
Model Inversion Attacks Against
Collaborative Inference

Zecheng He
zechengh@princeton.edu

Princeton University

Tianwei Zhang
tianwei.zhang@ntu.edu.sg

Nanyang Technological University

Ruby B. Lee
rblee@princeton.edu

Princeton University

ABSTRACT

The prevalence of deep learning has drawn attention to the

privacy protection of sensitive data. Various privacy threats

have been presented, where an adversary can steal model

owners’ private data. Meanwhile, countermeasures have also

been introduced to achieve privacy-preserving deep learning.

However, most studies only focused on data privacy during

training, and ignored privacy during inference.

In this paper, we devise a new set of attacks to compro-

mise the inference data privacy in collaborative deep learning

systems. Specifically, when a deep neural network and the

corresponding inference task are split and distributed to dif-

ferent participants, one malicious participant can accurately

recover an arbitrary input fed into this system, even if he has

no access to other participants’ data or computations, or to

prediction APIs to query this system.We evaluate our attacks

under different settings, models and datasets, to show their

effectiveness and generalization. We also study the charac-

teristics of deep learning models that make them susceptible

to such inference privacy threats. This provides insights and

guidelines to develop more privacy-preserving collaborative

systems and algorithms.

CCS CONCEPTS

• Security andprivacy→ Systems security;Distributed

systems security; • Computing methodologies→Arti-

ficial intelligence.

KEYWORDS

Deep Neural Network, Model Inversion Attack, Distributed

Computation

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7628-0/19/12. . . $15.00

https://doi.org/10.1145/3359789.3359824

ACM Reference Format:

Zecheng He, Tianwei Zhang, and Ruby B. Lee. 2019. Model In-

version Attacks Against Collaborative Inference. In 2019 Annual

Computer Security Applications Conference (ACSAC ’19), December

9–13, 2019, San Juan, PR, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3359789.3359824

1 INTRODUCTION

Deep learning technology has developed rapidly, especially

Deep Neural Networks (DNNs). Deep learning models out-

perform traditional machine learning approaches on various

artificial intelligence tasks, e.g., image recognition [19], natu-

ral language processing [31], speech recognition [16], anom-

aly detection [20] etc. Such high and reliable performance

is attributed to the models’ complex structures (i.e., a large

number of hidden layers and parameters), time and resource

consuming training process, and a significant amount of data.

To accelerate the learning and prediction processes, as

well as reduce overheads, collaborative deep learning sys-

tems have been designed. Typically there are two collabo-

rative modes. The first is collaborative training [6, 7]. The

training task is distributed to multiple participants. Each par-

ticipant trains an individual model over his private dataset,

and periodically exchanges model updates. The final model is

aggregated from each individual model. Collaborative train-

ing can significantly improve the training speed.

The second mode is collaborative inference [8, 17, 25, 27,

43]. The basic idea is to split a deep neural network into

multiple parts, with each part allocated to a different par-

ticipant. An input sequentially goes through each part of

the neural network on these participants to generate the

final output. Collaborative inference has gained popularity

in the edge-cloud scenario. As edge devices, e.g. IoT devices

and smartphones, have limited computation and storage ca-

pacities, it is difficult for a single device to host an entire

model, and conduct the inference within reasonable latencies.

Instead, the neural network can be divided into two parts.

The first few layers of the network are stored in the local

edge device, while the rest are offloaded to a remote cloud

server. Given an input, the edge device calculates the output

Code available: https://github.com/zechenghe/Inverse_Collaborative_

Inference

148

https://www.acsac.org/2019/
https://doi.org/10.1145/3359789.3359824
https://doi.org/10.1145/3359789.3359824
https://github.com/zechenghe/Inverse_Collaborative_Inference
https://github.com/zechenghe/Inverse_Collaborative_Inference

of the first layers, sends it to the cloud, and retrieves the final

results. Collaboration between the edge device and cloud

server achieves higher inference speed and lower power con-

sumption than running the task solely on the local or remote

platform.

Privacy has become a big security concern in deep learn-

ing. Past work presented a variety of privacy threats against

training data, e.g., property inference attacks [3, 11], member-

ship inference attacks [18, 29, 30, 39, 41, 49], model inversion

attacks [9, 10]. These threats are also important in the con-

text of collaborative training. Since multiple participants

are involved in one task, but not all of them are necessar-

ily trusted, it is essential to prevent malicious participants

from stealing sensitive data. It has been shown that the pri-

vacy of training data is better protected if each participant

in the distributed system uses his own dataset and never

shares it with other participants [15, 40]. However, it is still

possible for an adversary participant to infer the sensitive

information and properties of other participants’ training

data indirectly via model updates. Distributed model inver-

sion attacks [22] and property inference attacks [32] were

designed and implemented.

In contrast, inference data privacy is less studied, either

in single-party or multi-party machine learning systems.

It is much more challenging to recover inference samples

than training samples due to the following reasons: (1) the

model parameters do not depend on the inference input. Thus

the inference process reveals less useful information about

inference samples to the adversary; (2) Training samples

usually follow certain distributions, enabling the adversary

to recover statistical information about such distributions.

Inference samples do not have this assumption, making it

hard to recover an individual sample. In single-party sys-

tems, Wei et al. [48] made an attempt towards inference data

recovery in DNN accelerators via power side channels. Their

attacks required the adversary to be able to hack into the

victim device and install trojans, and the input image needs

to be very simple, e.g. binary. These assumptions make the

attack less practical. To the best of our knowledge, there is no

work exploring the privacy issues in multi-party inference

systems.

This paper presents the first investigation of inference data

privacy in a collaborative ML system. Two key questions are

considered in this study. The first one is: if one intermediate

participant is compromised and controlled by an adversary, can

he recover an arbitrary input sample? To answer this question,

we design a set of novel attack techniques for different set-

tings. (1) In a white-box setting where the adversary knows

the target model on other participants, we propose regular-

ized Maximum Likelihood Estimation (rMLE), to recover the

input from the model parameters and intermediate output.

(2) In a black-box setting, the model parameters on other

participants are inaccessible to the adversary. We introduce

the Inverse-Network technique to identify the mapping from

the intermediate output to input. (3) We further consider the

query-free black-box setting, in which the adversary can-

not query the inference system. We design an approach to

reconstruct an alternative version of the target model and

then recover the input via rMLE. Our attack results indicate

that it is feasible for a compromised participant to accurately

recover the input data, even if he has no knowledge of the

target model, training data, or capability of querying the

system.

The second question is: Of the target system and model,

which characteristics make the inference process more vulnera-

ble to such privacy threats? Which can reduce privacy leakage?

To fully understand the impact of the model features and sys-

tem designs on the attacks, we conduct empirical evaluations

on different model partitioning strategies and adversary’s

capabilities. Through quantitative comparisons, we identify

the critical features and conditions that determine the suc-

cess of the model inversion attacks. We hope our findings

can guide machine learning researchers and practitioners to

design more secure collaborative inference systems.

The key contributions of this paper are:

• The first systematic study of inference data privacy in

collaborative machine learning systems.

• The regularized Maximum Likelihood Estimation tech-

nique to recover inference data under the white-box set-

ting;

• The Inverse-Network technique to recover inference data

under the black-box setting;

• The query-free shadow model reconstruction technique to

recover inference data under the query-free setting;

• Quantitative discussion about the impact of system and

model features on the attacks, and investigation of defense

strategies.

The rest of the paper is organized as follows: Section 2

gives the background of DNN and collaborative inference.

Section 3 presents the threat models in our consideration

and experimental configurations. Sections 4, 5 and 6 describe

attacks under white-box, black-box and query-free settings,

including attack approaches, implementations and evalua-

tion results. Section 7 compares different attack factors, and

discusses possible mitigation solutions. We give related work

in Section 8 and conclude in Section 9.

2 BACKGROUND

2.1 Deep Neural Networks

ADNN is a parameterized function fθ : X 7→ Y that maps an

input tensor x ∈ X to an output tensory ∈ Y . Various neural

network architectures have been proposed, e.g., multilayer

149

x yh1 hn…

Figure 1: DNN architecture

x yhj hj+1… …v

Figure 2: Collaborative in-

ference

perceptrons [36], convolutional neural networks [28] and

recurrent neural networks [38].

Figure 1 shows the structure of a DNN. It usually con-

sists of an input layer, an output layer and a sequence of

hidden layers between the input and output. Each layer is

a collection of units called neurons, which are connected to

other neurons in the previous layer and the next layer. Each

connection between the neurons can transmit a signal to an-

other neuron in the next layer. In this way, a neural network

transforms the inputs through hidden layers to the outputs,

by applying operations (e.g., linear function or element-wise

nonlinear activation function) in each layer.

Model training. The training process of a neural network

is to find the optimal parameters θ that can accurately reflect

the relationship between X and Y . To achieve this, a train-

ing dataset Dtrain
= {x traini ,ytraini }

N
i=1 with N samples is

needed, where x traini ∈ X is the feature data and ytraini ∈ Y

is the corresponding ground-truth label. Then a loss function

L is applied to measure the distance between the ground-

truth output ytraini and the predicted output fθ (x
train
i). The

goal of training a neural network is to minimize this loss

function (Eq. 1). Backward propagation [14] and stochastic

gradient descent [35] are commonly used methods to ap-

proximately achieve this goal. The optimal parameters θ ∗

together with the network topology form the deep learning

model.

θ ∗ = argmin
θ

(

N∑

i=1

L(ytraini , fθ (x
train
i)) (1)

Model inference. After the model training is completed,

given an input x , the corresponding output can be calculated

as y = fθ ∗ (x).

2.2 Collaborative Inference

In a collaborative inference system, a DNN is partitioned

into n parts: fθ = fθ1 · fθ2... fθn . Each part fθ i contains

several layers, and is distributed to a participant Pi . Given

an input x , the first participant P1 generates v1 = fθ1 (x) and

sends it to P2. Each participant Pi receives the intermediate

value vi−1 from Pi−1, calculates vi = fθ i (vi), and passes it

to Pi+1. The final participant Pn generates the final output

y = fθn (vn−1). Figure 2 shows an example of a collaborative

inference system with two participants.

A use case. With the growing proliferation of Internet of

Things (IoT), we need ways to deploy deep learning inference

applications on commodity resource-constrained edge de-

vices [50]. Running the entire application on the edge device

has several challenges: the limited computation resources of

the device can cause significant latency; the limited storage

capacity makes it hard to store a large DNN model; the lim-

ited battery capacity causes a critical energy consumption

constraint. An alternative is to offload the entire DNN model

and inference computation to the cloud. The edge device

sends the input data to the cloud and receives the output.

While this can resolve the limitations of edge devices, it can

incur significant communication costs when sending a large

volume of input data. Besides, there can be privacy issues of

the inference data and integrity issues of the model [21], if

the cloud is not trusted.

An optimized strategy is to adopt collaborative inference

between the edge device and the cloud [8, 17, 25, 27, 43].

The first few simple layers of the DNN model are deployed

on the edge device, while the remaining complex layers are

offloaded to the cloud. This approach can reduce communi-

cation costs, as the intermediate output can be designed to

be much smaller than the raw input. Such low data transfer

bandwidth can also achieve lower latency. Collaborative in-

ference makes it feasible and efficient to deploy large-scale

intelligent workloads on today’s edge platforms.

Collaborative inference can also provide better privacy

protection, as the cloud now only receives the intermediate

values instead of the raw data [43]. The raw data can cause

significant privacy issues, e.g. biosensor readings, medical

diagonosis and examination data, and facial images. In this

paper, however, we show that information leakage is still

possible in collaborative inference. An untrusted cloud can

easily and accurately recover the sensitive data from the

intermediate values without accesses to the edge device. The

existing ML privacy protection mechanisms include leverg-

ing data obfuscation, Trusted Execution Environment (TEE),

homomorphic encryption and differential privacy. We dis-

cuss their feasibility and potential drawbacks in Section 7.4.

3 PRELIMINARIES

3.1 Threat Model

Without loss of generality, we consider a collaborative infer-

ence system between two participants, P1 and P2. The target

model is split into two parts: fθ = fθ2 · fθ1. P1 performs

the earlier layers fθ1, while P2 performs the later layers fθ2.

We consider P1 is trusted: when an input is fed into fθ1,

150

P1 correctly processes it and never leaks it to other parties.

However, P2 is untrusted, attempting to steal the input. This

assumption is reasonable in the edge-cloud scenario: the

model owner configures and operates the local device (P1)

to ensure the computation is trusted. But he does not have

control over the cloud server (P2), which may be untrusted.

Our threat model can also be applied to systems with more

than two participants. As most real systems are split into two

parties, without loss of generality, for the rest of this paper,

we use a two-participant system to describe and evaluate

our attacks. Multi-participant attacks can be achieved in a

similar way. P2 can be defined by all consecutive adversarial

participants from an intermediate layer to the last layer. P1
can be defined as the initial layers to that intermediate layer.

Adversary’s capabilities. We assume the untrusted partic-

ipant P2 strictly follows the collaborative inference protocols:

receiving v = fθ1 (x) from P1 and generating y = fθ2 (v). He

cannot compromise the inference process conducted by P1,

and he has no knowledge of the input x , nor any intermediate

values inside P1, except v .

We consider the adversary with different capabilities, sum-

marized in Table 1. These capabilities include knowledge of

the target model fθ1, knowledge of training data, and access

to the target system for a query. Based on these, we consider

three types of settings:

In the white-box setting (Section 4), P2 obtains knowl-

edge of the DNN layers fθ1 controlled by P1, including the

network structure and parameters. Then the adversary can

use the model parameters to recover input data, without the

requirements of knowing training data or querying models.

In the black-box setting (Section 5), we relax the assump-

tion about the knowledge of the target model. The adversary

can only learn information about the model fθ1 indirectly

through querying the inference system.We demonstrate that

the adversary can recover the sensitive input when he knows

the values, or distribution of the original training dataset, or

neither.

We further consider the query-free setting (Section 6),

which is a special case of the black-box scenario without

the capability of model query. This type of attacks needs

the lowest requirements. We show that the adversary can

recover the data even when he has no knowledge of the edge

model and cannot query the model.

3.2 Experimental Configurations

In the rest of this paper, we evaluate our attacks on two

standard DNN benchmark datasets: MNIST and CIFAR10.

The target models we try to find inverses are convolu-

tional neural networks (CNN). Specifically, we adopt LeNet

(2 convolutional layers and 3 fully connected layers) on the

MNIST dataset, and a CNN with 6 convolutional layers and

Table 1: Adversary’s capability in our consideration (✓:

the adversary needs this capability; –: this capability is

not necessary.)

Setting
Target model Training Data Inference

Parameters Structure Values Distribution Query

Section 4
✓ ✓ – – –

White-box

Section 5
– – ✓ ✓ ✓

Black-box
– – – ✓ ✓

– – – – ✓

– ✓ ✓ ✓ –

Section 6 – – ✓ ✓ –

Query-free – ✓ – ✓ –

– – – ✓ –

2 fully connected layers on the CIFAR10 dataset. We split

each model at different layers (mainly convolutional layers).

Table 2 lists the detailed experimental configurations. These

configurations are realistic in the case of edge-cloud scenar-

ios, as the most heavy-computational layers (including all

fully-connected layers) are offloaded to the cloud. We will

explore the cases that the model is split at fully-connected

layers in Section 7.1.

Table 2: Experiment Configurations

Dataset MNIST CIFAR10

Target Model
LeNet-5

(2 conv + 3 fc)
6 conv + 2 fc CNN

Split point

• 1st conv layer (conv1)

• 2nd conv layer after

activation (ReLU2)

• 1st conv layer (conv11)

• 4th conv layer after

activation (ReLU22)

• 6th conv layer after

activation (ReLU32)

We follow the standardMNIST andCIFAR split for training

and testing samples [1]. We set the learning rate to 10−3 and

choose ADAM as our optimizer. The target models and all

attacks are implemented with Pytorch 1.0.1. We run our

experiments on a server with 1 Nvidia 1080Ti GPU, 2 Intel

Xeon E5-2667 CPUs, 32MB cache, 64GB memory and 2TB

hard-disk.

3.3 Evaluation Metrics

To quantify the attack results, we adopt two metrics, Peak

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index

(SSIM) [47]. PSNR mathematically measures the pixel level

recovery quality of the image. It is defined in Equation 2,

whereMAXI is the maximum possible intensity of a signal

(255.0 for images), and I (i, j) refers to the intensity at posi-

tion (i, j) of image I . SSIM measures the human perceptual

similarity of two images. It considers luminance, contrast

and structure of two images. SSIM is a single value between

0 and 1, where 0 represents least similar and 1.0 indicates

most similar.

151

PSNR (I , I0) = 10loд(
MAXI 2

1
mn

∑m
i=1

∑n
j=1 (I (i, j) − I0 (i, j))

2
) (2)

4 WHITE-BOX ATTACKS

We start from the white-box setting, where the adversary

participant knows the parameters of the initial layers fθ1 on

the trusted participant. As deep learning frameworks and

tools become prevalent and mature, many trained models

are published online for free use, covering various prediction

tasks. It is a common practice for model owners to directly

download and deploy these models. In this case, the adver-

sary participant has white-box access to the target model.

Formally, the model inversion problem is: how can the

adversary recovers an input x0, from the corresponding in-

termediate value fθ1 (x0), and the model parameters θ1? We

propose regularized Maximum Likelihood Estimation (rMSE)

to solve this problem.

4.1 Regularized Maximum Likelihood
Estimation

We treat the model inversion as an optimization problem:

given fθ1 (x0), our goal is to find a generated sample x , that

satisfies two requirements: (1) the intermediate output of

this sample, fθ1 (x), is similar to fθ1 (x0); (2) x is a natural

sample, following the same distribution as other inference

samples.

For requirement (1), we use the Euclidean Distance (ED)

to measure the similarity between fθ1 (x) and fθ1 (x0) (Eq.

3(a)). Note that fθ1 (x) can be interpreted as the mapping

from the input space (unobservable to the adversary) to the

feature space (observable to the adversary). Then this Eu-

clidean Distance represents the posteriori information from

the adversary’s intermediate-level observation. Our goal is

to find the optimal sample x that minimizes this distance.

For requirement (2), we adopt the Total Variation [37] to

represent the prior information of an input sample. The total

variation of a 2D image x is defined in Equation 3(b), where

xi, j represents the pixel at position (i, j). The total variation

encourages the generated image x to be piece-wise smooth,

i.e. avoiding drastic variations inside regions but allowing

large changes along the region boundaries, controlled by β .

ED (x ,x0) = | | fθ1 (x) − fθ1 (x0) | |
2
2 (3a)

TV (x) =
∑

i, j

(|xi+1, j − xi, j |
2
+ |xi, j+1 − xi, j |

2)β/2 (3b)

x∗ = arдminx ED (x ,x0) + λTV (x) (3c)

The total objective function of the model inversion prob-

lem is a combination of feature space similarity and natural-

input a priori, as shown in Eq. 3c. In this equation, λ is a

hyperparameter to balance the effects of the two terms. If the

feature space fθ1 (x) is far from the input space, i.e. a lot of

network layers are computed on the trusted participant P1, a

large λ is required because less posterior information about

the input can be recovered from the feature space and the

adversary needs to rely on the prior information. In contrast,

if only a small number of layers are deployed on P1, then

the adversary only needs to select a small λ. We perform

gradient descent (GD) to solve Eq. 3c and recover the image.

Algorithm 1White-box model inversion attack

1: Function WhiteboxAttack(fθ1, fθ1 (x0), T , λ, ϵ)

2: /* fθ1: the target model */

3: /* fθ1 (x0): the intermediate output of sensitive input x0
*/

4: /* T : maximum number of iterations */

5: /* λ: tradeoff between prior and posteriori information

6: /* ϵ : step size in GD */

7:

8: L(x)=| | fθ1 (x) − fθ1 (x0) | |
2
2 + λTV (x)

9: t = 0

10: x (0)= ConstantInit()

11: while (t < T) do

12: x (t+1)
= x (t)

− ϵ ∗
∂L(x (t))

∂x
(t)

13: t+=1

14: end for

15: return x (T)

Algorithm 1 shows the detailed white-box attack. The in-

put image is initialized with constant gray, i.e. 0.5 for all RGB

channels. We choose ADAM [26] to accelerate the optimiza-

tion. We observe that ADAM converges more stably when

performing model inversion from shallow layers. Therefore,

we choose a large step size (10−2) and a small iteration num-

ber (500) for shallow layers, and a small step size (10−3) and

a large iteration number (5000) for deep layers. We choose

β = 1.0 and observe this is enough to generate good results.

4.2 Evaluation

Figure 3 shows the white-box attack results on MNIST and

CIFAR10 datasets. For each dataset, the first row shows the

target inference samples, and the remaining rows are the

recovered images when the split point is at different layers.

For MNIST, we observe that the adversary can accurately

recover the images with high fidelity, when the split point is

either in the first (conv1) or last (ReLU2) convolutional layer.

For CIFAR10, when the split layer is in the first (conv11) or

fourth (ReLU22) convolutional layer, the recovered images

152

maintain high quality. When the neural network is split after

the last convolutional layer (ReLU32), the recovered images

are hardly recognizable.

Ref

Conv1

ReLU2

(a) MNIST.

Ref

Conv11

ReLU22

ReLU32

(b) CIFAR10.

Figure 3: Recovered inputs in white-box attacks

Table 3 shows the PSNR and SSIM metrics for each exper-

iment. We observe that when the split point is in a deeper

layer, the quality and similarity of recovered images become

worse. For CIFAR10, there is a significant drop in SSIM from

ReLU22 to ReLU32. These conclusions are consistent with

the visual assessments in Figure 3. We set the threshold of

SSIM as 0.3: a recovered image with an SSIM value below

this threshold (shaded entries in Table 3, and other tables in

the following sections) is regarded as being unrecognizable.

Table 3: PSNR (db) and SSIM for white-box attacks

MNIST CIFAR10

conv1 ReLU2 conv11 ReLU22 ReLU32

PSNR 39.69 15.10 37.59 19.47 13.38

SSIM 0.9969 0.5998 0.9960 0.6940 0.1625

5 BLACK-BOX ATTACKS

Next, we consider the black-box setting, where the adversary

does not have knowledge of the structure or parameters of

fθ1. We assume that the adversary can query the black-box

model: he can send an arbitrary input x to P1, and observe

the corresponding output fθ1 (x). This assumption applies

to the case where the model owner releases prediction APIs

to end users as an inference service. We further relax this

assumption in Section 6.

Model inversion attacks under the black-box setting are

more challenging, because without the knowledge of model

parameters, the adversary cannot directly perform a gradient

descent operation on fθ1 to solve the optimization problem

in Equation 3(c). One solution is to first recover the model

structure and parameters by querying the model, and then

recover the inference samples. The possibility of model re-

construction has been demonstrated in [33, 44, 46]. We prove

that the model inversion attacks can be achieved based on

the reconstructed model in Section 7.3.

We propose a more efficient approach, Inverse-Network,

to directly identify the inversed mapping from output to

input, without the need to obtain the model information.

Our solution is easier to implement, and can recover inputs

with higher fidelity. We describe this approach and evaluate

it in this section. Quantitative comparisons between these

two solutions are presented in Section 7.3.

5.1 Inverse-Network

Conceptually, the Inverse-Network is the approximated in-

verse function of fθ1, trained with v = fθ1 (x) as input, and

x as output. We show the detailed description of Inverse-

Network approach in Algorithm 2. The attack consists of

three phases: ① generating a training set for the Inverse-

Network; ② training the Inverse-Network; and ③ recovering

the input sample by querying the Inverse-Network.

First, the adversary generates a bag of samplesX = (x1,x2,

...,xm) to query the target system, and observes the cor-

responding intermediate outputs V = (fθ1 (x1), fθ1 (x2), ...,

fθ1 (xm)) (Lines 10-17 in Algorithm 2). We consider three

cases for selecting X : (1) the adversary has access to the orig-

inal dataset used for training fθ , and adopts it as X ; (2) the

adversary does not have the original training set. Instead, he

has a different set following the same distribution; (3) the

adversary has neither the original dataset or its distribution.

He has to randomly generate some samples. In our exper-

iment, we generate pure noise sampled from the standard

Gaussian distribution (zeros mean, unit variance) to form X .

Next, the adversary can directly train an Inverse-Network

f −1θ1 usingV as the training input andX as the training target

(Lines 19-29). We initialize the Inverse-Network with Xavier

initialization [13]. We leverage l2 norm in the pixel space as

the loss function (Equation 4), and stochastic gradient de-

scent (SGD) to train the Inverse-Network. It is worth noting

that the architecture of the Inverse-Network is not necessar-

ily related to the target model fθ1. In our experiment, we use

an entirely different architecture.

f −1θ1 = arдminд
1

m

m∑

i=1

| |д(fθ1 (xi)) − xi) | |
2 (4)

153

Algorithm 2 Black-box model inversion attack

1: Function BlackBoxAttack(fθ1, fθ1 (x0))

2: /* fθ1: the target model */

3: /* x0: the target sensitive input to recover */

4: /* fθ1 (x0): the intermediate layer output */

5: X=GenerateTrainingSet()

6: д=TrainInverseNet(X , fθ1)

7: x̂0 = Inverse(д, fθ1 (x0))

8: return x̂0
9:

10: Function GenerateTrainingSet()

11: if known training set then

12: X=data.TrainingSet

13: else if Known training distribution then

14: X= NewSet ∼ data.TrainingSet

15: else

16: X=GaussianNoise

17: return X

18:

19: Function TrainInverseNet(X , fθ1)

20: /* k : BatchSize */

21: /* ϵ : StepSize */

22: д(0)=Init()

23: while (t < T) do

24: Randomly sample x1,x2...xk from X

25: L(д(t)= 1
k

∑k
i=1 | |д(fθ1 (xi)) − xi | |

2
2

26: д(t+1) = д(t) − ϵ ∗
∂L(д (t))

∂д (t)

27: t+=1

28: end while

29: return д(T)

30:

31: Function Inverse(д, fθ1 (x0))

32: x̂0=д(fθ1 (x0))

33: return x̂0

Once the Inverse-Network f −1θ1 is obtained, the adversary

can recover any inference sample from the intermediate-

level value: x = f −1θ1 (v). This approach is more efficient than

rMLE: (1) for each target sample, the adversary only needs

to pass through the Inverse-Network once, while in rMLE,

an iterative process is required to solve the optimization

problem; (2) calculating the inversed input is parameter-free,

while rMLE requires tuning the parameters (λ, β in Eq. 3).

5.2 Evaluation

Figures 4, 5 and 6 show the recovered images of two datasets

under three different circumstances. Table 4 shows the PSNR

and SSIM metrics of these attacks. From these recovery re-

sults, we draw some conclusions.

First, the adversary can recover the input with black-box

access for most cases. The quality of the recovered images

in MNIST is very high when the split point is in conv1 or

ReLU2. For CIFAR10, the recovered images still maintain high

quality when the split point is in a shallow layer (conv11).

They become relatively vague and lose certain details when

the split point is in a deeper layer, e.g. layer ReLU32 for the

CIFAR10 dataset.

Second, we observe that there is no significant difference

between the cases where the adversary uses the same train-

ing set, or a different set with the same distribution to train

the Inverse-Network. For MNIST, the attack with a different

set are even slightly better than the ones with the same set.

However, when the adversary does not know the training

data distribution, and adopts randomly generated samples,

the attack effects drop significantly. This is especially promi-

nent in the case of the CIFAR10 split in the ReLU22 layer. We

conclude that the knowledge of the training data distribution

is important to recover samples from deep layers.

Ref

Conv1

ReLU2

(a) MNIST.

Ref

Conv11

ReLU22

ReLU32

(b) CIFAR10.

Figure 4: Recovered inputs in black-box attacks (same

training data)

6 QUERY-FREE ATTACKS

The Inverse-Network approach requires the adversary to

be able to query the target model, to generate the data set

for training f −1θ . In this section, we consider the query-free

setting, where the adversary cannot query the system, and

does not know the client-side model information. The basic

idea is that the adversary first reconstructs a shadow model,

which can imitate the target model’s behavior, and then uses

154

Ref

Conv1

ReLU2

(a) MNIST.

Ref

Conv11

ReLU22

ReLU32

(b) CIFAR10.

Figure 5: Recovered inputs in black-box attacks (dif-

ferent training data, same distribution).

Ref

Conv1

ReLU2

(a) MNIST.

Ref

Conv11

ReLU22

ReLU32

(b) CIFAR10.

Figure 6: Recovered inputs in black-box attacks (dif-

ferent distributions).

rMLE over this shadow model to recover the sensitive input

samples.

6.1 Shadow Model Reconstruction

The problem in our consideration is: how can the adversary

reconstruct a shadow model of the former model layers, fθ1,

Table 4: PSNR (db) and SSIM for black-box attacks

Dataset
MNIST CIFAR10

conv1 ReLU2 conv11 ReLU22 ReLU32

PSNR

same set 39.64 20.35 49.88 19.81 15.42

same dist 40.72 20.81 49.02 19.36 13.95

rand set 14.76 7.72 48.59 12.79 12.37

SSIM

same set 0.9887 0.7334 0.9993 0.6939 0.3124

same dist 0.9950 0.8046 0.9992 0.6802 0.2196

rand set 0.7188 0.4310 0.9996 0.2930 0.0440

only with the knowledge of the latter layers fθ2 and a dataset

S drawn from the same distribution as the original training

set? He cannot query the model with specified samples to

get the intermediate values.

The key insight of our approach is that, if the shadow

model is reconstructed as f ′θ1, it should be able to classify

the input with high accuracy when combined with the later

layers fθ2:

yi ∼ fθ2 (fθ1 (xi)) ∼ fθ2 (f
′
θ1 (xi)), for (xi ,yi) ∈ S (5)

Then the task of model reconstruction can be translated

into minimizing the classification error of the composition

of the two models: fθ2 (f
′
θ1 (xi)) versus yi . Equation 6 shows

the loss function for training the model, where m is the

number of samples in S , CrossEntropy is the cross-entropy

loss. Equivalently, this means the training process of f ′θ1 is

supervised at the output layer of fθ2. Once the model f ′θ1 is

reconstructed, the adversary can perform model inversion

attacks using the rMLE technique in Section 4.

f ′θ1 = arдminд
1

m

m∑

i=1

CrossEntropy (fθ2 (д(xi)),yi) (6)

Algorithm 3 describes the query-free attacks. There are

two phases: ① offline shadow model reconstruction (Lines

10-21) and ② online model inversion (Line 7). The shadow

model reconstruction only needs to be performed once. Then

all the input samples can be recovered using the same shadow

model, by inferencing only once for each input .

In the shadow model reconstruction phase, a training set

and an initial network are required (Lines 13-14). We con-

sider four cases with different adversary’s capabilities in two

dimensions, i.e. training set and network structure: (1) the

adversary’s dataset S is the same as the original set used

for training fθ . He also knows the network structure of fθ1;

(2) the adversary has a different dataset S from the original

training set, but follows the same distribution. This assump-

tion is reasonable, because there exist various public datasets

for different tasks. He knows the network structure of fθ1;

(3) the adversary has the same training set. But he does not

know the structure of fθ1. He has to use an alternative one

155

Algorithm 3 Query-free model inversion attack

1: Function QueryFreeAttack(fθ1, fθ2, fθ1 (x0))

2: /* fθ1: the target model */

3: /* fθ2: the known model */

4: /* x0: the target sensitive input to recover */

5: /* fθ1 (x0) the intermediate layer output */

6: ˆfθ1=ModelReconstruction(S , fθ2)

7: x̂0 = WhiteboxAttack(ˆfθ1, fθ1 (x0), T , λ, ϵ)

8: return x̂0
9:

10: Function ModelReconstruction(fθ2)

11: /* k : BatchSize */

12: /* ϵ : StepSize */

13: S=GenerateTrainingSet()

14: д0=InitArchitecture()

15: while (t < T) do

16: Randomly sample x1,x2...xk and labels y1,y2...yk
from S

17: L(дt)= 1
k

∑k
i=1 yi (fθ2 (д

t (xi))+ (1−yi) (1− fθ2 (д
t (xi))

18: д(t+1) = дt − ϵ ∗
∂L(дt)

∂дt

19: t+=1

20: end while

21: return д(T)

for the shadow model. We assume that both the target model

and the shadow model are convolutional neural networks,

but with different numbers of layers and filters, as well as

filter sizes. Table 5 shows the network structure configura-

tions used in our experiments; (4) the adversary does not

know the training set nor the network structure.

After the training set and network structure are deter-

mined, the adversary can adopt SGD to optimize the loss

function of the composition of the two models. We choose

the cross-entropy loss because it performs well on image

classification tasks. Other loss functions can be leveraged, if

the adversary aims to find inverses of the DNN for different

tasks. Once the shadow model is obtained, the adversary can

use rMLE (Algorithm 1) to recover the inputs.

Table 5: Neural network configurations for query-free

attacks.

Dataset Layer Target Model Shadow Model

MNIST
conv1 One 5X5 conv layer Two 3X3 conv layers

ReLU2 Two 5X5 conv layers Four 3X3 conv layers

CIFAR10

conv11 One 3X3 64 filters layer
One 3X3 16 filters layer +

one 3X3 64 filters layer

ReLU22
Two 3X3 64 filters layers + One 5X5 filters layer +

two 3X3 128 filters layers one 5X5 128 filters layer

Ref

Conv1

ReLU2

(a) MNIST.

Ref

Conv11

ReLU22

ReLU32

(b) CIFAR10.

Figure 7: Recovered input in query-free attacks (same

training data, same network structure).

6.2 Evaluation

We illustrate the recovered images under the four adversary’s

capability settings in Figures 7, 8, 9 and 10 respectively. The

corresponding quantitative results are listed in Table 6.

For MNIST, the adversary can still recover the input im-

ages from conv1 and RelU2 layers. The quality of the images

is relatively lower than the ones in the white-box or black-

box setting. For CIFAR10, attacks are successful only from

the shallow conv11 layer with the knowledge of training set

or network structure. These results indicate that query-free

attacks are harder to achieve than white-box or black-box

attacks. This is straightforward, as the adversary now has

smaller capabilities. Besides, more layers on the trusted par-

ticipant can also increase the difficulty of image recovery.

We also observe that a different training set with the same

distribution has similar effects on model inversion attacks.

So the adversary does not need to know the exact training

set for attacks. This is also observed in the black-box setting

(Section 5). However, if the adversary has no knowledge of

the network structure, then an alternative network has worse

performance. This emphasizes the importance of knowledge

of network structure for a model inversion attack.

7 DISCUSSIONS

In this section, we review, summarize and compare the attack

results under different settings. We explore the impacts of

system features and adversary’s capabilities on the model

inversion attacks. We also discuss possible defense solutions.

156

Ref

Conv1

ReLU2

(a) MNIST.

Ref

Conv11

ReLU22

ReLU32

(b) CIFAR10.

Figure 8: Recovered input in query-free attacks (differ-

ent training data, same network structure).

Ref

Conv1

ReLU2

(a) MNIST.

Ref

Conv11

ReLU22

ReLU32

(b) CIFAR10.

Figure 9: Recovered input in query-free attacks (same

training data, different structures.)

7.1 Impact of System Configurations

From the results in previous sections, we observe that differ-

ent split points can yield different attack effects. This raises

an important question: how to split the neural network in the

collaborative system, to make the inference data more secure?

Ref

Conv1

ReLU2

(a) MNIST.

Ref

Conv11

ReLU22

ReLU32

(b) CIFAR10.

Figure 10: Recovered input in query-free attacks (dif-

ferent training data, different structures.)

Table 6: PSNR (db) and SSIM for query-free attacks

Dataset MNIST CIFAR10

Net Structure conv1 ReLU2 conv11 ReLU22 ReLU32

PSNR

same set, same net 17.60 9.61 21.16 12.74 11.09

diff sets, same net 21.53 9.27 21.45 11.51 11.98

same sets, diff nets 12.59 8.05 17.55 12.46 10.68

diff sets, diff nets 17.86 8.03 13.06 11.30 11.47

SSIM

same set, same net 0.7423 0.4981 0.9104 0.1752 0.0419

diff sets, same net 0.9121 0.4652 0.9145 0.1723 0.0102

same sets, diff nets 0.6430 0.3790 0.6344 0.2714 0.0247

diff sets, diff nets 0.6952 0.3226 0.1553 0.0467 0.0793

Weuse the query-free attack over the LeNetmodel (MNIST

dataset) as an example to explore this question. We select

the split point at each layer, and perform model inversion

attacks. Figures 11 and 12 show the recovered images, and

PSNR/SSIM metrics respectively.

Generally, we observe that the quality of recovered images

decreases when the split layer goes deeper. This is straightfor-

ward as the relationship between input and output becomes

more complicated and harder to revert when there are more

layers. Besides, we also observe that the image quality drops

significantly, both qualitatively (Figure 11) and quantitatively

(Figure 12), on the fully-connected layer (fc1), indicating that

model inversion with fully-connected layers is much harder

than for convolutional layers. The reason is that a convo-

lutional layer only operates on local elements (the locality

depends on the kernel size), while a fully-connected layer en-

tirely mixes up the patterns from the previous layer. Besides,

the number of output neurons in a fully-connected layer is

157

typically much smaller than input neurons. So it is relatively

harder to find the reversed relationship from the output of

the fully-connected layer to the input.

Unfortunately, privacy is usually not considered when

selecting the optimal split point in a collaborative system. In

the case of an edge-cloud scenario, most layers (including

all fully-connected layers) are commonly offloaded to the

cloud, while the edge device only computes a small number

of convolutional layers for feature extraction, due to power

and resource constraints [25]. This gives a chance for an

untrusted cloud provider to steal sensitive inference input.

Takeaway: When selecting the split point in a collabora-

tive inference system, privacy should also be considered, in

addition to latency and power constraints. We recommend

placing at least one fully-connected layer on the trusted par-

ticipant to hide the information of sensitive input samples.

Ref

Conv1

ReLU1

Pool1

Conv2

ReLU2

Pool2

FC1

FC1Act

FC2

FC2Act

Figure 11: Recovered images in query-free attacks

7.2 Impact of Adversary’s Capabilities

In addition to the selection of split point, the adversary’s

capability can also have an impact on the attack results. The

question we consider is: which capabilities are critical for

model inversion attacks?

Knowledge of target model. If the adversary can query

the system, then it is not necessary for him to know the

parameters or network structure on the trusted participant.

Comparing Tables 3 and 4, we find that the effects of black-

box attacks using our Inverse-Network technique are as good

as the white-box attacks using rMLE technique. However,

if the adversary does not have access to the model query

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

5

10

15

20

25

PSNR

SSIM

Figure 12: PSNR and SSIM in query-free attacks.

APIs and model parameters (the query-free setting), then the

knowledge of network structure plays a relatively important

role in recovering inputs, as discussed in Section 6.2 and

Table 6.

Knowledge of the training set. The adversary does not

need to know the exact training set. Using a different set

following the same distribution, the adversary can recover

the input images with similar quality in the black-box set-

ting (Table 4), or the query-free setting (Table 6). However,

the knowledge of training data distribution is very critical:

without such information, the adversary has to use randomly

generated samples to reverse the network in the black-box

attacks, whose performance drops significantly (Table 4). In

the query-free case, the adversary cannot reconstruct the

model without knowing the training data distribution.

Capability of model query. This is also a critical require-

ment for model inversion attacks. If the adversary is not

able to query the model in a black-box setting, he has to

reconstruct the model before recovering the input. It takes

more effort to implement the attacks, and the performance

is lower (comparing Tables 4 and 6).

Takeaway: We recommend the model owner trains the tar-

get model using a training set whose distribution is unknown

to the adversary. Restricting the query APIs from untrusted

participants can also make the attacks harder.

7.3 Comparisons of Attack Techniques

We propose three different attack techniques under different

threat models. We summarize and compare these techniques.

Table 7: Applicability of techniques under different

settings.

rMLE
Inverse Shadow

Network Model

White-box ✓ ✓ ✓

Black-box – ✓ ✓

Query-free – – ✓

158

Applicability. Table 7 lists the effectiveness of each tech-

nique under different settings. The white-box scenario is the

most basic setting: since the adversary knows all the details

about the target model, other techniques without such an

assumption can also be applied here, although some of them

may not be efficient (e.g., reconstructing the shadow model).

For the black-box setting, since the adversary does not know

the model parameters, he cannot use the rMLE technique.

He can either adopt the Inverse-Network approach, or recon-

struct the shadow model and then use rMLE to recover the

input. For the query-free scenario, since the adversary does

not know the model parameters, and has no access to query

the model, he can only use the shadow model reconstruction

with rMLE to recover the image.

Table 8: Comparison of Inverse-Network and shadow

model reconstruction in the black-box setting.

Technique
MNIST CIFAR10

conv1 ReLU2 conv11 ReLU22 ReLU32

PSNR
Inverse-network 39.64 20.35 49.87 19.81 15.41

Model reconstruction 39.67 15.41 28.67 18.02 12.61

SSIM
Inverse-network 0.9887 0.7334 0.9993 0.6939 0.3124

Model reconstruction 0.9968 0.6103 0.9766 0.6893 0.1145

Performance. We first compare the attack performance

of the rMLE (Table 3) and Inverse-Network 1 (Table 4) ap-

proaches in the white-box setting, respectively. We observe

that when the adversary knows either the training data or

its distribution, the recovered images from Inverse-Network

maintain higher quality than the ones from rMLE. Otherwise,

rMLE performs better than Inverse-Network with randomly

generated samples.

We then compare the performance of Inverse-Network

and shadow model reconstruction solutions in the black-

box setting. As introduced in Section 5, the adversary can

query the model to get pairs of input and corresponding

intermediate values, based on which he can reconstruct a

shadow model. We implement this approach and show the

quantitative comparisons with Inverse-Network in Table 8.

We find that Inverse-Network has better results than shadow

model reconstruction for most datasets and split points.

Takeaway: For the white-box setting, if the adversary has

no knowledge of the training set or distribution, he can

use rMLE for better performance. Otherwise, he can select

Inverse-Network, as it has better results, and takes less effort

to implement and perform. For the black-box setting, Inverse-

Network is recommended over shadowmodel reconstruction.

For the query-free setting, shadow model reconstruction is

the only applicable method.

1Inverse-Network gives the same results for both white-box and black-

box settings.

7.4 Defenses

Since current privacy-preserving algorithms and systems all

focus on training data, we provide some possible defense

strategies to mitigate the inference privacy attacks discussed

in this paper.

Running fully-connected layers before sending out re-

sults. As shown in Section 7.1, a fully-connected layer can

mix up inputs, and hide information about the inference sam-

ples. So a model owner can deploy at least one such layer

on the first trusted participant. This makes it very difficult

for the adversary to recover the input. Typically, the fully-

connected layers follow convolutional layers in a DNN. This

requires computing all convolutional layers on the client-

side, which can be heavy for an edge device.

Make the client-side network deeper. As illustrated in

Figures 11 and 12, both qualitative and quantitative measure-

ments of the inversed images become worse as the network

becomes deeper. Therefore, making the client-side network

deeper can help mitigate the attacks. On the other hand,

deeper networks increase the compution on the client-side.

The client device or IoT device may not have sufficient com-

putation, storage or battery resources for this, nor for the

above mitigation strategy.

Trusted Execution onuntrusted participants. The hard-

ware support for a Trusted Execution Environment (TEE),

e.g., Intel SGX, ARM TrustZone, is effective at secure remote

computation and data confidentiality protection against priv-

ileged adversaries. In the case of collaborative DNN compu-

tation, the inference application can be deployed inside a

TEE (or secure enclave) on the untrusted participants, and

the intermediate values are encrypted against the adversary

during transmission between participants. This can provide

privacy protection for the inference data. However, this re-

quires special architecture support on the cloud side, and

careful crypto key management.

Differential privacy. We can use differential privacy to

add noise and obfuscate sensitive information. Specifically,

we can add noise to the inference input, and the intermediate

value becomesv = fθ1 (x +ϵ). We can also add noise directly

to the intermediate value before sending it to the untrusted

participant:v = fθ1 (x)+ϵ . In these two cases ϵ is the random

noise that satisfies differential privacy. It is obvious that there

exists a trade-off between usability and privacy: as a higher

level of noise is added, the model accuracy may drop.

Homomorphic encryption. This allows the inference ap-

plication on the untrusted participant to directly perform

DNN computations on encrypted input, so the sensitive in-

formation will not be leaked. A drawback of homomorphic

encryption is that it suffers from huge inefficiency and is not

applicable for all DNN operations.

159

8 RELATED WORK

8.1 Machine Learning Privacy Attacks

Training data privacy attacks. There are different types

of privacy attacks against the training data. The first type is

property inference attacks, which tries to infer some proper-

ties of the training data from the model parameters. Attacks

were demonstrated in traditional machine learning classifiers

[3] and fully-connected neural networks [12].

A special case of property inference attacks ismembership

inference attacks, which infers whether one individual sample

is included in the training set. This attack was first presented

in [41]. The following work explored the feasibility of attacks

with different adversary’s capabilities [39], model features

[30, 49], in Generative Adversarial Networks [18, 29], and

collaborative training systems [32].

The second type are model inversion attacks [10]: given a

machine learningmodel, and part of the training samples’ fea-

tures, the adversary can recover the rest of the features of the

samples. Advanced model inversion attacks were designed

to recover images from deep neural networks in single-party

systems [9], and collaborative learning systems [22].

The third type are model encoding attacks [42]: the adver-

sary with direct access to the training data can encode the

sensitive data into the model for a receiver entity to retrieve.

Model privacy attacks. The adversary attempts to steal the

model parameters [44], hyperparameters [46] or structures

[23, 33], via prediction APIs, memory access side channels,

etc.

Inference data privacy attacks. Closer to our study is the

work [48], which adopted a power side channel to recover

inference data. However, this attack required the adversary to

compromise the victim device for side-channel information

collection, and it could only recover simple images (single

pixel). Our attack is applied to the collaborative systems, and

can recover any arbitrary complex data without access or

knowledge of the victim’s computation and data.

8.2 Machine Learning Privacy Solutions

Current solutions only focus on training data protection:

Enhancing the algorithms. Distributed training was in-

troduced to protect the training data [15, 40], as different

participants can use their own data for model training. The

SGX security enclaves in Intel processors were used to pro-

tect the training tasks against privileged adversaries [24, 34].

Cao et al. [5] proposed a methodology to remove the effects

of sensitive training samples on the models. Abadi et al. [2]

applied differential privacy to add noise in the stochastic

gradient descent process to eliminate the parameters’ depen-

dency on the training data.

Enhancing the dataset. Bost et al. [4] proposed to encrypt

the data before feeding them into the training algorithm.

They designed machine learning operators which can op-

erate on the encrypted data. Zhang et al. [51] showed that

adding noise to the training dataset is effective in protect-

ing training data privacy. Generative Adversarial Network

with differential-privacy is adopted [45, 52] to generate arti-

ficial data for training DNNmodels while removing sensitive

information from the original data.

9 CONCLUSIONS

While the privacy threat of training data in deep learning is

well studied, and defenses have been investigated, the pri-

vacy of inference data is less studied. In this paper, we explore

the feasibility of recovering sensitive data in the deep learn-

ing inference process. We discover that in a collaborative

inference system, an adversary who controls one participant

can easily recover the inference samples from intermedi-

ate values. We propose a new set of attack techniques to

compromise the inference data privacy in collaborative deep

learning systems, under different attack settings. We system-

atically compare these different techniques, demonstrating

that the adversary can successfully and reliably recover the

inputs with very few prerequisites.

We hope that the importance of inference data privacy

protection can be addressed through this study. For instance,

when selecting the split point for edge-cloud offloading, pre-

vious work only considered the power and performance

requirements. With the feasibility of stealing the inference

data, privacy should also be an important factor for partition-

ing the neural network. Future work could include the study

of the trade-off among power, performance and security for

edge-cloud offloading, exploration of more powerful attacks,

and realization of possible defense mechanisms.

REFERENCES
[1] 2018. https://pytorch.org/docs/0.4.0/torchvision/datasets.html.

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya

Mironov, Kunal Talwar, and Li Zhang. 2016. Deep learning with differ-

ential privacy. In ACM Conference on Computer and Communications

Security.

[3] Giuseppe Ateniese, Luigi V Mancini, Angelo Spognardi, Antonio Vil-

lani, Domenico Vitali, and Giovanni Felici. 2015. Hacking smart ma-

chines with smarter ones: How to extract meaningful data from ma-

chine learning classifiers. International Journal of Security and Networks

(2015).

[4] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser.

2015. Machine learning classification over encrypted data.. In Network

and Distributed System Security Symposium.

[5] Yinzhi Cao and Junfeng Yang. 2015. Towards Making Systems Forget

with Machine Unlearning. In IEEE Symposium on Security and Privacy.

[6] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalya-

naraman. 2014. Project adam: Building an efficient and scalable deep

learning training system. In USENIX Symposium on Operating Systems

160

https://pytorch.org/docs/0.4.0/torchvision/datasets.html

Design and Implementation.

[7] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,

Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.

2012. Large scale distributed deep networks. In Advances in neural

information processing systems.

[8] Amir Erfan Eshratifar, Mohammad Saeed Abrishami, and Massoud

Pedram. 2018. JointDNN: an efficient training and inference en-

gine for intelligent mobile cloud computing services. arXiv preprint

arXiv:1801.08618 (2018).

[9] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model

inversion attacks that exploit confidence information and basic coun-

termeasures. In ACM Conference on Computer and Communications

Security.

[10] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page,

and Thomas Ristenpart. 2014. Privacy in Pharmacogenetics: An End-to-

End Case Study of Personalized Warfarin Dosing.. In USENIX Security

Symposium.

[11] Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and Nikita Borisov.

2018. Property Inference A acks on Fully Connected Neural Networks

using Permutation Invariant Representations. In ACM Conference on

Computer and Communications Security.

[12] Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and Nikita Borisov.

2018. Property Inference Attacks on Fully Connected Neural Networks

using Permutation Invariant Representations. In ACM conference on

computer and communications security. 619–633.

[13] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty

of training deep feedforward neural networks. In Proceedings of the

thirteenth international conference on artificial intelligence and statistics.

249–256.

[14] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.

2016. Deep learning. Vol. 1. MIT press Cambridge.

[15] Jihun Hamm, Adam C Champion, Guoxing Chen, Mikhail Belkin, and

Dong Xuan. 2015. Crowd-ml: A privacy-preserving learning frame-

work for a crowd of smart devices. In IEEE International Conference on

Distributed Computing Systems.

[16] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg

Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sen-

gupta, Adam Coates, and Andrew Y. Ng. 2014. Deep Speech: Scal-

ing Up End-to-end Speech Recognition. CoRR abs/1412.5567 (2014).

arXiv:1412.5567 http://arxiv.org/abs/1412.5567

[17] Johann Hauswald, Thomas Manville, Qi Zheng, Ronald Dreslinski,

Chaitali Chakrabarti, and Trevor Mudge. 2014. A hybrid approach

to offloading mobile image classification. In 2014 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

8375–8379.

[18] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro.

2017. LOGAN: evaluating privacy leakage of generative models us-

ing generative adversarial networks. arXiv preprint arXiv:1705.07663

(2017).

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep

Residual Learning for Image Recognition. CoRR abs/1512.03385 (2015).

arXiv:1512.03385 http://arxiv.org/abs/1512.03385

[20] Zecheng He, Aswin Raghavan, Guangyuan Hu, Sek Chai, and Ruby

Lee. 2019. Power-Grid Controller Anomaly Detection with Enhanced

Temporal Deep Learning. In 18th IEEE International Conference on

Trust, Security and Privacy in Computing and Communications.

[21] Zecheng He, Tianwei Zhang, and Ruby Lee. 2019. Sensitive-Sample

Fingerprinting of Deep Neural Networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 4729–4737.

[22] Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz. 2017.

Deep models under the GAN: information leakage from collaborative

deep learning. In ACM Conference on Computer and Communications

Security.

[23] Weizhe Hua, Zhiru Zhang, and G Edward Suh. 2018. Reverse engineer-

ing convolutional neural networks through side-channel information

leaks. In ACM/ESDA/IEEE Design Automation Conference.

[24] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and

Emmett Witchel. 2018. Chiron: Privacy-preserving Machine Learning

as a Service. arXiv preprint arXiv:1803.05961 (2018).

[25] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor

Mudge, Jason Mars, and Lingjia Tang. 2017. Neurosurgeon: Collabo-

rative intelligence between the cloud and mobile edge. Acm Sigplan

Notices 52, 4 (2017), 615–629.

[26] Diederik P Kingma and Jimmy Ba. 2014. Adam: Amethod for stochastic

optimization. arXiv preprint arXiv:1412.6980 (2014).

[27] Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and Saibal

Mukhopadhyay. 2018. Edge-host partitioning of deep neural net-

works with feature space encoding for resource-constrained internet-

of-things platforms. In IEEE International Conference on Advanced Video

and Signal Based Surveillance.

[28] Yann Le Cun, LD Jackel, B Boser, JS Denker, HP Graf, I Guyon, D

Henderson, RE Howard, and W Hubbard. 1989. Handwritten Digit

Recognition: Applications of Neural Network Chips and Automatic

Learning. IEEE Communications Magazine 27, 11 (1989), 41–46.

[29] Kin Sum Liu, Bo Li, and Jie Gao. 2018. Generative Model: Membership

Attack, Generalization and Diversity. arXiv preprint arXiv:1805.09898

(2018).

[30] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, Xiaofeng

Wang, Haixu Tang, Carl A Gunter, and Kai Chen. 2018. Understanding

Membership Inferences on Well-Generalized Learning Models. arXiv

preprint arXiv:1802.04889 (2018).

[31] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2015.

Effective Approaches to Attention-based Neural Machine Translation.

CoRR abs/1508.04025 (2015). arXiv:1508.04025 http://arxiv.org/abs/

1508.04025

[32] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly

Shmatikov. 2019. Exploiting unintended feature leakage in collab-

orative learning. In IEEE Symposium on Security and Privacy.

[33] Seong Joon Oh, Max Augustin, Mario Fritz, and Bernt Schiele. 2018. To-

wards reverse-engineering black-box neural networks. In INternational

Conference on Learning Representations.

[34] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Se-

bastian Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious

Multi-Party Machine Learning on Trusted Processors.. In USENIX Se-

curity Symposium.

[35] Herbert Robbins and Sutton Monro. 1951. A stochastic approximation

method. The annals of mathematical statistics (1951), 400–407.

[36] Frank Rosenblatt. 1958. The Perceptron: A Probabilistic Model for

Information Storage and Organization in the Brain. Psychological

review 65, 6 (1958), 386.

[37] Leonid I Rudin, Stanley Osher, and Emad Fatemi. 1992. Nonlinear

total variation based noise removal algorithms. Physica D: nonlinear

phenomena 60, 1-4 (1992), 259–268.

[38] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986.

Learning Representations by Back-propagating Errors. nature 323,

6088 (1986), 533.

[39] Ahmed Salem, Yang Zhang,Mathias Humbert, Mario Fritz, andMichael

Backes. 2018. ML-Leaks: Model and Data Independent Membership In-

ference Attacks and Defenses onMachine LearningModels. InNetwork

and Distributed System Security Symposium.

[40] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep

learning. In ACM conference on computer and communications security.

[41] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.

2017. Membership inference attacks against machine learning models.

161

http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025

In IEEE Symposium on Security and Privacy.

[42] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. 2017. Ma-

chine Learning Models that Remember Too Much. In ACM Conference

on Computer and Communications Security.

[43] Surat Teerapittayanon, Bradley McDanel, and HT Kung. 2017. Dis-

tributed deep neural networks over the cloud, the edge and end devices.

In IEEE International Conference on Distributed Computing Systems.

[44] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas

Ristenpart. 2016. Stealing Machine Learning Models via Prediction

APIs.. In USENIX Security Symposium.

[45] Aleksei Triastcyn and Boi Faltings. 2018. Generating Artificial Data

for Private Deep Learning. arXiv preprint arXiv:1803.03148 (2018).

[46] Binghui Wang and Neil Zhenqiang Gong. 2018. Stealing Hyperpa-

rameters in Machine Learning. In IEEE Symposium on Security and

Privacy.

[47] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P Simoncelli, et al.

2004. Image quality assessment: from error visibility to structural

similarity. IEEE transactions on image processing 13, 4 (2004), 600–612.

[48] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. 2018. I

know what you see: Power side-channel attack on convolutional neu-

ral network accelerators. In Annual Computer Security Applications

Conference.

[49] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha.

2018. Privacy Risk in Machine Learning: Analyzing the Connection to

Overfitting. In IEEE Computer Security Foundations Symposium.

[50] Hongxu Yin, Zeyu Wang, and Niraj K Jha. 2018. A hierarchical infer-

ence model for internet-of-things. IEEE Transactions on Multi-Scale

Computing Systems 4, 3 (2018), 260–271.

[51] Tianwei Zhang, Zecheng He, and Ruby B Lee. 2018. Privacy-

preserving machine learning through data obfuscation. arXiv preprint

arXiv:1807.01860 (2018).

[52] Xinyang Zhang, Shouling Ji, and Ting Wang. 2018. Differentially

Private Releasing via Deep Generative Model (Technical Report). arXiv

preprint arXiv:1801.01594 (2018).

162

