
The VLDB Journal

DOI 10.1007/s00778-008-0105-2

SPECIAL ISSUE PAPER

Model-independent schema translation

Paolo Atzeni · Paolo Cappellari · Riccardo Torlone ·

Philip A. Bernstein · Giorgio Gianforme

Received: 23 September 2007 / Revised: 21 February 2008 / Accepted: 9 May 2008

© Springer-Verlag 2008

Abstract We discuss a proposal for the implementation of

the model management operator ModelGen, which translates

schemas from one model to another, for example from object-

oriented to SQL or from SQL to XML schema descriptions.

The operator can be used to generate database wrappers (e.g.,

object-oriented or XML to relational), default user interfaces

(e.g., relational to forms), or default database schemas from

other representations. The approach translates schemas from

a model to another, within a predefined, but large and exten-

sible, set of models: given a source schema S expressed in a

source model, and a target model TM, it generates a schema

S′ expressed in TM that is “equivalent” to S. A wide family

of models is handled by using a metamodel in which mod-

els can be succinctly and precisely described. The approach

expresses the translation as Datalog rules and exposes the

source and target of the translation in a generic relational

dictionary. This makes the translation transparent, easy to

customize and model-independent. The proposal includes

automatic generation of translations as composition of basic

steps.

Keywords Schema translation · Data models ·

Model management

P. Atzeni and R. Torlone partially supported by MIUR, Università

Roma Tre and an IBM Faculty Award, and G. Gianforme by a

Microsoft Research Fellowship.

P. Atzeni (B) · P. Cappellari · R. Torlone · G. Gianforme

Università Roma Tre, Rome, Italy

e-mail: atzeni@dia.uniroma3.it

P. A. Bernstein

Microsoft Research, Redmond, WA, USA

1 Introduction

To manage heterogeneous data, many applications need to

translate data and their descriptions from one model (i.e.,

data model) to another. Even small variations of models are

often enough to create difficulties. For example, while most

database systems are now object-relational, the actual fea-

tures offered by different systems rarely coincide, so data

migration requires a conversion. Every new database tech-

nology introduces more heterogeneity and thus more need

for translations. For example, the growth of XML has led to

such issues, including the need to have object-oriented wrap-

pers for XML data, the translation from nested XML docu-

ments into flat relational databases and vice versa, and the

conversion from one company standard to another, such as

using attributes for simple values and sub-elements for nest-

ing versus representing all data in sub-elements. Other pop-

ular models lead to similar issues, such as Web site descrip-

tions, data warehouses, and forms. In all these settings, there

is the need for translations from one model to another. This

problems belongs to the larger context Bernstein [11] termed

model management, an approach to meta data management

that considers schemas as the primary objects of interest and

proposes a set of operators to manipulate them.

According to the model management terminology, this

paper considers the ModelGen operator [11], defined as fol-

lows: given two models M1 and M2 and a schema S1 of M1,

ModelGen translates S1 into a schema S2 of M2 that properly

represents S1. A possible extension of the problem, consid-

ers also the data level: given a database instance I1 of S1, the

extended operator produces an instance I2 of S2 that has the

same information content as I1.

As there are many different models, what we need is an

approach that is generic across models and can handle the

idiosyncrasies of each model. Ideally, one implementation

123

P. Atzeni et al.

EMPLOYEE MEMB. PROJECT
(1,N)EN

Name

Code

Name

(0,N)

Fig. 1 A simple ER schema

EN

Name

EMPLOYEE MEMB.

Code

Name

PROJECT

Fig. 2 The translation of the schema in Fig. 1 into a simple object-

oriented model

should work for a wide range of models, rather than imple-

menting a custom solution for each pair of models.

We illustrate the problem with some of its major features

by means of a couple of short examples. Let us consider two

popular data models, Entity-relationship (ER) and object-

oriented (OO). Indeed, each of them is not “a model,” but

“a family of models,” as there are many different propos-

als for each of them: OO with or without keys, binary and

n-ary ER models, OO and ER with or without inheritance,

and so on. Let us assume that our OO model has classes with

simple fields and uses (directed) references as the means of

relating classes to one another. In general, if we have an ER

schema and we want to translate it into an OO schema, we

essentially map entities to classes and replace relationships

with references. Our approach is based on the extension and

generalization of these simple ideas, as follows:

− Entities are mapped to classes (and vice versa in the

reverse translation) because the two types of constructs

play the same role (or, in other terms, “they have the

same meaning”). Indeed, this situation is common: most

known models have constructs that can be classified

according to a rather small set of metaconstructs [5].

In fact, the same happens for attributes of entities and

fields of classes. In both cases, this part of the transla-

tion is trivial (in the strict sense: there is no translation,

just renaming of the type of construct, from “entity” to

“class” and from “attribute” to “field”).

− Relationships are replaced by references, and here things

are more complex. As usually relationships are more

sophisticated (they can be n-ary, many-to-many, or have

attributes), the introduction of new classes (beside those

corresponding to entities) may be needed. So, if for exam-

ple we want to translate the ER schema in Fig. 1, which

involves a many-to-many relationship, then we will have

to introduce a new class for such a relationship (see

Fig. 2).

An interesting issue is that the actual translation can

depend on the details of the source and target model. For

example, if we go from an object model to the relational one,

PROF COURSE

TEACHING

Fig. 3 A simple OO schema

PROF COURSE

Fig. 4 The relational translation of the OO schema in Fig. 3 with new

key attributes

PROF COURSE

Fig. 5 The relational translation of the OO schema in Fig. 3 without

new key attributes

then we have to implement different translations depending

on whether the source model requires the specification of

identifiers or not. Let us refer to the schema in Fig. 3. If

the object model does not allow (or it allows but does not

require) the specification of identifiers, then, in the transla-

tion to the relational model, we have to add new key attributes

in the tables generated for each class. If instead identifiers

are required (and, in the example, PCode and CNumber

are specified as identifiers), no new attributes are needed.

Figures 4 and 5 show the two possibilities in the translated

schema. In both cases, referential integrity is needed, in the

former case involving the new attributes and in the latter over

the existing identifiers.

The example shows that we need to be able to deal with

the specific aspects of models, and that translations need to

take them into account. We have shown two versions of the

object model, one that has visible keys (besides the system-

managed identifiers) and one that does not. The translation

has to be different as well.

More generally, we are interested in developing a platform

that allows the specification of the source and target models

of interest (including OO, OR, ER, UML, XSD, and so on),

with all relevant details, and to generate the translation of

their schemas from one model to another.

This paper describes the schema-related component of

MIDST (Model Independent Data and Schema Translation),

a framework for the development of an effective implemen-

tation of a generic (i.e., model independent) platform for

schema and data translation. The development of data trans-

lation has been sketched in a preliminary report [1], but it is

beyond the scope of this paper.

In the next section we give an overview of our approach,

with a summary of the contributions and a description of the

organization of the subsequent sections.

123

Model-independent schema translation

2 Overview

2.1 Constructs and models: a metamodel approach

Our approach is based on the idea of a metamodel, defined as

a set of constructs that can be used to define models, which are

instances of the metamodel. This is based on Hull and King’s

observation [26] that the constructs used in most known mod-

els can be expressed by a limited set of generic (i.e., model-

independent) metaconstructs: lexical, abstract, aggregation,

generalization, function. In fact, we define a metamodel by

means of a set of generic metaconstructs. Each model is

defined by its constructs and the metaconstructs they refer

to. Simple versions of the models in the examples in Sect. 1

could be defined as follows:

− an ER model involves (i) abstracts (the entities), (ii)

aggregations of abstracts (relationships), and (iii) lexi-

cals (attributes of entities and, in most versions of the

model, of relationships);

− an OO model has (i) abstracts (classes), (ii) reference

attributes for abstracts, which are essentially functions

from abstracts to abstracts, and (iii) lexicals (fields or

properties of classes);

− the relational model involves (i) aggregations of lexi-

cals (tables), (ii) components of aggregations (columns),

which can participate in keys, (iii) foreign keys defined

over aggregations and lexicals.

The various constructs are related to one another by means

of references (for example, each attribute of an abstract has

a reference to the abstract it belongs to) and have properties

that specify details of interest (for example, for each attribute

we specify whether it is part of the identifier and for each

aggregation of abstracts we specify its cardinalities). We will

see these aspects in detail in the following sections.

All the information about models and schemas is main-

tained in a dictionary. We will discuss the dictionary in some

detail later in the paper; here we just mention that it has a

relational implementation, which is exploited by the specifi-

cation of translations, written in Datalog.

2.2 The supermodel and translations

A major concept in our approach is the supermodel, a model

that has constructs corresponding to all the metaconstructs

known to the system. Thus, each model is a specialization of

the supermodel and a schema in any model is also a schema

in the supermodel, apart from the specific names used for

constructs.

It is worth mentioning that while we say that we follow a

“metamodel” approach, what we actually implement in our

dictionary is the supermodel, as we will see in Sect. 3.

The supermodel gives us two interesting benefits. First, it

acts as a “pivot” model, so that it is sufficient to have trans-

lations from each model to and from the supermodel, rather

than translations for every pair of models. Thus, a linear and

not a quadratic number of translations is needed. Indeed,

since every schema in any model is also a schema of the

supermodel (modulo construct renaming), the only needed

translations are those within the supermodel with the target

model in mind: a translation is composed of (a) a “copy” (with

construct renaming) from the source model into the super-

model; (b) an actual transformation within the supermodel,

whose output includes only constructs allowed in the target

model; (c) another copy (again with renaming into the tar-

get model). The second advantage is related to the fact that

the supermodel emphasizes the common features of mod-

els. So, if two source models share a construct, then their

translations towards similar target models could share a por-

tion of the translation as well. In our approach, we follow

this observation by defining elementary (or basic) transla-

tions that refer to single constructs (or even specific variants

thereof). Then, actual translations are specified as composi-

tions of basic ones, with significant reuse of them.

For example, assume we have as the source an ER model

with binary relationships (with attributes) and no generaliza-

tions and as the target a simple OO model. To perform the

task, we would first translate the source schema by renam-

ing constructs into their corresponding homologous elements

(abstracts, binary aggregations, lexicals, generalizations) in

the supermodel and then apply the following steps (sketched

in Fig. 6):

(1) eliminate attributes of aggregations, by introducing new

abstracts and one-to-many aggregations;

(2) eliminate many-to-many aggregations, by introducing

new abstracts and one-to-many aggregations;

(3) replace one-to-many aggregations with references bet-

ween abstracts.

If instead we have a source ER model with generalizations

but no attributes on relationships (still binary), then, after the

copy in the supermodel, we can apply steps (2) and (3) above,

followed by another step that takes care of generalizations:

(4) eliminate generalizations (replacing them with refer-

ences).

It is important to note that the basic steps are highly

reusable. Let us comment on this issue with the help of

Fig. 7. The figure shows several models that can be obtained

by combining the constructs seen in the previous examples.

Indeed, this is just a subset of the models our tool handles (we

will come back to this issue at the end of the next section),

123

P. Atzeni et al.

Fig. 6 A translation composed

of three steps (...,N) (...,N)

(1)

(...,N) (...,N)

(2)

(3)

Fig. 7 Some models and

translations between them

ER

GEN/AR/M:N

ER1

(6)

ER

NO-GEN/AR/M:N

ER2

(1)

ER

GEN/NO-AR/M:N

ER3

(2)

ER

GEN/AR/NO-M:N

ER4

(1) (5)

ER

NO-GEN/NO-AR/M:N

ER5

(2) (1)

ER

GEN/NO-AR/NO-M:N

ER6

(2) (5)

ER

NO-GEN/NO-AR/NO-M:N

ER7

(3)

OO

GEN

OO1

(3) (4)(7)

OO

NO-GEN

OO2
RELATIONAL

REL (8)

Basic translations

(1) eliminate attributes from aggregations of abstracts

(2) eliminate many-to-many aggregations of abstracts

(3) replace aggregations of abstracts with references

(4) eliminate generalizations (introducing new references)

(5) eliminate generalizations (introducing new aggregations of abstracts)

(6) replace aggregations of abstracts with references

(7) replace abstracts and their aggregations with aggregations of lexicals

(8) replace abstracts and references with aggregations of lexicals

Abbreviations

GEN with generalizations

NO-GEN without generalizations

AR with attributes on relationships

NO-AR without attributes on relationships

M:N with many-to-many relationships

NO-M:N without many-to-many relationships

123

Model-independent schema translation

but it is sufficient to make the point. In the figure, we have

also omitted various translations, including the identity one,

which would be useful to go from a model to a more complex

version of it, for example from er2 or er3 to er1.

The diagram in Fig. 7 shows the translations we have just

commented on (with the two source models marked with er2

and er3, respectively, and the target model with oo2). Reuse

arises in various ways. First, entire translations can be used

in various contexts: the translation composed of steps (1), (2)

and (3), which we have mentioned for the translation from

er2 to oo2, can be used also to go from the most complex

ER model in the picture (the top one, indicated with er1)

to the OO model with generalizations (oo1) in the picture.

Second, individual steps can be composed in different ways:

for example, if we want to go from er1 to the relational model

(in the bottom left corner), then we could use basic translation

(5) to eliminate generalizations, then (1) and (2) to reach a

simple ER model (er7), and finally (7) to get to the relational

one.

2.3 Building complex translations

With many possible models and many basic translations, it

becomes important to understand how to find a suitable trans-

lation given a source and a target model. Intuitively, we could

think of using a graph such as that in Fig. 7, with models as

nodes and basic translations as edges. Here there are two dif-

ficulties. The first one is how to verify what target model is

generated by applying a basic step to a source model (for

example to verify that transformation (1) indeed generates

schemas of model er3 from schemas of er1 and that it gen-

erates schemas of er5 from schemas of er2). The second

problem is related to the size of the graph: due to the num-

ber of constructs and properties, we have too many models

(a combinatorial explosion of them, if the variants of con-

structs grow) and it would be inefficient to find all associa-

tions between basic translations and pairs of models.

We propose a complete solution to the first issue, as fol-

lows. We associate a concise description with each model,

by indicating the constructs it involves with the associated

properties (described in terms of propositional formulas),

and a signature with each basic translation. Then, a notion of

application of a signature to a model description allows us

to obtain the description of the target model. With our basic

translations written in a Datalog dialect with OID-invention,

as we will see shortly, it turns out that signatures can be auto-

matically generated and the application of signature gives an

exact description of the target model.

With respect to the second issue, the complexity of the

problem cannot be completely circumvented, but we have

devised algorithms that, under reasonable hypotheses, effi-

ciently find a complex translation given a pair of models

(source and target). So, for example, given er2 and oo2, our

algorithm properly finds the translation composed of steps

(1), (2) and (3), out of a library of many basic translations.

2.4 Specification of basic translations

In the current implementation of our tool, translations are

implemented as programs in a Datalog variant with OID-

invention, where the latter feature is obtained by means of the

use of Skolem functors. Each translation is usually concerned

with a very specific task, such as eliminating a certain vari-

ant of a construct (possibly introducing another construct),

with most of the constructs left unchanged. Therefore, in our

programs only a few of the rules concern real translations,

whereas most of them just copy constructs from the source

schema to the target one. For example, the translation that

performs step (3) in Figs. 6 and 7 (the translation from an ER

model to an object-oriented one) would involve the rules for

the following tasks:

(3-i) copy abstracts;

(3-ii) copy lexical attributes of abstracts;

(3-iii) replace relationships (only one-to-many and one-to-

one) with reference attributes;

(3-iv) copy generalizations.

In Fig. 8 we show two of the rules: (3-i), as an exam-

ple of a copy rule; and (3-iii), the really significant one,

which replaces binary one-to-many (or one-to-one) relation-

ships with reference attributes. We will discuss rules in detail

in Sect. 4. Here we just make some high-level comments.

Rules refer directly to our dictionary, and this is facilitated

by the relational implementation: the predicates in the rule

correspond to the tables in the dictionary. The body of each

rule includes conditions for its applicability. Rule 3-i has no

condition, and so it copies all abstracts. Instead, Rule 3-iii,

because of the condition in line 13, is applied only to aggrega-

tions that have IsFunctional1=true, that is, as we will clar-

ify later, one-to-many and one-to-one relationships. Row 2 of

each rule “generates” a new construct instance in the dictio-

nary with a new identifier generated by a Skolem function;1

Rule 3-i generates a new Abstract for each Abstract in

the source schema (and it is a copy, except for the internal

identifier), whereas Rule 3-iii generates a new Abstrac-

tAttribute for each BinaryAggregationOfAbstracts,

with suitable features.

It is worth noting that the specification of rules in Datalog

allows for another way of reuse. In fact, a basic translation is

a program made of several Datalog rules, and it is often the

case that a rule is used in various programs. This happens for

all “copy” rules, such as 3-i above, but also for many other

1 We will comment on Skolem functors, which may appear both in

heads and in bodies of rules, in Sect. 4.

123

P. Atzeni et al.

Fig. 8 Two Datalog rules

Fig. 9 A simplified conceptual

view of models and constructs
SUPERMODELMODELS

MODEL

)1,1()N,0(

CONSTRUCT
SM -

CONSTRUCT

)N,0()1,1(

rules; for example, the two programs that implement steps

(7) and (8) in Fig. 7 (which translate into the relational model

from a simple ER and a simple OO, respectively) would defi-

nitely share a rule that transforms abstracts into aggregations

of lexicals (entities or classes into tables) and a rule that

transforms attributes of abstracts into lexical components of

aggregations (attributes into columns).

2.5 Organization of the paper

The rest of the paper is organized as follows. In Sect. 3, we

present the metamodel approach and the dictionary that han-

dles models and schemas. Then, in Sect. 4, we discuss basic

translations and their specification in Datalog. In Sect. 5,

we discuss how complex translations are generated out of

a library of basic translations. Then, in Sect. 6, we briefly

describe the features of the tool we have implemented to val-

idate the approach and show its application to a number of

examples. In Sect. 7, we discuss related work. Sect. 8 is the

conclusion.

3 Models, schemas and the dictionary

3.1 Description of models

As we observed in the previous section, the starting point of

our approach is the idea that a metamodel is a set of constructs

(called metaconstructs) that can be used to define models,

which are instances of the metamodel. Therefore, we actu-

ally define a model as a set of constructs, each of which

corresponds to a metaconstruct. An even more important

notion, also mentioned in the previous section, is the super-

model: it is a model that has a construct for each metacon-

struct, in the most general version. Therefore, each model

can be seen as a specialization of the supermodel, except for

renaming of constructs.

A conceptual view of the essentials of this idea is shown

in Fig. 9: the supermodel portion is predefined, but can be

extended, whereas models are defined by specifying their

respective constructs, each of which refers to a construct of

the supermodel (sm-construct) and so to a metaconstruct. It is

important to observe that our approach is independent of the

specific supermodel that is adopted, as new metaconstructs

and so sm-constructs can be added. This allows us to show

simplified examples for the set of constructs, without losing

the generality of the approach.

In order to make things concrete and to comment on some

details, we show in Fig. 10 the relational implementation of

a portion of the dictionary, as we defined it in our tool. The

actual implementation has more tables and more columns

for each of them. We concentrate on the principles and omit

marginal details.The sm- Construct table shows (a subset

of) the generic constructs (which correspond to the meta-

constructs) we have “Abstract,” “AttributeOfAbstract,”

“BinaryAggregationOfAbstracts,” and so on; these are the

categories according to which the constructs of interest can

be classified. Then, each construct in the Construct table

refers to an sm-construct (by means of the sm-Constr col-

umn whose values contain foreign keys of sm- Construct)

and to a model (by means of Model). For example, the first

row in Construct has value “mc1” for sm-Constr in order

123

Model-independent schema translation

Fig. 10 The relational

implementation of a portion of

the dictionary

to specify that “Entity” is a construct (of the “ER” model, as

indicated by “m1” in the Model column) that refers to the

“Abstract” sm-construct. It is worth noting (fourth row of the

same table) that “Class” is a construct belonging to another

model (“OODB”) but referring to the same sm-construct.

Tables sm- Property and sm- Reference describe, at the

supermodel level, the main features of constructs, proper-

ties and relationships among them. We discuss each of them

in turn. Each sm-construct has some associated properties,

described by sm- Property, which will then require val-

ues for each instance of each construct corresponding to

it. For example, the first row of sm- Property tells us that

each “Abstract” (mc1) has an “Abs-Name,” whereas the third

says that for each “AttributeOfAbstract” (mc2) we can spec-

ify whether it is part of the identifier of the “Abstract” or

not (property “IsId”). Correspondingly, at the model level,

we have that each “Entity” has a name (first row in table

Property) and that for each “AttributeOfEntity” we can tell

whether it is part of the key (third row in Property). In the

latter case the property has a different name (“IsKey” rather

than “IsId”). It is worth observing that “Class” and “Field”

have the same features as “Entity” and “AttributeOfEntity,”

respectively, because they correspond to the same pair of

sm-constructs, namely “Abstract” and “AttributeOfAbstract.”

Other interesting properties are specified in the fourth and

fifth rows of sm- Property. They allow for the specifica-

tion of cardinalities of binary aggregations by saying whether

the participation of an abstract is “functional” or not: a

many-to-many relationship will have two false values, a

one-to-one two true ones, and a one-to-many a true and a

false.

Table sm- Reference describes how sm-constructs are

related to one another by specifying the references between

them. For example, the first row of sm- Reference says

that each “AttributeOfAbstract” (construct mc2) refers to an

“Abstract” (mc1); this reference is named “Abstract” because

its value for each attribute will be the abstract it belongs to.

Again, we have the issue repeated at the model level as well:

the first row in table Reference specifies that “Attribute-

OfEntity” (construct “co2,” corresponding to the “Attribute-

OfAbstract” sm-construct) has a reference to “co1”

(“Entity”). The same holds for “Class” and “Field,” again,

as they have the same respective sm-constructs. The second

and third rows of sm- Reference describe the fact that each

binary aggregation of abstracts involves two abstracts and the

homologous happens for binary relationships in the second

and third rows of Reference.

The close correspondence between the two parts of our

dictionary is a consequence of the way it is managed. The

supermodel part (top of Fig. 10) is its core; it is prede-

fined (but can be extended) and used as the basis for the

definition of specific models. Essentially, the dictionary is

initialized with the available sm-constructs, with their prop-

erties and references. Initially, the model-specific part of the

123

P. Atzeni et al.

Fig. 11 The dictionary for a

simple ER model
SCHEMA

OID S-Name

s1 SchemaER1

s2 SchemaER2

ENTITY

OID Ent-Name Schema

e1 School s1

e2 Professor s1

e3 Course s1

e4 Employee s2

e5 Project s2

ATTRIBUTEOFENTITY

OID Entity Att-Name Type isKey Schema

a1 e1 Code int true s1

a2 e1 SName string false s1

a3 e1 City string false s1

a4 e2 SSN int true s1

a5 e2 Name string false s1

a6 e3 CN int true s1

a7 e3 Title string false s1

a8 e4 EN int true s2

...

BINARYRELATIONSHIP

OID Rel-Name Entity1 IsOpt1 IsFunctional1 Entity2 ... Schema

b1 Membership e2 false true e1 ... s1

b2 Teaching e3 true true e2 ... s1

b3 Participation e4 false false e5 ... s2

Fig. 12 The ER schemas

described in the dictionary in

Fig. 11
SCHOOL MEMB. PROFESSOR

)1,1()N,0(

TEACH. COURSE

)1,0()N,0(

EMPLOYEE PART. PROJECT

)N,0()N,1(

dictionary is empty and then individual models can be defined

by specifying the constructs they include by referring to the

sm-constructs they refer to. In this way, the model part (bot-

tom of Fig. 10) is populated with rows that correspond to

those in the supermodel part, except for the specific names,

such as “Entity” or “AttributeOfEntity,” which are model spe-

cific names for the sm-constructs “Abstract” and “Attribute-

OfAbstract,” respectively. This structure causes some redun-

dancy between the two portions of the dictionary, but this

is not a great problem, as the model part is generated auto-

matically: the definition of a model can be seen as a list of

supermodel constructs, each with a specific name.

An additional feature we have is the possibility of speci-

fying conditions on the properties for a construct, in order to

put restrictions on a model. For example, to define an object

model that does not allow the specification of identifying

fields, we could add a condition that says that the property

“IsId” associated with “Field” is identically “false.” These

restrictions can be expressed as propositional formulas over

the properties of constructs. We will make this observation

more precise in Sect. 5.2.

3.2 Description of schemas

The model portion of our dictionary is a metadictionary in

the sense that it can be the basis for the description of model-

specific dictionaries, with one table for each construct, with

their respective properties and references. For example, the

schema of a dictionary for the binary ER model mentioned

above includes tables Entity, AttributeOfEntity, and

BinaryRelationship, as shown in Fig. 11. The content of

the dictionary describes two schemas, shown in Fig. 12. The

dictionary for a model has a structure that can be automati-

cally generated when the model is defined. At the initializa-

tion of the tool, this portion of the dictionary is empty, and

the tables for each are created when the model is defined.

Figure 13 shows a similar dictionary, for an object data

model, with very simple constructs, namely class, field (as

discussed above), and reference field. The corresponding

schema is shown in Fig. 14.

In the same way as the supermodel gives a unified view

of all the constructs of interest, it is useful to have an inte-

grated view of schemas in the various models, describing

them in terms of their sm-constructs rather than constructs

as we have done so far. As we anticipated in Sect. 2, this

gives great benefits to the translation process. The dictionary

for the supermodel has tables whose names are those of the

sm-constructs and whose columns correspond to their prop-

erties and references. We show an excerpt of the dictionary

in Fig. 15. Its content is obtained by putting together the

information in the model-specific dictionaries. For example,

Fig. 15 shows the portion of the supermodel that suffices for

the descriptions of the schemas in the versions of the ER and

OO model shown in Figs. 11 and 13. In particular, the table

123

Model-independent schema translation

Fig. 13 The dictionary for a

simple OO model
SCHEMA

OID S-Name

s3 SchemaOO1

CLASS

OID Cl-Name Schema

c1 School s3

c2 Professor s3

c3 Course s3

FIELD

OID Class Fi-Name Type isId Schema

f1 c1 Code int true s3

f2 c1 SName string false s3

f3 c1 City string false s3

f4 c2 SSN int true s3

...

REFERENCEFIELD

OID Class Ref-Name ClassTo isOpt Schema

r1 c2 Memb. c1 false s3

r2 c3 Teach. c2 true s3

Fig. 14 The OO schema

described in the dictionary in

Fig. 13

Fig. 15 A model-generic

dictionary, based on the

supermodel

Abstract is the union (modulo suitable renaming) of tables

Entity and Class in Figs. 11 and 13, respectively.2 Simi-

larly, AttributeOfAbstract is the union of Attribute-

OfEntity and Field.

We summarize our approach to the description of schemas

and models by means of Fig. 16. We have a dictionary com-

posed of four parts, with two coordinates: schemas (lower

portion) versus models (upper portion) and model-specific

(left portion) versus supermodel (right portion).

2 In the figures, for the sake of understandability, we have used, for

each construct and schema, the same identifier in the supermodel dic-

tionary and in the model specific one. So, for example, “s1” is used

both for a schema in the ER model and for the corresponding one in the

supermodel.

models

(Figure 10, bottom)

supermodel

(Figure 10, top)

model-specific schemas

(Figures 11 and 13)

supermodel schemas

(Figure 15)

model specific model generic

model descriptions

(the ìmetalevel ”)

schema descriptions

Fig. 16 The four parts of the dictionary

3.3 Generality of the approach

The above discussion confirms that it is indeed possible to

describe many models and variations thereof by means of

just a few more constructs. In the current version of our

tool we have nine constructs, the four shown in Fig. 15

(with AttributeOfAbstract replaced by the more general

123

P. Atzeni et al.

Fig. 17 Constructs and models
Entity-

Relationship

BinaryEntity-

Relationship

Object(UML

ClassDiagram)

Object-

Relational
Relational XSD

Abstract Entity Entity Class TypedTable
Root-

Element

Lexical Attribute Attribute Field Column Column
Simple-

Element

BinaryAggregation-

OfAbstracts

Binary-

Relationship

AbstractAttribute ReferenceField Reference

Aggregation-

OfAbstracts
Relationship

Generalization Generalization Generalization Generalization Generalization

Aggregation Table Table

ForeignKey ForeignKey ForeignKey ForeignKey

Structure-

OfAttributes
Structured-

Field

Structured-

Column

Complex-

Element

Lexical, used for all value-based simple constructs) plus

additional ones for representing n-ary aggregations of abs-

tracts, generalizations, aggregations of lexicals, foreign keys,

and structured (and possibly nested and/or multivalued)

attributes. The relational implementation has a few additional

tables, as some constructs require two tables, because of

normalization. For example, n-ary aggregations require two

tables, one for the aggregations and one for the components

of each of them. We summarize constructs and (families3

of) models in Fig. 17, where we show a matrix, whose rows

correspond to the constructs and columns to the families we

have experimented with. In the cells, we use the specific name

used for the construct in the family (for example, Abstract is

called Entity in the ER model). The various models within

a family differ from one another (i) on the basis of the pres-

ence or absence of specific constructs and (ii) on the basis

of details of (constraints on) them. To give an example for

(i) let us recall that versions of the ER model could have

generalizations, or not have them, and the OR model could

have structured columns or just simple ones. For (ii) we can

just mention again the various restrictions on relationships

in the binary ER model (general vs. one-to-many), which

can be specified by means of constraints on the properties. It

is also worth mentioning that a given construct can be used

in different ways (again, on the basis of conditions on the

properties) in different families: for example, we have used

a multivalued structured attribute in the XSD family and a

monovalued one in the OR family (we have a property isSet

which is constrained to false).

An interesting issue to consider here is “How universal is

this approach?” or, in other words, “How can we guarantee

that we can deal with every possible model?” A major point

is that the metamodel is extensible, which is both a weakness

and a strength. It is a weakness because it confirms that it is

impossible to say you have a complete one. However, it is

3 The notion of family of models is intuitive now and will be made more

precise in Sect. 5.

a strength because it allows the addition of features when

needed. This applies both to the details of the models of

interest and to the families of models. With respect to the

first issue, let us give an example: if one wants to handle

XSD in full detail, then the metamodel and the supermodel

need to be complex at least as XSD is. In fact, the level of

detail can vary greatly and it can be chosen on the basis of

the context of interest.

With respect to the second issue it is worth mentioning

that the approach can be used to handle metamodels in other

contexts, with the same techniques. Indeed, we have had pre-

liminary experiences with semantic Web models [3], with the

management of annotations [32], and with adaptive systems

[21]: for each of them, we defined a new set of constructs

(and so a different metamodel and supermodel) and new basic

translations, but we used the same framework and the same

engine.

In summary, the point is that the approach is independent

of the specific supermodel. The supermodel we have mainly

experimented with so far is a supermodel for database mod-

els and covers a reasonable family of them. If models were

more detailed (as is the case for a fully fledged XSD model)

then the supermodel would be more complex. Also, other

supermodels can be used in other contexts.

4 Basic translations

Section 2 gave a general idea of the specification of transla-

tions in our proposal as a composition of basic steps. In this

section we give some more details of basic translations and

their implementation in Datalog. In the next section we will

discuss how to obtain an automatic generation of complex

translations out of a library of basic steps.

We have already shown a couple of Datalog rules in Sect. 2,

and commented on some aspects. Let us now go into more

detail, again referring to the rules in Fig. 8.

123

Model-independent schema translation

We first comment on our syntax. We use a non-positional

notation for rules, so we indicate the names of the fields and

omit those that are not needed (rather than using anonymous

variables). Our rules generate constructs for a target schema

(tgt) from those in a source schema (src). We may assume that

variables tgt and src are bound to constants when the rule is

executed. Each predicate has an OID argument, as we saw in

Fig. 8. For each schema we have a different set of identifiers

for the constructs. So, when a construct is produced by a rule,

it has to have a “new” identifier. It is generated by means of

a Skolem functor, denoted by the # sign in the rules.

We have the following restrictions on our rules. First, we

have the standard “safety” requirements [38]: the literal in the

head must have all fields, and each of them with a constant

or a variable that appears in the body (in a positive literal)

or a Skolem term. Similarly, all Skolem terms in the head or

in the body have arguments that are constants or variables

that appear in the body. Moreover, our Datalog programs are

assumed to be coherent with respect to referential constraints:

if there is a rule that produces a construct C that refers to

a construct C ′, then there is another rule that generates a

suitable C ′ that guarantees the satisfaction of the constraint.

In the example in Fig. 8, rule (3-iii) is acceptable because

there is rule (3-i) that copies abstracts and guarantees that

references to abstracts by (3-iii) are not dangling.

The body of rule (3-iii) unifies only with binary aggre-

gations that have true as a value for IsFunctional1: this

is the condition that holds for all one-to-one and one-

to-many relationships.4 For each of them it generates a ref-

erence attribute from the abstract that participates with

cardinality one (IsFunctional1=true) to the other abstract.5

This basic translation is designed for models that do not have

many-to-many relationships. If we apply this rule to a model

with many-to-many relationships, without applying a step

that removes them before (step (2) in the examples above

and in Fig. 7), then we would lose the information carried

by those relationships. We will formalize this point later in

Sect. 5 in such a way that we could say that step (3) ignores

many-to-many relationships.

Let us comment more on the two rules in Fig. 8. Rule

(3-i) generates a new abstract (belonging to the target

schema) for each abstract in the source schema. The Skolem

functor #abstract_0 is responsible for the generation of a

new identifier. Skolem functors produce injective functions,

with the additional constraint that different functions have

4 As we saw in Sect. 3, binary aggregations have properties IsFunc-
tional1 and IsFunctional2 for specifying cardinalities. We assume

that it cannot be the case that IsFunctional2=true and IsFunc-
tional1=false; therefore if IsFunctional1 is false then the relation-

ship is many-to-many and if it is true it is not many-to-many.

5 For one-to-one relationships, both abstracts participate with cardinal-

ity one. We choose one of them, the first one, even if the converse would

be appropriate as well.

disjoint ranges, so that a value is generated only by the same

function with the same argument values. For the sake of

readability (and also for some implementation issues omitted

here), we include the name of the target construct (abstract

in this case) in the name of the functor, and use a suffix to

distinguish the various functors associated with a construct.

The _0 suffix always denotes the “copy” functor.

Rule (3-iii) replaces each binary non-many-to-many rela-

tionship (BinaryAggregationOfAbstracts, in supermo-

del terminology) with a reference (AbstractAttribute).

The rule has a variety of Skolem functors. The head has

three Skolem terms, which make use of two functors: #refer-

enceAttribute_1, for the OID field, and #abstract_0 twice,

for Abstract and AbstractTo respectively. The two play dif-

ferent roles. The first Skolem term generates a new value, as

we saw for the previous rule. Indeed, this is the case for all

functors appearing in the OID field of the head of a rule. The

other two terms correlate the element being created with ele-

ments created by rule (3-i), namely new abstracts generated in

the target schema as copies of abstracts in the source one. The

new AbstractAttribute being generated belongs to the

Abstract in the target schema generated for the Abstract

denoted by variable absOid1 in the source schema and refers

to the target Abstract generated for the source Abstract

denoted by absOid2.

Our approach to rules allows for a lot of reusability, at

various levels. First of all, we have already seen that indi-

vidual basic translations can be used in different contexts; in

the space of models in Fig. 7, each translation can be used in

many simple steps. For example, translation (3) can be used

to transform relationships into references, for going from dif-

ferent variants of the ER model to homologous variants of

the OO one. In the figure, it can be used to go from er6 to

oo1 or from er7 to oo2.

Second, as each translation step is composed of a number

of Datalog rules, some of which are just “copy” rules, they

can be used in many basic translations. This is easily the case

for plain copy rules, but can be applied also to “conditional”

ones, that is, copy rules that are applied only to a subset of

the constructs. For example, the rule that eliminates many-

to-many relationships copies all the relationships that are not

many-to-many; this can be done with a copy rule extended

with an additional condition in the body.

In some cases, basic translations can be written with

respect to a “core” set of Datalog rules, with copy rules added

automatically, given the set of constructs in the supermodel.

In this way, the approach would become partially indepen-

dent of the current supermodel, especially with respect to its

extensions. For example, in our case, assume that initially

the supermodel does not include generalizations; our basic

translation (3), which replaces binary aggregations with ref-

erences, could be defined by means of the specification of

rule (3-iii), with rule (3-i), which copies abstracts, added

123

P. Atzeni et al.

automatically because of referential integrity in the super-

model, and rule (3-ii), which copies attributes of abstracts,

added because attributes of abstract are “compatible” with

abstracts. Then, if the supermodel were extended with gen-

eralizations, the basic translation would be extended with

rule (3-iv), which copies generalizations.

Most of our rules, such as the two we saw, are recursive

according to the standard definition. However, recursion is

only “apparent.” A literal occurs in both the head and the

body, but the construct generated by an application of the rule

belongs to the target schema, so the rule cannot be applied

to it again, as the body refers to the source schema. A really

recursive application happens only for rules that have atoms

that refer to the target schema also in their body. In the follow-

ing, we will use the term strongly recursive for these rules.

In our experiments, we have developed a set of basic trans-

lations to handle the models that can be defined with our cur-

rent metamodel. They are listed in Appendix 1. In the next

Section we will discuss arguments to confirm the adequacy of

this set of rules. Then in Sect. 6.2 we discuss a few complex

translations built out of these basic ones.

5 Properties of translations and their generation

5.1 Correctness, a difficult problem

In data translation (and integration) frameworks, correctness

is usually modeled in terms of information-capacity domi-

nance and equivalence. See Hull [24,25] for the fundamental

notions and results and Miller et al. [28,29] for their role in

schema integration and translation. In this context, it turns

out that various problems are undecidable if they refer to

models that are sufficiently general [25, p. 53], [29, p. 11–

13]. Also, a lot of work has been devoted to the correctness of

specific translations, with ongoing efforts for recently intro-

duced models. See for example the recent contributions by

Barbosa et al. [7,8] on XML-to-relational mappings and by

Bohannon et al. [15] on transformations within the XML

world. Undecidability results have emerged even in discus-

sions on translations from one specific model to another spe-

cific one [7,15].

Therefore, given the generality of our approach, it seems

hopeless to aim at showing correctness in general. However,

this is only a partial limitation, as we are developing a plat-

form to support translations, and some responsibilities can be

left to its users (specifically, rule designers, who are expert

users, as we will see in Sect. 6.1), with system support. We

briefly elaborate on this issue.

We follow the initial method of Atzeni and Torlone [6],

which uses an “axiomatic” approach. It assumes the basic

translations to be correct, a reasonable assumption as they

refer to well-known elementary steps developed by the rule

designer. So given a suitable description of models and rules

in terms of the involved constructs, complex translations can

be proven correct by induction. A similar argument is men-

tioned by Batini and Lenzerini [10] in support of using trans-

formations as a preliminary step in data integration.

In MIDST, we have the additional benefit that transforma-

tions are expressed at a high-level, as Datalog rules. So, rather

than taking on faith the features of each basic transformation

(as in [6]), we can automatically detect which constructs are

used in the body and generated in the head of a Datalog rule

and then derive a concise representation of the rule, called

signature. We have shown elsewhere [4] that a Datalog-based

approach allows a formalization of the notions of interest. Let

us show the main points, to make this discussion self con-

tained.

5.2 Concise description of models

As we saw in Sect. 3, we define our models in terms of the

constructs they involve, taken from the supermodel. Each

construct has a fixed set of references and properties, which

are all boolean and can be constrained by means of propo-

sitional formulas. In a concise but precise way, a model can

therefore be defined by listing the constructs it involves,

each with an associated proposition, which can be seen as

a restriction (a “check” in SQL terminology) over the occur-

rences of the construct. For example, in binary aggregations

of abstracts, we have, as we saw in Sect. 3, properties IsFunc-

tional1 and IsFunctional2, which are used to specify the

maximum cardinality of the two components of the aggre-

gation. Specifically, many-to-many aggregations (relation-

ships) have false for both, and one-to-many have true for

one and false for the other. Therefore, if we want to spec-

ify in a model that binary aggregations have no restrictions

on cardinalities (so one-to-one, one-to-many, and many-to-

many are all allowed), then we associate the true proposi-

tion with the BinaryAggregationOfAbstracts construct. If

instead we want to forbid many-to-many, then we would

associate the proposition IsFunctional1 ∨ IsFunctional2,

which says that, for each occurrence of the construct, at least

one of IsFunctional1 and IsFunctional2 has to be true.

In the following, we write the description desc(M) of a

model M in the form {C1(f1), . . . , Cn(fn)}, where

C1, . . . , Cn are the constructs in the model and f1, . . . , fn

are the propositions associated with them, respectively.6

With suitable shorthands for the names of constructs and

properties (and distinguishing between the various types of

lexicals), the descriptions of some of the models seen in the

previous examples and shown in Fig. 7 are the following:

6 Also, when no confusion arises, we will often blur the distinction

between M and desc(M), and write M for the sake of brevity.

123

Model-independent schema translation

er1 {Abs (true), LexAttOfAbs (true), BinAgg (true), Lex-

AttOfBinAgg (true), Gen(true)}: a binary ER model

with all constructs and no restrictions on them;

er4 {Abs (true), LexAttOfAbs(true), BinAgg(isF1∨ isF2),

LexAttOfBinAgg(true), Gen(true)}; here the proposi-

tion isF1∨ isF2 for BinAgg specifies that relationships

are not many-to-many, as we saw above;

er6 {Abs(true), LexAttOfAbs(true), BinAgg(isF1 ∨ isF2),

Gen(true)}; here, with respect to model er4, we do not

have LexAttOfBinAgg (attributes of aggregations); so

this is a binary ER model with no many-to-many rela-

tionships and no attributes on relationships;

rel {Aggreg(true), LexCompOfAgg(true)}; this model has

tables and columns, with no restrictions.

We can define a partial order on models and a lattice on the

space of models, by means of the following relation, which

is reflexive, antisymmetric and transitive:

− M1 ⊑ M2 (read M2 subsumes M1) if for every C(f1) ∈

M1 there is C(f2) ∈ M2 such that f1 ∧ f2 is equivalent

to f1

In words, M1 ⊑ M2 means that M2 has at least the constructs

of M1 (“for every C(f1) ∈ M1 there is C(f2) ∈ M2”) and,

for those in M1, it allows at least the same variants (“ f1 ∧ f2

is equivalent to f1”). For the example models, we have that

er6 ⊑ er4 ⊑ er1.

A lattice can be defined on the space of models with respect

to the following operators (modulo equivalence of proposi-

tions):

M1 ⊔ M2 = {C(f) | C(f) ∈ M1 and no C(f ′) ∈ M2} ∪

{C(f) | C(f) ∈ M2 and no C(f ′) ∈ M1} ∪

{C(f1 ∨ f2) | C(f1) ∈ M1 and C(f2) ∈ M2}

M1 ⊓ M2 = {C(f1 ∧ f2) | C(f1) ∈ M1, C(f2) ∈ M2

and f1 ∧ f2 is satisfiable }

The notion of description can be used for schemas as well.

The description of a schema includes the constructs appear-

ing in it, each one with a proposition that is the disjunction

of the propositions associated in the schema with such a con-

struct. For example, if a schema contains two binary aggre-

gations of abstract, both with IsFunct1 equal to true and

one with IsFunct2 equal to true and the other to false,

then the associated proposition would be the disjunction of

isF1∧ isF2 and isF1∧¬isF2 and so isF1; thus, the descrip-

tion of the schema would contain BinAgg(isF1). It turns out

that the description of a schema is also the description of a

model and that the description of a model is the least upper

bound (⊔) of the descriptions of its schemas.

5.3 Signatures and applications of Datalog programs

This formalization of model and schema descriptions can be

extremely useful in our framework together with a notion of

signature for a Datalog program with the associated concept

of application of a signature to a model.

As a preliminary step, let us define the signature of an atom

in a Datalog rule. Given an atom C(args) (where C is a con-

struct name and args is the list of its arguments), consider

the fields in args that correspond to properties (ignoring the

others); let them be p1 : v1, . . . , pk : vk ; each vi is either a

variable or a boolean constant true or false. Then, the signa-

ture of C(args) has the form C(f), where f is a proposition

that is the conjunction of literals corresponding to the prop-

erties in p1, . . . , pk that are associated with a constant; each

of them is positive if the constant is true and negated if it is

false. If there are no constants, then the proposition is true.

For example (with some intuitive abbreviations), the signa-

ture of the atom in the body of Rule 3-i is Abs(true), because

abstracts have no properties, whereas the one in the body

of Rule 3-iii is BinAgg(IsF1), because the true constant is

associated with IsFunctional1.

Consider a Datalog rule R with an atom C(args) as the

head and a list of atoms 〈C j1(args1), . . . , C jh (argsh)〉 as

the body; comparison terms do not affect the signature, and

so we can ignore them.

The signature sig(R) of rule R is composed of three parts,

(B, H, map):

- B (the body of sig(R)) describes the applicability of

the rule, by referring to the constructs in the body of

R; B is a list 〈C j1(f1), . . . , C jh (fh)〉, where C ji (fi)

is the signature of the atom C ji (argsi).

- H (the head of sig(R)) indicates the conditions that

definitely hold on the construct obtained as the result

of the application of R, because of constants in its

head; H is defined as the signature C(f) of the atom

C(args) in the head.

- map (the mapping of sig(R)) is a partial function that

describes where values of properties in the head orig-

inate from. It is denoted as a list of pairs where,

for each property in the head that has a variable,

there is the indication of the property in the body

where it comes from (because of the safety require-

ments, each variable in the head appears also in the

body, and only once). Rule 3-i has an empty map,

because there are no properties in the head, whereas

for Rule 3-iii map includes the pair “IsOptional:

BinAgg(IsOptional1)”, which specifies that values

of property IsOptional in each AbstractAttri-

bute generated by this rule are copied from values

of IsOptional1 of BinaryAggregationOf-

123

P. Atzeni et al.

Abstracts. As a consequence, if the source model

has always a constant for the property IsOptional1 of

BinaryAggregationOfAbstracts, then the same

constant always appears in the target model for prop-

erty IsOptional of AbstractAttribute.

The application applR() of the signature sig(R) of a rule

R is a function from model descriptions to model descrip-

tions that illustrates the behavior of the rule. The function

applR() is defined on the basis of sig(R) of R. For the cur-

rent development, the important things to know are that it

is well defined and describes the transformation induced by

a rule. For example, rule 3-iii applied to a model that con-

tains a BinaryAggregationOfAbstracts construct with

property IsFunctional1 that can have the true value (so that

the rule is applicable), generates a construct description for

AbstractAttribute. The proposition associated with this

construct depends on the proposition associated with Bina-

ryAggregationOfAbstracts in the source model: if there

is some restriction on IsOptional1 then the same restriction

would appear for IsOptional in the target construct. If rule

3-iii is applied to a model that has no BinaryAggrega-

tionOfAbstracts or has them but with false value for

IsOptional1, then applR() produces the empty model, as

the body of the rule would not unify with any construct.

Then, we can define the application applP() of a program

P, consisting of a set of Datalog rules R1, . . . , Rn , to a model

M as the least upper bound of the applications of the Ri ’s to

M : applP(M) =
⊔n

i=1 applRi
(M).

After observing that descriptions of models and signatures

of rules can be automatically generated, we can mention the

major result from our companion paper [4], which we use as a

starting point for the rest of the paper. The claim can be stated

as follows: “signatures completely describe the behavior of

programs on schemas,7 in the sense that the application of

signatures provides a ‘derivation’ of schemas that is sound

and complete with respect to the signatures of schemas gen-

erated by programs.”

Consider Fig. 18. Let S be a schema and P a Datalog

program implementing a basic translation. Then, the diagram

in Fig. 18 commutes: if from the top-left corner of the diagram

we move right and then down (apply program P to S and then

compute the description of the schema P(S)) or down and

then right (compute the description of S and then apply the

signature of P to it), we obtain the same result, as desc(P(S))

always equals applP(desc(S)).

If we want to be more general and refer to models, the

result says that, given a source model M1 and a program P,

7 The result we have [4] is more general, as it refers to models, but we

prefer to state it here in terms of schemas, as it is simpler and sufficient

for the discussion.

S

P()

P(S)

DESC(S)
APPL P()

DESC (P(S))
=

APPL P(DESC (S))

Fig. 18 Models, descriptions, programs, and signatures: a diagram that

commutes

we are able to find the signature of the model M2 to which the

schemas obtained by applying P to schemas of M1 belong.8

In summary, this machinery allows us to know, given a

source schema and a basic translation (expressed, as in our

case, as a Datalog program), the (minimum) model to which

the schema obtained as the result of the translation would

belong.

5.4 Generation of complex translations

The formal system just introduced allows us to reason about

models and translations between them, with the ambitious

goal of automatically generating translations from a source

schema to a target model. The machinery would allow us

to try a brute-force solution, implemented as an exhaustive

search where all combinations of basic steps are tried. This

would be somehow possible, but computationally infeasible,

as the number of basic steps can grow significantly. Indeed,

without specific hypotheses, termination is not even guaran-

teed as rules could introduce and eliminate the same con-

structs in turn.

However, we can make a couple of observations that derive

from our initial experience with manually written translations

and show that they can be generalized to work under reason-

able hypotheses. First, while we have many possible models,

we have few “families” of models, such as ER, OO, and rela-

tional. Each of the families has a most general model (the

one with all constructs of the family and no restrictions on

its properties), which we call the progenitor of the family.

The second observation is that, within a family, most trans-

lations just eliminate a feature (dropping a construct or reduc-

ing its variants), and generate a schema that is subsumed by

the input. Let us call reductions the translations that have this

property; we will make this more precise. For example, in the

various translations in Fig. 7, all translations between models

in the ER family follow in this category. Clearly, translations

between models in different families are not reductions, as

8 Given the lattice of models, a schema belongs to various models.

This method allows one to find the minimum model to which all these

schemas belong.

123

Model-independent schema translation

Fig. 19 Translations between families

they typically eliminate one or more constructs and introduce

new ones. Let us use the term transformation for them.

Now, let us consider translations where the source and

target model are in different families. Let us begin with an

intuitive argument, which we will refine soon. As the num-

ber of families is limited, it is reasonable to assume that for

each pair of families (say F1 and F2) there is a translation

T1,2 from models in family F1 to a model in F2. However,

given a specific source model M1 in F1 and a target model

M2 in F2, such a translation need not be perfectly suitable,

for two reasons: (i) it can ignore constructs in M1 and (ii)

it can generate constructs not in M2 (albeit in family F2).

Such a translation has been written for going from a model

M ′
1 in F1 to a model M ′

2 in F2. In the worst case, M1 and

M ′
1 are incomparable (neither is subsumed by the other)—

the only thing we can say is that they are both subsumed by

the progenitor of the family. The same holds for M2 and M ′
2.

Let us proceed with the help of Fig. 19: if we have a schema

S1 of M1, then S1 need not be a schema of M ′
1; however, S1

definitely belongs to the progenitor M∗
1 of family F1; thus,

if we have a translation (indeed, a reduction) from M∗
1 to M ′

1,

we can obtain a schema S′
1 of M ′

1 that is indeed the appro-

priate translation of S1 into M ′
1. Then, we can apply T1,2 to

S′
1 and obtain a schema S′

2 of M ′
2. Again, S′

2 need not be a

schema of M2, but it is definitely a schema of the progenitor

M∗
2 of F2. So, with a reduction from M∗

2 to M2 we can obtain

our desired target schema. In plain words, in this framework

translations can be composed of three macrosteps:

1. a reduction within the source family;

2. a transformation from the source family to the target

family;

3. a reduction within the target family.

With respect to Fig. 7, we can see that a translation from er3

to oo2 can be composed of step (2), a reduction within the

ER family, step (3), a transformation to the OO family, and

(4), a reduction within the OO family.

Let us formalize the various issues.

A family F of models is a set of models defined by means

of a model M∗ (called the progenitor of F) and a set of mod-

els M∗,1, . . . , M∗,k (the minimal models of F) and contains

all models that are subsumed by M∗ and subsume at least

one of the M∗,i ’s:

F = {M | M ⊑ M∗ and M∗,i ⊑ M, for some 1 ≤ i ≤ k}

In principle, we could think of families as disjoint from

one another. However, in practice, it is in some cases conve-

nient to allow some exceptions. Let us start from an obser-

vation. The object-relational (OR) model has been proposed

in the literature as a generalization of the relational model.

Therefore, we could think of just one family, with a rich OR

model as the progenitor. While this could work pretty well,

we believe that it is more effective to consider the relational

model as a separate family, whose progenitor is a minimal

model in the OR family. Therefore, we assume hereinafter

that families can share models, but only with a minimal model

in a family that belongs also to another. Also, as it is often

convenient to refer to the family of a model, then we assume

that in the overlap cases the family is that for which the model

is not minimal. Given a model M we will denote its family

as family(M). Similarly, given a schema, we can find the

family to which it belongs, since, as we said earlier, there is

always a minimum model to which a schema belongs.

With respect to families, in order to be able to perform

translations as we have discussed earlier, we need two

hypotheses which we state and comment on in turn. We need

a definition. Given a schema S and a construct C in S, we

say a Datalog program ignores C if there is no rule whose

body unifies with constructs of S that include a literal that

unifies with C . This notion (or, better, its complement) is use-

ful to model the idea that we need translations that take into

consideration all elements of the source schema. This notion

is aimed at modeling a specific aspect related to informa-

tion capacity equivalence [24]. In fact, equivalence requires

invertibility, which in turn needs injectivity: if constructs are

ignored, their presence/absence cannot be distinguished. So a

necessary condition for equivalence, and a general condition

for translations is that translations do not ignore constructs. It

is worth noting that in some cases it is even needed to ignore

constructs. Consider for example a very raw relational model

with only tables and columns, but no foreign keys. Here any

translation from a relational model with foreign keys would

essentially ignore them. In this case, our approach requires

dummy rules, which generate no constructs, but testify that

constructs have not been forgotten.

We are now ready for the first hypothesis on our transla-

tions.

Assumption 1 For each pair of families F1, F2 there is a

model M1 in F1 and a translation T such that, for each

schema S1 of M1:

1. T does not ignore any construct of S1;

2. T produces a schema that belongs to the progenitor M∗
2

of F2.

123

P. Atzeni et al.

This hypothesis requires the existence of f 2 translations,

if f is the number of different families. On the one hand

this is not a real problem, as f is reasonably small. On the

other hand, by using Datalog rules, we reduce the need for

actual coding to a minimum. In fact, each of these translations

has copy rules for the common constructs and non-copy rules

only for the constructs that need to be replaced, namely, those

in F1 and not in F2, and, whatever the approach, these rules

would be needed. In general, what we need is that these f 2

translations can be obtained by combining basic translations

(possibly with automatic generation); in practice, it is better

to assume that these are indeed basic translations, so they are

given, or that they have been manually defined as the “inter-

family” translations of interest. Also, in general there might

even be pairs of families with more than one translation,

but we ignore this issue, as it would not add much to the

discussion. When two families share a model (in the case we

mentioned above), then the transformation T between them

is, in both directions, the identity, from the minimal model

of one to a member of the other or vice versa.

A further observation is useful. Assumption 1 says that

T produces a schema of M∗
2 . In most cases, the transla-

tion always leads to schemas that belong to a more restricted

model, but this is just a simplification. Here we state the

assumption in this general way, because it is what suffices

for our goals.

Let us now formulate the second hypothesis we need.

Assumption 2 For each family F , for each minimal model

M∗,i of F , there is a translation from the progenitor M∗ of F

to M∗,i , entirely composed of reductions that do not ignore

constructs.

The satisfaction of Assumption 2 can be verified by con-

sidering the reductions for the family (that is, the basic trans-

lations that are reductions for the progenitor of the family)

and performing an exhaustive search on them. This can be

done in a fast way, as the number of reductions in a fam-

ily is small and most of them are commutative. Also, it is

important to mention that this test has to be performed when

families are defined (or changed) and need not be repeated

for each translation nor when an individual model is defined

(provided it belongs to an existing family).

An important consequence of Assumption 2 is the possi-

bility of obtaining a translation between any pair of models

within a family.

Claim 1 If the set of basic translations satisfies Assump-

tion 2, then, for each family and each pair of models M1

and M2 within it, there is a translation from M1 to M2 that

does not ignore constructs.

Proof Since each model in the family is subsumed by the

progenitor M∗, we have that M1 ⊑ M∗. Also, since the

Fig. 20 Algorithm findCompleteTranslation

family has a set of minimal models, we have that for each

model M in the family there is a minimal model M∗ that

is subsumed by it (either M is minimal, in which case the

statement is trivial, or there is another model M ′ such that

M ′ ⊑ M , and we can recursively apply the same argument,

at most a finite number of times, as the set of models is finite).

Therefore, as M2 is a model of the family, we have M∗ ⊑ M2.

By Assumption 2, there is a translation from M∗ to M∗ that

does not ignore any construct. This translation can be applied

to every schema of M1 (since M1 ⊑ M∗, we have that every

schema of M1 is also a schema of M∗), producing a schema

that belongs to M∗ and so (as M∗ ⊑ M2) also to M2. ⊓⊔

The previous assumptions and arguments justify the algo-

rithm shown in Fig. 20. The algorithm has an input that is

composed of a source schema S1 and a target model M2,

and refers to a given set of families and a given set of rules.

Lines 1 and 2 find the families to which the source schema

and the target model belong, respectively. Line 3 finds the

transformation T between the two families, whose existence

is guaranteed by Assumption 1. Then, line 4 computes the

source model M ′
1 for transformation T . Next, line 5 finds the

sequence of reductions needed to go from the progenitor of

F1 to M ′
1 (on the basis of Assumption 2) and line 6 does the

same within the target family. Finally, the algorithm returns

a translation that is the composition of T1, T , and T2.

Claim 2 If the set of basic translations satisfies Assump-

tions 1 and 2, then the algorithm in Fig. 20 is correct, that is,

for every schema S1 and model M2, it finds a translation of

S1 into M2 that does not ignore constructs.

The Algorithm is indeed used in our tool for the automatic

generation of translations. In the Appendix, we show that

the list of basic translations we used satisfies Assumptions 1

and 2 and so the translation can always be generated.

6 Implementation and experimentation

6.1 The MIDST tool

We developed a tool to validate the concepts in previous

sections and to test their effectiveness. The main parts of

123

Model-independent schema translation

the MIDST tool are the generic data dictionary, the rule

repository and a plug-in-based application that handles the

components in a modular way. The main components of

a first version, recently demonstrated [2], include a set of

modules to support users in defining and managing models,

schemas, Skolem functions, translations, import and export

of schemas. A second version, just completed, includes two

more components: one to extract signatures from rules and

models and a second one to generate translation plans.

It is useful to discuss the tool by referring to three cat-

egories of users, corresponding to three different levels of

expertise.

− The designer can define or import/export schemas for

available models and perform translations over them.

− The model engineer, a more sophisticated user, can define

new models by using the available metaconstructs.

− The metamodel engineer can add new metaconstructs to

the metamodel and define translation rules for them; in

this way she can extend the set of models handled by the

system. This is clearly an even more expert user.

All of the above activities can be done without accessing

the tool’s source code. The definition of a model or of a

schema involves populating tables of the dictionary, whereas

the definition of translations involves inserting elements in

the rule repository.

Let us present the tool by showing first how models and

schemas can be defined and then how translations are per-

formed.

We start with the typical activity of the model engineer, the

definition of a model. This is done by “creating” a new model,

giving it a name, and then specifying its constructs. This latter

activity is the interesting one, and it is done (interactively) in

two main steps: (i) choosing a metaconstruct from a pop-up

menu and giving it a name within the model, and (ii) adding

the desired properties available for the chosen metaconstruct.

For instance, suppose the user is creating a simplified version

of the ER model, called ERSimple. The model engineer, in

order to define the first construct, will probably specify that

he wants to add a construct corresponding to the Abstract

metaconstruct (see Fig. 21) and call it “Entity.” Then, he will

define AttributeOfEntity, with reference to Lexical, and so

on. During the definition process, the model engineer can

add, remove, and alter constructs and construct properties.

When the model is complete, the user requests a finalization,

during which the system creates the corresponding dictio-

nary structure. Once a model has been defined, the user can

also save the description of the model as an XML file, with

a specific format. In this way, it is possible to build a repos-

itory of models that can be easily imported when the tool is

initialized. Figure 22 shows a portion of an XML file that

contains the description of a version of the ER model.

Fig. 21 Creation of a new construct in a model

Fig. 22 The XML file for describing models

Let us now turn our attention to the other main class of

users, designers, who define schemas and request their trans-

lations. Designers may build schemas through an interactive

interface. After choosing the model, they can define the var-

ious elements, one at the time, by choosing a construct of

the model and then giving a name and the associated prop-

erties and references, if needed. For example, the user can

define Employee, corresponding to the Entity construct, and

add some attributes (AttributeOfEntity) to it, such as SSN

123

P. Atzeni et al.

Fig. 23 Creation of a new AttributeOfEntity

Fig. 24 Specification of name, properties and reference for a new

AttributeOfEntity

and FullName. The two steps for creating SSN are shown in

Figs. 23 (choice of AttributeOfEntity among the constructs)

and 24 (specification of the details).

The interactive definition has been useful for testing ele-

mentary steps (or for changes to existing schemas), but it

would not be effective in practical settings. Therefore, as a

major option, we have developed an import (and export) mod-

ule. It relies on a persistence manager for the supermodel’s

constructs. Data are handled in an object representation,

where each construct is represented by a class. Then,

according to the external system of interest, the persistence

manager interacts with specific components. We have devel-

oped two main import–export components, one for IBM DB2,

as a representative of relational and object-relational systems

(with also most of the object-oriented features of interest for

data models) and the other for XML documents with schemas

(according to a reasonable subset of XSD). The development

of additional modules would mainly require attention to the

specific syntax.

As a support to schema definition and management, the

tool offers features for the visualization of schemas, and we

will see them in the next subsection, while discussing exam-

ple translations.

After the schema definition phase, the user has to choose

how to translate the schema. In the first version of the tool,

the designer had to build complex translations by manually

composing basic ones out of a list of the available ones. The

system applies them in sequence, generating an intermediate

schema for each step, which can be used for documenta-

tion and verification. In the second version of the tool, the

designer just has to specify the source schema (and so its

model) and the target model, and the system finds a trans-

lation, on the basis of the algorithm illustrated in Sect. 5.

Figure 25 shows a screenshot of the interface used to request

an automatic translation. Let us observe that in the upper part

there are the description of the input schema (left) and that

of the target model (right) and in the lower part the sequence

of translations found by the system.

Finally, let us consider the most sophisticated user, the

metamodel engineer. She can define new basic transforma-

tions by writing Datalog rules or reusing some of the existing

ones. The most important task is the definition and man-

agement of the supermodel. This is a very delicate task and

requires a good knowledge of data models as well as of the

supermodel itself. Because of the nature of the supermodel,

such tasks are quite rare: after a transitory phase where meta-

constructs are introduced into the supermodel, translations

and Skolem functions involving the new metaconstructs are

created, modifications should tend to zero and reuse should

be total.

Translation rules are stored in text files. Any text editor

can be used to write Datalog rules first and the basic transla-

tion then. A basic translation is a list of file names containing

Datalog rules. The application of a basic translation means

to apply all its Datalog rules in the same order as they occur

in the basic translation. A tool to support the user in the def-

inition of translation rules has been developed. It supports

Datalog syntax highlighting and auto-completion of literals,

Skolem functions and variables used in the rule. These help

functions are possible by leveraging on the metadata asso-

ciated with the constructs and the Skolem functions stored

in the repository. There is also a support to the management

123

Model-independent schema translation

Fig. 25 Request for automatic

translation

of basic translations, allowing the user to add or remove a

Datalog rule, or change the order in which the Datalog rules

occur in the basic translation.

A Datalog translation rule uses Skolem functions. The tool

provides a search feature to look up already defined Skolem

functions for a specific construct, and allows the creation of

new ones by selecting the target construct, giving the function

a name and adding a number of parameters. Once a Skolem

function is defined, its description is stored as metadata in

the dictionary.

We can say few words about the performance of the trans-

lation process, although it is not the focus of this work. First

of all, it is worth mentioning that we decided to implement

our own Datalog engine, because of the need for the OID-

invention feature and for the ease of integration with our

relational dictionary. The algorithm that generates SQL state-

ments from Datalog rules performs well. It generally takes

seconds and it has a linear cost in the size of the input (number

of rules). Performance of the translation executions depends

on the number of SQL statements (number of rules) to be exe-

cuted and on the number of join conditions each rule implies.

Moreover, the structure of the dictionary and the materializa-

tion of Skolem functions do not help performance. However,

even if efficiency can be improved, the translation of schemas

is performed in a few seconds.

6.2 Experiments

In this section, we discuss the experiments we made with our

MIDST tool: we explain the methodology used to test the

tool and then illustrate in some detail a few actual examples,

which have been also demonstrated recently [2].

To test all the features of the tool we mainly used synthetic

schemas and databases, in order to be cost-effective in the

analysis of the various features of models and schemas.

We have tested the tool using two different points of views,

one “in-the-small” and the other “in-the-large.” For the test-

ing in-the-small, we performed two sets of experiments. The

first set was driven by the rules: we tested every single Data-

log rule of each basic translation, to verify the correctness of

the individual substeps. The second set was driven by model

features: we defined many (a few hundred) ad hoc schemas,

each one with a specific pattern of constructs, in order to ver-

ify that such a pattern is handled as required. In this way, we

have verified the correctness of basic translations, which is a

requirement of our approach, as we discussed in Sect. 5.

For the testing in-the-large, we used a set of more com-

plex schemas. We considered some significant models, rep-

resentatives of the various families (the progenitor and two

restricted ones for each family), and defined one schema for

each of them, with all the features of such a model. Then, we

123

P. Atzeni et al.

Fig. 26 An XSD file and its

representation in MIDST

translated them into other models of interest. In this case, the

translation process for these schemas required the application

of a number (from three to eight) of basic translations in the

set we mentioned in Sect. 4 (and listed in Appendix 1). Here,

we initially built complex translations by manually compos-

ing basic ones (as this was the only way in the first version of

our tool) and then experimented with the automatic genera-

tion, and obtained the same sequences of basic translations.

In some cases, when there are various acceptable sequences,

the tool generated one of them.

Let us illustrate in detail some complete transformation

examples. As we discussed in Sect. 5, our translations are

in general composed of (i) reductions within the family of

the source model, (ii) a translation to the family of the target

model, and (iii) reductions within the target family. In most

cases the final portion is not needed, as reductions occur

mainly in the source family. Therefore, we comment on a

few examples with just two phases and then a final one that

has the third phase.

As a first case, let us consider the translation from a binary

ER model with all our features, to an object-oriented model

with generalizations. In this case, the following reductions

would be needed

− eliminate attributes of relationships, possibly introduc-

ing new entities and relationships (basic translation 7 in

the appendix);

− eliminate many-to-many relationships, introducing addi-

tional entities and one-to-many relationships (translation

8)

The schema obtained in this way can be directly translated

into the object-oriented model, by means of translation 17.

Therefore, the complex translation would be composed of

the sequence 〈7, 8, 17〉.

If instead the target model were the relational one, then we

would need the same reduction steps as above, plus a step to

eliminate generalizations before the final translation. There

are in fact three different translations to perform this task

(12, 13, and 15), according to the various ways of eliminat-

ing generalizations [9, pp. 283–287]. In the manual approach,

the designer would choose the preferred one; in the automatic

one there would be one picked by the tool, with the possibil-

ity for the designer to replace it. Then a translation into the

relational model would be possible by means of translation

19. A possible sequence in this case would therefore be 〈7,

8, 12, 19〉. Our tool also provides a customization feature,

where the designer can specify the selective application of

rules. In this case, with a two-level generalization, for exam-

ple Person, Staff, and Professor, we could specify that the first

level is replaced with a relationship (translation 15), so the

entities Person and Staff are kept, whereas the second level

is replaced by merging the child entity into the parent one

(translation 13), and so the entity Professor disappears, as its

attributes are moved to Staff. In this way, the final relational

schema would contain two tables, Person and Staff.

As a more complex example, we show, with also some

screenshots, the translation from an XML Schema Descrip-

tion (XSD) to a relational schema. The input file and its graph-

ical visualization via the tool after importing it are shown in

Fig. 26. The structure is nested at two levels: each depart-

ment has a name and one or more professors and, for each

professor, we have some contact information and zero or

more students. According to our supermodel, this schema

is represented by means of an Abstract (Dept), a first level

multivalued StructureOfAttributes (Prof), various Lexicals

123

Model-independent schema translation

Fig. 27 An intermediate and

the final result of the translation

from XSD to a relational schema

(including Name of Dept, ProfID, Name of Prof) and some

nested StructureOfAttributes (PrivateContacts, Contacts and

Students; the latter is multivalued and the other two mono-

valued). The translation requires the unnesting of sets and

structures, introducing new first level elements and foreign

keys and flattening the attributes of the structures, respec-

tively (basic translations 1 and 2 in the list). The result of

this sequence of steps still belongs to the XSD family and

it is depicted in Fig. 27, on the left. Finally we could use

the translation from the XSD family to the relational family

(translation 20, which replaces elements and their attributes

with tables and columns). The final result of the translation

is shown in Fig. 27, on the right (in our tool, and so in the fig-

ures, boxes with square corners denote abstracts, boxes with

rounded corners denote aggregations of lexicals and boxes

with dashed lines denote foreign keys).

As a final example, we mention a case where all the three

phases are needed. Assume that our set contains basic trans-

lation 15, as the only means to eliminate generalizations

(so, it does not contain translations 12, 13, 14 and 16). As

translation 15 introduces binary aggregations, it cannot be

used within the object-oriented family. In this case, if we

want to go from an object-oriented model with structured

attributes, to an ER model without generalizations, we need

first a reduction within the object-oriented family to flatten

attributes (translation 2), then we can apply the translation to

the ER family (18) and finally the reduction within the ER

model to eliminate generalizations (15).

7 Related work

This paper is an extended version of a portion of a conference

paper [1] and in some sense also of another, older confer-

ence paper [6] (which has never had a journal version). With

respect to those papers, Sects. 5 and 6.1 are completely new,

and most of the other discussions are richer, in particular the

one in Sect. 2 on the space of models, which gives an orig-

inal perspective on the approach. The conference paper [1]

also includes an initial proposal for handling data translation,

which is not covered here. The tool presented here in Sect. 6.1

has also been demonstrated [2].

Various proposals exist that consider schema and data

translation. However, most of them only consider specific

data models. We comment here on related pieces of work

that address the problem of model-independent translations.

The term ModelGen was coined in [11] which, along with

[12], argues for the development of model management sys-

tems consisting of generic operators for solving many prob-

lems involving metadata and schemas. An example of using

ModelGen to help solve a schema evolution problem appears

in [11].

An early approach to ModelGen (even before the term

was coined) was MDM, proposed by Atzeni and Torlone [6].

The basic idea behind MDM and the similar approaches

[14,18,19,37] is useful but offers only a partial solution

to our problem. In addition, their representation of the

models and transformations is hidden within the tool’s imp-

erative source code, not exposed as more declarative, user-

comprehensible rules. This leads to several other difficulties.

First, only the designers of the tool can extend the models

and define the transformations. Thus, instance level transfor-

mations would have to be recoded in a similar way. More-

over, correctness of the rules has to be accepted by users as a

dogma, since their only expression is in complex imperative

code. And any customization would require changes in the

tool’s source code. All of these problems are overcome by our

approach.

There are two concurrent projects to develop ModelGen.

The approach of Papotti and Torlone [33] is not rule-based.

Rather, their transformations are imperative programs, with

the weaknesses described above. Their translation is done by

translating the source data into XML, performing an XML-

to-XML translation expressed in XQuery to reshape it to be

compatible with the target schema, and then translating the

XML into the target model. This is similar to our use of a

relational database as the “pivot” between the source and

target databases.

The approach of Bernstein, Melnik, and Mork [13,31] is

rule-based, like ours. However, unlike ours, it is not driven

123

P. Atzeni et al.

by a relational dictionary of schemas, models and translation

rules. Instead, they focus on flexible mapping of inheritance

hierarchies and the incremental regeneration of mappings

after the source schema is modified. They also propose view

generation and so instance translation.

Bowers and Delcambre [16] present Uni-Level Descrip-

tion (UDL) as a metamodel in which models and translations

can be described and managed, with a uniform treatment

of models, schemas, and instances. They use it to express

specific model-to-model translations of both schemas and

instances. Like our approach, their rules are expressed in

Datalog. Unlike ours, they are expressed for particular pairs

of models.

Other approaches to schema translation based on some

form of metamodel, thus sharing features with ours, were

proposed by Hainaut [22,23] and Boyd, Poulovassilis and

McBrien [17,27,35].

Data exchange is a different but related problem, the devel-

opment of user-defined custom translations from a given

source schema to a given target one, not the automated trans-

lation of a source schema to a target model. It is an old

database problem, going back at least to the 1970s [36].

Some recent approaches are in Cluet et al. [20], Milo and

Zohar [30], and Popa et al. [34].

8 Conclusions

In this paper, we showed MIDST, an implementation of the

ModelGen operator that supports model-generic translation

of schemas. The experiments we conducted confirmed that

translations can be effectively performed with our approach.

The main contributions are (i) the visible dictionary, (ii) the

specification of rules in Datalog, which makes the specifica-

tion of translations independent of the engine that executes

them, and (iii) the techniques to generate translations out of

their specification.

Current work concerns the customization of translation,

data level translations and applications of the technique to

typical model management scenarios, such as schema evo-

lution and round-trip engineering [11].

Acknowledgments We would like to thank Luigi Bellomarini,

Francesca Bugiotti, Fabrizio Celli, Giordano Da Lozzo, Riccardo

Pietrucci, Leonardo Puleggi and Luca Santarelli, for their work in the

development of the tool and Chiara Russo for contributing to the exper-

imentation and for many helpful discussions.

Appendix 1. Basic translations and their completeness

This appendix lists the set of basic translations used in our

experiments, for the supermodel illustrated in Sect. 3.3 (and

specifically in Fig. 17).

1. Eliminate multivalued structures of attributes in an

abstract, by introducing new abstracts and foreign keys.

2. Eliminate (nested, monovalued) structures of attributes

in an abstract, by flattening them.

3. Eliminate (nested, monovalued) structures of attributes

in an aggregation, by flattening them.

4. Eliminate foreign keys involving abstracts, by introduc-

ing abstract attributes.

5. Eliminate abstract attributes, replacing them with foreign

keys involving abstracts.

6. Eliminate lexicals of aggregations of abstracts, by mov-

ing them to abstracts (possibly new).

7. Eliminate lexicals of binary aggregations of abstracts, by

moving them to abstracts (possibly new).

8. Eliminate many-to-many binary aggregations, by intro-

ducing new abstracts and binary aggregations of them.

9. Eliminate n-ary aggregations of abstracts, by introducing

new abstracts and binary aggregations of them.

10. Replace binary aggregations of abstracts with aggrega-

tions of them.

11. Nest abstracts and abstract attributes within referencing

abstracts.

12. Eliminate generalizations, by keeping the leaf abstracts

and merging the other abstracts into them.

13. Eliminate generalizations, by keeping the root abstracts

and merging the other abstracts into them.

14. Eliminate generalizations, by keeping all abstracts and

relating them by means of (n-ary) aggregations (that

involve two abstracts).

15. Eliminate generalizations, by keeping all abstracts and

relating them by means of binary aggregations.

16. Eliminate generalizations, by keeping all abstracts and

relating them by means of abstract attributes.

17. Replace (one-to-many) binary aggregations of abstracts

with abstract attributes.

18. Replace abstract attributes with (one-to-many) binary

aggregations of abstracts.

19. Replace abstracts and binary (one-to-many) aggregations

of them with aggregations (of lexicals) and foreign keys.

20. Replace abstracts and abstract attributes with aggrega-

tions (of lexicals) and foreign keys.

21. Replace aggregations (of lexicals) and foreign keys with

abstracts and binary aggregations of them.

22. Replace aggregations (of lexicals) and foreign keys with

abstracts and foreign keys over them.

23. Replace aggregations (of lexicals) and foreign keys with

abstracts and abstract attributes.

We briefly comment on the completeness of this set of

rules with respect to the models used in our experiments,

described by the table in Fig. 17. We need to show that

Assumptions 1 and 2 are satisfied. Let us begin with Assump-

tion 2, so we describe the minimal models. Here, it suffices

123

Model-independent schema translation

ER B-ER Obj OR Rel XSD

ER - 9 9,17 9,17 9,19 9,17,11

B-ER 10 - 17 17 19 17,11

Obj 18,10 18 - - 20 5,11

OR 18,10 18 23 - 20 11

Rel 21,10 21 23 - - 22

XSD 4,18,10 4,18 4 1 20 -

Fig. 28 Translations between families

to list the minimal models in each family and the sequences

of reductions that form a translation from the progenitor of

the family to them, as follows:

− (n-ary) Entity-Relationship: we have a minimal model

with no generalizations and no attributes (lexicals) on

aggregations; therefore, the reduction is composed of 6

and 14 (or 12 or 13).

− Binary Entity-Relationship: one minimal model again,

with no generalizations and no lexicals on binary aggre-

gations and no many-to-many aggregations; the reduc-

tion is 7, 15 (or 12 or 13), 8.

− Object: one minimal model, with no generalizations and

no structures of attributes: the reduction is 2, 16 (or 12

or 13).

− Object-Relational: here there are three minimal models,

the progenitors of the relational model (with a reduction

2, 3, 16 (or 12 or 13), 20) and of the object model (4, 23)

and a model with no structures of attributes in abstracts

and no generalizations, for which the reduction is 2, 16

(or 12 or 13).

− Relational: here, for the sake of simplicity, we have han-

dled just one model, so the reduction is trivial.

− XSD: one minimal model, where structures of attributes

are only monovalued; the reduction is just translation 1.

With respect to Assumption 1, we need to show that for

each pair of families we have a translation from one to the

other, and viceversa. This is shown in the table in Fig. 28,

where each cell indicates the translation or the sequence of

translations needed to go from the model associated with

the row to the model associated with the column. It is worth

noting that, in some cases, the cell contains two or even three

basic translations; then, with reference to the discussion we

made in Sect. 5 after Assumption 1, we can think that the

system has a composition of these translations defined as a

basic one.

References

1. Atzeni, P., Cappellari, P., Bernstein, P.A.: Model-independent

schema and data translation. In: EDBT Conference, LNCS, vol.

3896, pp. 368–385. Springer, Berlin (2006)

2. Atzeni, P., Cappellari, P., Gianforme, G.: MIDST: model inde-

pendent schema and data translation. In: SIGMOD Conference,

pp. 1134–1136. ACM, New York (2007)

3. Atzeni, P., Del Nostro, P.: Management of heterogeneity in the

Semantic Web. In: ICDE Workshops, p. 60. IEEE Computer Soci-

ety (2006)

4. Atzeni, P., Gianforme, G., Cappellari, P.: Reasoning on data models

in schema translation. In: FOIKS Symposium, LNCS, vol. 4932,

pp. 158–177. Springer, Berlin (2008)

5. Atzeni, P., Torlone, R.: A metamodel approach for the man-

agement of multiple models and translation of schemes. Inf.

Syst. 18(6), 349–362 (1993)

6. Atzeni, P., Torlone, R.: Management of multiple models in an

extensible database design tool. In: EDBT Conference, LNCS,

vol. 1057, pp. 79–95. Springer, Berlin (1996)

7. Barbosa, D., Freire, J., Mendelzon, A.O.: Information preserva-

tion in XML-to-relational mappings. In: XSym Workshop, LNCS,

vol. 3186, pp. 66–81. Springer (2004)

8. Barbosa, D., Freire, J., Mendelzon, A.O.: Designing information-

preserving mapping schemes for XML. In: VLDB, pp. 109–120

(2005)

9. Batini, C., Ceri, S., Navathe, S.: Database Design with the Entity-

Relationship Model. Benjamin and Cummings Publ. Co., Menlo

Park, CA (1992)

10. Batini, C., Lenzerini, M.: A methodology for data schema inte-

gration in the entity relationship model. IEEE Trans. Software

Eng. 10(6), 650–664 (1984)

11. Bernstein, P.A.: Applying model management to classical meta

data problems. In: CIDR Conference, pp. 209–220 (2003)

12. Bernstein, P.A., Halevy, A.Y., Pottinger, R.: A vision of man-

agement of complex models. SIGMOD Record 29(4), 55–63

(2000)

13. Bernstein, P.A., Melnik, S., Mork, P.: Interactive schema translation

with instance-level mappings. In: VLDB, pp. 1283–1286 (2005)

14. Bézivin, J., Breton, E., Dupé, G., Valduriez, P.: The ATL

transformation-based model management framework. Research

Report 03.08, IRIN, Université de Nantes (2003)

15. Bohannon, P., Fan, W., Flaster, M., Narayan, P.P.S.: Informa-

tion preserving XML schema embedding. In: VLDB, pp. 85–96

(2005)

16. Bowers, S., Delcambre, L.M.L.: The Uni-level description: a uni-

form framework for representing information in multiple data mod-

els. In: ER Conference, LNCS, vol. 2813, pp. 45–58. Springer,

Berlin (2003)

17. Boyd, M., McBrien, P.: Comparing and transforming between data

models via an intermediate hypergraph data model. J. Data Seman-

tics IV pp. 69–109 (2005)

18. Claypool, K.T., Rundensteiner, E.A.: Sangam: A transformation

modeling framework. In: DASFAA Conference, pp. 47–54 (2003)

19. Claypool, K.T., Rundensteiner, E.A., Zhang, X., Su, H., Kuno,

H.A., Lee, W.C., Mitchell, G.: Sangam—a solution to support mul-

tiple data models, their mappings and maintenance. In: SIGMOD

Conference, p. 606 (2001)

20. Cluet, S., Delobel, C., Siméon, J., Smaga, K.: Your mediators need

data conversion! In: SIGMOD Conference, pp. 177–188 (1998)

21. De Virgilio, R., Torlone, R.: Modeling heterogeneous context infor-

mation in adaptive Web based applications. In: ICWE Conference,

pp. 56–63. ACM, New York (2006)

22. Hainaut, J.L.: Specification preservation in schema

transformations—application to semantics and statistics. Data

Knowl. Eng. 19(2), 99–134 (1996)

23. Hainaut, J.L.: The transformational approach to database engineer-

ing. In: GTTSE, LNCS. vol. 4143, pp. 95–143. Springer, Berlin

(2006)

24. Hull, R.: Relative information capacity of simple relational

schemata. SIAM J. Comput. 15(3), 856–886 (1986)

123

P. Atzeni et al.

25. Hull, R.: Managing semantic heterogeneity in databases: a

theoretical perspective. In: PODS Symposium, pp. 51–61. ACM,

New York (1997)

26. Hull, R., King, R.: Semantic database modelling: survey, appli-

cations and research issues. ACM Comput. Surv. 19(3), 201–260

(1987)

27. McBrien, P., Poulovassilis, A.: A uniform approach to inter-

model transformations. In: CAiSE Conference, LNCS, vol. 1626,

pp. 333–348 (1999)

28. Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: The use of infor-

mation capacity in schema integration and translation. In: VLDB,

pp. 120–133 (1993)

29. Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: Schema equiva-

lence in heterogeneous systems: bridging theory and practice. Inf.

Syst. 19(1), 3–31 (1994)

30. Milo, T., Zohar, S.: Using schema matching to simplify heteroge-

neous data translation. In: VLDB, pp. 122–133 (1998)

31. Mork, P., Bernstein, P.A., Melnik, S.: Teaching a schema translator

to produce O/R views. In: ER Conference, LNCS, vol. 4801, pp.

102–119. Springer, Berlin (2007)

32. Paolozzi, S., Atzeni, P.: Interoperability for semantic annotations.

In: DEXA Workshops, pp. 445–449. IEEE Computer Society

(2007)

33. Papotti, P., Torlone, R.: Heterogeneous data translation through

XML conversion. J. Web Eng. 4(3), 189–204 (2005)

34. Popa, L., Velegrakis, Y., Miller, R.J., Hernández, M.A., Fagin, R.:

Translating Web data. In: VLDB, pp. 598–609 (2002)

35. Poulovassilis, A., McBrien, P.: A general formal framework for

schema transformation. Data Knowl. Eng. 28(1), 47–71 (1998)

36. Shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P., Lum, V.Y.:

Express: a data extraction, processing, amd restructuring sys-

tem. ACM Trans. Database Syst. 2(2), 134–174 (1977)

37. Song, G., Zhang, K., Wong, R.: Model management though graph

transformations. In: IEEE Symposium on Visual Languages and

Human Centric Computing, pp. 75–82 (2004)

38. Ullman, J.D., Widom, J.: A First Course in Database Sys-

tems. Prentice-Hall, Englewood Cliffs, NJ (1997)

123

	Model-independent schema translation
	Abstract
	1 Introduction
	2 Overview
	2.1 Constructs and models: a metamodel approach
	2.2 The supermodel and translations
	2.3 Building complex translations
	2.4 Specification of basic translations
	2.5 Organization of the paper

	3 Models, schemas and the dictionary
	3.1 Description of models
	3.2 Description of schemas
	3.3 Generality of the approach

	4 Basic translations
	5 Properties of translations and their generation
	5.1 Correctness, a difficult problem
	5.2 Concise description of models
	5.3 Signatures and applications of Datalog programs
	5.4 Generation of complex translations

	6 Implementation and experimentation
	6.1 The MIDST tool
	6.2 Experiments

	7 Related work
	8 Conclusions
	Acknowledgments

