
MODEL INTEGRATION WITH A TYPED EXECUTABLE MODELING LANGUAGE

Gordon H. Bradley and Robert D. Clemence, Jr.

Naval Postgraduate School, Monterey, California, 93943, USA

ABSTRACT
Our research [2 1, [4] extends contemporary exe-

cutable modeling languages for mathematical program-
ming by defining a typing system for all the objects in a
model and by specifying formal methods to manipulate
the type information. The modeler's intent to formu-
late consistent, meaningful constraints and functions
can be automatically verified. Here we show how typ-
ing supports the development of integrated models from
distinct model components. We proposed the "library
unit" as an extension to modeling languages that pro-
vides a mechanism to build integrated models from pre-
viously validated models.

INTRODUCTION

There have been many successful applications of
operations research/management science models to
specific operational problems (for example, transporta-
tion, scheduling, production planning, capital budget-
ing). But there have been relatively few successes con-
structing more comprehensive models that integrate
several of these specific models. Although the parallel
developments in algorithms and computer technology
over the past 30 years have greatly expanded our
capacity to solve much larger and more complex
models, there have not been corresponding advances in
model management techniques to integrate models.
The integration of distinct models is sometimes called
the logical dimension of integration to distinguish it
from the executable dimension that is concerned with
how to solve the resulting model.

The traditional approach to integrated model con-
struction is for the modeler to study the component
models and then to construct a completely new model.
In this approach the modeler is responsible for under-
standing the relationships among the component models
but these relationships and the identity of the com-
ponent models are suppressed to form the integrated
model. The resulting model is distinct from the com-
ponent models and indeed it could have been con-
structed directly without reference to them. We will

U.S. Government Work. Not protected by
U.S. copyright.

refer to this model representation as "monolithic"
because the model stands alone without any reference to
the component models. Much research in model
management has been directed toward developing alter-
natives to this approach.

Executable modeling languages have been
developed to provide automated support for the con-
struction and validation of models. Our research [2],
[4] extends contemporary executable modeling

languages by specifying a typing system for models that
assigns a type to each model object and then verifies if
the modeler has formulated consistent meaningful con-
straints and functions. Here we introduce typing and
then show how typing can be used to support the tradi-
tional development of monolithic integrated models.
We then propose the "library unit" as an extension to
executable modeling languages. The library unit allows
the specification of an integrated model to be in terms
of the component models and then the computer rather
than the modeler constructs the monolithic model.
Typing supports this construction by allowing
automatic verification that the resulting model has
meaningful constraints and functions as intended by the
modeler.

EXECUTABLE MODELING LANGUAGES

There is much current research interest in the
design and implementation of executable modeling
languages (EML), see references [1] through I 14 I .
Although much of this work is focused on the definition
of mathematical programming models, it involves the
definition of operations research/management science
models using algebraic notation and thus has potential
application to simulation, regression, queuing and
other models. The traditional approach to defining
mathematical programming models has been to describe
the model in an informal algebraic notation and then to
develop a matrix generator computer program to con-
struct the problem in the form required by the Boftware
system that will optimize the problem. The two phase
approach has significant drawbacks as discussed for
example in I2 I , 14 I, [8 1.

403

rmmastow
Proceedings of the 21st Annual Hawaii International Conference on System Sciences, Vol. III, IEEE Computer Society, Washington, DC, 1988, pp.403-410.

EMLs offer an alternative to the matrix generator
approach by specifying a formal modeling language to
define the model and then making the computer, not
the modeler, responsible for the construction of the
problem in the form that the optimizer software
requires. The modeler conceives, records, and validates
his model using a formal modeling language with alge-
braic notation that also documents the model. The
modeling language definition of the model is read by
the computer, translated to the form required by the
optimizer software, optimized, and the solution
returned for analysis, all without human intervention.
Production [13] and experimental [3 1, [9 1, [14] ver-
sions of EMLs exist.

An EML is a declarative language that is formal in
the sense that it has an unambiguous syntax and
semantics. Any EML must satisfy two potentially
conflicting sets of requirements: first, it must be con-
venient and intuitive for people and as expressive and
as easy to use as the informal notation that it replaces
and, second, it must be formal and use computer com-
patible notation so it can be processed by a computer.

TYPE CALCULUS FOR EXECUTABLE
MODELING LANGUAGES

One aspect of model development that has received
little automated support is the verification that the
algebraic representation of the model correctly
represents the modeler's intention. This intention is
expressed in the form of explanatory descriptions which
are associated with each numeric-valued symbol in the
model. These descriptions are a necessary part of any
modeling effort because they assign real world meaning
to model data and computation results. The computer
manipulates numbers - the meaning assigned to the
data and the results is the responsibility of the modeler
who is doing a "dimensional" check of each model func-
tion and constraint. This is done by replacing each
numeric-valued symbol with its explanatory description
and then applying two kinds of dimensional calculus.
One is the calculus of measurements units: multiplica-
tion and division of units and a unit analysis to verify
that pure numbers that are added, subtracted or com-
pared have the same scale of reference. The other kind
is concerned with what the symbol represents (e.g.
apples, cars) and which of its properties are being meas-
ured (e.g. cost, height, weight/time). Again the cal-
culus prescribes the rules for multiplication, division,
addition, subtraction and comparison. We call the
explanatory description of model symbols together with
the calculus to manipulate them a typing system.

Our research 1 2 1, [4] extends contemporary
EMLs by specifying a typing system for an extended
version of dimensional systems and specifying formal
methods to manipulate the type information. For an
EML with typing a computer system can automatically

determine if a model is well formed in the sense that
functions and constraints do not include typing errors.
The computer can verify the modeler's intention to for-
mulate consistent, meaningful constraints and func-
tions. This formalizes and thus allows automation of
what in contemporary EMLs are only comments that
require human validation.

The modeler assigns each variable, parameter, con-
stant, function and constraint in the model a type that
consists of a concept description, quantity description
and unit description. The concept represents the
essence of the object, for example, APPLES, STEEL,
COST, LABOR HOURS. A quantity is an attribute of
the concept that is measurable, for example, HEIGHT,

For each quantity there is a standard unit of measure-
ment with optional scale factor. The units are from
specified unit systems with conversion factors between
units, for example, FEET from English Length 1 [100]TONS from Avoirdupois Weight, POUNDS/INCH
from both. An example of a type is:

CARDINALITY, WEIGHT/LENGTH~, HARDNESS.

LENGTH of QCAR in FEET
quantity concept unit

Concepts are prefixed with the symbol Q to distinguish
them from quantities. Concepts are unchanged by mul-
tiplication and division while quantities and units are
subject to the usual rules. For example, WEIGHT of
QBOXES OF APPLES in POUNDS divided by
VOLUME-of &BOXES OF APPLES in INCH2 yields
W E I G H T ~ O L U M E 07 O ~ O X E S - OF-APPLES in
POUNDS/INCH~.

For the operations of addition, subtraction, com-
parison and assignment, both objects must have the
same type (that is the same concept, quantity and
unit). If the types are not equal the system can
automatically do conversions. For example, if one unit
is INCH and the other is FEET, the system converts
one to the other. If one concept is QAPPLES and the
other is QORANGES, a user supplied conversion can
convert both to QFRUIT. If the system is unable to
convert one or both to make the types equal, an error is
indicated.

The unit systems and the conversion factors among
their components are built into the system, for example,
English Length (INCH, FEET, YARD, MILE). Quan-
tity conversions can be specified by the user, for exam-
ple, WEIGHT/VOLUME <- -> DENSITY. Concept
conversion is specified by one way conversions QFRUIT
<- - OAPPLES (but not the reverse). The concept
conversions are specified in a concept graph that con-
tains all the possible conversions.

All contemporary EMLs allow the definition of sets
and provide operations to construct new sets. Vari-
ables, parameters, functions and constraints can be

404

defined over the sets. In some instances, all the objects
defined over a set have the same type, but it is also pos-
sible to have a unique type for each element. For
example, for the variables in a transportation problem
FLOW(i, j), the type for FLOW(i, j) can be
@BUTTER(i, j); this means that the concept of
FLOW(NY, BOSTON) is QBUTTER(NY, BOSTON)
and it is different from FLOW(NY, PHIL) with concept
@BUTTER(NY, PHIL).

The type system can be added to any EML. For
the examples we have developed a "generic" EML
specified in [4] that contains the features of several
existing systems, for example [1],[3 I , [9 I , [10 I,[11 1,
[13 1. Figure 1 is a transportation problem expressed in
the generic EML. The typing information is contained

within the symbols << >>; the unit information is
further enclosed within # #. In this brief description of
typing we rely on the reader's intuition about dimen-
sional systems.

Each numeric-valued object has concepts pro-
ceeded by @, quantities, and units with optional scale
factors. For example, the variables X (i, 31 have con-
cept QGOOD(i, 31, quantity WEIGHTPER-PERIOD
and unit LBS/DAY with scale factor 100. Note that
@GOOD(i, 3') is a distinct concept for each (i, 3') pair.
Because QGOOD(i, 31 in the type of C(i, 3') cancels
@GOOD((31 in the type of X (i , 31, the objective func-
tion is type valid and yields COST of @TRANSPORT
in US-$.

<< CONCEPT GRAPH
Q* <-- QTRANSPORT [COST]
Q* <-- QGOOD(i, .) [WEIGHTPERPERIOD]
Q* <-- QGOOD(., j) [WEIGHTPER-PERIOD]
QGOOD(1, .) <-- OGOOD(i, j)
@GOOD(., j) <-- QGOOD(i, j) >>

<< UNIT SYSTEMS
WEIGHTPERPERIOD : Avoirdupois-Weight/Standard-Time
COST : US-Currency >>

SETS
SOURCE i ; << nominal >>
SINK j ; << nominal >>
ARC(i, j) := {SOURCE} x {SINK} ;

VARIABLES
X(i, j) {ARC}; << WEIGHTPERPERIOD of OGOOD(i, j) # [loo] LBS/DAY # >>
POSITIVE: X(i, j);

PARAMETERS
S(i) {SOURCE} ; << WEIGHTPERPERIOD of @GOOD(i, .) # [loo] LBS/DAY # >>

D(j) {SINK} ; << WEIGHTPERPERIOD of @GOOD(., j) # [loo] LBS/DAY # >>

C(i, j) {ARC} ; << COST OF OTRANSPORT / WEIGHTPERPERIOD of @GOOD(i, j)
#US-$ / ([loo] LBS/DAY) # >>

FUNCTIONS
OBJ := SUM (i, j) {ARC} (C(i, j)*X(i, j)) ; << COST of OTRANSPORT # US-$ # >>

CONSTRAINTS
SUPPLY(i) {SOURCE} := S U M (j) {ARC} (X(i, j)) =E= S(i) ; <<WEIGHTPERPERIOD of @GOOD(i, .)

[loo] LBS/DAY # >>

DEMAND(j) {SINK} := SUM (i) {ARC} (X(i, j)) =L= D(j) ; <<WEIGHT-PERPERIOD of @GOOD(., j)
[loo] LBS/DAY # >>

Figure 1 Transportation Model in Generic Typed EML

405

Since @GOOD(i, 31 is unique for each (i, 31,
conversion of concepts is necessary before the summa-
tion of X(i, 31 can be allowed in the constraints. It is
the modeler's intent that it is valid to sum X(i, 3') that
originate at the same source or X(i, 31 that terminate at
the same sink and all other combinations are invalid.
We introduce the concept @GOOD(i, .) which is the
good that originates at a specific source i and ter-
minates at any sink and concept @GOOD(., 31 which is
the good that originates at any source and terminates a
specific sink j . Using the concept graph the system
automatically performs valid concept conversions. Fig-
ure 2 is another representation of the concept graph, the
system performs as necessary llupwardll conversions of
concepts.

The typing system also includes classifying sets and
then checking the operations performed on set elements.
The designation "nominal" means that the only allow-
able operations on the set elements are equal, not equal
and membership. Sets designated "ordinal" addition-
ally allow ordering operations and "interval" addition-
ally has an integer associated with the element's ordinal
position [4 1. Full details on typing including the typ-
ing of input data and output reports is included in [4 1.

OTRANSPORT
COST

OGOOD(i, .) QGOOD(., j)
WEIGHTPERPERIOD WEIGHTPERPERIOD

OGOOD(i, j)

Figure 2 Concept Graph For Transportation Model

INTEGRATION WITH A TYPED EML

The inclusion of typing in an EML provides addi-
tional automatic support for the logical integration of
distinct models. This is illustrated in this section by

describing the integration of two models using the capa-
bilities of existing contemporary EMLs. As discussed
above, in these systems the modeler has the responsibil-
ity to conceive the new model and to then construct a
"monolithic" representation using the EML. Since the
EML has no special capabilities that support the
integration of distinct models, the modeler must con-
struct a representation of the new model that suppresses
the relationships of model features to the component
models.

The benefits of typing will be illustrated by
integrating two transportation models by superimposing
the sink nodes in the first model on the source nodes in
the second. This can be imagined to be an organization
with plants on the West Coast, warehouses in the
Midwest and customers in the East. Two distinct
models have been developed and validated. The first
minimizes the cost of shipping a single good from the
plants to the warehouses (with limited warehouse capa-
city). Using the optimal shipments from the first model
at each warehouse as fixed supply, the second model
minimizes shipping costs to the customers. This pro-
cedure is, in general, suboptimal; an integrated model
with the warehouses as capacitated transshipment
points will construct a globally optimal solution.

Both models are particular cases of Figure 1. The
integration will be described using a text editor as the
main support tool. Each model will be modified
separately, the models will then be merged and finally
additions will be made to the integrated model. For the
WEST model, eliminate the Q*<- - @GOOD(., 31 link
in the concept graph. For the EAST model, eliminate
the S(:] parameter, the SUPPLY(i) constraints, the first
3 links in the concept graph and the units systems. In
the EAST model, replace SINK with CUSTOMER and
replace k with j everywhere. Eliminate the SOURCE
set and then replace SOURCE with SINK and replace i
with j everywhere. Change the names of objects X, D,
C, ARC, OBJ and DEMAND to EAST.X, EAST.D,
EAST.C, EAST.ARC, EAST.OBJ and
EAST.DEMAND respectively. Merge the model files
and add a function TOTAL OBJ and constraints
TRANSSHIPG). Add concept conversion Q*<--
@GOOD(*, j), @GOOD(*, j)<--@GOOD(., j) and
@GOOD(*, j)<--@GOOD(j, .). The new concept
conversions allow CiX(i, 3')) to be added to
C,EAST.GOOD(j, k). Eliminate duplicate statements.
The result is Figure 3.

As illustrated, the bulk of support for the integra-
tion is accomplished with a text editor not by the
modeling language. At the modeler's direction, the text
editor concatenates model files, eliminates unwanted
language statements, moves blocks of text, and
finds/replaces designated character strings. An EML
(with or without typing) supports the integration by
providing several useful consistency checks. First, the
EML enforces the principle that all model objects must

406

<< CONCEPT GRAPH
Q* <--
Q* <--
QGOOD(i, .) <--
@GOOD(., j) <--
Q* <--
@GOOD(j, .) <--
QGOOD(., k) <--
@* <--
@GOOD(*, j) <--
@GOOD(*, j) <--

QTRANSPORT [COST]
OGOOD(i, .) [WEIGHTPERPERIOD]
QGOOD(i, j)
QGOOD(i, j)
@GOOD(., k) [WEIGHTPERPERIOD]
QGOOD(j, k)
QGOOD(j, k)
@GOOD(*, j) [WEIGHTPERPERIOD]
@GOOD(., j)
@GOOD(j, .) >>

<< UNIT SYSTEMS
WEIGHTPERPERIOD : Avoirdupois-Weight/Standard-Time
COST : US-Currency >>

SETS
SOURCE i ; << nominal >>
SINK j ; <<nominal >>

CUSTOMER k ; << nominal >>
EAST.ARC(j, k) := {SINK} x {CUSTOMER} ;

ARC& j) .= . {SOURCE} x {SINK} ;

VARIABLES
X(i, j) {ARC}; << WEIGHTPERPERIOD of QGOOD(i, j) # (IOO] LBS/DAY # >>

POSITIVE: X(i, j);

POSITIVE: EAST.X(j, k);
EAST.X(j, k) {EAST.ARC}; << WEIGHTPERPERIOD OF QGOOD(j, k) # [loo] LBS/DAY # >>

PARAMETERS
S(i) {SOURCE} ; << WEIGHTPERPERIOD of QGOOD(i, .) # [loo] LBS/DAY # >>

D(j) {SINK} ; << WEIGHTPERPERIOD of QGOOD(., j) # [loo] LBS/DAY # >>

C(i, j) {ARC} ; << COST OF QTRANSPORT / WEIGHTPERPERIOD of QGOOD(i, j) #US-$ / ([loo] LBS/DAY) # >>

EAST.D(k) {CUSTOMER} ; << WEIGHTPERPERIOD of QGOOD(., k) # [loo] LBS/DAY # >>

EAST.C(j, k) {EAST.ARC} ; << COST of QTRANSPORT / WEIGHT-PERPERIOD of QGOOD(j, k)
US-$ / ((1001 LBS/DAY) # >>

FUNCTIONS
OBJ := SUM (i, j) {ARC} (C(i, j)*X(i, j)) ; << COST of QTRANSPORT # US-$ # >>

EAST-OBJ := SUM (j, k) {EAST.ARC} (EAST.C(j, k)*EAST.X(j, k)); << COST of QTRANSPORT # US-$ # >>

TOTAL-OBJ := OBJ + EAST.OBJ ; << COST of QTRANSPORT # US-$ # >>

CONSTRAINTS
SUPPLY(i) {SOURCE} := SUM (j) {ARC} (X(i, j)) =E= S(i) ; <<WEIGHTPERPERIOD of @GOOD(i, .)

[IOO] LBS/DAY # >>

DEMAND(j) {SINK} := SUM (i) {ARC} (X(i, j)) =L= D(j) ; <<WEIGHT-PERPERIOD of @GOOD(., j)
[loo] LBS/DAY # >>

EAST.DEMAND(k) {CUSTOMER} := SUM (j) {EAST.ARC} (EAST.X (j, k)) =L= EAST.D(k) ;
<< WEIGHTPERPERIOD of QGOOD(., k) # [loo] LBS/DAY # >>

TRANSSHIPU) {SINK} := SUM(i) {ARC} (X(i, j)) =E= SUMjk) {EAST.ARC} (EAST.X(j, k)) ;
<<WEIGHTPERPERIOD of @GOOD(*, j) # [loo] LBS/DAY # >>

Figure 3 Integrated Transportation Model

407

be defined before they can be used and identifies =Y
needed objects that have been erroneously eliminated.
Second, a cross- reference of the model can identify
objects that should be eliminated because they are not
used.

An EML with typing contains information about
the meaning of the model objects and thus can
automatically check some aspects of the integration
that would otherwise be the responsibility of the
modeler to do by hand. For the above example there
are certain necessary validation criteria that can be
checked by an EML with typing. First, the integration
is valid only if the combined objective functions have
identical concept, quantity and units. As mentioned
above and described in detail in [2] and [4 1, an EML
with typing can do automatic conversions based on the
concept graph, quantity conversions and unit conver-
sions. If the types of the two objective functions are
not identical or can not be automatically converted so
as to be identical, an error is indicated. Second, the
replacement of the set of sources in the East model by
the set of sinks in the West model is valid only if the
source index in the East model is %ominalll, that is, no
index operations may assume any ordering (e.g. St .
Louis < Chicago) or involve arithmetic operations (e.g.
St. Louis + 2). The type validation checks all index
operations. Third, the type of the decision variables
from the two models must be identical (or can be
automatically converted to be so) for the transhipment
constraint to be valid. The variables must represent the
same good measured in the same quantity over the
same time interval all in the same units. Typing allows
the responsibility of checking these items to be moved
from modeler ts computer.

INTEGRATION WITH A MODEL LIBRARY

Although an integrated model may be conceived as
the interconnection of several distinct models, contem-
porary modeling languages require that it have a monol-
ithic representation that suppresses the connections. A
model representation must satisfy the language gram-
mar, must contain unique names, must obey the define
before use principle and must be expressed in a single
textfile. In the previous section these requirements were
achieved manually by the modeler using a text editor.
The principle disadvantage of this approach is that it
requires the modeler to deal with all the variables,
parameters, functions, constraints, index sets and types
of all the component models simultaneously. The
abstraction of the connection of distinct models is lost
in the sea of details when forming an integrated model
that must have a monolithic representation.

In this section we present an alternate integration
mechanism that preserves the identity of each com-
ponent model and emphasizes model interconnections

while suppressing diversionary detail. This more
abstract representation of an integrated model is based
on the definition of a "library unit" and on a collection
of operations for its manipulation.

The integrated model of the previous section will
be represented using a library unit. We will view Fig-
ure 1 as a model in a library of validated models. Fig-
ure 1 will be referred to as &TRANSPORT and we will
first create the WEST model and then the EAST model
by separate calls to the library unit and then add new
components to form the integrated model. See Figure
4.

is a modeling language keyword that causes
an inline substitution of an exact or a modified copy of
an archival model, called a "library unit". The names
of library units are prefaced by the rr&" character.
Instances of library units are identified by names begin-
ning with the I'%'l character. The character string
"%EAST := &TRANSPORT" indicates that the left
argument is an instance of the right argument.

The differences between the instance and the origi-
nal are detailed after the keyword "WHERE". If the
instance is an exact copy, this keyword is omitted. The
keyword "END" is used to mark the end of the library
unit modifications. Three special operators are
employed in this description. Operations are applied
sequentially; each one assumes that the operations that
precede it have been done. The operator replaces
the character string at the head of the arrow with the
character string at the tail. The 'I<=" operator is a
type constrained version of the n<-rl. It has three
actions: it erases the definitions of the typed object on
the left of the operator in the instance; it replaces the
character string on the left with the character string on
the right; and, it inserts an assertion into the text of the
model that the type of the right argument is equivalent
to the type of the left argument. This assertion is
tested during type verification. If the assertion is false,
an error message is generated. In this example, the
assertion would be

<< ASSERTION: type(S1NK j) =?I= nominal >>

The third operator used in the example is "ELIM()'I.

This operator eliminates the named objects included
within its parentheses from the instance. This involves
masking object declarations and replacing the names of
numerical objects in arithmetic expressions by rrO" and
tfl'f. The rlO" is used when the object is an operand in
addition, subtraction or a relational operation. The "1"
is used when the object is an operand in multiplication
or division.

To preclude ambiguity with two versions of a sin-
gle library model, the names in the WEST and EAST
models need to be distinguished. In the copy of
&TRANSPORT instantiated with the %EAST call to
the library, the names of its objects are prefaced with

408

LIB % : = &TRANSPORTWHERE
ELIM (@ * <- - @GOOD(., 31);
END

ELIM (S (i) , SUPPLY (:]);
SINK <- CUSTOMER;
j<- k;
SOURCE <= SINK;
i <- j;
END

FUNCTIONS
TOTAL OBJ := OBJ + EAST.OBJ << COST OF @TRANSPORT #US-$#>>;

LIB %EAST : = &TRANSPORT WHERE

~

CONSTRAINTS
TRANSSHIP(31 {SINK} := SUM(:] {ARC} (X(i, 31) =E= SUM(k) {EAST.ARC} (EAST.X(j, k))

<<WEIGHT PER PERIOD OF @GOOD(*, j) # [loo] LBS/DAY # >>
CONCEPT GRAPH - -

@* <- - @GOOD(*, 31 [WEIGHTPERPERIOD]
@GOOD(*,3] <- - @GOOD(.,J]
OGOOD(*,j) <- - @GOOD(j, .)

Figure 4. Integrated Transportation Model Using Library Units

its instance name, EAST, followed by a period. For the
first call with just % the names from the library are
used without change. The above modeling language
statements produce a modeling language textfile identi-
cal to Figure 3.

Four other examples of model integration using a
typed EML including the integration of a production
model with a transportation model are developed in [4].

LIBRARY UNITS

A library unit is a model or fragment of a model
that has been kept as a template for building new,
perhaps integrated, models. Each library unit has four
parts: a type context, a body, a unique name and an
interface. The type context contains a concept graph
and a measurement system. For example, in Figure 1
the quantity COST is attributed to the concept
@TRANSPORT and measured in US Currency. The
body of a library unit is a typed modeling language
representation that can contain index sets, parameters,
variables, functions and constraints. The body may be
a complete model or a model fragment that contains,
for example, data transformations or a collection of con-
straints. Model fragments, however, are still required to
satisfy the define before use principle. Each type used
in the body is derivable from the concepts, quantities
and measurement systems declared in the type context.

The type context and body of a library unit are
summarized by a unique name and manipulated
through two lists of arguments, called an interface. One
list is headed by the relabel operator , It<-'', the other

by the replacement operator, "<=" . The presence of a
label, index suffix, etc. in a list means that it is a legal
left-hand argument for the operator that heads the list.
While any character string in the type context or body
can appear in the relabel list, only names of typed
objects (e.g., variables) can appear in the replacement
list. Any index set, parameter, variable, function or
constraint in the library unit is a legal argument for the
"ELM()'I operator. The contents and organization of
the interface are specified by the designer of the library
unit to control its usage. When no interface is specified
the only permissible use of the library unit is to copy it
verbatim. We envision that a call on a library unit
using the "LIB" keyword would be embedded in a
model as a macro expansion that would yield multiple
typed modeling language statements. Before such a
model would be submitted to a modeling language
translator and type analyzer each "LIB" statement
would be replaced by its expanded form and then dupli-
cate statement would be eliminated. The job of
expanding library unit references would be performed
by a separate preprocessor. The output of the prepm-
cessor would be a typed modeling language textfile.
This full form of the model would then be submitted
directly to the modeling language translator or, if
desired, revised manually by the user before further pro-
cessing.

In summary, the library unit is intended as means
of saving and reusing models. Reuse is facilitated
through the provision of special operators for relabeling,
for replacing typed objects and for eliminating modeling
language objects. These features automate many of the
tedious, repetitive symbol manipulations that currently
are done to tailor models for new applications.

409

INTEGRATION WITH LIBRARY UNITS

One obvious advantage of a library unit or any
archival model is that it allows modelers to build upon
the work of others. The importance of the library unit
construct to integrated modeling is its power a,s an
abstraction and as executable documentation. First, by
summarizing a model by a unique name and an inter-
face of arguments, the library unit suppresses diversion-
ary detail and emphasizes the modeling constructs that
bind component models together. Second, integrated
models constructed by combining modeling language
statements and library unit invocations provide an exe-
cutable record of how the full model submitted for
model validation was derived from its components. In
addition, the use of "instancepame" prehes on model-
ing language identifiers, preserves the origin of each
construct assumed from a component model.

ACKNOWLEDGEMENTS

The first author would like to acknowledge the
support of the Mathematics Group of the Oface of
Naval Research. The authors would l i e to thank Art
Geoffrion and Dan Dolk for introducing them to execut-
able m o d e l i languages.

REFERENCES

Biaschop, J. and Meeraus, A., "On the Develop
ment of a General Algebraic Modeling System in a
Strategic Planning Environment," Math. Program-
ming Stud. 20 (October 1982), North-Holland,
Ameterdam, 1-29.
Bradley, G. H. and Clemence, Jr., R. D., "A Type
Calculus for Executable Modeling Languages",
Technical Report NPS52-87-029, Naval Postgradu-
ate School, July 1987. (Presented at the Martin
Beale Memorial Symposium, London, England,
July 68, 1987; to appear in IMA Journal of
Mathematics in Management.)
Clemence, Jr., R. D., "LEXICON: A Structured
Modeling System for Optimization," Master's
Thesis, Naval Postgraduate School, Monterey, CA,
June 1984.
Clemence, Jr., R. D., "A Type Calculus For
Model i i Languages," Ph.D. Dissertation, Naval
Postgraduate School, Monterey, CA (in prepara-
t ion).
Dolk, D. R., "Data as Models: An Approach to
Implementing Model Management,Il Decision S u p
port Systems, 2, 1 (March 1986), 73-80.
Dolk, D. R., "A Generalized Model Mananement
system for Mathematical Programming,"

Trans. Math. Software, 12, 2 (June 1986), 92-125.
Dolk, D. R. and Konsynski, B., "Model Manage-
ment in Organizations," Information and Manage-
ment, - 9, 1 (August 1985), 35-47.
Fourer, R., "Modeling Languages Versus Matrix
Generators for Linear ACM Trans.
Math. Software , 9, 2 (June 1983), 143-183.
Fourer, R., Gay, D. M. and Kernighan, B. W.,
"AMPL: A Mathematical Programming
Language,!! Computing Science Technical Report
No. 133, AT&T Bell Laboratories, Murray Hill, NJ
07974, January, 1987.

[lo] Geoffrion, A. M., Structured Modeling, unpub-
l ihed manuscript, January 1986.

1111 Geoffrion, A. M., "An Introduction to Structured

[7]

[8]

[9]

. .
Modeling,11 Management Science, 33, 12 (May
1987), 547-588.

[12] Geoffrion, A. M., "Integrated Modeling Systems,"
Working Paper No. 343, Western Management Sci-
ence Institute, UCLA, November 1986.

[13] Kendrick, D. A. and Meeraus, A., GAMS: An
Introduction, The World Bank, January 1987, The
Scientific Preee, Palo Alto, to appear.

[14] Lucas, C. and Mitra, G., "Computer Assisted
Mathematical Programming (Modeling System:
CAMPS)", (To appear in Computer Journal)

410

