµν . (A.9)

Compared to the Warsaw basis in eq. (A.1) and eq. (A.2), the vertex operators with left-

handed leptons O′
HL and OHL have been traded for the operators OW and OB via the

equations of motion eq. (2.4). Moreover, the operators OWB and OWW have been traded

for OHW and OHB via integration by parts eq. (2.5).

Eight operators in eq. (A.8) contribute to the oblique and vertex corrections. Seven

combinations of those that are constrained by the pole observables can be read off eq. (3.1)

with cWB = cHL = c′HL = 0. In the SILH’ basis the pole observables constrain the

parameters as
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cT

cW + cB

cHE

c′HQ

cHQ

cHU

cHD

cll



































=



































−2.2± 1.5

−6.0± 3.4

−2.1± 1.3

−2.9± 2.0

0.6± 2.0

8.5± 7.0

−32.0± 10.4

−4.7± 3.5



































· 10−3, ρ =



































1 0.96 0.91 −0.34 −0.12 −0.20 0.17 0.76

· 1 0.95 −0.39 −0.13 −0.19 0.13 0.90

· · 1 −0.46 −0.15 −0.16 0.03 0.85

· · · 1 −0.29 −0.61 0.56 −0.48
· · · · 1 0.44 0.19 −0.14
· · · · · 1 −0.18 −0.12
· · · · · · 1 −0.03
· · · · · · · 1



































.

(A.10)

Our results somewhat differ from those in ref. [16] who use this particular basis, which may

be due to a different choice of observables. Comparing eq. (A.3) and eq. (A.10) one notes

that the constraints on the coefficients of dimension-6 operators are numerically different

in the SILH’ and in the Warsaw basis. The most extreme example is cT , which cannot be

constrained by itself in the Warsaw basis, whereas in the SILH’ basis it is required to be

O(10−3). This is because the same operators can have a different physical interpretation

in different bases.

In the SILH’ basis, the pole constraints have a much more intuitive form than in

the Warsaw basis. The flat directions of the pole observables can be parameterized by

cW , cHW , cHB, and c3W . The remaining parameters in eq. (A.8) are required to be

O(10−2 − 10−3), except for cB which is constrained by cB ≈ −cW . For the sake of

studying the constraints from WW production it is a very good approximation to assume

these parameter vanish and cB = −cW exactly. With these assumptions, the shift of the

effective TGCs in eq. (4.5) in this basis reduce to

δĝ1,Z = −g2L + g2Y
g2L

(cW + cHW ) , δκ̂γ = −cHW − cHB λZ = −c̄3W . (A.11)

Apparently, 4 parameters affect the three TGC shifts that are observable in WW

production. These constraints can be read off eq. (4.7) by replacing the anomalous TGCs

via eq. (A.11). This means that the WW production constraints leave 1 flat direction

among the parameters cHW , cHB, cW , which is an inconvenience of the SILH’ basis. To

lift this flat direction one has to include LHC Higgs data, which constrain cHW , cHB, and

cW , as well as the operators in eq. (A.9).

A.3 BSM primaries

As the previous appendices show neither the Warsaw nor the SILH’ basis are ideal to

compare with experiments: the former due to the large theoretical correlations between

Z-pole and TGC constraints, the latter due to the correlations between LEP2 and Higgs

constraints; furthermore, the very fact they are written in the gauge eigenstate basis (an

advantage when comparing with explicit UV models) obscures their impact on physics.

Refs. [12, 13] proposes an alternative basis which addresses these problems and is more

oriented towards a comparison with experiments: the BSM Primaries. It uses field redef-

initions to remove all propagator corrections, so that only vertex corrections are left (this
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makes the implementation in a collider simulator straightforward), and it takes linear com-

binations of the gauge invariant operators of eq. (2.3) so that the dimension-6 effects appear

in the mass-eigenstate (physical) basis. In this basis the new physics effects corresponding

to eq. (3.1) can be parametrized through

{δgZν , δgeZ;L, δgeZ;R, δguZ;R, δguZ;L, δgdZ;L, δgdZ;R}, (A.12)

while modifications to the TGCs can be directly parametrized by {δgZ1 , κγ , λγ}. The re-

lations of these modifications to other observables (such as Higgs-physics), as implied by

the accidental relations of the dimension-6 Lagrangian, can be found in ref. [12] and the

relation to other bases in ref. [13]. Constraints to the parameters of eq. (A.12) can be

straightforwardly obtained from eq. (3.7) and read9


































δgZ

eL

δgZ

eR

δgZ

ν

δgZ

uL

δgZ

dL

δgZ

uR

δgZ

dR

cll



































=



































0.4± 0.5

−0.1± 0.3

−1.6± 0.8

−2.6± 1.6

2.3± 1

−3.6± 3.5

16.0± 5.2

−4.7± 3.5



































· 10−3, ρ =



































1. 0.66 −0.43 −0.16 0.16 0.02 −0.14 −0.43
· 1. −0.02 −0.01 −0.10 0.09 −0.31 −0.03
· · 1. 0.03 −0.02 0.01 0.00 0.96

· · · 1. 0.00 0.70 −0.25 −0.01
· · · · 1. −0.27 0.72 0.05

· · · · · 1. −0.18 −0.02
· · · · · · 1. 0.08

· · · · · · · 1.



































.

(A.13)
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