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Abstract 
 
The paper describes a model-integrated approach for embedded software development that is based on 
domain-specific, multiple view models used in all phases of the development process. Models explicitly 
represent the embedded software and the environment it operates in, and capture the requirements and the 
design of the application, simultaneously. Models are descriptive, in the sense that they allow the formal 
analysis, verification and validation of the embedded system at design time. Models are also generative, in 
the sense that they carry enough information for automatically generating embedded systems using the 
techniques of program generators. Because of the widely varying nature of embedded systems, a single 
modeling language may not be suitable for all domains, thus modeling languages are often domain-specific. 
To decrease the cost of defining and integrating domain-specific modeling languages and corresponding 
analysis and synthesis tools, the model-integrated approach is applied in a metamodeling architecture, 
where formal models of domain-specific modeling languages – called metamodels – play a key role in 
customizing and connecting components of tool chains.   
 
The paper will discuss the principles and techniques of model-integrated embedded software development 
in detail, as well as the capabilities of the tools supporting the process. Examples in terms of real systems 
will be given that illustrate how the model-integrated approach addresses the physical nature, the assurance 
issues, and the dynamic structure of embedded software.  
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1. Introduction 
The development of software for embedded systems is difficult as these systems are part of a physical 
environment whose complex dynamics and timing requirements they have to adhere to. Embedded real-
time systems should produce not only correct outputs, but should produce them at the right time. 
Furthermore, a “reasonable” behavior is expected from these systems, even under fault scenarios, when 
hardware or software components fail. Conventional software development considers timing, reliability, 
robustness, power consumption as “non-functional” requirements, which are typically secondary to the 
logical (or functional) correctness of computations. In embedded software development logical correctness 
is only one aspect of the design; physical characteristics of computations are equally important hence they 
must be included in the design process. 
 
Unfortunately, current design and implementation strategies used in the practice do not provide enough 
support for this. Consequently, decisions in seemingly unrelated aspects of the design can impact the 
physical behavior of the resulting embedded computing systems unexpectedly. For example, an aircraft will 
handle rather differently if its fly-by-wire system works with 25Hz frame time instead of 80Hz. The 
increase in the length of the frame time may be the result of a thread allocation decision, for instance 
placing a highly utilized computing thread on a processor with a slow network connection. Such impact of 
design decisions is often not detected until it is too late —at system integration time, or, even worse, in 
operation.  
 
In this paper we describe an approach, called Model-Integrated Computing (MIC) [1], which is based on 
models and generation, and which provides a flexible framework to address essential needs of embedded 
software development. MIC fully adopts the model-based development paradigm: models are used not only 
to design and represent, but also to synthesize, analyze, integrate, test, and operate embedded systems. 
Models capture not only what the dynamics and the expected properties of the system are, but also what is 
assumed about the system’s environment.  
 
MIC introduces modeling languages that allow representing all relevant information in the form of models. 
We do not believe that a single modeling language is suitable for all embedded systems. Rather, embedded 
systems should be modeled using domain-specific modeling languages (DSML) that are tailored to the 
needs of the particular domain. To address the needs of defining and implementing DSMLs, MIC has a 
built-in extension mechanism: metamodeling, and the corresponding meta-generation.  Domain-specific 
modeling tools can be created using meta-programmable modeling environments, and the models created 
by those tools can be translated into other forms using meta-generation technology.  
 
The paper introduces the concepts of MIC through an example, then it discusses the modeling and 
metamodeling techniques and the supporting tools. Next, it shows how model-based generators could be 
implemented, and gives an example for the model-based development process. The paper concludes with 
the overview of related work and a discussion on research directions for the future.  

2. Overview of MIC 
To illustrate the concepts and techniques of MIC, we consider an example: the building of a high-
performance digital signal processing (HDSP) system. The term “high-performance” means that high I/O 
bandwidth and throughput requirements mandate the use of multiple signal processors configured in an 
application-specific hardware architecture. There are a number of highly relevant application areas for 
HDSP systems, e.g. high-frequency vibration analysis of mechanical systems [45], real-time image 
processing [44], distributed sensor networks [46], and adaptive target acquisition and tracking systems [47], 
which require high throughput, and high degree of flexibility in the architecture. If the HDSP system is not 
a point design but need to serve a category of applications, an additional requirement is emerging: the 
system has to be configurable by engineers who understand the HDSP application domain in terms of the 
“language” of signal processing and hardware architecture, without the need to deal with low-level 
hardware and software details.  



 
A specific example we mention here is a simplified version of an adaptive automatic target recognition 
(ATR) system, reported in [47]. The ATR system has to execute significantly different signal processing 
algorithms in different operational modes: target acquisition, long-range tracking, mid-range tracking, 
short-range tracking and aim-point selection. Performance requirements, changing power constraints and 
difference in the algorithms require that not only the signal flow, but the hardware architecture, too, is 
changing between the operational states. This means that the adaptive ATR needs to be implemented on a 
configurable HDSP platform, where configurability of the hardware architecture is supported by FPGA 
components [48]. For the designers, the adaptive ATR represents five different applications with different 
hardware and software architecture.  
 
The design of any application on the configurable HDSP platform requires the design of the hardware and 
software configuration. These two aspects of the design are obviously interdependent due to performance 
requirements: one cannot design and build one independently from the other. This implies that integration 
of the two aspects should be a concern of the designer from early on in the process. Furthermore, an HDSP 
application is designed for a specific application environment. The environment imposes explicit 
requirements on the design (e.g. expected I/O bandwidth, throughput, data rates, power constraints.), 
against which the design must be validated. To summarize, the designer must carefully consider and 
balance the selected two aspects of the design, and create the final application accordingly.  
 
In MIC, the key vehicle to facilitate the design process is the model. A model is a formal structure 
representing selected aspects of the engineering artifact and its environment. Models are suitable for formal 
reasoning about the properties of the system, and for deriving and generating a significant portion of the 
implementation. In the configurable HDSP platform example, the models encompass the following aspects: 

• The hardware architecture aspect: represents the hardware components used (e.g. DSP-s, network 
switches, communication links), describes their structure and characterizes their properties (e.g. 
processing power, communication link throughput) on that level of abstraction, which is suitable 
for verifying the design and configuring the application. 

• The signal-flow aspect: represents the software components of the application (DSP algorithm 
blocks, user interface components) the configurable components of run-time platform components 
(I/O channels, scheduler), describes their structure and characterizes their properties (Worst-Case 
Execution Time (WCET), IT latency, etc.) 

• The environment aspect: represents the assumptions about the system’s environment (e.g. 
sampling frequency required on each input channels, the number and types of targets expected, 
etc.)  

 
When MIC is used to build applications on a configurable HDSP platform, modeling languages are 
designed first that allow capturing the models described above. Loosely speaking, a modeling language 
consists of a collection of concepts (e.g. DSP processor, DSP algorithm block, etc.) with attributes (e.g. 
WCET), a set of composition rules for building complex models (e.g. how to form DSP signal flow models 
from elementary processing blocks), a concrete syntax (textual or visual), and semantics that captures what 
a model means. For the HDSP example, we have defined a number of “small” modeling languages, with 
visual syntax that allowed constructing systems of this category [55]. Figure 1 shows example models built 
using these languages. On the top window, the signal flow model is shown as a collection of signal 
processing blocks and the data flows among them. On the bottom left, the hardware architecture model is 
shown, as hardware nodes (with communication ports) and hardware connection among them.   On the 
bottom right, the model shows another aspect of the design: the allocation of a (software) signal processing 
block to a hardware resource: a node. Models of the hardware architecture are defined in terms of networks 
of processors with communication ports; signal flow models are defined in the form of block-oriented 
signal-flow diagrams, and models for software/hardware allocation in the form of diagrams that mix objects 
from the two previous models.  



  
Figure 1: Example HDSP models 

The signal-flow aspect and hardware architecture aspect of the design cannot be considered independently. 
The aspects interact, and design decisions made in one aspect have a significant impact on the other 
because of crosscutting design constraints. For example, latency between the input from the image sensors 
and an update in the target track depends on the selected processing algorithms, the structure of the signal 
flow, its allocation to a node of the hardware architecture and the characteristics of the processors and 
communication links involved. The overall performance of the design depends on the properties of the 
software: algorithms and architecture, the hardware: processors, networks, and architecture, and the 
assignment: the mapping of software components to hardware resources. The final, overall properties of the 
design emerge from the properties of and the interactions among the three aspects. Therefore, it is a key 
requirement for any complex modeling language that it must allow modeling from multiple, interacting 
points of view.  
 
Models not only represent the system under design and its environment, but also used to predict 
characteristics of the design. In the HDSP application, the models can be used to configure a functional 
simulator (like Matlab’s Simulink [3]) to verify the signal processing algorithms, or a performance 
simulator (like SPN [4]) to predict expected performance. However, the simulator’s modeling language 
may be syntactically and/or semantically different from the one used in the domain modeling. The solution 
requires the translation of models between two different domains: the domain of the application-specific 
design models (e.g. HDSP) and the domain of the simulators (e.g. Simulink). Model translation is a 
common, fundamental ingredient of the model-based development process. Model translators implement 
syntactic and semantic mapping between domains – if such a mapping exists. Implementation of model 
translators is an important technology challenge in MIC. 
 
Using models for analysis helps the designer verify that the product will work as expected —provided the 
models of the system are correctly translated into the analysis models. However, models can also be used in 
system synthesis; in the creation of the fully specified final, eexecutable model of the product. The role of 
synthesis tools in the design process is the full or partial automation of selected phases of the design. For 
example, in the HDSP domain, the selection of signal flow components among alternative implementations 
and their allocation to hardware resources can be supported by a synthesis tool, which uses performance, 
resource and composability constraints in the search process [49].  
 



After the application models are fully specified and verified, configurable components of the HDSP 
platform need to be configured. This step includes tasks such as generation of glue code for connecting the 
selected software components, generation of executable code from software models  (like Matlab’s Real-
time Workshop) generation of structural VHDL from the hardware models specifying the hardware 
architecture, and generation of scheduling table for the static scheduler.  Generators are model translators: 
they translate models into components of execution platforms: programming languages, executable models, 
and data structures used by components of the run-time environment.   
 
The evolution and maintenance of systems built using the MIC approach is centered on models. As the bulk 
of the system is generated automatically from models (that are also analyzed and verified using design 
tools), one has to change the models and re-verify and re-generate the system. This approach works very 
well in the domain defined by the DSMLs used during the design. However, when the modeling language 
itself has to undergo changes (e.g. new concepts and/or new semantics have to be introduced), then the 
migration of existing models becomes a requirement.  
 
To summarize, the model-integrated development of systems includes: 

• Modeling of the system and its environment, from multiple, interacting aspects 
• Automated synthesis of design models to accelerate the modeling process 
• Analysis of the system using analysis/simulation tools, which may necessitate model 

transformations 
• Generation of the executable system using generator tools (that map models into implementation 

domain artifacts). 
Figure 2 below gives a high-level view of this process.  
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Figure 2: Notional diagram for the Model-Integrated development process 

3. Modeling 
Model-based system development uses DSMLs that can be textual or visual. “Programmers” of model-
based systems are primarily modelers, whose domain knowledge allows them to construct models of (1) the 
application to be built and (2) the environment providing its context. These models are analyzed to verify 
required properties of the design, and used for generating components of the final application. 
 
3.1 Domain-Specific Modeling Languages 
 



Domain-specific Modeling Languages (DSML) are declarative, use domain-specific symbols, and have a 
restricted yet precise semantics. In order to define a DSML, one has to specify its (1) concrete syntax (C), 
(2) abstract syntax (A), and (3) semantic domain (S) and semantic and syntactic mappings (MS, and MC ) 
[12]. The concrete syntax defines the specific (textual or graphical) notation used to express models, which 
may be graphical, textual or mixed. The abstract syntax defines the concepts, relationships, and integrity 
constraints available in the language. Thus, the abstract syntax determines all the (syntactically) correct 
“sentences” (in our case: models) that can be built. (It is important to note that the abstract syntax includes 
semantic elements as well. The integrity constraints, which define well-formedness rules for the models, 
are frequently called “static semantics”.) The S semantic domain is usually defined by means of some 
mathematical formalism in terms of which the meaning of the models is explained. The MC : A→C 
mapping assigns syntactic constructs (graphical, textual or both) to the elements of the abstract syntax. The 
MS :A→S semantic mapping relates syntactic concepts to those of the semantic domain.  
 
Formally, a modeling language is a five-tuple of concrete syntax (C), abstract syntax (A), semantic domain 
(S) and semantic and syntactic mappings (MS, and MC ): 

L = < C, A, S, MS, MC> 
Any DSML, which is to be used in the development process of embedded systems, requires the precise 
specification of all five components of the language definition. In addition, rapid composition of DSMLs 
requires modularity, compositionality and tool support in the language definition itself; otherwise the high 
cost would prevent us to take advantage of domain-specific languages. Consequently, the languages, 
methods and tools we use for defining and composing DSMLs are the fundamental issues in model-based 
design. Since such languages are used for defining modeling languages, we call them meta-languages and 
the concrete, formal specifications of DSMLs metamodels.  

3.1.1 Modeling Abstract Syntax 
The specification of the abstract syntax of DSMLs requires a meta-language that can express concepts, 
relationships, and integrity constraints. In MIC, we adopted the UML class diagrams [13] and the Object 
Constraint Language (OCL) [15] as meta-language. This choice was made for the following practical 
reasons: (a) UML/OCL is an OMG standard that enjoys widespread use in the industry, (b) tools supporting 
UML are widely available, and (c) familiarity with UML class diagrams helps to mitigate the conceptual 
difficulty of the metamodeling language architecture. It is important to note that adopting UML for 
metamodeling does not imply any commitment to use UML as a domain modeling language, though it can 
certainly be used where appropriate. 
 
To give an example, consider the signal-flow aspect of the HDSP application. Such domain can be modeled 
with hierarchical signal-flow diagrams (HSFD), widely used in signal processing, control engineering, and 
simulation. Informally, the abstract syntax of the HSFD can be described as follows: 

1. HSFD models consist of processing blocks, and directed edges representing signal flows.  
2. Each processing block has a set of input ports and a set of output ports that it uses for obtaining 

data to be processed, and sending the result of processing to downstream blocks.  
3. Processing blocks can be either primitives or compounds. Primitive processing blocks are 

associated with an algorithm, compound processing blocks are HSFD models composed of 
primitive blocks and/or compound blocks, and have their own input and output ports.  

4. Signal flow edges connect the ports of processing blocks as follows: an input port of a block can 
be connected to an input port of an immediate child block, an output port of a child block can be 
connected to the input port of a child block or the output port of the block. The direction of the 
dataflow is indicated by the direction of the connection.  

 
The UML diagram on Figure 3 depicts the metamodel for the software aspect (SW) of the HSFD language. 
The SW class: the top-level construct in the language1 represents the container of models of type Block. 
Blocks contain Ports that can be either InputPorts or OutputPorts. Blocks are subclassed into 
CompoundBlocks or PrimitiveBlocks. Through inheritance, they can both contain ports. 

                                                 
1 Note that the top-level model is equivalent to the “sentence” (S) non-terminal in textual languages represented using, 

for instance, a context-free grammar.  



Compounds can also contain other blocks: that can be either compounds or primitives. Furthermore, 
compounds also contain Dataflow objects, which associate ports to ports. The well-formedness rules are 
expressed by the OCL expressions. On the right side, a few OCL constraints are presented illustrating 
correctness rules (that cannot be expressed with the UML class diagram only).   
 

 

// if an OutputPort is the source of a connection
// it has to be an OutputPort of a contained Block
// context: OutputPorts:

connectedObjects("dst")->
forAll(y | self.parent.parent = y.parent)

// cannot directly connect Ports, at least one of them needs
// to be a port of a contained Block
// context: Dataflow connections:

self.src.parent = self.dst.parent
implies self.src.parent <> self.parent

// ensures datatype consistency
// context: Dataflow connections:

self.src.datatype = self.dst.datatype

 

Figure 3: HSFD Metamodel with OCL constraints 

It is clear that the UML/OCL meta-language is another example for DSMLs. As such, it also needs to be 
specified precisely, otherwise ambiguities in its specification would propagate to the DSMLs. In UML, the 
abstract syntax of object diagrams is defined with the UML/OCL meta-language, following a process called 
meta-circular specification. Accordingly, the specification of the abstract syntax of UML class diagrams is 
the meta-metamodel. In the current version of UML, the meta-circular specification is not complete (e.g. 
OCL is an “external” language.) These inconsistencies will be resolved in the expected UML 2 release 
[50]. 

3.1.2 Modeling Concrete Syntax and Syntactic Mapping 
The concrete syntax might be considered as a mapping of the abstract syntax onto a specific domain of 
rendering. While the purpose of the abstract syntax is to define the data structures that can represent our 
models, the concrete syntax captures how they can be rendered for human interaction or for machine-to-
machine communication.  In Figure 4 we show two common examples for assigning concrete syntax to 
HSFD.  A simple block diagram notation is used to represent a simple HSFD model in Figure 4 (a). 
Concepts and relations defined in the abstract syntax are assigned to visual constructs: blocks, lines, 
connections and alphanumeric symbols. This assignment can be done formally using e.g. UML class 
diagram notation (see e.g. [52]) or informally.  A frequently used alternative for concrete syntax is XML 
[51]. Figure 4 (b) shows the same HSFD model in XML format. The graphical form of the model is related 
to the model in XML form as follows. From the common metamodel one can derive the visual grammar of 
a modeling language, as well as the schema (DTD, in XML parlance) for the XML file. Every element in 
the graphical language will then correspond to an element in the XML file. For instance, the IP0 input port 
in the graphical notation corresponds to the element <inputport name=IP0> in the XML file.  
 



 <compound name=RootCC> 
  <inputports> 
     <inputport name=IP0> 
  </inputports> 
  <outputports> 
    <outputport name=OP0> 
  </outputports> 
  <blocks> 
    <block name=CC_1> 
      .... 
    </block> 
    <block  name=CC_2> 
      ... 
    </block> 
  </blocks> 
  <dataflows> 
    ... 
  </dataflows> 
</compound> 
  

Figure 4: (a) Graphical syntax for HFSD  (b) XML syntax for HSFD 

Making the distinction between the concrete and abstract syntax has a profound impact on the technology 
of model building: editing and manipulation. The modeler interacts with the concrete syntax: creates and 
modifies structures using the “primitive” concepts of the concrete syntax. If the DSML is graphical, then 
the modeler uses direct manipulation on the graphical objects. However, these graphical objects are just a 
rendering of the underlying objects of the abstract syntax, and thus the effects of changes on the graphical 
objects shall result in changes on the underlying objects. We argue that DSMLs, especially if they are 
graphical, should be accompanied with appropriate tools to support these manipulations, such that direct 
manipulation results in immediate changes in the structure and properties of underlying objects. 

3.1.3. Modeling Semantic Domain and Semantic Mapping 
The semantic domain and semantic mapping defines the semantics of a DSML. The role of semantics is to 
describe the properties (meaning) of models that we want to create using the modeling language.  
Naturally, models might have different interesting properties; therefore DSMLs might have different 
semantics associated with them. For example, structural and behavioral semantics are frequently 
associated with DSMLs. The structural semantics of a modeling language describes the meaning of the 
models in terms of their composition: the possible configuration of components and relationships among 
them. Accordingly, the structural semantics can be formally represented by set-relational mathematics. The 
behavioral semantics describes the evolution of the state of the modeled artifact along some time model. 
Hence, behavioral semantics is formally modeled by mathematical structures representing some form of 
dynamics, such as Finite State Machines (FSM) [37] or Hybrid Systems [53].  
 
Although specification of semantics is commonly done informally using English text (see e.g. the 
specification of UML 1.3 [13], the desirable solution is explicit, formal specification. There are two 
frequently used methods for specifying semantics: the metamodeling approach and the translational 
approach.  
• In the metamodeling approach (see e.g. [40]), the semantics is defined by a meta-language that already 

has a well-defined semantics. For example, the UML/OCL meta-language that we use for defining the 
abstract syntax of a DSML has a structural meaning: it describes the possible components and structure 
of valid, syntactically correct domain models. The semantics of this meta-language can be represented 
by set theory, i.e. by using a formal language, which enables the precise definition of sets and relations 
on sets. Candidates for such languages are Z [41] or algebraic specification languages like Larch [42]. 
By developing the formal semantics for UML class diagrams and OCL - let’s say in Z - the metamodel 



of DSMLs specifies not only their abstract syntax, but their structural semantics2 as well. An early 
example for this direction is Bourdeau and Cheng’s work on formal semantics of object diagrams [43].  

• The translational approach specifies semantics via specifying the mapping between a DSML and 
another modeling language will well-defined semantics. For example, we may want to adopt a 
synchronous dataflow (SDF) behavioral semantics as defined in [23] for HSFD. This can be 
accomplished by defining the mapping between HSFD and SDF.   

 
Although, we can assign different semantics (such as structural and behavioral) to the same abstract syntax, 
we need to be aware that they are not independent. Formulation of the well-formedness rules in the abstract 
syntax requires a thorough understanding of the S semantic domain so as to ensure that the semantic 
mapping of each well-formed model leads to a consistent semantic model. (This strong interrelation is the 
reason of considering well-formedness rules as “static semantics”.)  For example, if HSFD has synchronous 
dataflow (SDF) semantics as defined in [23], one of the well-formedness rules must prohibit the connection 
of two different output ports to the same input port (the constraint expression is in OCL): 
 

Self.InputPorts()→forAll(ipip.src()→forAll(x1,x2x1=x2)) 
 
However, if we use for HSFD dynamic dataflow (DDF) semantics [23], the same constraint may be 
omitted. 
 
In our experience, DSMLs that are designed for modeling real-life embedded systems tend to become 
complex. In these domains, crucial requirements for robust, domain-specific modeling include careful 
formulation of metamodels, keeping them consistent with the associated semantic domains, and checking 
whether the created models are well-formed. 
 
3.2 Composition of metamodels and models 
 
One justification for using the model-based approach to system development is that models offer better 
ways to manage complexity, than currently used procedural or object-oriented languages. Composition in 
model-based design appears on two levels (1) composition of DSMLs by means of metamodel composition 
and (2) composition of models in the context of specific DSMLs. In this section we discuss the composition 
of domain-specific modeling languages and the composition of models. 

3.2.1 Metamodel Composition  

Compositional construction of DSMLs requires the Ln= L1  L2 … Lk composition of metamodels 
from component DSMLs. While the composition of orthogonal (independent) sub-languages is a simple 
task, construction of DSMLs from non-orthogonal sub-languages is a complex problem. Non-orthogonality 
means that component DSMLs share concepts and well formed-ness rules span across the individual 
modeling aspects.  
 
Composition of  DSMLs from sub-languages is particularly important in embedded systems, which 
frequently require many modeling aspects. Since the current version of our metamodeling language bases 
UML and OCL does not support modular composition of metamodels3 we introduced new facilities in our 
metamodeling environment, which leave the component metamodels intact and creates metamodels that are 
further composable [19]. The composition is accomplished by using three new operators for combining 
metamodels (see Table 1). Two of these operators are a specialization of the inheritance relationship of 
UML. The principle here is that that language designer specifies metamodels, and then composes and 
extends them to create new metamodels using these operators. The operators allow specific composition 
operations on the (read-only) base classes to derive new classes. The first operator: “Equivalence” 
asserts that two classes (in different class diagrams) are to be considered identical, and in the composed 
metamodel they are merged. The second operator: “Implementation Inheritance” asserts that the 
derived classes will inherit the attributes of the base class and all those associations where the base class 
                                                 
2 The condition for this statement is that the semantics of the meta-language is compositional. 
3 The upcoming version of UML 2 is expected to include explicit support for metamodel composition 



plays the role of a container.  The third operator: “Interface Inheritance” states that the derived 
classes will inherit only those associations where the parent class is not a container4. Application of these 
operators generates a new metamodel, which conforms to the underlying semantics of UML. 
Decomposition of the UML inheritance operation allows finer control over metamodel composition (details 
are discussed in [19]).  
 
Unfortunately, metamodel composition is not complete by executing the composition operators. If the 
component metamodels are not orthogonal, it is possible that the resulting metamodel is not consistent, 
which means that conflicting well-formedness rules are created during the composition process. This means 
that the metamodeling toolset needs to be extended with a validation tool, which checks the consistency of 
the well-formedness rules.  
 

` 

Child inherits all associations except  
containment associations where parent  
functions as container.  

Interface  
Inheritance 

Child inherits all of the parent’s attributes  
and those containment associations where  
parent functions as container. 

Implementation 
Inheritance 

Complete equivalence of two classes  
Equivalence 

Informal semantics Symbol Operator 

 
Table 1: Metamodel composition operators 

Figure 5 illustrates how the metamodel composition can be used to compose a HSFD modeling language 
from a (non-hierarchical) signal flow language and the abstract definition of hierarchy. The upper left 
diagram defines a signal flow modeling language, which has Diagrams that contain Operators (but 
the diagrams cannot contain other diagrams). The upper right metamodel defines a language with 
LeafBlocks and Containers, the latter containing leafs and other containers. The diagram at the 
bottom shows a composed metamodel, which introduces CompoundBlocks and PrimitiveBlocks. 
A compound is a Container (from the definition of hierarchy) but it is also a diagram. Note that for the 
latter the implementation inheritance operator is used to carry over everything that is contained within the 
diagram. A primitive is a Leafblock (from the hierarchy) but it is also an Operator (from the signal 
flow). The resulting, composed meta-model allows compounds containing other compounds and primitives, 
thus it defines a fully hierarchical modeling language.  
 
Note that in this example, the semantics of models did not change: everything is still a signal flow diagram; 
we merely allowed the arbitrary hierarchical nesting of diagrams. The reason for this is that the hierarchy is 
an abstract structuring principle and does not have a run-time semantics on its own. When models are 
assigned semantics through translation into a run-time environment (as discussed below), the hierarchy is 
“compiled away”, and we execute a flat signal flow graph, with homogeneous components and behavior. 
This is in contrast with the next example.  

                                                 
4 Note that the composition of the two (partial) inheritance operator yields the same result as the original inheritance 

operator of UML.  



  
Figure 5: Metamodel composition: Signal flow + Hierarchy 

 
Figure 6 shows another example for the composition of metamodels. The metamodel in the upper part 
defines a “SignalFlow” modeling language (essentially the same as the HSFD language defined above). 
The metamodel on the lower left defines a Finite State Machine (FSM) modeling language, consisting of 
states and transitions. The lower right metamodel defines a composition of the two: it introduces a new type 
of model: FSMNode, which is a new kind of Primitive that contains a finite state machine specifying 
its implementation (but otherwise it works just like a Primitive, has input and output signals, etc). This 
is expressed by the (unrestricted) inheritance between Primitive and FSMNode. However, we do not 
want a State to contain an FSMNode. This is expressed by the implementation inheritance between 
State and FSMNode. Furthermore, we want to make selected InputSignals and OutputSignals 
of any FSMNode to be mapped to certain States it contains using connections. (This could mean, for 
example, that the data values associated with those signals are accessible from the implementation 
associated with the given State.) This is expressed by the new SignalMap association class allowing 
the connecting of FSMNodes to Signals.  
 
Note that, in this example, metamodel composition has a profound impact on semantics. The dynamic 
semantics of signal flow blocks and finite state machines is different. When we introduce the FSMNode as 
a variation of the Primitive concept, we —implicitly— allow (compound) models that contain both 
FSMs and signal flow blocks: primitives and compounds.  The two kinds of blocks follow different models 
of computation, and their composition requires the precise specification of semantics for the composed 
model. The paper [56] describes a framework for comparing and [57] shows examples how to compose 
models with different semantics.  
 



  
Figure 6: Metamodel composition: Signal flow and Finite State Machine models 

Up to this point we have discussed the composition of DSMLs from the point of view of their abstract 
syntax. To derive an integrated semantics for the composed modeling language is a complex problem, 
which requires careful analysis. In simpler cases, for example composing a modeling language for 
Hierarchical Signal Flow Diagrams, the semantic domain describing behavioral semantics does not change.  
Therefore semantics can be defined by the straightforward application of the translational approach. 
However, if we intend to compose modeling language for Finite State Machines (FSM) and continuous 
dynamics, the integrated behavioral semantics leads to the theory hybrid systems [53], with qualitatively 
different characteristics from its sub-languages.  
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Figure 7: Abstraction in two hierarchies: inheritance and containment 

3.2.2 Model Composition 
Composition of models in a DSML is an essential task, and thus a number of techniques must be made 
available for the modeler. The abstract syntax of a DSML defines what composition techniques are 
available in the language. However, these composition techniques are always specific to that language, so it 



is very hard to make general statements about composition. On the other hand, there are a number of 
techniques that are relevant across many application domains. 
 
1. Abstraction is arguably the most powerful technique in modeling. Here, we define it as the capability 

for representing systems on different levels of detail, simultaneously. A DSML should allow creating 
such models, but also their seamless vertical composition: i.e. a higher-level, more abstract model 
should always be compatible with a lower-level, less abstract model, and substituting a lower-level 
model with a higher-level one must be allowed. The most common way to support abstraction is 
hierarchy: both in the part-whole and general-special sense. Thus, models built using the abstraction 
technique are usually organized into two, distinct trees: one tree for the part-whole hierarchy, and 
another one for type hierarchy. See Figure 7.  

2. Modularization is an implementation technique, which helps not only in the construction, but also in 
supporting abstraction in the practice. To model a complex system, one needs to break it down into 
self-consistent entities: modules, and models expressed in a DSML should form modules and should 
be composable. Composability means that the composition of two or more modules should also be a 
module itself. In the HSDF example, the modules are the processing blocks, and compound blocks can 
contain primitive blocks or other compound blocks. Note that a compound block also serves as the 
vehicle for abstraction: if it is considered as a “black-box” it hides the details of its internal 
implementation, thus providing an actual implementation for abstraction. 

3. Interfaces and ported components (a.k.a. module interconnection language) extend the simple part-
whole hierarchy concept with modules that have distinguished components for connecting them to 
other modules. Composition through connecting ports of objects carries a domain-specific semantics. 
In the HSFD example we have used it to represent dataflow streams, but other semantics are also 
possible. For instance, in a DSML modeling biochemical processes on the cellular level the “ports” 
and “flows” may represent “receptacles” and “chemical interactions” among processes.  

4. Multiple aspects allow controlling the complexity by restricting the information presented to (and 
edited by) the modeler. Conceptually, it is the same technique known from the field of databases: one 
can define specific views on the data in order to reduce what is presented and processed. Note that the 
same approach can be used in two different modes: at model creation time the modeler can edit the 
models from different aspects, while at model viewing or interpretation time the models can be 
“processed” from different aspects. Having support for multiple aspects in a modeling environment 
necessitates sophisticated mechanisms for view and consistency control, as the aspects can be 
dependent on each other and consistency across aspects can be maintained.  

5. References reduce complexity by allowing linkage across levels and sub-trees of a part-whole 
hierarchy. Without references, using only the part-whole and ported objects techniques it is very hard 
to model non-local interactions across components that are located far away in the hierarchy tree. 
Without references the modeler is forced to introduce extra ports on objects, to replicate them in the 
tree up to the level first common ancestor object, and to establish all required intermediate 
connections. With references, the solution is trivial: the reference cuts across the tree and establishes a 
direct link between two, distant objects. See Figure 8. Although references provide a powerful 
technique, some caution is advised; when the target of the reference is removed, the reference itself 
becomes invalid.  
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Figure 8: The concept of reference 

These modeling techniques support well various engineering domains in practice. While most of them can 
be defined in the abstract, the multiple aspect modeling has a very concrete grounding in systems 
engineering. The art and science of systems engineering is perhaps best defined as the engineering of cross-
cutting concerns in large-scale systems. This is precisely what multiple-aspect modeling addresses: each 
aspect describes the system from the viewpoint of a particular concern (in systems engineering: a 
discipline), and the key issue is how these aspects interact with each other.  
 
Note that the model composition techniques correspond to specific idioms used in the metamodels. As the 
metamodel defines the modeling language, if a metamodel instantiates a specific idiom for composition, the 
modeling language defined will support that composition technique. In the table below we indicate the 
corresponding metamodel construct that enables the specific technique.  
 

Technique Metamodel idiom 
Inheritance (Nothing special, enabled by default) Abstraction 
Part-whole Containment association between classes 

Modularization/Composability (Nothing special, enabled by default) 
Interfaces and ports <<port>> stereotype for a class 
Multiple aspects Extra classes with <<aspect>> stereotype and 

containment within an <<aspect>> class. 
References <<reference>> stereotype for a class  

Table 2: Model composition techniques and their metamodel idioms 

One example illustrating the power and necessity of multiple-aspect modeling comes from previous work 
done on the International Space Station program [39]. The task was to build a modeling and analysis 
environment for fault detection, isolation, and recovery (FDIR). Models had to be created that captured the 
behavior of the system under normal operation and in the presence of faults. The system was designed by a 
large number of engineers, working on different subsystems and in different disciplines. There were four 
primary disciplines: electrical, hydraulic, information, and pneumatic, and many components had to be 
considered from multiple disciplines. Faults in components propagated in the system not only to other 
components but also to other disciplines, e.g. an electrical system fault leading to a breakdown in the 
hydraulic system. Using the multiple aspect technique, the modeling task could be organized as follows: 
each discipline was mapped into an aspect, and a further aspect was added where cross-discipline 
interactions were modeled. The various aspects were related and linked (through a shared, underlying data 
structure), and model changes in one aspect were automatically propagated to other aspects. While model 
creation and editing was done on a per-aspect basis (often by domain engineers), the analysis was 
performed on the integrated models, where all the interactions were fully traceable. To summarize, the 



multiple aspect modeling technique offers not only a technique for managing model complexity through 
view control, but it also explicitly supports modeling activities that cut across domains.  

3.3 Tools for Domain-Specific Modeling 

The core ingredient in a model-based system development process is the DSML. However, it is typically 
very expensive to develop a new DSML for every application domain. The expense stems from many 
factors, including the cost of defining a new language, the cost of training the modelers to use it, and the 
cost of the tools that support the language. Obviously, these costs can be reduced in different ways: for 
instance, if the modelers are already familiar with the concepts of the language because they are experts in 
the engineering domain, or if the language definition and tool development can be made simpler and more 
effective. This second aspect could be best addressed by a technique, which allows (relatively) easy 
language definition and tool development: metamodeling and meta-programmability.  
 
Metamodeling is the process of defining a domain-specific modeling language. Note that the idea is not 
unlike how programming languages are created: when a language is designed its concrete and abstract 
syntax and semantics is developed and precisely documented. Metamodeling is the same activity, which 
results in a DSML.  
 
We argue that metamodeling should be supported by tools that produce new, domain-specific tools to be 
used by the DSML modeler. One such specific tool could be a meta-programmable modeling tool, which is 
“programmed” via explicitly represented metamodels. See Figure 9 for an illustration of this process. The 
definer of the DSML, i.e. the metamodeler, creates metamodels: descriptions of the syntax and semantics of 
the DSML, and these metamodels are then employed in the configuration process. One crucial observation 
here is that the same meta-programmable modeling tool can be used to create the metamodels themselves: 
after all, the language of metamodels is just another DSML.  
 
The semantics of a metamodel is defined as the mapping between the abstract syntax of the domain models 
and some model of computation. There are at least two types of “computation” that are influenced by the 
metamodel: (1) the computations performed during model editing and (2) model translation. Model editing 
takes place when the domain models are created and modified, while model translation occurs when 
domain models are transformed into lower-level executable models. The definition of semantics applies in 
both cases: the metamodel controls the lower-level model of computation.  
 
Formally, a metamodel can be assigned an interpretation in two ways: 

1. The static semantics of a metamodel defines the well-formedness and static correctness rules of 
domain models. This means that there exists a decision procedure, which tells whether a domain 
model is correct with respect to the metamodel or not.  

2. The dynamic semantics of a metamodel defines how to interpret a domain model, i.e. what is the 
semantic mapping between the abstract syntax of a domain model (also captured in the 
metamodel) and some model of computation.  

 
One can actualize this interpretation of a metamodel as follows: 

1. A meta-programmable, generic modeling environment can be “programmed” by a metamodel, 
such that the environment supports and only allows the creation of models that comply with the 
static semantics of the modeling language, as prescribed by the metamodel.  

2. A meta-programmable translator framework can be “programmed” by a metamodel such that the 
instances of the framework: the translators are capable of mapping (well-formed) domain models 
into models of computation, supported by some run-time system.  

Figure 9 illustrates the steps of this process.  
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Figure 9: Connecting metamodeling and domain modeling 

The technique of generating modeling environments and model interpretation/translation tools from 
metamodels offers a powerful approach to building customized, domain-specific problem solving 
environments. There is an economic argument for using this approach: instead of a point solution, one can 
create a product-line solution by developing first the tools to produce the products, and the cost of the 
initial tool development can be amortized over all the products in the product-line. Naturally, the key 
concern here is how to develop the meta-programmable tools: modeling environments and translator 
frameworks that can be used in different product lines.  
 
A meta-programmable modeling environment can be architected as a componentized system, with a 
general-purpose editing engine, and separate viewer-controller GUI, and a configurable persistence engine. 
Figure 10 below shows the architecture of such an example environment: Generic Modeling Environment 
(GME). GME is a direct-manipulation editor that allows the modeler to visually manipulate underlying 
model data structures. 
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Figure 10: GME Architecture  



In GME, almost all components are configured by the metamodels. For example, the metamodels 
determine: 

• In the “Storage Interface”, the database schema to be used in the persistence engine, 
• In the “Editor Core”, the legal editing operations on the domain models: composition, attribute 

values, etc., and  
• In the “Graphical User Interface”, the visualization and the (legal) user interaction techniques 

used when editing the models.  
To support flexibility and to provide reusable software architecture the metamodels are represented as static 
data structures, which govern the behavior of the individual components. The components are “generic”, 
but during their operation they “consult” the in-memory, metamodel data structures and behave 
accordingly. For instance, the persistence engine is using a single schema, with high-level concepts like 
“Model” (container), “Connection” (association), “Atom” (primitive entity), “Set” (a group of specific 
objects within a container), “Reference” (a generalized pointer to another object), and “Attribute” 
(property). However, each instance of these objects is tagged with a “type tag”, which relates that object to 
a metamodel element. The tags are stored in the persistent store together with the models. At model editing 
time, the tags are used to guide the editing engine: for example, to verify that a particular composition is 
legal or not. This interpretative nature of the modeling environment introduces some overhead, but in 
practical situations it is negligible.  
 
Metamodeling is supported by UML class diagrams and OCL expressions with GME-specific stereotypes 
as the metamodeling language. The semantics of the metamodels is defined by their mapping onto the 
GME “model of computation” (MOC). GME has a number of built-in abstractions that form a (very 
special) model of computation: the abstractions include the concepts mentioned above:  “Model”, 
“Connection”, “Atom”, “Set”, “Reference”, and “Attribute”, and the operations in the GME MOC include 
creation and manipulation of the above objects, as directly supported by the GME editing engine. A general 
purpose UML class diagram with OCL expressions does not carry enough information for mapping it 
precisely onto the GME MOC; there are many mappings possible. Therefore, the UML class diagrams must 
be embellished with GME-specific stereotypes that govern how exactly the mapping is to be done. For 
instance, the stereotype markers help to decide whether a class is a GME “Model” or a “Set”. The 
metamodeler is expected to provide these stereotypes, and the GME metamodel translator checks whether 
they comply with the well-formedness rules for metamodels.  
 
The process of metamodeling in GME is illustrated on Figure 11. On the top of the figure, a UML class 
diagram shows a metamodel for the HSFD example. In the middle, the corresponding GME-style 
metamodel is shown, which is identical to the pure UML metamodel except the GME-specific stereotypes. 
Internally, GME creates and operates upon objects of type Connection, Model, Atom, etc. These objects 
constitute the model being visualized and edited (shown at the bottom of the figure). Each one of these 
objects is related to a metamodel object, e.g. the left-most atom object “In” is related to the InputPort 
object in the metamodel (indicated by the line between them).  
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Figure 11: Metamodeling Process 

 

4. Model synthesis and generative modeling 
Modeling and model-based approaches [20][21] already do and will play a central role in embedded 
software and system development. The fundamental promise of model-based approaches is that 
experimental system verification will be largely replaced by model-based verification. However, even by 
taking advantage DSMLs and advanced model-editors, creating high-fidelity models is expensive. 
Therefore, development of efficient methods for supporting the model-building process is an important 
research goal. Below, we briefly discuss two important approaches: compositional modeling and model 
synthesis. 
 
4.1 Compositional modeling 
 
Building complex models by composing components Mn= M1  M2 … Mk is a common, highly desirable 
technique for efficient modeling. In bottom-up composition, simpler components are integrated to obtain 
more complex components. The condition for composability in bottom-up composition is that if a property 
Pk holds for component Mk, this property will be preserved after integrating Mk, with other components. 
Unfortunately, in embedded systems, many physical properties (such as time dependent properties) are not 
composable [8]. Therefore DMSL-s, which are formal enough to be analyzable and analysis tools, which 
can verify essential properties of the composed designs are crucial in model-based system/software 
development.  
 



4.2 Model Synthesis 
 
Model synthesis in the compositional modeling framework can be formulated as a search problem: given a 
set of {M1,M2,…,Mk} model components (which may represent different views of the system and may be 
parameterized), and a set of composition operators, how to select an Md= Mi  Mj … Ml design (with the 
required set of parameters) such that a set of {P1d, P2d ,…,Pkd} properties for Md  are satisfied? Fully 
automated synthesis is an extremely hard problem both conceptually and computationally. However, by 
narrowing the scope of the synthesis task, we can formulate solvable problems. For example, by using 
design patterns and introducing alternative design choices for component templates in generic designs we 
can construct a design space using hierarchically layered alternatives. This approach is quite natural in top-
down engineering design processes, which makes the construction of design space using hierarchically 
layered alternatives relatively simple [22].  
 
To enable the representation of design spaces, we need to expand DSMLs with the ability to represent 
design alternatives explicitly. As an example, Figure 12 shows the metamodel of SF extended with the 
concept of Alternatives. We selected the abstract Base concept for Alternative implementation, 
and introduced a containment relationship to enable hierarchical composition. An Alternative, in the 
composed SF metamodel context, can now be defined as a processing block with rigorously defined 
interface, which contains two or more (notice the cardinality of the containment relation highlighted in the 
figure) alternative implementations. The implementations can be Compounds, Primitives, or other 
Alternatives, with matching interfaces. As we mentioned above, composition of a design requires 
finding implementation alternatives, which satisfy a set of design properties. The complexity of this task 
largely depends on the computability of selected design properties from the component properties. A 
detailed analysis of this problem and a constraint-based design-space pruning technique is described in 
[23].  
 

 
Figure 12: Metamodel extended with the Alternative construct 



5. Model-based generators 
 
The key factor that distinguishes the model-based approach from other techniques is that models are used 
as input to generators that translate them into other artifacts used in analysis and at run-time in the 
application. Thus, in the model-based development process modeling, analysis and system synthesis are 
tightly integrated activities that cannot be separated. This integration is essential to success: as all changes 
originate in the modeling environment, and the same, consistent models are used in analysis and synthesis, 
the final product is verified through analysis, and it is much easier to maintain and evolve.  
 
5.1 The role of generators 
 
The integration among the participating elements of the model-based development process happens through 
generators (a.k.a. “translators” or “model interpreters”) that transform models into other forms. There are 
two major applications of generators: 

1. To translate models into the input language of analysis tools and to translate the analysis results 
back into the modeling language, and 

2. To translate models executable into code, static data-structures, component configurations, 
customized generic components, etc, which form the executable system running on some 
integration platform (OS, component integration framework, etc).  

In the most general sense, generators implement a semantic mapping between domain models and another 
domain: an analysis tool, or a run-time environment.  
 
Analysis tools often have a different modeling language and a different model of computation than the 
domain modeling language. For instance, in the HDSP domain the language is that of dataflow networks. 
However, a performance analysis tool, which can do throughput analysis on these networks, accepts models 
in the form of Stochastic Petri Nets (SPN) [4]. In this case, a generator would map the HDSP dataflow 
networks into an equivalent SPN what the analysis tool can use to calculate performance predictions from 
the models of the system. Note that to perform this translation, the translator has to have the detailed 
knowledge of the model of computation used on the execution platform, and how it can be expressed in the 
form of SPN-s. Obviously, there is no guarantee that there exists a mapping between the domain modeling 
language (with a dynamic semantics), and the input language of an analysis tool, in general. However, if 
such a mapping can be developed, it can be realized in a generator, and the analysis tool may provide major 
benefits for the developer. When analysis tools are used, the results of the analysis must be made available 
for the modeler. A “reverse generator” could be used for this purpose, and the analysis results can be used 
to back-annotate the models in the modeling environment.  
 
5.2 Techniques for building generators 
Generators for model-based systems can be implemented in a variety of ways. Below, we discuss three 
major techniques.  
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Figure 13: Model-based Generators and Meta-generators 

5.2.1 Direct implementation 
A generator that transforms models is similar to a compiler, although its task is more specific and 
somewhat simpler. While a compiler maps the abstract syntax of a programming language into high-
performance executable code running on the hardware architecture, a generator maps the abstract syntax of 
the input language into the abstract syntax of the target language, where the target has well-defined 
execution semantics, with high-level “instructions”. If one omits the technical details of creating the output 
product in some physical form (e.g. text files), the main task of a generator is reduced to creating a “target 
tree” from an “input tree”. The “input tree” is the data structure that corresponds to the input abstract syntax 
tree of compilers, and the “target tree” corresponds to the “output tree” of compilers from which the code is 
directly “printed”5. Naturally, in the simplest of cases the output product can be directly produced from the 
input tree. 
 
In the most general form, a generator performs the following operations. 

1. Construct the input tree.  This is step is implicit in model-based systems, as the models are the 
input tree, and the modeling environment directly manipulates a tree-like representation. 

2. Traverse the input tree, possibly in multiple passes, and construct an output tree. In this step the 
generator visits various the objects in the input tree, recognize patterns of objects, instantiate 
portions of the target tree, calculate attributes of output objects from attributes of input objects, 
etc.  

3. “Print out” the product. This step creates the result of the generation in the required form: a 
network of objects, a text file, a sequence of commands issued to a hardware device, etc.  

 
Following the above approach, a generator is straightforward to construct: after designing the input and 
output data structures (which are determined by the metamodels of the input and target languages already), 
one has to design the appropriate code sequences for traversal and target object construction. The 
implementation can follow an object-oriented approach: the traversal code can be embedded as methods of 
the input objects, and by directly coding the traversals and the target construction one can easily realize the 
generation algorithms. Similarly, the output “printing” can be embedded as methods of the target objects, 
and by programming the traversal of the output one can realize the output-producing algorithms. This direct 
implementation is simple and works well for situations where the transformations are easy to capture in a 
procedural form.  

                                                 
5 We use the term “tree” here, although in these data structures are graphs in the most general case. However, even in 

those cases, a spanning tree of the graph can be found, which “dominates” the structure. 



 

5.2.2 Pattern-based approach 
The scheme described above can also be implemented in a more structured way, by using the Visitor design 
pattern [26]. The main task of a generator involves the traversal of the input tree and taking actions at 
specific points during the traversal. This is clearly in the purview of the Visitor pattern, which offers a 
common solution for coding the above generic algorithm. In this pattern, a visitor object implements the 
actions to be performed at various nodes in the at tree, while the tree nodes contain code which accepts the 
visitor object, calls the appropriate, node-specific operation on it (while passing itself to the operation as a 
parameter). The Visitor pattern allows the concise and maintainable implementation of generators, both for 
the transformation and the printing phases.  
 
While the implementation of a generator following the Visitor pattern is straightforward, it can be 
significantly improved by using some automation. In previous work on design tool integration [31], we 
have developed a technique for the structured capturing of the “traversal/action” code of generators. The 
approach was based on the observation that traversal sequences and actions to be taken at specific points in 
the input tree are separate concerns, and that the traversal can be specified using higher-level constructs 
(than procedural code). A language was designed that allowed the specification of traversal paths and the 
capturing of actions to be executed at specific nodes. Generators written using this approach were very 
compact and readable, and have been successfully applied in various projects. The approach is similar to 
Adaptive Programming [32], but it is more focused on the needs of generators.  
 

5.2.3 Meta-generators 
The approach based on the Visitor pattern has a serious shortcoming: most of the logic of the generator is 
still realized as procedural code, and therefore it is hard to verify or to reason about. A better technique 
would allow the mathematically precise modeling of the generator’s working, and the generation of the 
code of the generator from that model. This process is called meta-generation. Figure 13 above illustrates 
this process. 
 
A “model of a generator” is much simpler than that of a compiler and it can be defined operationally: it is 
an abstract description of what the generator does. Following the generic description of a generator above, 
the main task of a generator can be modeled in terms of (1) the traversal sequences and (2) the 
transformation actions the generator takes during its operation. The approach described in the previous 
section allowed the specification of (2) only in imperative ways (in a programming language), but (2) can 
also be specified declaratively: using graph-transformation rules. 
 
Graph grammars and graph rewriting [33] [60] offer a structured, formal, and mathematically precise 
method of representing how a generator constructs the output tree from the input tree. There are several 
practical systems ([62] [63]) available. Graph rewriting has been used to specify various program analysis 
and transformation tasks successfully [61]. In MIC, its scope is extended to include transformation on the 
models (instead of the abstract syntax tree of a program). One elementary rewriting operation performed by 
a translator is called a transform. A transform is a specification of a mapping between a portion of the input 
graph and a portion of the output graph. Note that the metamodels of the input and the output of a generator 
is a compact description of all the possible input and output structures. If ),( ininin ACG =  and 

),( outoutout ACG = denote the input and the output metamodels consisting of classes and associations, a 
transform can be described using the following elements:  
• ),( ininin acg =  :  subgraph formed from a subset inin Cc ⊆ of the input classes and a subset inin Aa ⊆  

of the input associations. 
• },{: FTGF in → : a Boolean condition, called filter, over inG . 
• ),( outoutout acg =  : subgraph formed from a subset outout Cc ⊆ of the output classes and a subset 

outout Aa ⊆  of the output associations. 



• outin ggM →:  a mapping where ,, outoutinin GgGg ⊆⊆ and TgF in =)( . 
A transform is a specific rewrite rule that converts a sub-graph of the input into a sub-graph of the output. 
The input sub-graph must also satisfy the filter. The mapping should also specify how the attributes of the 
output objects and links should be calculated from the attributes of the input objects and links.  
 
While graph transformations are very descriptive, they fare less well in implementation. Matching the left 
hand side of a rewriting rule against an input graph involves searching for a sub-graph, which can be of 
exponential complexity. However, in generators one can almost always avoid the (global) search by 
specifying the traversal and order in which the transformation rules should be applied, thus the search can 
be reduced to a (local) matching. This latter one can be accomplished by introducing “pivot nodes”, which 
are bound by the higher-level, traversal strategy, so the left hand side of the transform is partially bound 
already when the rule is fired.  
 
To summarize, a generator can be specified in terms of (1) a graph traversal, which describes in what order 
the nodes of the input tree should be visited, and (2) a set of transformation rules. The implementation of 
the above scheme is subject of active research. Early experiments [34] indicate the viability of the 
approach. 
 
As an illustration for specifying a generator using metamodels and graph transformation rules, let us 
consider the example of an HSDF generator, which flattens a hierarchical signal flow graph. Figure 14 
shows the metamodel for the source and the target of the generator. The left hand-side metamodel is that of 
the hierarchical signal flow, with Primitives and Compounds, Input, Local, and Output signals, which are 
connected through Dataflow connections. The right hand-side, target metamodel, consists of Actors, which 
have Receive and Transmit ports that are connected to Queues.  
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Figure 14: Source and target metamodels for example translation 

On the diagrams below we illustrate a few graph rewriting rules. On the left side of a rule one can find a 
pattern (expressed as a —partial— UML class diagram), which is matched against a network of objects 
(that must be compliant with the source metamodel). On the right side of the rule one finds the network of 
target objects, which are created when the rule fires. This network must be compliant with the target 
metamodel. The arrows between the left and right hand sides illustrate correspondence: left hand side 
objects correspond to right hand side objects (and vice versa). The rules are for illustration only, with many 
details (like treating attributes) omitted for the sake of brevity.  
 
The first translation rule on Figure 15 rewrites the input and output signal of a compound into queues. This 
rule shall be applied first, to the top-level compound of a hierarchical network.  
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Figure 15: Rule 1: Convert (top-level) input and output ports into input and output queues 

The next rule on Figure 16 rewrites the local signals of a compound into queues. This rule is applied to 
each compound in a hierarchy.  
 

c : C

l : L

*

q : Q

R2

  
 

Figure 16: Rule 2: Convert local signals into (local) queues 

The third rule on Figure 17 asserts that those signals of a compound C, which are connected to signals of 
the children compounds of C, should be mapped to the same queue.  This rules ensures that queues created 
from higher-level compounds are “propagated down” to lower level compounds.  

c : C

s : S

b : C

bs : S

*

*

*s

dd:D

R3:

q : Q

 
 

Figure 17: Rule 3: When a signal in a higher-level compound is connected to a signal of a lower-level 
block, the signals will be mapped to the same queue 

The final rule on Figure 18 performs the most complex work: it rewrites primitives into actors. The receive 
and transmit ports of actors will correspond to the input and output signals of the parent primitive, and all 
connections between those and other signals will map to connections between queues and those ports in the 
target domain.  
 
The rewriting rules presented have to be executed in certain order. First, Rule 1 is applied to the top-level 
compound. Next, in a depth-first manner the following sequence should be executed: Rule 2, Rule 3, and 
either Rule 2 recursively (if the child of the compound is a compound) or Rule 4 (if the child is a 
primitive).  
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Figure 18: Rule 3: Connections from signals to the input and output signals of primitive blocks shall 

be replaced with connections to the receiver/transmitter ports of actors 

 
The above example —informally— illustrates how graph-rewriting techniques can be used to model 
generators. The models can be employed in an interpretive settings, where a general-purpose graph 
rewriting engine incrementally transforms an input tree into an output tree, following the traversal 
sequences and transforms. The rewriting rules can also be converted (i.e. compiled) into efficient 
procedural code (see [54]). 

6. Related Work 
It has been increasingly recognized that conventional programming languages are not rich enough to 
provide efficient support for the composition of complex systems. In embedded systems, because of the 
interactions with the physical environment, these issues are even more significant. It is therefore essential 
to increase the level of abstraction for representing designs and to expand composition from today’s 
hierarchical, modular composition to multi-faceted, generative composition [27]. Besides model-integrated 
computing approaches, several other important efforts work toward the same or similar goal. Below we 
mention three of these directions – Aspect-Oriented Programming (AOP), Intentional Programming (IP) 
and GenVoca generators, as well as new directions in using generators in the context of the Model-Driven 
Architecture (MDA) of the OMG [58].  
 
6.1 Aspect-Oriented Programming (AOP) 
The goal of AOP is to introduce a new decomposition concept in languages, aspects, which crosscut the 
conventional hierarchical, functional decomposition. AOP provides programmers with the opportunity to 
express separate concerns independently, and facilitates the merging (weaving) of components in an 
integrated implementation [5].  Aspect orientation fits well with the need of managing crosscutting 
constraints in embedded systems. Physical requirements in embedded systems, such as timing or 
synchrony, can be guaranteed by assigning them to a specific module, but they are the result of 
implementing their interaction in a particular manner. Changing these requirements may involve 
widespread changes to the functional components of the system, which makes component-based design and 
implementation using only functional composition very complicated.  
 
AOP and MIC have strong similarity in addressing multiple-view system design explicitly.  Both AOP and 
MIC allows the separation of design concerns in different aspects and allows capturing and managing 
interdependence among them. Composition of integrated systems is completed by weaving technology in 
AOP and model synthesis and generator technology in MIC. The main difference is in the level abstraction 
used. AOP research focuses on imperative languages and creates aspect-oriented versions such as AspectJ 
[28], while MIC targets DSMLs. Consequently, MIC is better suited for modeling, verifying and generating 
large, heterogeneous systems using larger components, while AOP provides better run-time performance 
due to the use of compiler technology in generating executable systems.  
 



6.2 GenVoca  
GenVoca is a generator technology that performs automated composition using precisely defined layers of 
abstractions in object-oriented languages [7]. The concept is based on the definition and explicit 
representation of designs layers, where each layer refines the layer above. Design layers have standardized 
interfaces with alternative implementations. Layers are implemented using DSLs, which are implemented 
as extensions of existing languages. GenVoca generators convert these composition specifications into the 
source code of the host language. GenVoca is supported by an extensive toolsuite called the Jakarta Tool 
Suite (JTS), which provides a common infrastructure for extending standard languages with domain-
specific constructs [29]. 
 
Regarding the level of abstraction used in describing designs, GenVoca resides between AOP and MIC. 
GenVoca technology still preserves the advantage of embedded DSLs: the generators output needs to go 
only to the level of the host language. Similarly to AOP, it results in highly efficient code due to the 
GenVoca–based optimization of component structure and the compiler technology of the host language 
environment. GenVoca strongly differs from both AOP and MIC in terms of supported decomposition 
strategy: at this point, GenVoca does not focus on multiple aspect composition (although extension in this 
direction seems feasible). Interestingly, the design-space exploration techniques used in MIC [23] and the 
composition validation technique in GenVoca  (e.g. [30]) have strong similarities. Both of these techniques 
are based on a design-space definition using hierarchically layered alternatives and prune the potentially 
very large space using constraints (in GenVoca the goal is validation, in MIC the goal is to find 
configurations that satisfies the constraints).  
 
6.3 Intentional Programming (IP) 
IP is a bold experiment to transform programming from the conventional, “language focused” activity to a 
domain-specific, intention-based activity [6]. IP re-factors the conventional programming paradigm into 
intentional specification and transformers. Intentional specifications encode abstractions in graph data 
structures (active source) – without assigning a concrete syntax for representing them. Using various 
transformers manipulating the active source, the intentions can be visualized in different forms, and more 
importantly, can be assembled into complex programs (represented as intentions) by generators (or meta-
programs).   
 
There are many interesting parallels between IP and the other generative programming approaches 
discussed earlier. For example, in MIC the models (which are the expression of domain-specific constructs, 
designs) are represented in model databases in a format, which is independent from the concrete syntax 
used during modeling. Model transformation has a similarly central role in MIC as transformers in IP [59]: 
the MIC generators, synthesis tools are all directly manipulating the content of model databases for 
visualizing, analyzing, and composing models at different phases of the system development. Both in MIC 
and IP, efficient technology for defining and implementing transformers is a crucial issue. However, in 
MIC transformations are specified using graph-transformations: a higher-level technique than the 
procedural approach in IP. 
 
6.4 Model-driven Architecture and model transformations 
MDA [58] is a recent development in the industry community organized by OMG. The MDA vision 
outlines the relationships among various OMG standards and how they can be used in the various software 
development processes. One important aspect of MDA is the emphasis it places on specification models (in 
terms of a Platform Independent Model: PIM), on implementation models (in terms of a Platform Specific 
Model: PSM), and the mapping between the two. Obviously, MDA lends itself very well to 
transformational approaches, like the one MIC advocates. The difference is in terms of the modeling: while 
MIC emphasizes domain-specific modeling techniques and explicit, well-defined DSMLs, MDA tends to 
utilize UML for modeling.  
 
Recent works on model transformations in the UML framework (e.g. [64],[65], and [66]) demonstrate the 
use of various transformational techniques in software development within the UML framework. Their key 
concept is to use transformations specified in the context of UML models. Similarly, transformations in 
MIC are expressed in a UML context, but the input to the transformations is always understood as 



“sentences” in a DSML that models an embedded system.  Specifying modeling languages in terms of 
UML metamodels (and transformations on those models) have appeared also been developed recently (see 
[67] [68][69] [70]). These approaches follow the same principles as MIC. However, tools support in the 
form of meta-programmable tools is still under development.  

7. Conclusions 
Successes of model-based tools, notably those of Matlab/Simulink and Stateflow, in developing embedded 
systems have shown not only the feasibility but also the superiority of the approach. In this paper, we argue 
for generalizing the approach even further: into Model-Integrated Computing, which advocates modeling as 
the central activity, integrated with analysis and synthesis plus generation. In MIC, Domain-Specific 
Modeling Languages play a key role in the creation, manipulation and transformation of the models. We 
have shown a method for defining these languages, in terms of: (1) their abstract syntax, (2) (visual) 
concrete syntax (with respect to a specific visualization engine, of GME), (3) their static semantics (in 
terms of well-formedness rules), and (4) their dynamic semantics (through translation). We call this process 
metamodeling, and have built a set of tools that support it.  
 
We have used the MIC paradigm for developing several embedded applications [1]. Experience has shown 
that the metamodeling approach is extremely powerful, but it has to be used with care: changes in 
metamodels often invalidate existing domain models, requiring expensive re-building. Careful upfront 
analysis of the domain and the precise definition of the DSML (including static and dynamic semantics) 
have a great benefit for the entire lifetime of the systems built. MIC factors out the DSML development 
(i.e. the metamodeling) from the engineering process of embedded systems. The investment made in the 
metamodels is returned through the life of the products developed, in terms of reduced maintenance costs 
and ease of upgrade.  
 
There are a number of directions for the enhancements of MIC, which are also subject of active research. 
Some the efforts include: (1) Metamodel composition and verification seeks to enhance the 
compositionality and quality of metamodels built from elements of a metamodel library. (2) Automatic 
domain-model migration based on the changes to the metamodels addresses the reuse of existing models 
under a new metamodel. (3) Configurable, alternative visual syntax for domain models deals with making 
the visualization (and direct manipulation) of models more flexible. (4) Incremental and component-
oriented techniques for model translation and verification helps in avoiding lengthy and costly re-
processing of models when small changes are made. These efforts shall further enhance the applicability of 
the technology. 
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