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Model-informed experimental design recommendations for
distinguishing intrinsic and acquired targeted therapeutic
resistance in head and neck cancer
Santiago D. Cárdenas1, Constance J. Reznik1,4, Ruchira Ranaweera2, Feifei Song2, Christine H. Chung 2, Elana J. Fertig 3✉ and
Jana L. Gevertz1✉

The promise of precision medicine has been limited by the pervasive resistance to many targeted therapies for cancer. Inferring the
timing (i.e., pre-existing or acquired) and mechanism (i.e., drug-induced) of such resistance is crucial for designing effective new
therapeutics. This paper studies cetuximab resistance in head and neck squamous cell carcinoma (HNSCC) using tumor volume data
obtained from patient-derived tumor xenografts. We ask if resistance mechanisms can be determined from this data alone, and if
not, what data would be needed to deduce the underlying mode(s) of resistance. To answer these questions, we propose a family
of mathematical models, with each member of the family assuming a different timing and mechanism of resistance. We present a
method for fitting these models to individual volumetric data, and utilize model selection and parameter sensitivity analyses to ask:
which member(s) of the family of models best describes HNSCC response to cetuximab, and what does that tell us about the timing
and mechanisms driving resistance? We find that along with time-course volumetric data to a single dose of cetuximab, the initial
resistance fraction and, in some instances, dose escalation volumetric data are required to distinguish among the family of models
and thereby infer the mechanisms of resistance. These findings can inform future experimental design so that we can best leverage
the synergy of wet laboratory experimentation and mathematical modeling in the study of novel targeted cancer therapeutics.
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INTRODUCTION
In cancer, each individual’s tumor has undergone a distinct set of
molecular and cellular alterations that promote malignancy.
Advances to high-throughput measurement technologies have
enabled unprecedented characterization of these alterations,
ushering in a new era of precision medicine which selects therapies
to target the specific changes in each tumor. In spite of the promise
of these precision medicine strategies, many cancers do not
respond as anticipated to such targeted therapeutic strategies,
and those who do respond frequently develop resistance.
Head and neck squamous cell carcinoma (HNSCC) is the sixth

most common cancer worldwide with a 5-year survival rate of
50%1. Increased expression of the epidermal growth factor
receptor (EGFR) occurs in 90% of HNSCC and is associated with
poor survival2,3. EGFR is a receptor in certain types of cells that
binds to epidermal growth factors, which are involved in cell
signaling pathways controlling cell division and survival. There-
fore, targeted therapeutics inhibiting EGFR have been developed
to block these pathways as a precision therapeutic to prevent
cancer cells from growing. Cetuximab is the only targeted therapy
FDA approved for HNSCC4. Including cetuximab as part of an
advanced stage HNSCC treatment plan exhibits a survival
advantage for the patient compared to radiation treatment alone.
Cetuximab also improves response rates compared to chemother-
apy in patients with metastatic or recurrent HNSCC5. However,
only a subset of patients are intrinsically sensitive to cetuximab,
and responsive patients will develop resistance within 1–2
years4,6–8. The widespread prevalence of cetuximab resistance is
currently limiting its clinical utility in HNSCC.

There are three different types of drug-resistance to consider in
understanding resistance to targeted therapies such as cetuximab:
pre-existing, randomly-acquired, and drug-induced acquired. Pre-
existing resistance is when all resistance in the tumor population
exists before treatment begins. Treatment then selects for these
resistant cells, giving rise to a resistant tumor. Random acquired
resistance occurs when resistant cells arise during treatment due
to random genetic mutations or phenotypic switching, but not as
a result of the drug administered. Cells for which resistance is pre-
existing or randomly acquired act as a substrate for Darwinian
evolution9. Lastly, drug-induced resistance is resistance directly
caused by the drug during treatment, either through genetic
changes or more likely through non-genetic cell phenotype
plasticity9–12. These cells, often called drug-resistant or drug-
tolerant persisters, act as a substrate for Lamarckian evolution as
the adaptive changes occur as a direct response to the drug itself9.
Our previous molecular profiling studies of HNSCC cell lines
suggest that compensatory growth factor signaling and epithelial
to mesenchymal transition (EMT) associated with cetuximab
resistance is seen early in treatment13, though cannot distinguish
if this resistance was pre-existing or acquired. Further, the precise
contribution of growth factor signaling and EMT to subsequent
resistance requires further longitudinal profiling which can be
confounded by evolutionary processes in culture14 and infeasible
to extend to powered, temporal profiling in in vivo models.
Mathematical models have been widely utilized to help

understand drug resistance, and its consequences for treatment
response and design—see ref. 15–18 for reviews of modeling work
on cancer drug resistance. Overwhelmingly, these models have
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assumed that resistance is either pre-existing (as in ref. 19–22), or
is a combination of pre-existing and spontaneously acquired
resistance (as in ref. 23–25). More recently, modeling has also
considered the contribution of the drug itself in driving the
formation of resistance. Works such as ref. 11,26–29 consider drug-
induced resistance, though they are limited in their ability to
make predictions regarding doses and dosages that differ from
the data used to validate them, as these models are dose-
independent. A handful of mathematical models have been
developed in which resistance is induced by the drug itself in a
dose-dependent fashion30–33. The modeling family herein is
strongly motivated by the single model proposed in ref. 33,
wherein pre-existing, spontaneously acquired, and dose-
dependent drug-induced resistance are modeled through a
minimal system of two ordinary differential equations.
In this work, we propose a family of mathematical models, with

each “member” of the family assuming a different timing and
mechanism of cetuximab resistance. In “Methods”, we detail the
protocol for collecting the experimental data, describe the family of
mathematical models (where each member of the family
represents a different set of mechanisms driving resistance), explain
the algorithm for fitting these models to individual volumetric data,
and introduce the methodology for assessing parameter sensitivity/
identifiability. In “Results”, we employ information criteria (IC) to try
and identify the most parsimonious model to describe the data.
Extending such an information theoretic approach to our family of
resistance models allowed us to confidently conclude that the data
cannot be explained without resistance, and that the combination
of pre-existing and randomly acquired resistance is very unlikely to
be the mechanism responsible for the resistance to cetuximab
observed in the experiments. In “Results”, we use a profile
likelihood analysis to demonstrate that single-cell experiments
which measure the resistance fraction in the initial tumor
population provide powerful data for selecting the model (and
therefore the underlying mechanisms) most parsimonious with the
experimental data. In the case where this measure of pre-existing
resistance does not allow the mechanism of resistance to be
definitively determined using our family of models, we further
propose that a dose-escalation experiment would provide the
needed data to identify the model whose mechanisms best-explain
cetuximab resistance. The “Discussion” contains closing remarks
and reflections about the role mathematical modeling can play in
experimental design to decipher the mechanism(s) of resistance to
targeted therapeutics.

METHODS
Experimental data
In this work, we utilize tumor volume data obtained from temporally
monitoring a cetuximab responsive patient-derived tumor xenograft
HNSCC model. Tumor tissue were collected from surgically resected
HNSCC patients under the auspices of a tissue bank protocol approved by
Johns Hopkins University Institutional Review Board. All animal studies and
care were approved by the Institutional Animal Care and Use Committee of
the Johns Hopkins University and Moffitt Cancer Center. Following HNSCC
tumor resection, de-identified patient samples were implanted into
athymic nude mice (Crl: NU-Foxn1nu, 4–6 weeks old; 20 g; Harlan
Laboratories, Indianapolis, IN) and passaged to subsequent generations
of mice for expansion. The mice are then divided into two groups: the
control group and the treatment group. For each group, tumor volume is
tracked over time under the assumption that V ¼ lw2 π

6, where l is length
and w is width of the tumor. Treatment (either with a placebo, or with
cetuximab) starts when the tumor volume is ~200mm3. Mice were
euthanized if tumor volume surpassed ~2000mm3, if they lost more than
25% of their body weight, or if ulceration occurred on the skin over the
tumors. Batches of mice from each group were also euthanized at routine
time points to enable temporal profiling for additional studies.
The control data is obtained by administering a weekly dose of

phosphate-buffered saline (PBS) to tumor-bearing mice. We classified each
control mouse into one of three categories: increasing volume, decreasing

volume, and stabilized volume. Out of 25 control mice, 19 show increasing
volume (see Mouse 23 in Fig. 2), one shows decreasing volume (see Mouse
11 in Fig. 2), and five show stabilization (see Mouse 22 in Fig. 2).
The treatment data is obtained by following the same procedure as the

control mice, except that mice were given a 5 mg/kg intraperitoneal
injection of cetuximab once every 7 days. As with the control mice, each
mouse was classified as either increasing in volume (treatment failure),
decreasing in volume (treatment success), or stabilized volume. Out of 29
mice, 19 show increasing volume (see Mouse 13 in Fig. 4), seven show
decreasing volume (see Mouse 23 in Fig. 4), and three show stabilization
(see Mouse 24 in Fig. 4). Despite the variation seen across individual mice
in the control and treatment group, a Fisher’s exact test has a 2-sided
p-value of 0.06 of decreased tumor volume occurring in the treatment
group relative to control group. This suggests a trend towards cetuximab
response in this xenograft model.
To account for outliers and noise in our data, we applied a censor to

remove any data points deemed not biologically plausible. Estimates from
literature of doubling time for HNSCC vary widely, from 26 h in culture to
44 days in vivo34,35. When fitting an exponential model (which assumes a
constant cell doubling time) to each of the control mice, the fastest cell-
doubling time we observed across these mice was 13 days. We took a
conservative approach to censoring the data: in any case where the data
show the tumor more than doubling in volume in 3–4 days (meaning, the
volume doubles significantly faster than anything we observed in the
control data), and the subsequent time points are not consistent with that
rapid doubling time (meaning, the larger increase in volume is not
sustained beyond that one point), we remove the outlier volume. As an
example, if V(t1)= V1 and V(t2)= 6V1, we would censor the volume at time
t= t2 if V(t3) < < 6V1 (meaning the growth seen at time t2 was not
sustained). Otherwise, we would not censor the t2 data point. We show two
examples to depict our censoring approach in Supplementary Fig. 2, one
with a censored point due to an unsustained rapid doubling, and one
without censoring despite a rapid doubling as it was sustained beyond
that time point. In the control data, exactly one data point was removed
from five of 25 mice, and in the treatment data nine data points were
censored across seven of 29 mice.

Modeling control data
Before building a model of tumor growth in response to treatment, we
first considered how to best-describe tumor growth in the absence of
treatment. There are a multitude of mathematical equations to describe
tumor growth, and the equation chosen can have important consequences
on model predictions36–38. Herein, we considered three different models of
tumor growth: exponential, logistic, and Allee. These models were chosen
because they represent a hierarchy of complexity.
Exponential growth simply assumes the growth rate of the tumor

volume V is proportional to the tumor volume:

dV
dt

¼ rV : (1)

Logistic growth adds a rate-limiting factor to uncontrolled exponential
growth, accounting for environmental constraints on tumor progression
through a carrying capacity K:

dV
dt

¼ rV 1� V
K

� �
: (2)

Finally, the Allee effect further adds the assumption that the growth
rate can also be limited by a population size that is below the Allee
threshold m:

dV
dt

¼ rV 1� V
K

� �
V
m

� 1

� �
: (3)

There are multiple plausible explanations for why tumor growth could be
described by such a differential equation. It may be that tumors grow slower
because of uptake challenges in the xenograft system, or because they have
yet to accumulate significant mutations. As an example, the growth kinetics
of BT-474 luminal B breast cancer cells was shown to be best-described by a
model structure that considers the Allee effect39.
All models considered herein are empirical models, meaning they do not

directly incorporate the mechanisms that underlie tumor growth. There is
an abundance of literature that aims to mechanistically describe tumor
growth using systems of ordinary differential equations (for instance, in
ref. 40–43), partial differential equations (for instance, in ref. 44,45), lattice/
agent-based models (for instance, in ref. 46–48), and multi-scale models (for
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instance, in ref. 49–51). An excellent review of the range of model-based
approaches for understanding tumor growth dynamics can be found in
ref. 52. Many of these models explicitly incorporate spatial effects and
reveal the important role space can play in tumor progression and
response to treatment (see for instance44–48,53,54). Such mechanistic
models can provide outstanding insight into tumor progression, but the
control data available here did not allow such detailed models to be
parameterized. Hence we restrict ourselves to consider more simplistic and
empirical ordinary differential equation models.

Modeling treatment data
Once the most parsimonious control model is selected, we can move to
build a model that incorporates treatment response to cetuximab. We will
use the following general modeling framework, where S is the volume of
cells that are sensitive to cetuximab, R is the volume of cells with some
level of resistance to cetuximab, and D is the concentration of drug:

dS
dt

¼ ðsensitive growthÞ � ðtransition to resistantÞ � ðdrug - induced sensitive deathÞ
(4)

dR
dt

¼ ðresistant growthÞ þ ðtransition to resistantÞ � ðdrug - induced resistant deathÞ
(5)

dD
dt

¼ �ðdecayÞ: (6)

We assume that growth is exponential (justified in “Selecting a Model:
Control Data”), that the death rate is proportional to the drug
concentration and the volume of the subpopulation, and that in Eq. (6)
the only dynamics modeled are the natural decay of the drug. This
simplifies our general modeling framework to have the form:

dS
dt

¼ rSS� f ðS;DÞ � λSDS (7)

dR
dt

¼ rRRþ f ðS;DÞ � λRDR (8)

dD
dt

¼ �γD; (9)

where rS is the growth rate for sensitive cells, and rR is the growth rate for
resistant cells. We assume that resistance will either not impact the growth
rate of cells, or it will result in a fitness disadvantage (rS ≥ rR)55,56, though
we note that more recently it has been observed that not all resistance
comes at a cost57. λS is the drug-induced death term for sensitive cells, and
λR is the drug-induced death term for resistant cells. We assume that
λS > λR, as by definition, sensitive cells must be easier for the drug to kill.
f(S, D) is the function that represents the transition of sensitive cells to
resistant ones (i.e., acquired resistance). This may or may not depend on

the drug D. γ is decay rate of the drug, which we fix using the the fact that
the mean half-life of cetuximab is 4.75 days58, corresponding to
γ ≈ 0.1459 days−1. Finally, cetuximab administration of 5 mg/kg every
7 days is captured through the initial condition on D. In particular, D(0)= 5,
and every 7 days, D is increased by 5 mg/kg to simulate the administration
of a new dose.
Depending on the assumptions made, this model can represent any

combination of: pre-existing resistance (when R(0) > 0), randomly acquired
resistance (when the transition to resistance f(S, D) is independent of the
drug D), and drug-induced acquired resistance (when f(S, D) depends on
D). In all cases, we model resistance as a cellular phenotype regardless of
whether they arise from a mutational or transcriptional driver. The
different sub-models that we consider are explained here, and visually
explained in Fig. 1.

● Model 1: No Acquired Resistance. This requires setting f(S, D)= 0 in
Eqs. (7–8). This model can be further broken down into two sub-cases:

– Model 1.1: No Pre-Existing Resistance. Achieved by setting
R(0)= 0, meaning the entire tumor population is sensitive to
cetuximab.

– Model 1.2: Pre-Existing Resistance. Achieved by allowing R(0) > 0.
● Model 2: Randomly Acquired Resistance. We model this with a random

transition term f(S, D)= f(S)= gS in Eqs. (7–8), meaning resistance is
independent of drug D. This model can be further broken down into
two sub-cases:

– Model 2.1: No Pre-Existing Resistance. Achieved by setting
R(0)= 0, meaning resistance can only result from the random
acquisition of resistance that happen during treatment.

– Model 2.2: Pre-Existing Resistance. Achieved by allowing R(0) > 0,
meaning resistance can pre-exist treatment and can be randomly
acquired during treatment.

● Model 3: Drug-Induced Acquired Resistance. We model this with a
drug-dependent transition term f(S, D)= gSD in Eqs. (7–8), as similarly
done in ref. 33. This model can be further broken down into two sub-
cases:

– Model 3.1: No Pre-Existing Resistance. Achieved by setting
R(0)= 0, meaning resistance can only result from the drug-
induced acquisition of resistance.

– Model 3.2: Pre-Existing Resistance. Achieved by allowing R(0) > 0,
meaning resistance can pre-exist treatment and can be induced
by the drug during treatment.

Fitting algorithm
As we have proposed a variety of models to describe resistance of HNSCC to
cetuximab, we must determine which model (or models) most accurately

Fig. 1 Schematic illustrating the family of resistance models. Sensitive cells are illustrated as blue circles, pre-existing resistant cells as red-
striped circles, spontaneously-created resistant cells as black-and-white checkered circles, and drug-induced resistant cells as black-and-white
checkered diamonds. Second row contains all models without pre-existing resistance, and the third row contains all models with pre-existing
resistance. Second column contains all models with no acquired resistance, third column contains all models with randomly acquired
resistance, and fourth column contains all models with drug-induced resistance.
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describes the experimental data. This requires that we fit each model to the
volumetric time-course data of treatment response to cetuximab. Due to the
extreme variability between mice, we chose to fit each mouse individually,
rather than fit to the average of the time-course data.
For each model, and for each mouse i, the parameter set we seek is the

one that minimizes the sum of the squared error (SSE), which we will call ζi:

ζ i ¼
Xni
t¼1

ðyiðtÞ � yiðtÞÞ2; (10)

where yi(t) represents the experimental tumor volume for mouse i at time t,
and yiðtÞ is the tumor volume obtained through the model at time t. This is
indexed over ni, the number of time points in the data set for mouse i.
We implement a two-step fitting approach. The first step uses a Quasi-

Monte Carlo (QMC) method to quasi-randomly sample the parameter space.
Herein we use Sobol’s low-discrepancy sequences to quasi-randomly sample
points across a k-dimensional hyperrectangle59. k-dimensions represents the
k parameters in the model that are being fit to the data (including the initial
condition S(0), and R(0) in the case of pre-existing resistance). Sobol’
sequences were chosen to sample space as they possess uniformity
properties that other sampling techniques lack, have lower discrepancy than
other sampling methods for up to dimension 20, while also being more
efficient than other sampling methods59.
Our algorithm utilizes QMC by first quasi-randomly sampling 1.5 × 106

Sobol points of the form (p1,…, pk). We chose this number of Sobol points
to minimize the computational time required while maximizing coverage
of the parameter space. Each pi in a sampled point are in the range [0, 1].
We then have to scale the values of pi so that they are in a biologically
reasonable range for that parameter value. Through numerical explora-
tion, we found it sufficient to scale all non-initial condition and non-
carrying capacity parameters except for rS to be in the range [0, 0.1], as
parameter values beyond this result in model predictions of completely
different magnitudes than the experimental data. Numerical experimen-
tation suggested optimal rS values to be greater than 0.1, so this
parameter was scaled to be in the range [0, 0.2]. The scaled range for the
initial tumor volume was mouse-dependent. The initial condition per
mouse were scaled to be in the range [0, 2V0], where V0 is the actual initial
tumor volume for each mouse (see Supplementary Table 1). Further, the
carrying capacity was searched over the range [V0, 105]. Finally, in the case
of the Allee effect, the existential threshold m was searched over the
range [0, 10V0].
The model of interest is then solved at the 1.5 × 106 scaled Sobol

parameter sets for a given mouse i, provided the parameter set is
biologically realistic. Biological viability is determined by the restrictions
detailed in “Modeling treatment data” based on the fitness disadvantage
conferred by drug resistance (rS≥rR and λS > λR). Each biologically viable
parameter set provides us with a cost function value, ζi(p1,…, pk). Then, for
each mouse i we identify the parameter set with the lowest ζi value. This
parameter set should be close to the optimal parameter set, though
generally it is not the actual optimal. The Quasi-Monte Carlo step is
summarized in Algorithm 1.

Algorithm 1. Quasi-Monte Carlo Method.

Once QMC has established an initial “guess” parameter set for each
mouse that minimizes ζi, a simplified version of simulated annealing
(gradient descent) is performed to refine the optimal parameter prediction.
Simulated annealing is a stochastic optimization method with the goal of
finding a global optimum60. It begins with an initial set of parameters and
evolves the parameters with random perturbations until a specified criteria
is met. In particular, for each parameter pj a random value in the range
½�10αj�1; 10αj�1� is generated, with αj ¼ OðpjÞ meaning that αj is the order
of magnitude of parameter pj. As an example, if pj= 0.2= 2 × 10−1, then

the order of magnitude is −1 and a random perturbation value is
generated in the range [−10−2, 10−2]. Each new set of randomly perturbed
parameters is either accepted or rejected according to the change in ζi,
which is denoted as Δ= ζ i - ζi where ζ i is the SSE of the newly perturbed
parameter set and ζi is the SSE of last accepted parameter set. If Δ < 0 (i.e.,
the new SSE is lower), then the change is always accepted, and the new
parameter set is saved. As numerical experimentation revealed that
accepting uphill parameter changes decreased algorithm performance
(likely due to starting “close to” the optimal from the QMC step), we
decided not to accept uphill moves, so if Δ > 0, the change not accepted.
This algorithm is therefore equivalent to stochastic gradient descent. This
perturbation process is repeated 5 × 105 times for each mouse, and the last
accepted parameter set with the lowest ζi is taken to be the global
optimum corresponding to the starting point selected by QMC sampling.
The gradient descent procedure is summarized in Algorithm 2.

Algorithm 2. Gradient Descent.

This two-step algorithm is used in all instances, whether fitting the
control or treatment data, with the exception of fitting an exponential
curve to the control data as that can be done analytically. In all instances
where this numerical fitting algorithm was used, the two-step procedure
was repeated 15 times, and for each mouse the parameter set with the
lowest SSE of the 15 repetitions was chosen as the optimal parameter set.
By implementing this multi-start algorithm (that is, starting at 15 different
points in parameter space that are near (typically different) local minima),
we improve the likelihood that the algorithm converges to the globally
minimum parameter set.

Identifiability
Identifiability analysis gives us one way to assess the “goodness” of a
mathematical model. It is especially relevant in computational models of
biological systems given the limited availability and quality (measurement
error, noise) of experimental data61. Here, we will focus on practical
identifiability, analyzing if we have sufficient data to have well-determined
values for the model parameters. We use profile likelihood62 (without a
confidence interval, since these are fits to the individual, not the average)
to evaluate the practical identifiability of a particular model parameter: the
initial resistance fraction. This is defined by

r0frac ¼
Rð0Þ

Sð0Þ þ Rð0Þ :

To this end, we define the relevant range for the parameter value, and
consider a discrete set of values for the parameter across that range. Since
the initial fraction of resistant cells must be in the range [0, 1], we define
this range and consider every 0.05 value within this range. At each such
r0frac value, we find the best-fit values of the remaining parameters and plot
the optimal value of the cost function ζi across the parameter’s range to
get a profile likelihood curve. The profile likelihood curve for a practically
identifiable parameter should appear quadratic, with a clear minimum at
the optimal parameter value. If such a quadratic shape is not achieved, the
parameter is not practically identifiable62. While this analysis could be
performed for all model parameters, we choose to focus on the initial
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resistant fraction, as it is a parameter that is easy to interpret biologically,
and therefore will help us in identifying the most likely model describing
the experimental data.

RESULTS
To select model that “best” describes the mouse data, we utilized
two different model selection methods, the Akaike information
criterion (AIC):

AIC ¼ ni ln
ζ i
ni

� �
þ 2k; (11)

and the Bayesian information criterion (BIC)63:

BIC ¼ ni ln
ζ i
ni

� �
þ k lnðniÞ: (12)

In these equations, ni is the number of data points for mouse i, k is
the number of model parameters to be fit, and ζi is the SSE from
the optimal parameter set for mouse i.
Both information criterion consider the trade-offs between

goodness of fit (ζi) and simplicity of the model (i.e., the number of
parameters, k), allowing us to compare models with different
assumptions. However, these measures penalize the number of
parameters differently. The AIC model assumes a penalty of the
form 2k, which is independent of the number of data points. BIC
assumes the penalty term k lnðniÞ, meaning the weight of the
parameter penalty increases as the number of data points
increases. The more data points there are, the greater this penalty
term is for the BIC as opposed to the AIC. The model with the
lowest AIC (or BIC) score is considered to be the most
parsimonious, meaning it achieves reasonable fits the data using
a minimal number of parameters. We will use these two
information criterion as we compare our proposed models for
the control and treatment data.

Selecting a model: control data
In “Modeling control data”, we proposed three models to fit the
control data: exponential, logistic, and Allee. Mouse 23, 11 and 22
each show different tumor growth behavior of increasing in
volume, decreasing in volume, or stabilized volume, respectively.
Therefore, we use these three mice in Fig. 2 as representatives to

visualize the goodness-of-fit of the various models to the
experimental data.
AIC and BIC values are used for model selection, where the

lower the IC value, the more parsimonious the model is with the
data. As shown in Fig. 3a, b, the exponential model appears
to be the most parsimonious model, as it has the lowest AIC in 12
of 25 control mice. Besides asking which model has the lowest
AIC, we also ask: how much lower is it than the AIC for the next-
best model? If the AIC for the top model is at least 15% smaller
than the AIC of the next-best model, we classify this as “high
confidence” - in other words, we have high confidence that the
model with the lowest AIC is the most parsimonious model for
describing the data. If the AIC for the top model is within 5% of
the AIC for the next-best model, we call this “low confidence”. The
remaining case gets classified as “medium confidence.” As seen in
Fig. 3, we found that in 9 of the 12 control mice for which the
exponential model has the lowest AIC, the prediction that the
exponential model is most parsimonious is made with “low
confidence”. The 3 remaining mice for which the exponential
model gives the lowest AIC are classified as “medium confidence”.
The trends are very similar if we use BIC instead. The exponential
has the lowest BIC (and is thus the most parsimonious model) for
14 of the 25 control mice. We have “low confidence” in this
prediction for 10 of 13 mice in which exponential has the lowest
BIC and “medium confidence” for the remaining 4 mice.
Despite this preference for the exponential model according to

both the AIC and BIC, caution is warranted. Selecting a model by
minimizing the IC would result in choosing the Allee differential
equation for 8 of the mice according to AIC, and 6 of the mice
according to BIC. Given the ambiguities in selecting the model for
control growth when looking at the lowest IC values, we also
looked at the breakdown of which model is the “worst” (least
parsimonious) for describing the data across the control mice; that
is, we look for models with the highest IC values. As shown in
Fig. 3c, d, the Allee model has the highest IC value in the majority
of mice (in 13 of 25 mice according to the AIC, and 14 of 25 mice
according to the BIC). Compare this to exponential growth, where
the IC is rarely the largest (this occurs in 6 of 25 mice using AIC
and 5 of 25 mice using BIC). Considering how often the
exponential is the most parsimonious option of the three (as
defined by having the lowest IC) and how rarely it is the least

Fig. 2 Best fit exponential, logistic, and Allee model for three representative mice. a Mouse 23 representing the case where the tumor
volume increases. b Mouse 11 representing the case where the tumor volume decreases. c Mouse 22 representing the case where the tumor
volume remains relatively stable.
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parsimonious (as defined by having the highest IC) we will
proceed by using an exponential growth term in the treatment
models. To assess the robustness, we also consider how our
predictions change if we used logistic growth instead.
While the above analysis was limited to three empirical non-

spatial models of control tumor growth, it can be readily extended
to include other models. Two interesting models to consider are
the surface and the von Bertalanffy equation, as they were both
developed to mimic the spatial growth of three dimensional
tumors using a single, non-spatial, ordinary differential equation.
The surface equation _V ¼ aVðV þ bÞ�1=3 can be used to describe
the change in the tumor volume V under the assumption that only
a thin layer of cells at the surface are capable of proliferating37,
whereas the von Bertalanffy equation _V ¼ aV2=3 � bV assumes
growth occurs at a rate proportional to the surface area, and also
accounts for a decrease in tumor volume due to cell death37,38.
Even though we lack the data to parameterize a spatial model,
these ODE models have the same number of parameters as the
logistic ODE, and therefore are logical extensions to include in our
family of control models. Interestingly, we found that if we
expanded our family of models to include these spatially-
motivated ODEs, both AIC and BIC still select exponential growth
as most parsimonious with the data (see Supplementary Fig. 1).

Insufficiency of volumetric data for treatment model selection
In “Modeling treatment data”, we proposed a family of six models
to describe the resistance of cetuximab in our xenograft data (see
Fig. 1): Model 1.1 with no resistance, Model 1.2 with pre-existing
resistance only, Model 2.1 with randomly-acquired resistance only,
Model 2.2 with randomly-acquired and pre-existing resistance,
Model 3.1 with drug-induced resistance only, and Model 3.2 with
drug-induced and pre-existing resistance. Assuming exponential
growth as justified in “Selecting a model: control data”, the fits of
the six treatment models to data for three representative mice
that exhibit different tumor growth dynamics are shown in Fig. 4.
The best-fit value of all parameters, across all mice and models, is
shown in Supplementary Fig. 3.

A visual inspection of the fits suggests that Model 1.1 (no
resistance) cannot adequately explain treatment response to
cetuximab. In order to quantitatively approach model selection so
as to determine which “member(s)” of our family of resistance
models most likely captures the mechanisms in the data, we
computed the AIC and BIC for each mouse and model (Fig. 5). This
analysis confirms that some form of resistance must be driving
treatment response to cetuximab, as Model 1.1 very rarely has the
lowest IC value (happens 2 of 29 times for AIC, and 4 of 29 times
for BIC), and very frequently has the highest IC value (happens 22
of 29 times for AIC, and 19 of 29 times for BIC). By a similar
argument, the IC values indicate that the resistance in the data
likely cannot be attributed to a combination of randomly acquired
and pre-existing resistance (Model 2.2). As indicated in Fig. 5,
Model 2.2 never has the lowest IC value, and occasionally has the
highest IC value (happens 4 of 29 times for AIC, and 9 of 29 times
for BIC). Therefore, this information theoretic analysis was able to
rule out several mechanistic explanations of cetuximab resistance,
but it is not sufficient to select the model whose mechanisms
most likely explain this resistance. Notably, the case of no
resistance, and the case of resistance being pre-existing and
randomly-acquired, are also ruled out if growth is assumed to be
logistic instead of exponential (see Supplementary Fig. 4).

Initial pre-existing resistance fraction facilitates treatment
model selection
Our analyses thus far assume that the only available data is the
time-course describing tumor volume in individual xenografts.
Advances in single-cell profiling technologies64 can now quantify
the initial fraction of cells with specific therapeutic resistance
mechanisms. While such analyses were not undertaken for the
xenograft data presented herein, our modeling framework could
be readily used to ask: does the inclusion of the initial resistance
fraction improve our model selection capabilities?
Before we explore this question in depth, we first consider

each model’s prediction regarding the initial resistance fraction.
Model 1.2 has a median resistance fraction of 53.01%, with a
mean of 57.18 ± 27.28%. Model 2.2 has a median resistance

Fig. 3 AIC and BIC comparisons across control models. a, b The number of mice for which each model has the lowest IC value (i.e., is the
most parsimonious model), with (a) using AIC and (b) using BIC. c, d The number of mice for which each model has the highest IC value (i.e., is
the least parsimonious model), with (c) using AIC and (d) using BIC. We have low confidence in our classification (blue) when the IC value
corresponding to the most parsimonious (or least parsimonious, for high IC) model varies by 5% or less from the other IC values. We have
medium confidence (red) when it varies by 5–10%, and high confidence (yellow-orange) when it varies by >10%.
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fraction of 25.55%, with a mean of 35.96 ± 28.80%. Model 3.2 has
a median initial resistance fraction of 10.48%, with a mean of
31.75 ± 38.06%. While our previous studies have identified
molecular mechanisms of cetuximab resistance expressed before
resistance develops in cetuximab sensitive HNSCC cell lines13, we
note that these proportions of initially resistant cells exceed
those of our previous studies, and seem large when considering
that resistance often results in a fitness disadvantage in the
absence of drug55,56. In this section, we further explore how the
value of the initial resistance fraction contributes to model fits.
Given that evidence in ref. 13 supports the presence of some pre-
existing resistant cells, herein we will only consider models that
include pre-existing resistance.

We will study the contribution of the initial resistance fraction to
model fits by determining the practical identifiability of this
parameter using the profile likelihood method. We consider Model
1.2 (pre-existing resistance only) and Model 3.2 (drug-induced
acquired plus pre-existing resistance), though not Model 2.2 as our
information theoretic analysis already concluded that the
combination of randomly acquired and pre-existing resistance is
a highly unlikely to explain cetuximab resistance in our xenograft
data. In 20 of 29 mice fit using Model 1.2, the profile likelihood
curves for the initial resistance fraction reveal this parameter to be
practically identifiable. The profile likelihood curve for Mouse 1 in
Fig. 6a is representative of these 20 mice. For Mouse 1, we observe
a clear optimal value for the initial resistance at r0frac � 0:55.

Fig. 5 AIC and BIC comparisons across treatment models when exponential growth is used. a, b The number of mice for which each model
has the lowest IC value (i.e., is the most parsimonious model), with (a) using AIC and (b) using BIC. c, d The number of mice for which each
model has the highest IC value (i.e., is the least parsimonious model), with (c) using AIC and (d) using BIC. Confidence in model selection is
also shown, as described in detail in Fig. 3.

Fig. 4 Best fit of six proposed resistance models to treatment data for three representative mice. a Mouse 13 representing the case where
the tumor volume increases in spite of treatment. b Mouse 23 representing the case where the tumor volume decreases during treatment.
c Mouse 24 representing the case where the tumor volume remains relatively stable during treatment.

S.D. Cárdenas et al.

7

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2022)    32 



Any significant deviation from this resistance fraction drastically
increases the cost function (that is, decreases the goodness-of-fit).
In this case, having the true value of the initial resistance fraction
could greatly inform the process of model selection. If the true
initial resistance fraction was r0frac ¼ 0:05, the cost function
increases more than three-fold. This in turn increases the IC
values in Eqs. (11) and (12), and significantly reduces the likelihood
of Model 1.2 having the lowest IC values. In other words, this
would provide strong evidence that pre-existing resistance alone
does not explain cetuximab resistance in the data.
Compare this to what happens in the same mouse fit using

Model 3.2 (pre-existing plus drug-induced resistance). The profile
likelihood curve for the same parameter is not practically
identifiable, as demonstrated in Fig. 6b by a shallow profile with
a one-sided minimum. This is not unique to Mouse 1 - the profile
likelihood curves for the initial resistance fraction in Model 3.2
reveal this parameter to be practically non-identifiable in 22 of 29
mice. Returning to our prior thought experiment, for Mouse 1 in
particular, if we had measured the initial resistance fraction to be
r0frac ¼ 0:05, we would have strong evidence that Model 3.2 should
be selected over Model 1.2. While the lack of practical
identifiability poses mathematical challenges, it does give Model
3.2 a lot more “flexibility” to conform to additional experimental
data without sacrificing goodness-of-fit.
Finally, it is important to note that incorporating such single-cell

data into our model does require representative sampling of the
entire cellular population, and having prior knowledge of a marker
of drug resistance. Even if this data were available, the addition of
the initial resistance fraction is not always sufficient to select a
model. Continuing to use Mouse 1 as an example, if we had
measured the true initial resistance fraction to be r0frac ¼ 0:55, both
Models 1.2 and 3.2 remain viable choices. Therefore we conclude
that while measuring the initial resistance fraction is an essential
step to understanding the mechanisms underlying cetuximab
resistance, it is not guaranteed to determine the mechanism of
resistance using our family of mathematical models.

Dose escalation study further facilitates treatment model
section
Thus far we have established that time-course volumetric data
combined with a measurement of the initial resistance fraction
may or may not be sufficient to deduce the underlying
mechanism of resistance using our family of models. Here, we
propose a final experiment that, combined with the other data,
would be sufficient to select a treatment model. In particular, we
propose a dose escalation study where we use the optimal
parameter set for each mouse to simulate tumor response to a
range of drug doses. We measure the fold reduction in the tumor

volume per mouse by comparing the initial tumor volume in each
mouse to its volume 2 weeks later, with one dose of cetuximab
given per week as in the experimental protocol. The median fold
reduction across all 29 mice, at each dose, is then computed (see
Fig. 7). As an example, a median fold reduction of 4 means the
median tumor volume is four times smaller post-treatment than it
was pre-treatment. Thus a higher median fold reduction
represents a more effective treatment.
We computationally experimented with different dose ranges

and time frames for this dose escalation study. We ended up
selecting a dosing range of 16–20 mg/kg, and found that weekly
dosing over 2 weeks allows us to distinguish the behavior of the
different models. Figure 7a shows the dose escalation results in
the case of no pre-existing resistance. Starting at a dose of 16 mg/
kg, simulations show a more significant fold reduction in median
tumor volume when resistance is randomly acquired (8.571
median fold reduction) than when resistance is drug-induced
(6.822 median fold reduction). The lower response in the drug-
induced case can be explained by the fact that the transition from
the sensitive to the resistant phenotype is directly promoted by
the drug itself. Thus higher drug doses drive more resistance
formation in the drug-induced case, though not in the randomly
acquired case.
Looking across doses, we also observe a noticeably different

change in the median volumetric fold-reduction as the dose is
escalated from 16mg/kg to 20 mg/kg. The average rate of change
in the randomly acquired case is 1.955, whereas the average rate
of change in the drug-induced case is only 1.143. This strongly
suggests that one way to distinguish between modes of acquired
resistance, at least in the absence of pre-existing resistance, is to
experimentally perform this dose escalation study.
Figure 7b shows the two plausible models in the case of pre-

existing resistance. Focusing on the dose of 16 mg/kg, simula-
tions show a more significant fold reduction in median tumor
volume when resistance can be induced by the drug. This occurs
because the initial resistance fraction required to fit the data
when the model does not include drug-induced resistance is
necessarily larger than the initial resistance fraction when there is
a secondary mechanism for creating resistant cells (in the case of
Model 3.2, the drug itself promotes the transition to resistance).
Therefore, Model 1.2 mice always have a larger initial resistance
fraction, and thus experience a smaller response to the drug over
the relatively short time period of 2 weeks. However we observe
a more significant change in the median fold reduction in the
case of drug-induced resistance as the dose is escalated from
16 mg/kg to 20 mg/kg. In particular, the average rate of change in
the drug-induced case is 1.309, whereas the average rate of
change in the case where all resistance is pre-existing is 0.749.

Fig. 6 Profile likelihood curves of the initial resistance fraction for a representative mouse, Mouse 1. a The resistance fraction in Model 1.2
is practically identifiable and places the optimal parameter at approximately 55%. b The resistance fraction in Model 3.2 is not practically
identifiable.
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Whether resistance is pre-existing or not, we see an approxi-
mately 1.7-fold difference in the median across models,
demonstrating that an experimental dose escalation study would
provide meaningful data in trying to elucidate the mechanisms
driving cetuximab resistance.

DISCUSSION
In this work, we introduced a family of six ordinary differential
equation models, with each model assuming a different under-
lying biological mechanism(s) driving cetuximab resistance in
patient-derived xenografts of head and neck squamous cell
carcinoma. Model selection techniques alone allowed us to
conclude that some form of resistance must be driving the
treatment response dynamics, and that this resistance was highly
unlikely to be explained by randomly acquired resistance
coupled with pre-existing resistance.
With four family members remaining to plausibly describe

cetuximab resistance, we next asked: what additional data would
be needed so that we can identify the model from the family that
is most parsimonious with the data? Through the use of profile
likelihood curves, we uncover that quantifying the initial fraction
of resistant cells in a tumor population improves the likelihood of
identifying the model within the family that is most parsimo-
nious with the data. Therefore, we hypothesize that integrating
single-cell data with these mathematical models can be used to
predict resistance mechanisms in vivo, building on foundational
work integrating these data into in vitro mathematical models of
drug resistance65. Even in absence of molecular profiling data
(though requiring an assumption on whether there are pre-
existing resistant cells or not), we find volumetric data from dose
escalation studies would enable our mathematical modeling
approach to distinguish between the various mechanisms
potentially causing cetuximab resistance.
The conclusions drawn in this work are dependent on the

family of models constructed. While we have demonstrated
some robustness in the results to the underlying growth term in
the absence of treatment, other assumptions and functional
forms for both tumor growth and drug effects could certainly be
considered. As future work, one option would be to expand the
family of models and repeating the analyses herein to determine
if a combination of time-course volumetric data at a single dose,
measurements of the initial resistance fraction, and dose
escalation data are sufficient experimental data to pinpoint
the mechanism and timing of resistance. This could include
analyzing the same models under the assumption that

resistance does not incur a fitness disadvantage57, and can also
include adding models to the family (both spatial and non-
spatial) that are more mechanistic in nature52. While growing
the number of models considered in the family is one approach
for future work, an alternative approach is to use model learning
techniques66–73, possibly informed by biological knowledge74.
Model learning provide tools for considering a much larger class
of mathematical models of cetuximab resistance in HNSCC, and
uses the available data to “learn” the underlying dynamical
system describing the data.
Beyond considering a larger family of models, in the future we

can also consider different approaches for identifying model
parameters. Herein, we approached fitting each mouse indepen-
dently, even though the mice are part of the same population.
Nonlinear mixed effects models provide a compromise between
fitting the average and fitting the individual, by incorporating
both fixed effects (population-level parameters) and random
effects (parameters that differ between individuals in the
population) in the regression problem75. Another option would
be to consider a nonparametric fitting methodology, for instance
using Bayesian inference. In this case, parameters are assumed to
be random variables with unknown probability (posterior)
distributions that quantify the likelihood of the parameter
assuming any value in the parameter space76. Given the
variability in the individual mice data, a Bayesian approach
would provide uncertainty quantification, and help understand
correlations between model parameters.
Understanding the mechanisms driving cetuximab resistance

is essential, as optimal therapeutic design is likely dependent
on the underlying mode(s) of resistance. For instance, work in
ref. 33 computationally demonstrated that tumor response to
the same drug dose and delivery schedule is qualitatively
impacted by the ability (or lack therefore) of a drug to induce
resistance. Therefore it is essential that any mathematical
model accurately capture the mechanism driving resistance if
that model is to be used to optimize drug dosing and the
delivery schedule. Although the data-driven approach in this
work did not allow the mechanism(s) driving cetuximab
resistance to be uncovered, it did lead to an experimental
design that we propose would provide the data needed to
elucidate the underlying resistance mechanisms. Understand-
ing the generality of these mechanisms to cetuximab resistance
in HNSCC and their broader applicablity to targeted therapeutic
resistance requires further evaluation in additional xenograft
models. Therefore, in future work, we will perform follow-up
studies to validate (and possibly refine) the proposed

Fig. 7 Dose escalation study of median reduction in tumor volume (relative to initial volume) after 2 weeks. Dose varies from 16 to 20mg/
kg. Growth is assumed to be exponential. a Plausible models involving no pre-existing resistance. b Plausible models including pre-existing
resistance.
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experimental design. This will enable us to draw conclusions
about the mechanisms that drive cetuximab resistance, which
in turn will inform optimal dosing strategies.
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All experimental data are publicly available at https://github.com/jgevertz/HNSCC-
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