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Abstract The exchange of design models in the de-

sign and construction industry is evolving away from
2-dimensional computer-aided design (CAD) and paper

towards semantically-rich 3-dimensional digital models.
This approach, known as Building Information Mod-
elling (BIM), is anticipated to become the primary means

of information exchange between the various parties in-

volved in construction projects. From a technical per-

spective, the domain represents an interesting study in

model-based interoperability, since the models are large

and complex, and the industry is one in which collab-
oration is a vital part of business. In this paper, we
present our experiences with issues of model-based in-

teroperability in exchanging building information mod-

els between various tools, and in implementing tools

which consume BIM models, particularly using the in-

dustry standard IFC data modelling format. We report

on the successes and challenges in these endeavours, as

the industry endeavours to move further towards fully

digitised information exchange.

Keywords Building Information Modeling · Interop-

erability

1 Introduction

The design and construction industry is undergoing a

significant shift away from the use of two-dimensional
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CAD and paper for design towards three-dimensional,

semantically rich, digital models. This trend has reached

a point where this technology, generally referred to as

Building Information Modelling (BIM), is being used
in some form by the majority of the industry. A re-
cent survey by McGraw Hill Construction [1] found that

in 2008, 45% of architects, engineers, contractors and

building owners surveyed used BIM on 30% or more

of their projects. Usage of BIM is forecast to continue

growing sharply in coming years.

One of the challenges faced by the industry is the

use of BIM not only as a tool in the design process,

but as the interface for the exchange of information

between the different parties involved in projects. A

typical construction project will necessitate collabora-

tion and information exchange between a variety of par-

ties, including the client, architects, engineers, estima-

tors and quantity surveyors, contractors and regulators.

Traditionally, information was exchanged in the form

of drawings and documents. As each of these parties

moves towards the use of BIM tools within their own

organisation, there is a significant incentive to instead

use digital design models as the medium for exchanging

information. However, these parties frequently use dif-

ferent tools, either from different vendors or specific to

their business domain, and this diversity of tools poses
a challenge for model exchange.

The Industry Foundation Classes (IFC)[2], defined

by the buildingSMART alliance, represent the accepted
industry standard for design models. IFC models are
semantically rich in that they capture not only the 3-

dimensional geometry of the objects, but metadata re-
lated to many other aspects of the building. For exam-
ple, if we consider an instance of a door object, this

door will be situated in a wall, on a defined building

storey, within the building. It will have attributes asso-
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ciated with it that describe its thermal performance,

costing, fire safety performance, etc. Which building

components need to be accessed to resolve an issue can

be determined by tracing system descriptions within

the model, for example, the thermal zones system, cost

breakdown structure and the fire safety system. The

necessary attribute definitions and the system descrip-

tions are derived from legislative requirements and anal-
ysis software input requirements.

Many of the significant BIM tools currently used

by industry support import and export of IFC files. We
have used IFC as an interoperable format over a number
of years, both as a mechanism for exchanging models
between tools, and as an input format for software tools

that we have built for design analysis and automation.

This paper presents our observations of the successes

and challenges of IFC as an interoperable standard for

building models.

The paper is structured as follows. In section 2, we
present a background to BIM and its present and an-

ticipated use in the design and construction industry,

including a profile of the use of BIM in a cross-domain

industry organisation. Section 3 then presents a brief

description of the IFC standard, in terms of its history,

structure and role as an interoperable standard. Section

4 presents observations of the present successes and fail-

ures of IFC as an interoperable standard, and of BIM

in general.

2 Building Information Modelling (BIM)

Building Information Modelling is an interdependent

network of policies, processes and technologies [3], which

together constitute a “methodology to manage the es-

sential building design and project data in digital for-

mat throughout the building’s lifecycle” [4]. BIM tools

are being increasingly incorporated into collaborative

design and modelling processes, with the promise of

substantive benefits for the efficiency of the design pro-
cess [1].

The construction of a building or group of buildings

is a complex endeavour, involving many parties and nu-
merous diverse activities. Even small projects are be-
yond the scope of any single company to complete in
isolation, and larger projects will necessitate the inter-

action of potentially dozens of organisations including
clients, architects, engineers, financiers, builders and
subcontractors. The process can be likened to that of

co-design in computing, in which the domain knowledge

of hardware and software engineers are distinct and

successful completion of the project requires intense

cooperation during design, manufacture and mainte-

nance/management of the system.

The information models that are used are also large,

complex, and highly inter-dependent, and includes ar-
chitectural components, engineering systems for struc-
tural, electrical, HVAC (heating, ventilation and air-

conditioning), and mechanical services, as well as de-

tails of cross-cutting concerns such as project manage-

ment, scheduling, and cost planning/estimation.

Traditionally, the dominant medium for exchang-

ing information between parties has been as drawings

and other paper documents (e.g. bill of quantities, cost

plan, building specification), and this remains the case

for many projects today. Although many organisations

use some software tools for the definition of their de-

sign models, the models are frequently rendered as 2D

drawings when they are sent to other organisations.

The information exchanged serves not only to in-
form the receiving party, but as a record of what infor-

mation was or was not conveyed, so that, in the event

of a dispute or problem, responsibility for a decision

may be clearly determined. Companies are comfortable

with the use of paper drawings for this purpose, and are

still reluctant to sign off on digital information repre-

sented in three dimensions, often with additional infor-

mation compared to the paper equivalent. For example,

architects often associate material types with building
objects in order to make the building look right for
a client presentation, and not necessarily because that
is the material to be used in construction. When the

model is then given to the engineer or quantity sur-

veyor, it might be unclear whether the material has

been selected intentionally, or simply for visual effect.

Which parts of the model are definitive, and which are
illustrative? This is important from a legal liability per-
spective.

Understanding of liability implications is also an im-
portant reason why the current use of digital models

mainly involves exchange of models as files, as opposed
to inspection of and linking to models using service-
oriented or distributed object technologies.

Despite these concerns, the use of BIM has reached
tipping point in the industry [1]. Use of 3-dimensional

CAD tools is commonplace amongst architects, and is

also seeing significant uptake in other sectors such as

amongst engineers, owners and contractors. In addition

to being used in the design process, BIM is also begin-

ning to be used for design analysis, including quantity
surveying and cost planning, environmental assessment,
acoustic and thermal performance assessment, schedul-

ing and simulation, and checking designs against codes

and regulations. As tools for these activities gain in

popularity, it is going to become more crucial that soft-

ware packages manipulating the models are able to in-
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teroperate reliably and without necessitating significant

human intervention.

2.1 BIM in an industrial context

Project Services is a comprehensive building design and

project management division of the Queensland Gov-

ernment’s Department of Public Works. As such, they

have a wide-ranging view of the use of digital model

exchange between stakeholders in a variety of construc-
tion projects. Figure 1 illustrates the organisational un-
derstanding of the design process within Project Ser-
vices, including the tasks involved in the design process,

the tools involved in each of these tasks (roughly cor-

responding to the range of design/analysis disciplines

that are implicated in the process), and the nature of

the exchange of information between different interde-
pendent tools (as IFC or non-IFC 3D models, 2D mod-
els, or textual representation).

As can be seen, 3-dimensional models are the pre-
dominant medium for interchange, particularly between
the architectural and engineering disciplines. However,

even within this, a range of IFC and proprietary for-

mats are used, depending on the presence and quality

of support for IFC within the respective software tools.

There are also a range of scenarios where 2D models are

used, and others, particularly for the analysis of mod-

els, where information is passed in a textual form not

closely linked with the 3-dimensional model.

While this diagram clearly depicts the information

and software interdependencies between the various dis-

ciplines, it does not address the dimension of time in the

design process. This represents something of a downfall

in the current approach to BIM, a pervasive underly-

ing ambiguity concerning the levels of data abstraction

and integration appropriate to the models at different

stages in the design [5].

The importance of 3-dimensional exchange of in-

formation between design and analysis tools is best

illustrated by considering one of the most basic (al-

though far from simple) analyses that must be per-

formed on a design: that of detecting clashes between

elements in physical space. Figure 2 shows the services

models1 from a Project Services design for the Mango

Hill/North Lakes Police Station, a suburban police sta-
tion located in Brisbane. The individual models for
architectural (2a), structural (2b) and mechanical (2c

models, as well as the combined model (2d), illustrate

the complexity of the data being modelled, particularly

1 Other models for this project, including electrical, hydraulics,

interiors and landscaping, are not shown here.

in terms of geometry. Clearly it is important that ele-

ments in these models to not occupy the same physical

space. Although systematic clash detection is often only

done at the end of the process, the various designers re-

view the overall model for these issues on an ongoing

basis as the constituent models evolve. Both the formal

and the informal analyses are entirely dependent on

being able to reliably exchange these models between
designers, and between design and analysis tools.

3 Industry Foundation Classes (IFC)

The industry standard for exchanging Building Infor-

mation Models is defined by the Industry Foundation

Classes, or IFC[2]. IFC was first specified in 1996 by

the International Association for Interoperability (IAI),

and has seen a number of minor and major revisions

since then (the popularly used versions today are 2x2

and 2x3). The IFC specifications are currently admin-

istered by the buildingSMART alliance.2

From a technical point of view, IFC is defined using

the ISO 10303 [6] suite of specifications for data mod-
elling and exchange, otherwise known as STEP (Stan-

dard for the Exchange of Product Data). STEP consists
of a range of specifications, most notably a language for
specifying data schemata (STEP/Express [7], in which

the IFC language is defined), a mapping (Part-21 [8]))

for text-file representations of models conforming to

that schema, a mapping (StepXML [9]) for XML file

representation of models, and mappings to APIs for ac-

cessing models programmatically (notably Part-22 [10],

Standard Data Access Interface, or SDAI). Of these

technology mappings, the most significant in terms of

interoperability is currently the Part-21 mapping, which

effectively defines the IFC’s file format.3

Since the release of version 1.0 in 1996, IFC (the
latest version being IFC 2x3) has seen significant take-

up by many of the major CAD tool vendors. In the
architectural sector in particular, the major vendors
all claim support for import and export of IFC, in-

cluding Graphisoft,4 Bentley,5 Nemetschek,6 and Au-

todesk.7 Take-up in other sectors is much more vari-

able. The software tools of some, such as structural,

mechanical and electrical engineering (including the Re-

vit tools from Autodesk), and steel detailing (notably

2 http://www.buildingsmartalliance.org
3 The XML mapping is also defined, as ifcXML, but in the

experience of the authors, this is rarely used.
4 http://www.graphisoft.com
5 http://www.bentley.com
6 http://www.nemetschek.net
7 http://www.autodesk.com



4

Fig. 1: Activities and associated software involved in the design process of Project Services

Tekla Structures8), have support for IFC, whereas in

others, such as environmental analysis, cost estimation,

civil engineering or facilities management, support is

less common.
The IFC language is, by any definition, very large

and very complex. The language definition of IFC ver-

sion 2x3TC1 includes 327 data types, 653 entity defini-

tions,9 and 317 property sets.

The language includes constructs for a very wide

range of modelling features, including (but not lim-

ited to) 3-dimensional geometries, to basic building el-

ements (slabs, columns, beams, doors), facilities man-

agement, electrical, mechanical and other subsystems,

and structural analysis constructs, to identity, organisa-

tional, process and cost modelling constructs. The spec-

ification is broken up into platform and non-platform

domains, but even the core platform constructs com-

prise well over 300 classes. The size and scope of IFC

mean that few (if any) individual tools implement the

entirety of the language.

The complexity of the language is exacerbated by

the possibility in many sub-domains for alternative mod-

8 http://www.tekla.com
9 By way of comparison, the UML2 metamodel [11], often con-

sidered by metamodellers to be a large metamodel, defines 260

metaclasses.

ellings. This can be affected by both software devel-

oper implementation decisions and the choice of do-

main modelling technique by the user. The geometry

constructs, in particular, provide myriad ways of mod-

elling the same structure. As a simple example, a block

structure may be modelled using a boundary represen-

tation with planes for each side, or as an extrusion using
a polygon and a vector. A more subtle but more prob-
lematic example might be the alternative modelling of
a low wall as either a wall object, a thick slab object,

an upstand beam, or even a kerb. Each of these objects

have different semantic meaning, so although the ob-

jects might look no different on a 3D rendering, they

will be treated differently by analysis tools.

For cases where the IFC does not provide a particu-

lar modelling construct, the language includes a mecha-

nism for the modelling of IfcProxy objects, which serves

as a kind of extension mechanism. For example, in the

case of landscaping, there is no IFC construct for trees
or shrubs, so these are often included (with geometries)
as IfcProxy objects.

In addition to the size and complexity of the lan-

guage itself, individual IFC models tend to be very

large. The size and level of complexity present in a

model for a large building, including the geometry and
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(a) Architectural (b) Structural

(c) Mechanical (d) Combined

Fig. 2: Model images from a Project Services design for the Mango Hill/North Lakes Police Station. Figures 2a,

2b, 2c are of individual models, while 2d depicts the combined model

semantic information for all building elements, is con-
siderable, even when split into different models accord-

ing to concern. For example, Figure 3 shows the model

of mechanical services for a 19-storey office building,

with an inset showing a single model element, an ab-

sorption chiller, with some of its metadata. The main

systems are modelled in full, but the detailed design of

individual floors is shown only for two example storeys.

The part-21 IFC file for this model is 360 MB, and the
model consists of more than 7.3 million computational
objects. Although this is not a small project nor a par-
ticularly simple one, it is by no means an extreme case

in size or complexity.

The current process for testing the IFC compliance

of BIM tools involves the use of a standardized suite of

large test models, subject to visual inspection in the
tool. There is also a prescribed set of modifications

which are then made to the models, which are then

rechecked. The procedure does not, at present, include

assessment of the tool’s handling of semantic informa-

tion in the model.

4 BIM Interoperability

In this section we provide observations about the is-

sues observed surrounding the use of IFC for exchang-

ing design models between a range of different tools.

To do this, we make reference to the KISS classifica-

tion of interoperability levels. The KISS (Knowledge

Industry Survival Strategy) initiative aims to examine
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Fig. 3: Model of mechanical services for a 19-storey office building
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the role domain-specific modelling languages can play

in capturing, preserving, and exploiting knowledge, by

considering the fundamental values and principles that

underpin their use. As part of this, they reason about

model-based interoperability by considering the prob-

lem at a number of different levels, shown in Figure 4,

(taken from the KISS initiative website [12]).

4.1 File and syntax levels

From the point of view of IFC-based interoperability,

we consider interoperability at four levels. File level in-

teroperability is the ability of two tools to successfully

exchange files. Syntax-level interoperability is the abil-

ity of two tools to successfully parse those files with-

out errors10 Visualisation-level interoperability relates

to the ability of two tools to faithfully visualise a model

being exchanged. Semantic-level interoperability relates

to the ability of two tools to come to a common under-

standing of the meaning of a model being exchanged.

There are few problems encountered at the file and

syntax levels of interoperability. Over years of using

2-dimensional CAD tools, many organisations in the

design and construction industry have developed pro-

cesses and conventions for managing files, and some of

these apply well to BIM, at least during the early stages

of uptake. However, in the long term, changes will oc-

cur within working methods as organisations attempt

to exploit the advantages provided by improved access

to 3D object models. At the current level of uptake by

industry, the type and extent of these changes in work

processes are difficult to predict.

Some problems are observed due to the very large

size of the models being used. Some systems have re-

strictions based on memory consumption or number of

objects in a model, which can result in models either

not loading, failing to render in 3D, or even failing to

generate 2D drawings correctly. For example, the me-

chanical services model shown in Figure 3 is too large

for systems built on toolkits such as EDM,11 whereas
in a tool like the DDS CAD Viewer,12 it will load but

cannot be rendered in 3D.

10 Syntax-level interoperability also encompasses the ability of
tools to interoperate without errors using an API-based interface
but in the case of IFC, although it is available through the JSDAI

specification[10], this is rarely used.
11 From Jotne EPM Technology AS,
http://www.epmtech.jotne.com
12 From Data Design System (DDS), http://www.dds-cad.net

4.2 Visualisation level

The precursors to digital model exchange in the con-
struction industry were paper drawings, and the models

being represented are essentially geometric in nature,

so it is not surprising that visualisation has long been

the priority for the interoperability of IFC. To date,

this has been largely successful. With a few exceptions,

models produced in one IFC-compatible tool are gener-
ally able to be visualised in another. In the more general
case, however, claims about support for different model

formats are less reliable. For example, many of the en-

vironmental/energy analysis programs (which are not

IFC compatible), struggle with the proprietary formats

that they are supposed to support.

One such exception, mentioned in the previous sec-
tion, is when the size of the model precludes its visuali-

sation in a given tool. Another issue is the use and reuse

of geometries. Models from Revit Structure, for exam-

ple, can sometimes have IfcOpening or other objects

appear out of position in other tools, due to the way

that position and dimension information is modelled in
the case of objects that are copied or reused.

Another outstanding issue is that of alternative vi-

sualisations. An architect will choose colours and tex-

tures for their model that reflect its actual appearance,

whereas a quantity surveyor or someone checking the

model against a regulatory code will frequently opt for

a colour scheme that best distinguishes building ob-
jects based on semantic information, such as their type
(e.g. having a slab and its supporting beam be differ-

ent colours, despite both being concrete) or material

(using different colours for different grades of concrete,

or for concrete vs. plasterboard, even if they are to be

painted the same colour). Because of the different ob-

jectives in play, the model can appear different in dif-
ferent tools. IFC includes language support for the def-
inition of different representations for objects, but to

date there is no consensus on how to manage these. For

example, there is no tool-independent way of grouping

or labelling different representations into, for example,

levels of detail or visual-versus-symbolic viewpoints.

4.3 Semantic level

As discussed in the previous section, the principal goal
for IFC was originally that of visual model exchange
between tools, and thus far, this has met with a degree

of success. However, as the construction and digital de-

sign industry moves further into BIM, the opportunities

for leveraging models depend increasingly on models

that can be reliably interchanged and interoperated on

a semantic level. Semantic interoperability poses more
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Fig. 4: The KISS classification of interoperability levels

issues, ranging from relatively simple technical prob-
lems, to deeper problems tied to modelling style within

the community that exchanges models.

Some of the simple problems include a loose ap-
proach to the use of object identifiers. For example,

some tools do not preserve object identifiers (GUIDs)
when editing models, which causes problems for tools
which provide more sophisticated versioning and change-
tracking functionality, such as Jotne EPM Technology’s

EDM Model Server.13 These tools depend on GUIDs

to version models at the individual object level, rather
than for the whole model, and to permit intelligent

merging of models pertaining to different stakeholder
viewpoints. Although they can have a large impact on
interoperability, the solutions to problems like these are

simple (tools need to preserve GUIDs). This is not the

case for more complex issues such as modelling style,

as are described in the following sections.

4.3.1 Modelling style

The potential of these semantic model exchange oppor-
tunities has been made visible in a number of projects.

For example, Ecquate’s LCA Design [13] tool allows the
designer to evaluate the short-, medium- and long-term
emissions of a building, by inspecting the materials and

other information about a building in combination with

databases of emissions data. The Automated Estimator

tool [14] allows a quantity surveyor or cost engineer to

automate large parts of the time-consuming quantity

takeoff process, by using a rule engine that categorises

13 http://www.epmtech.jotne.com

and itemises building objects based on material, relative

position and other properties. Projects such as Solibri’s

model checker,14 and Jotne EPM Technology’s EDM-
rulechecker,15 allow for the checking of models against

codes such as accessibility or fire regulations.

One of the keys to the uptake of these kinds of anal-

ysis tools is the stylistic consistency of the models that
are provided to them, in terms of the encoding of in-
formation within the very flexible constructs provided

by the language. If the objects (in particular materials

and object types) being used in a model are not con-

sistent with those expected by the analysis tools, then

the analyst will need to spend time “fixing” the model,

which reduces the value of the tools. For example, some

models will encode structural steel members as being of

material “Structural Steel” with the grade of steel (e.g.

C350, C450) encoded in the object description, whereas

others will have the grade of steel as the material type.

If a quantity takeoff tool anticipates one encoding but

encounters the other, it will not compute the correct

quantity of steel.

There are efforts underway to address these issues of

modelling style. The IFD (International Framework for

Dictionaries) specification [15] and library16 provides

an ontology for the definition and storage of building

model objects that can be reused on different projects,

and has been used in a number of jurisdictions (typi-

cally national) to encourage consistent use of modelling

constructs. Technical solutions such as this require the

14 http://www.solibri.com
15 http://www.epmtech.jotne.com
16 http://www.ifd-library.org
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involvement of stakeholders in order to define the disci-

plines and conventions that should be used when mod-

elling, e.g. in Australia the ongoing National Guidelines

and Case Studies project within the CRC for Construc-

tion Innovation.17

4.3.2 Coverage Issues

There are a number of interoperability problems that
arise because of coverage issues, either coverage of the

IFC language by implementing tools, or coverage of the
domain by the IFC language.

Cases do arise where a tool fails to produce a correct
visual rendering because it encounters an IFC construct

that it does not understand, but these are rare, since

the geometric and visualisation constructs are shared

across IFC, and these constructs are typically well cov-

ered by tools. More common, though, is the situation

where an alternative modelling is chosen due to a short-
coming of the designer’s tool palette. For example, if the
designer wishes to place a low kerb or upstand beam in

front of a wire closet, but the tool’s palette does not

provide such a construct, the designer might insert a

slab or wall element instead. This will look correct, but

will pose problems for analyses such as quantity takeoff.

These problems, of having to create and export custom
components, are particularly prevalent in designs incor-
porating non-traditional geometries.

The other situation where coverage is an issue is

where IFC does not provide a modelling construct. For
example, if a designer wishes to place a water tank, IFC
has no construct to represent that. The designer has
the choice of either representing the tank using curved

walls and slabs, or of using an IFC proxy object. Both

of these solutions pose challenges for analysis, since the

construct/s will not be understood by the analysis tool,

but judicious use of one of the IfcProxy constructs is the
most robust method of handling this issue. The most
important way to address this latter problem lies, like

that above, in the development and adoption of mod-

elling conventions and guidelines for these cases. How-

ever, implementation of the proxy mechanism within

tools also needs to make it as easy for a user to add a

new proxy object as it is to use a semantically mislead-

ing construct that presents the same visual appearance.

4.4 Alternative Representations

Beyond the lack of agreed mechanisms for managing

different geometric representations (as discussed in the
previous section), there are often much more complex

17 http://www.construction-innovation.info

problems of different representation paradigms. An ex-

ample of this can be seen in Figure 5, which illus-

trates the difference between an architectural design

model and an energy simulation model. The architec-

tural model uses solid geometries, since a faithful phys-

ical representation is important. The energy simulation

model is only interested in the wall’s thermal coeffi-

cient, not its thickness, so uses “centreline” geometries.
As seen in the figure, this can lead to a “gap” between
adjoining walls. This will cause the energy simulation

software to consider two separate physical spaces, on

either side of the wall, as a single physical space, which

will lead to incorrect analysis numbers. The design rep-

resentation does not directly translate into an accurate

analytical representation, and the model must be trans-

formed (typically manually) before it is suitable to be

used for a performance simulation.

Another example can be seen in modelling roads,

where it is common to begin with string-based repre-

sentations of roads and associated elements (signage,

markings, drainage and electrical information), using

vectors for edges instead of surface models. Switching to

a surface-based form requires complex transformations

of the model. This idea of mapping between representa-

tion paradigms will become a more significant problem
as BIM is expanded to include more disciplines, par-
ticularly models beyond a single building, including ur-

ban planning models. Examples of this include ongoing

buildingSMART projects investigating the use of IFC

for Bridges and for GIS.

4.5 Parametric modelling

One of the current trends in design is the use of para-

metric modelling. Parametric modelling tools allow the

user to parameterise different properties of their mod-

els, so that the design as a whole can be readjusted by

simply adjusting a parameter. For example, the design

of a high-rise building might be parameterised by the

number of stories, or the width of the building footprint.

Individual elements in the model can then change their

properties, or even be created or removed, as a func-

tion of these parameters. Different tools support dif-

fering levels of parameterisation, ranging from simple

shared simply-typed variables, through to structural or

cladding systems that will repeat in complex patterns.

Presently, models that incorporate parameterisation

can only be exported into IFC by fixing the param-

eters and exporting a snapshot of the design. This is

obviously less than ideal, particularly when exchang-

ing models early in the design process. However, from a

technical point of view, incorporating support for para-
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Fig. 5: The difference in representation between an architectural design model and an energy simulation model

metric modelling into the IFC language would involve
a significant reworking of the IFC standard.

5 Conclusion

5.1 Interoperability in BIM

The transition from paper-based exchange of design

models to processes based around the use of digital

models represents an important shift in the design and

construction industry. Using digital models opens the

possibility of automating a number of the analyses done
during design, with important consequences for the speed
and efficiency of the design process, and for the quality

of the resultant designs. In an industry so heavily de-

pendent on collaboration, challenges of interoperability

must be addressed in order to maximise these benefits.

The IFC is an ambitious example of model-based in-

teroperability, covering a wide range of modelling infor-

mation, and across a wide range of sub-domains. When

evaluated against the KISS hierarchy[12] of interoper-

ability levels, it has thus far met with relative success

in providing file- and visualisation-level interoperability

within a subset of domains, most notably in architec-

ture and structural design. However, it faces challenges

as it moves into more situations demanding semantic

interoperability, and as its use is broadened to include

more sub-domains, both anticipated and unanticipated.

The principal semantic interoperability challenges

revolve around the quality and consistency of the mod-

els produced. Efforts are underway to provide for con-

sistent modelling both through technical solutions and

through the engagement of stakeholders to determine

what constitutes good modelling practice. The success

or failure of these efforts will go a long way towards de-

termining the extent to which BIM succeeds in trans-

forming the industry.

5.2 Lessons for general model-based interoperability

IFC and its use in the design and construction indus-

tries represents an instructive example for model-based

interoperability. Although there are some characteris-

tics of the domain that distinguish it somewhat, there

are nonetheless lessons to be learnt about the time line

of dealing with problems related to interoperability, in
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terms of the issues that are faced and techniques that

can be used to resolve them.

The most significant defining characteristics of BIM

as a domain for interoperability are collaboration and

scale.

One of the reasons that interoperability has been,
and continues to be, an important issue for the architec-

ture, engineering and construction (AEC) industry, is
the inherent collaborative nature of the domain. Large
projects can involve up to 20 different companies from

almost as many disciplines. Even small projects will

typically have a half dozen companies, and all projects

need to communicate designs to regulatory bodies for

compliance to building codes, disabled access regula-
tions, fire safety, etc. Exchange of information across or-
ganisational boundaries, and across disciplines, makes
interoperability a big issue. In the case of AEC, this

cross-organisational nature has hampered the use of

models for information exchange.

Both the models handled by BIM, and the IFC lan-

guage used to represent them, are very large and com-

plex. In the case of the models themselves, this has to

date been chiefly a consequence of the use of expressive
3-dimensional modelling constructs. The use of these
constructs is limited to physical-world modelling lan-

guages, but does have applicability to a number of other

domains, e.g. manufacturing, automotive, aerospace or

industrial design. This aspect of IFC no longer poses

real problems, and one would think that other indus-

tries could fairly reuse the geometric aspects of the IFC

language and, potentially, their implementations.

In the IFC language, though, the scale comes about

because of the ambitious breadth of the modelling lan-

guage, covering the structural, architectural, electrical,

mechanical, and many other aspects of the domain. In

addition, the domain itself is intrinsically broad; even

considering only buildings, it ranges from bus shelters

to airports. The breadth of IFC has been somewhat

problematic for interoperability, in that no one tool can

implement all of the language. The two approaches to

addressing the breadth of a large language and its cov-

erage by tools, are of profiling the language, or of struc-

turing it using the “family of languages” approach. The

former is currently under investigation by IFC (as well

as other languages like OWL), while the latter has been

proposed, but not yet fully developed, by languages

such as UML. It seems too early at this point to eval-

uate the use of these techniques for real-world model
interoperability.

One of the significant observations to be taken from

the IFC experience of interoperability is that the hi-
erarchy shown earlier in Figure 4 represents not only

a hierarchy of interoperability levels, but a time line

of problems. In the case of IFC, it is only after file-

, syntactic- and visualisation-level interoperability has
been largely achieved, that semantic-level interoperabil-
ity issues become clear and can be addressed. Other
modelling languages that have difficulties with syntac-

tic interoperability, e.g. XMI in the MDA space, might
be less aware of the scope of semantic interoperability
challenges.

The most significant of these semantic-level issues

for IFC has been that of inconsistency of modelling
style, and this is a significant issue for general model-
based interoperability. From the perspective of mod-
elling language design, it is tempting to suggest that

a modelling language should be sufficiently clear and

complete in its definition that alternative modelling

styles should not be possible. Certainly, for languages

whose use is restricted to a small domain or a single
organisation, this can be done. However, in the case
of a domain such as that covered by IFC, the varia-
tion of design practice, and even more significantly the

difference in regulations between different jurisdictions,

make this infeasible. The reality is that certain parts of

the language must be left flexible in order to support

these unforeseeable variations.

Solutions to the model consistency problem may be

methodological, such as efforts by local or discipline-
specific industry groups to define modelling style guides.
Alternatively, they may be technical, such as using on-

tologies or transformations to bridge between alterna-

tive modellings, or using model checkers to evaluate a

model’s compliance to a set of well-formedness rules, or

support from implementing software to guide the mod-

eller rather than constraining them in the language it-

self.
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