
SPECIAL SECTION ON DISTRIBUTED COMPUTING INFRASTRUCTURE FOR

CYBER-PHYSICAL SYSTEMS

Received November 6, 2019, accepted November 20, 2019, date of publication November 26, 2019,
date of current version December 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2956062

Model Learning and Model Checking of IPSec
Implementations for Internet of Things

JIAXING GUO 1, CHUNXIANG GU 1,2, XI CHEN 1, AND FUSHAN WEI 1
1Henan Key Laboratory of Network Cryptography Technology, Zhengzhou 450002, China
2State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450002, China

Corresponding author: Jiaxing Guo (guojiaxing124lab@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772548, and in part by the

Foundation of Science and Technology on Information Assurance Laboratory under Grant KJ-17-001.

ABSTRACT With the development of Internet of Things (IoT) technology, the demand for secure commu-

nication by smart devices has dramatically increased, and the security of the IoT protocol has become the

focus of cyberspace. Recently, some scholars have attempted to extend the IPSec protocol to IPv6 over Low-

PowerWireless Personal Area Networks (6LoWPAN) to ensure end-to-end security, whichmakes it essential

to analyze the vulnerability of the IPSec protocol to enhance the security of the IoT. In this study, we use

a method combining model learning and model checking to analyze the dynamic vulnerability of IPSec

protocol implementations. This method automatically infers the black-box model and compares it with the

relevant specifications to expose the defects of the system implementation and search its logic vulnerabilities.

We first employ model learning on three IPSec implementations to infer state machine models; then, we use

model checking to verify that these models satisfy basic security properties and conform to the RFCs. Our

analysis reveals three new security issues: a wrong interaction causing server exception and two violations

of the standard.

INDEX TERMS IPSec protocol, model learning, model checking.

I. INTRODUCTION

Internet of things (IoT) is regarded as the third revolution

of information technology industry development after the

computer and Internet. Its ubiquitous network characteristics

make it possible to connect everything. In recent years, with

the wide application of IoT technology and the improvement

of security requirements, the application of security proto-

cols such as IPSec, DTLS, OSCORE, and so on, in IoT

to enhance its security have been explored [1]. Despite the

limitations of power consumption and performance, IPSec is

still a feasible security protocol for IoT. After the expansion

of IPv6 over Low-Power Wireless Personal Area Networks

(6LoWPAN), IPSec canmake each device node communicate

confidentially, thus realizing end-to-end security [2]. Owing

to the natural inheritance of IoT, malicious attacks against

the Internet began to spread to the field of IoT. Therefore,

the vulnerability analysis of the IPSec implementation still

has a significance for improving the security of IoT.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhen Ling.

Protocol vulnerability analysis methods include static anal-

ysis and dynamic analysis. Static analysis methods, such

as traditional formal analysis, are less automated and often

modeled manually based on documentation. In this way,

some errors have been detected, such as in [3] and [4].

However, as observed in [5], the relationship between the

manual model of the protocol and the corresponding standard

is often ambiguous, thereby undermining the reliability and

relevance of the verification results obtained. Besides, the

implementation of the protocol often does not conform to its

specifications, which means this model checking method can

never capture implementation-specific errors.

The inferring protocol state machine is a critical technol-

ogy of vulnerability analysis. It builds a model of proto-

col implementation based on the state machine derived by

the model learning method. Compared with the traditional

static method, this technology is a dynamic black-box test,

which does not depend on the source code and documents

and has a high degree of automation. Currently, this tech-

nology has been applied to infer multiple state machines of

security protocol implementations. De Ruiter and Poll [6]

used this method to perform black-box testing on nine TLS

171322 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 7, 2019

https://orcid.org/0000-0001-8668-9264
https://orcid.org/0000-0003-3860-1939
https://orcid.org/0000-0001-8115-4164
https://orcid.org/0000-0003-2790-7254

J. Guo et al.: Model Learning and Model Checking of IPSec Implementations for IoT

FIGURE 1. Process of the Protocol Test. DFA indicates the deterministic
finite automaton and SUL demonstrates the system under learning.

implementations for inferring state machines and found three

new security vulnerabilities. In [7], Stone et al. performed an

automated analysis of sevenWi-Fi implementations and iden-

tified three new implementation flaws. In [8]–[10], protocol

state fuzzing was also used to analyze OpenVPN, TLS1.3,

and QUIC protocol implementations. These contributions

show that this method is effective for analyzing vulnerability

and can be migrated between different protocols, but the

above studies use manual analysis of the model. Manual anal-

ysis is a time-consuming and laborious task, which requires a

debugging personnel to master specific protocol knowledge

to filter out abnormal test paths. To improve manual tests,

model checking tools that aid in the analysis of models can be

applied. In [11], Brostean first used the model checking tool

to examine the learnedmodel implemented by the TCP proto-

col, thus, avoidingmanual testing. After that, Brostean further

used the model checking method to analyze the learned SSH

protocol model and pointed out the behavior of the imple-

mentation that did not conform to the specification [12].

In this paper, we combinemodel learning andmodel check-

ing to perform vulnerability analysis on IPSec implementa-

tion for increasing the security of IoT. The specific test is

divided into the following two steps:

The first step is model learning. Based on the model

learning algorithm, using the classic Minimally Adequate

Teacher (MAT) framework that relies on the interaction of

learners, mappers, and the system under learning (SUL),

we can automatically infer the state machine model of the

specific protocol and obtain the corresponding deterministic

finite automaton (DFA).

In the second step, based on the DFA inferred in the first

step, we use the formal security criteria defined by the model

checking tool and described by linear temporal logic to auto-

matically compare the model with the relevant specifications,

thereby acquiring counterexamples that guide us to search for

the vulnerabilities in the implementation. Fig. 1 depicts the

overall flow of the test.

To enhance the pertinence and practicability of the test,

we analyze only the IKEv2 handshake protocol and ESP

protocol in the IPSec protocol suite. IKEv2 is the latest

version of the handshake negotiation protocol that over-

comes the overcomplicated defects of the old version of

IKEv1 and uses a more secure authentication method. The

ESP provides confidentiality protection services and is more

secure than AH; furthermore, it better meets the requirements

of secure communication. We analyzed three widely used

IPSec implementations (Strongswan, Libreswan, and Win-

dows Server), obtained corresponding learned models and

test results, and found three new defects in Libreswan. One

of the flaws is the wrong interaction that caused the server to

be abnormal (CVE-2019-12312 [13]), and the attacker only

needs to send two packets to cause the server to restart. The

other two defects violate the IKE SA management standard.

The rest of this article is organized as follows. A back-

ground on model learning, model checking, and the IPSec

protocol is provided in Section 2. Section 3 shows the specific

methods and results of model learning. In Section 4, we use

model checking to analyze the resulting model. Finally,

the full paper is summarized in Section 5, and future work

is presented.

II. PRELIMINARIES

In this section, we describe the basic principles of model

learning and model checking methods and introduce the

basics of the IPSec protocol.

A. MODEL LEARNING

Model learning is a dynamic analysis method for learning

the black box system behavior model. It provides an accurate

and reliable model to restore the actual internal structure and

operation of the system. Ordinarily, we need to make the

following three reasonable assumptions:

1) The final result is a finite state machine.

2) The learner knows all valid input and output of the

target system.

3) The target system can answer any query and give a

definite answer to each query.

These three assumptions ensure that we can obtain the

final state diagram through specific methods. Next, we shall

introduce the method of describing the finite state machine

and the main framework of model learning.

1) MEALY MACHINES

We use the Mealy machine to describe the state machine of

the system.

Definition 1: A Mealy machine is a tuple M =

(I ,O,Q, q0, δ, λ), where I is a finite set of inputs, O is a

finite set of outputs, Q is a finite set of states, q0 ∈ Q is the

initial state, δ : Q × I → O is a transition function, and

λ : Q× I → O is an output function.

The Mealy machine is used to represent the internal state

machine of the system implementation. Here, we only intro-

duce the necessary information needed to explain themethods

and results of this paper. For further descriptions, please refer

to [14], which discusses the relationship between the Mealy

machine and the inferred state machine in more detail.

The Mealy machine corresponds to a graphical represen-

tation that typically describes the state as a node and the

state transition as an edge. Fig. 2 shows a graphical example

of a simple Mealy machine. For example, when the Mealy

machine is in a state q0 ∈ Q and receives as input X ∈ I ,

VOLUME 7, 2019 171323

J. Guo et al.: Model Learning and Model Checking of IPSec Implementations for IoT

FIGURE 2. A simple DFA.

the state transition function operates λ(q0,X) = A and creates

output δ(q0,X) = q1. The corresponding Mealy machine is

shown in Fig. 2 with the edge from q0 to q1 and the label X/A,

which means that inputting X in q0 results in output A with a

changing current state to q1.

Furthermore, the output function λ can be extended

to a function with a sequence as input: λ(q, iσ) =

λ(q, i)λ(δ(q, i), σ) and λ(q, ε) = ε, here q ∈ Q, i ∈ I ,

non-empty sequence σ ∈ I∗, and an empty sequence ε. The

behavior of Mealy machine M is defined by AM : I∗ → O∗,

which means AM (σ) = λ(q0, σ), σ ∈ I∗. In particular, Mealy

machines M and N are equivalent if and only if AM = AN ,

denoted as M ≈ N . Meanwhile, the sequence σ ∈ I∗ is

distinguished between M and N if and only if AM (σ) 6=

AN (σ).

The Mealy machine is a deterministic finite state machine

with up to one corresponding conversion and output for the

each combination of state and input. It has some key features

that are useful for modeling our state machines:

1) Transition function: The Mealy machine uses both the

current state and the input to determine the output,

which emphasizes that different states affect the output

of the implementation.

2) Deterministic: The same state and input sequence

always results in the same output, which emphasizes

that the behavior of the target should be consistent.

3) Finite set of states: The number of input symbols and

states corresponding to the Mealy machine is limited.

This point emphasizes that the state that appears in the

target can only be a finite number; that is, the final

result must be a finite state machine.

2) MINIMALLY ADEQUATE TEACHER FRAMEWORK

The normal method for inferring state machine is Angluin’s

L∗ algorithm [14], which corresponds to the Minimally Ade-

quate Teacher (MAT) framework [15], [16]. The executor of

the algorithm consists of two parts: the learner and Oracle

(or teacher). The learner is the executor of the algorithm and

knows the input and output symbol sets I and O. The Oracle

acts as an interface to perform SUL (system under learning)

and can respond to the learner’s query, which is why the

Oracle is called a minimally adequate teacher.

The algorithm is divided into two steps:

1) The membership query. In the first phase, the learner

sends the string σ ∈ I∗ as a query to the system,

and Oracle responds with the corresponding output

FIGURE 3. MAT Framework.

string AM (σ). After each round of complete queries,

the learner will send a reset query and ask Oracle to

reset the SUL to the start state q0 for ensuring the

consistency of subsequent operations. The L∗ algo-

rithm can decide which queries to send to the SUL as

needed, and through the membership query, the learner

establishes the hypothesis H for the state machine in

the SUL.

2) The equivalent query. The learner asks Oracle to deter-

mine whether the hypothesis H is equivalent to the

Mealy machine of the actual system by a particular

method, that is H ≈ M . If the Oracle’s answer is

yes, the algorithm will terminate and the state machine

H will be given, otherwise Oracle will return a coun-

terexample σ ∈ I∗ to satisfy AH (σ) 6= AM (σ), which

means the counterexample as the input will cause H

and M to get different outputs. The learner uses the

counterexample to improve the hypothesis and con-

tinue the learning process until an acceptable one is

obtained. It should be noted that the learner can only

make an approximate equivalence check on the hypoth-

esis because Oracle cannot access the internal imple-

mentation of SUL (black box) and can only perform

a limited number of test cases. As a result, the output

state machine may only have a subset of SUL behavior.

Based on the assumptions of previous model learning,

we believe that a certain SUL state machine can be obtained

after a limited number of queries. The number of queries

required mainly depends on the complexity of the state

machine to be inferred. The time complexity is O(|6|mn2),

where |6| corresponds to the size of the alphabet,m indicates

the longest length of counterexample from Oracle, and n

refers to the number of states in the state model of target SUL.

It should be noted that the uncertain behavior in the operation

of the algorithm may lead to an increase in state or result in

the failure of the L∗ algorithm. Therefore, a corresponding

detection of uncertain behavior needs to be added in the test.

To learn a specific protocol implementation system, a map-

per needs to be placed between the learner and the target

system. The mapper is used to record the state of the target

system in real-time and implement the conversion of abstract

messages and specific messages. Fig. 3 shows the logical

relationship of MAT framework.

171324 VOLUME 7, 2019

J. Guo et al.: Model Learning and Model Checking of IPSec Implementations for IoT

FIGURE 4. Model checking process.

Furthermore, we also need to fine-tune the timing parame-

ters in the mapper by manual debugging to reduce the number

of non-deterministic behavior and ensure the mapper coop-

erates with the system interaction in a better performance.

Finally, after the above process, we can obtain the finite state

machine model of the reaction target system.

B. MODEL CHECKING

Model checking is a property verification method based on

the checking algorithm. It aims to determine whether a given

behavior in a system class satisfies a design specification

corresponding to a given temporal logic formula for a given

finite state system.

As shown in Fig. 4, the input of model checking includes

two parts: model M of the system to be verified and the

description of property P for checking security attributes.

If model M satisfies property P, the model checking tool out-

puts ‘‘true’’; otherwise a counterexample is given to explain

whyMdoes not satisfy property P. Systemmodeling, descrip-

tion of property, and verification of the model checking tool

constitute the three main parts of model checking. In this

study, we chose linear temporal logic (LTL) to describe the

specification.

1) LINEAR TEMPORAL LOGIC
Linear temporal logic uses a linear, discrete, and natu-

ral number-isomorphic time structure to describe all possi-

ble computational path attributes and takes the path (state

sequence) as the proposition object. Its semantics and gram-

mar are based on the Manna and Pnueli [17] temporal logic

framework.

LTL grammar consists of three parts: propositional vari-

ables, logical operators, and temporal modal operators.

Propositional variables p and q are used to describe the basic

system attributes. Logical connectors include∧ (and),∨ (or),

¬ (non), → (implication), etc. They are used to express

complex conditional statements. Temporal modal operators

include G (global), X (next), O (once), and so on. They

represent the corresponding temporal logic. For example,

if Gp is true, the next sequence must satisfy the condition p,

and if Xp is true, the P holds in the next state. If Op is true,

a previous state condition P holds.

The grammar of linear temporal logic can be defined recur-

sively as follows:

1) Propositional constants {true, false} and atomic propo-

sitional variables (p, q, r. . .) are all linear temporal logic

formulas.

2) If p and q are linear temporal logic formulas, then ¬p,

p∧q, and p∨q are also linear temporal logic formulas;

Xp, Gp, and Op are also linear temporal logic formulas.

3) Each linear temporal logic formula can be obtained by

using the finite number of the above constructions.

Formulas derived from recursive definitions can be used to

expressmore complex temporal logic specifications. Amodel

checking tool searches the transformation space of the trans-

formation system in detail to check whether the correspond-

ing specifications are satisfied. If not, counterexamples are

generated.

C. IP SECURITY PROTOCOL

IP Security (IPSec) [20]–[23] is a security protocol running

in the IP layer that can be used for end-to-end confidential

communication. Given the security risks that the IP layer may

face, IPsec provides three security services: confidentiality,

integrity verification, and identity authentication, and resists

replay attacks. IPSec provides many different modes and

supports almost all encryption algorithms. Implementers can

freely choose cryptographic algorithms to meet the corre-

sponding needs and fulfil their needs in different scenarios.

IPSec is a protocol family that consists of three sub-

protocols: the Internet Key Exchange (IKE) protocol,

the Authentication Header (AH) protocol, and the Encapsu-

lating Security Payload (ESP) protocol. The IKE protocol

is used for identity authentication, cryptographic algorithm

selection, and key establishment, while AH and ESP are used

for secure communication.

IKE is the signaling protocol of IPSec. It manages IPSec

secure communication by securely maintaining Security

Association (SA) among multiple parties. SA stores the iden-

tity and key information of both parties. The two parties first

establish IKE SA, and then negotiate to generate IPSec SA in

the corresponding encryption channel of IKE SA. IPSec SA

is used for ESP or AH secure communication, while IKE SA

is responsible for managing IPSec SA.

At present, IKE has two versions. The original design of

IKEv1 [20] has been criticized for its complexity and its

large number of options. Its successor IKEv2 [21] is sim-

pler and can guarantee secure negotiation and authentication

functions. Meanwhile, because the ESP protocol is applied

in most practical scenarios, we choose the IKEv2 and ESP

protocols as research objects.

IKEv2 mainly contains four types of message:

1) Initial Exchange (IKE_SA_INIT)

2) Authentication Exchange (IKE_AUTH)

3) Create Child SA Exchange (CREATE_CHILD_SA)

4) Informational Exchange (INFORMATIONAL)

The two sides of the communication first perform crypto

parameter negotiation and identity authentication through

IKE_SA_INIT and IKE_AUTH. At this time, the two parties

respectively have an IKE SA and an IPSec SA, such that

the parameters under the IPSec SA can be used for secure

communication of the ESP protocol, and the session key

can be rekeyed during the communication between the two

parties. Finally, both parties delete the IPSec SA and IKE

VOLUME 7, 2019 171325

J. Guo et al.: Model Learning and Model Checking of IPSec Implementations for IoT

FIGURE 5. Regular IPSec session based on IKEv2. An encrypted message
m is denoted as {m}. If message m is optional, this is indicated by [m].

SA by the notification payload to close the communication.

Fig. 5 shows the general flow of protocol interaction.

The Initial Exchange (IKE_SA_INIT) is used for version

and cryptographic algorithm negotiation, and the seed key is

generated by the public key cryptographic algorithm negoti-

ation (DH or ECDH) to generate a subsequent session key.

The Authentication Exchange (IKE_AUTH) is used for

identity authentication. Certificate and pre-shared key modes

are used for authentication. When using certificate authen-

tication, both sides need to extract the private key of their

certificate to sign the ID data from ID payload and other

information. The respondent uses the corresponding pub-

lic key to verify the signature to complete authentication.

Generally, the ID is taken from the user field information of

the certificate, but the relevant specifications allow the ID to

be inconsistent with the information from the field of certifi-

cate. In this round of interaction, both sides will produce an

IPSec SA for secure communication of application data.

After the first four messages, the two sides complete the

handshake phase and can use the ESP protocol for secure

communication. ESP provides security services such as con-

fidential communication, data source authentication, anti-

replay attack, and integrity verification that are the secure

communication schemes adopted by most IPsec VPNs.

The Create Child SA Exchange (CREATE_CHILD_SA)

can be used to generate new IKE SA and IPSec SA to update

the key for forward secrecy. IKE SA is used to control the

following sub-IPSec SA. After updating IKE SA, the original

sub-IPSec SA should be passed on to the new IKE SA.

The Informational Exchange (INFORMATIONAL) is

mainly used to deliver control messages, such as sending

information of different error types, sending the delete_IKE

message to terminate the connection, etc. Generally, deleting

IKE SA implies deleting IPSec SA.

III. ADAPTING MODEL LEARNING FOR IPSec

In this section, we adapt model learning for the implementa-

tion of the IPSec protocol and discuss the overall framework

FIGURE 6. Setup model learning of IPSec implementations based on
Learnlib.

and process. We also introduce specific methodology details

and problems encountered and give the relevant learning

results.

A. LEARNING PROCESS

To infer the state machine implemented by the IPSec proto-

col, we use the information provided in Section 2 to build

the following MAT learning framework with an L∗ learning

algorithm as the core method. The framework consists of

three parts:

The learner uses the LearnLib [22] library, which effi-

ciently implements the L∗ algorithm and generates test mes-

sages for each round of learning of the Mealy machine. The

mapper uses the Scapy [23] library, which is used to send

and receive specific IPSec data packets to coordinate the

learner’s interaction with the SUL. The SUL is implemented

as a specific IPSec server to respond to the learner’s queries

normally.

These three components communicate through sockets,

as shown in Fig. 6.

We need to provide LearnLib with a list of messages that

can be sent to the SUL (also known as the input alphabet) and

a reset command to initialize the SUL to its initial state for

ensuring query consistency. By sending multiple rounds of

message sequences and reset commands, LearnLib attempts

to make assumptions for the state machine based on the

response received from the SUL. Once the L∗ algorithm

completes its state machine hypothesis, LearnLib inputs it to

the equivalent algorithm to check whether the hypothesis is

equivalent to the actual state machine. If the models are not

equal, a counterexample is returned, and LearnLib will use it

to redefine its hypothesis.

As the actual state machine is unknown, an equivalence

check is needed to test the correctness of the hypothesis,

which is a model-based test. We use the algorithm based

on Lee and Yannakakis [24] to find adaptive distinguishing

sequences, which can search for counterexamples more effi-

ciently and give a certain degree of confidence in the final

model.

The learner expects the SUL to be deterministic; how-

ever, the implementation exhibits non-deterministic behavior.

The response time is primarily a source of uncertainty. For

example, if the response time of the SUL exceeds the packet

waiting time of the mapper, the mapper will recognize that

the SUL has no response; as a result, some behaviors may be

recognized as receiving a reply, and some will be identified

as not responding, thereby causing inconsistent behavior.

171326 VOLUME 7, 2019

J. Guo et al.: Model Learning and Model Checking of IPSec Implementations for IoT

TABLE 1. Learning alphabet of IPsec protocol.

In practice, it is necessary to continuously debug to elimi-

nate this behavior as much as possible and set a reasonable

timeout according to the type of query message to improve

the efficiency and accuracy of learning.

To eliminate non-determinism, we also use the SQLite-

based tracking and response logs to extend learners. For

any (sub)tracking, the learner checks if the SUL response

matches the previous answer. In the case of non-deterministic

situations, the program will throw an exception and then

perform amanual check. At the same time, these trace records

and response logs can speed up the learning. In other words,

if the cache needs to query the messages and results, there

is no need to call the mapper, which enables us to continue

learning from where the last experiment stopped by loading

the previous cache.

We use the alphabets in Table 1 to interact with the

server. For more details on related messages, please refer to

RFC 7296 [21].

We used certificate authentication as the authentication

method because all implementations support this form of

authentication. We provided three authentication messages,

which correspond to normal certificate, empty certificate, and

error ID (The ID data in the ID payload of the IKE_AUTH

message is inconsistent with the information from the cer-

tificate in the certificate payload). The RFC 7296 allows

for implementation with cached certificates to accept empty

certificate authentication and allows the ID information to

be different from the ID field of the certificate. The mapper

maintains a simple data structure to test the rekey_IKE and

create_ESP_SAmessage, allowing for new SAs to be created

only when the old SA is empty, thus preventing the creation

of too many SAs and causing state explosions.

After the learning process, the program will output a state

diagram in the form of Graphviz. We write a python script

TABLE 2. Statistics for learning experiments.

to preprocess the state diagram, delete the meaningless edge,

and merge the same edge of the target node to improve the

readability of the state diagram. The complete and modified

state machine have been uploaded to Github1 for readers to

access.

B. LEARNING RESULTS

We used the model learning method to test three spe-

cific IPSec servers, i.e., Strongswan 5.8, Libreswan 3.27,

and Windows Server 2019. These three are currently

popular IPSec servers, and some teams actively manage

them.

Table 2 describes the exact version of the analyzed system

and the statistical data of model learning, including the num-

ber of states in the learned model, the number of assumptions

established, the number of members and equivalent queries,

and the total learning time.

The results revealed that Libreswan had more states, while

Strongswan and Windows Server had similar states. This is

because only Libreswan allows for the managing of IKE SA

and IPSec SA on the old IKE in the three implementations.

Multiple states lead to more queries and longer learning

times. We checked the models and found that the three

models were different and could be used for fingerprint

identification.

In the following subsection, we will discuss the character-

istics of the corresponding server and reveal the correspond-

ing defects according to the test results. As the Windows

Server model is very close to that of the Strongswan, we will

not discuss it here; instead, we will focus on the first two

models. Since the complete model is too large to be displayed

in the paper, we will highlight only the critical parts of the

model. The thick green line of each model represents the cor-

rect interaction path, and the dotted red line indicates the

problematic path.

1) STRONGSWAN

Strongswan [25] was initially based on the frees/WAN

project; then, it was completely rewritten. Now it is an

IPSec implementation supporting multiple authentications

and encryption methods that can be used in various operating

systems.

As shown in Fig. 7, a part of the model of Strongswan

is shown. The green path is a regular interaction process,

starting with IKE_SA_INIT and IKE_AUTH, and ending

1https://github.com/rainingInIsland/DFA_of_IPsec_Server

VOLUME 7, 2019 171327

J. Guo et al.: Model Learning and Model Checking of IPSec Implementations for IoT

FIGURE 7. Simplified learned state machine model for Strongswan 5.8. The thick green edges highlight the happy
flow. The label ‘‘i/o’’ close to its edge indicates the input and the responding output.

with delete_ESP_SA and delete_IKE. Strongswan’s model

did not have an abnormal path, and the interactive path

was as expected. The transition from state 0 to state 1 is a

regular IKE_SA_INIT interaction. The transition from state

1 to state 3 involves IKE AUTH and IKE AUTH_emptyCert

interactions, which indicates that the Strongswan server

supports empty certificate authentication after caching

certificates.

State 3 is the state in which the handshake negotiation is

completed. At this time, ESP message communication can

be carried out without changing the state.

Deletion of the current ESP and IKE to disconnect occurs

in state 3 through state 4 to state 5, and the subsequent

state 5 conforms to what is expected with no output transition

because this is the process designed to close the IKE SA

connection.

As can be seen from State 3 and State 6 that deleting the

ESP SA immediately after creation will result in the same

state.

The Strongswan model also demonstrates the system’s

reasonable response to some anomaly tests. Resending

IKE_SA_INIT in state 1, the system will ignore this message

and will not cause a state transition. The transition from state

1 to state 2 is other than standard authentication, and the

server enters a calm state, which is what we expect because

the specification indicates that the IKEv2 interaction always

begins with IKE SA INIT and IKE AUTH exchanges. At the

same time, the server will reject interaction even if the regular

authentication message is sent later.

According to state 8, the system does not respond to the

creation and deletion of ESP packets on the old IKE channel.

This indicates that Strongswan does not allow for the manag-

ing of sub-IPSec SAs on the old IKE SA.

2) LIBRESWAN
Libreswan does not rewrite the frees/WAN codebase but

extends it. At present, it supports most IPSec related

functions. Fig. 8 shows a part of Libreswan’s model.

The green path is a regular interaction process, start-

ing with IKE_SA_INIT and IKE_AUTH, and ending with

delete_ESP_SA and delete_IKE.

The transition from state 1 to state 3 involves IKE AUTH,

IKE AUTH_emptyCert, and IKE AUTH_wrong, which indi-

cates that the Libreswan server not only supports the empty

certificate authentication after caching the certificate but also

allows authentication in which the ID field is inconsistent

with the certificate field.

Sending encrypted IKE_SA_INIT, rekey_IKE, and cre-

ate_ESP in state 1 does not cause a state transition. From

state 3 through state 4 to state 7 is the transition to delete the

ESP and the current IKE; in this way, the communication is

normally terminated.

In addition to standard behavior, we found some abnor-

mal paths. Sending the delete_IKE message in state 1 will

cause the system to enter a silent state. After the related

log review, we find that the wrong packet interaction trig-

gers the null pointer exception, which causes the IKE dae-

mon to restart. The flaw has been successfully submitted

(CVE-2019-12312 [13]). The new version of Libreswan

3.28 fixed the vulnerability five days later after the flaw was

submitted.

State 6 and State 10 highlight the same problem, i.e., delet-

ing the current ESP immediately after creating a new IPSec

SA causes the old ESP to fail to communicate properly(note

that the old ESP has not been deleted), which violates the

relevant specifications.

Besides, according to the path after state 8, it can be seen

that, after updating the IKE SA, the server still allows for the

creation and deletion of the sub IPSec SA over old IKE SA.

However, the RFC 7296 in section 2.8 indicates that ‘‘an IKE

SA so created inherits all of the original IKE SA’s Child SAs,

and the new IKE SA is used for all control messages needed

to maintain those Child SAs,’’ indicating that Libreswan did

not comply with this specification.

171328 VOLUME 7, 2019

J. Guo et al.: Model Learning and Model Checking of IPSec Implementations for IoT

FIGURE 8. Simplified learned state machine model for Libreswan 3.27. The thick green edges highlight the happy flow
and the dashed red transition indicates the function flaw.

FIGURE 9. A simple example of DFA transformed to NuSMV model.

During the test, we also found that Libreswan’s delete_IKE

message syntax is different from that of Strongswan. This is

because the related specifications do not strictly define the

corresponding message construction, which may affect the

communication between different system implementations.

IV. MODEL CHECKING

For the obtained state machine model, we use the LTL stan-

dard to describe the relevant security attributes and use the

NuSMV [26] model checking tool to test the model. The

NuSMV model can check the state of the model according to

the defined specification. If an interaction path does not meet

the specification, NuSMV will provide a counter example.

First, we need to convert the previous learned modelMealy

machine into an NuSMV model for model checking tool

identification. For example, a conversion q0 → q1 containing

the output and transition states in the Mealy machine will be

mapped to two statements: state = q0 & input = X : q1 and

state = q0 & input = X : A in the NuSMV model. As shown

in Fig. 9, the conversion function of the Mealy machine can

be easily described using the NuSMV related syntax.

Then, we use LTL to construct unique specifications for

verifying the security attributes of the model. The security

criterion formula consists of a set of finite propositional

variable APs, logical operators, and time modal operators,

and represents the corresponding meaning by a particular

combination. The NuSMV can check the path of the security

attribute that we need to verify. If non-conformance is found,

the NuSMVwill return a specific counterexample, which can

guide us to find the corresponding vulnerability in the system

implementation.

We use the model checking method to formalize the rele-

vant attributes of the model and design the security specifica-

tions from three levels:

1) Fundamental security attributes, which are used to

describe the basic security specifications of negotiation

and interaction, to check the necessary authentication

and confidentiality of the system, and to identify poten-

tial security risks such as man in the middle attack and

DoS attack.

2) Rekeying attributes, which measure the status of

creating new session keys to check the forward

secrecy of the system and ensure the freshness of the

key.

3) Functional attributes, which will be used to discuss the

extra functional feature that may have an impact on

safety according to RFC specification.

According to the above classification, we have specially

designed 12 properties.

First, we define the following variables:

DEFINE InitFinished := (inp=init_IKE & out=ok);

DEFINE AuthReq:= (inp=IKE_AUTH |

inp=IKE_AUTH_emptyCert | inp=IKE_AUTH_

wrongID);

DEFINE HasAuth := (AuthReq & out=ok);

DEFINE RekeyReq := (inp=rekey_IKE

| inp=create_child_ESP_SA_over_current_IKE

| inp=create_child_ESP_SA_over_old_IKE);

DEFINE DeleteIKEReq := (inp=delete_current_IKE_SA

| inp=delete_old_IKE_SA);

DEFINETestOldESP :=(inp=test_old_IKE_current_ESP

| inp=test_old_IKE_old_ESP);

DEFINE TestOldIKE :=

(inp=create_child_ESP_SA_over_old_IKE

| inp=delete_current_ESP_over_old_IKE

| inp=delete_old_ESP_over_old_IKE);

According to RFC7296, communication using IKE always

begins with IKE_SA_INIT and IKE_AUTH exchanges,

and then CREATE_CHILD_SA and INFORMATIONAL

VOLUME 7, 2019 171329

J. Guo et al.: Model Learning and Model Checking of IPSec Implementations for IoT

exchanges can occur. Thus, three specifications, 1–3, are

formed.

Property 1: The remaining message negotiation must be

performed after IKE_SA_INIT succeeds.

LTLSPEC NAME Init_SA := G (out ! = None ->

O InitFinished)

Property 2: IKE_AUTH must be completed following the

right IKE_SA_INIT interaction.

LTLSPEC NAME Auth_Sec := G (HasAuth -> O

(InitFinished & out ! = fail))

Property 3: ESP or INFORMATIONAL message com-

munication must only be performed after successful

authentication.

LTLSPEC NAME Connect_Sec := G

((inp = delete_current_IKE_SA & out = ok)|

(inp = test_current_IKE_current_ESP & out = ok) ->

O HasAuth)

Properties 4–6 describe the situations after authentication.

Property 4: IKE cannot be reinitialized on the current IKE

channel after successful authentication.

LTLSPEC NAME Auth_Post := G ((HasAuth) ->

X G (! InitFinished))

Property 5: The effect of successful authentication can last

until disconnection, and the server will reject the request for

re-authentication.

LTLSPEC NAME reAuth_Sec := G ((HasAuth) ->

XG(AuthReq ->

out ! = ok))

Property 6: After normal authentication, the system must

agree to the delete IKE_SA request and respond to it.

LTLSPEC NAME Delete_IKE_Sec := G (HasAuth ->

G (DeleteIKEReq ->

(out! = fail & out! = no_response)))

In terms of rekeying attributes, RFC7296 states that the

function of rekeying the SA is optional for implementation.

After rekeying the SA, it should be noted that the new

IKE_SA must inherit all the sub-SAs, thus forming the prop-

erties 7–10.

Property 7: It is allowed to rekey IKE_SA or create a child

SA after authentication.

LTLSPEC NAME Rekey_Sec := G ((RekeyReq &

out = ok) -> O HasAuth)

Property 8: Both parties can still communicate based on

the IPSec_SA of the old IKE_SA.

LTLSPEC NAME Test_Old_ESP := G (TestOldESP ->

(out = ok | out = None))

Property 9: The new IKE_SA inherits the original

IPSec_SA; that is, the old IKE cannot continue to manage

the IPSec SA.

LTLSPEC NAME Test_Old_IKE := G (TestOldIKE ->

out! = ok)

Property 10: The new IKE_SA inherits the original

IPSec_SA, and deleting an IKE SA implicitly closes any

remaining Child SAs negotiated under it. This means that

after deleting the current new IKE_SA, the ESP created by

the old IKE should no longer be able to communicate.

LTLSPEC NAME Test_Old_ESP_Post :=

G (inp = delete_current_IKE_SA & out = ok ->

G (TestOldESP -> out! = ok))

RFC7296 also points out that ‘‘this improves efficiency

when the endpoints have certificate data cached and makes

IKE less subject to DoS attacks.’’ At the same time, ‘‘the

Identification payload allow peers to assert an identity to one

another. This identity may be used for policy lookup but does

not necessarily have to match anything in the CERT pay-

load.’’ These instructions have produced properties 11–12.

Property 11: Allow caching of certificate data for authen-

tication.

LTLSPEC NAME Test_Empty_Cert := G (InitFinished ->

X (inp = IKE_AUTH_emptyCert ->

out = ok))

Property 12: Allow ID information to be inconsistent with

the corresponding field of the certificate.

LTLSPEC NAME Test_Wrong_ID := G (InitFinished ->

X (inp = IKE_AUTH_wrongID ->

out = ok))

We have checked the relevant safety specifications for the

obtained model, and the results are summarized in Table 3.

The results reveal that the three servers generally follow

the correct negotiation process and support the rekeying

function in IPSec communication. It is worth noting that

Libreswan allows IPSec SA to be managed on the old IKE

channel(the new IKE SA does not thoroughly inherit the

old IPSec SA), and sometimes, Libreswan does not reply

to ESP test messages, thus not meeting properties 8–10 and

affecting the system’s forward secrecy and normal secure

communication. These checking results also respond with

the previous model learning results. In the forms of identity

authentication, Strongswan does not allow the identity ID

to be inconsistent with the client certificate, while Windows

Server does not support the authentication method of the

empty certificate. Only Libreswan supports the authentica-

tion in multiple situations.

171330 VOLUME 7, 2019

J. Guo et al.: Model Learning and Model Checking of IPSec Implementations for IoT

TABLE 3. Model checking results.

V. CONCLUSION

In this study, we combined model learning and model check-

ing to analyze three IPSec implementations. We performed a

black box test on the target system based on model learning

to infer the state machine model, then extracted the security

attributes from the IPSec related specifications, and used

the model checking method to automatically perform path

detection. The entire process is almost completely automated,

which increases the efficiency of the test. Our analysis found

some vulnerabilities in the implementation of the IPSec sys-

tem, including a false interaction causing server exceptions

and some violations of the specification, thus demonstrating

the effectiveness of our approach. The inferred state machine

reveals the internal structure of the system, which helps us

understand the functions inside the system and assists the

developer in maintaining the system. As the model checking

results can determine the difference between the implemen-

tation and the specification, the security problem may be

discovered, and we can further improve it.

Further, this method can be extended to other different

forms of authentication and encryption algorithms of the

IKEv2 protocol to analyze the security of the system imple-

mentation under the corresponding protocol. In the future,

the methods used in this paper can also be applied to ana-

lyze other protocol implementations, such as Zigbee and

NBIoT, which is also a great advantage of inferring protocol

state machine compared to other analysis methods. Besides,

we can consider how to enrich the content of the model

to detect more complicated security issues. In general, this

study expands the application field of dynamic protocol tests

and have made individual contributions in supplementing the

security analysis methods of network security protocols.

REFERENCES

[1] S. Aragon, M. Tiloca, M. Maass, M. Hollick, and S. Raza, ‘‘ACE of spades

in the IoT security game: A flexible IPsec security profile for access

control,’’ in Proc. IEEE Conf. Commun. Netw. Secur. (CNS), Beijing,

China, May/Jun. 2018, pp. 1–9.

[2] P. Varadarajan and G. Crosby, ‘‘Implementing IPsec in wireless sensor

networks,’’ in Proc. 6th Int. Conf. New Technol. Mobility Secur. (NTMS),

Dubai, United Arab Emirates, 2014, pp. 1–5.

[3] T. Ninet, A. Legay, R. Maillard, L.-M. Traonouez, and O. Zendra,

‘‘Model checking the IKEv2 protocol using Spin,’’ in Proc. 17th

Int. Conf. Privacy, Secur. Trust (PST), Fredericton, NB, Canada,

Aug. 2019, pp. 1–9.

[4] P. Fiterǎu-Broştean, R. Janssen, and F. Vaandrager, ‘‘Learning fragments

of the TCP network protocol,’’ in Formal Methods for Industrial Critical

Systems, vol. 8718, F. Lang and F. Flammini, Eds. Cham, Switzerland:

Springer, 2014, pp. 78–93.

[5] H. Brinksma and A. H. Mader, On Verification Modelling of Embedded

Systems. Enschede, The Netherlands: Univ. of Twente, Centre for Telem-

atics and Information Technology, 2004.

[6] J. De Ruiter and E. Poll, ‘‘Protocol state fuzzing of TLS implemen-

tations,’’ in Proc. 24th USENIX Secur. Symp. (USENIX Secur.), 2015,

pp. 193–206.

[7] C. M. Stone, T. Chothia, and J. de Ruiter, ‘‘Extending automated protocol

state learning for the 802.11 4-way handshake,’’ in Proc. Eur. Symp. Res.

Comput. Secur. (ESORICS), 2018, pp. 325–345.

[8] L.-A. Daniel, E. Poll, and J. de Ruiter, ‘‘Inferring OpenVPN state machines

using protocol state fuzzing,’’ in Proc. IEEE Eur. Symp. Secur. Privacy

Workshops (EuroS&PW), Apr. 2018, pp. 11–19.

[9] J. van Thoor, J. de Ruiter, and E. Poll, ‘‘Learning state machines of TLS 1.3

implementations,’’ Bachelor thesis, Dept. Comput. Sci., Radboud Univ.,

Nijmegen, The Netherlands, 2018.

[10] A. Rasool, G. Alpár, and J. de Ruiter, ‘‘State machine inference of QUIC,’’

Mar. 2019, arXiv:1903.04384. [Online]. Available: https://arxiv.org/abs/

1903.04384
[11] P. Fiterǎu-Broştean, R. Janssen, and F. Vaandrager, ‘‘Combining model

learning and model checking to analyze TCP implementations,’’ in Com-

puter Aided Verification, vol. 9780, S. Chaudhuri and A. Farzan, Eds.

Cham, Switzerland: Springer, 2016, pp. 454–471.
[12] P. Fiterǎu-Broştean, T. Lenaerts, E. Poll, J. de Ruiter, F. Vaandrager,

and P. Verleg, ‘‘Model learning and model checking of SSH

implementations,’’ in Proc. 24th ACM SIGSOFT Int. SPIN Symp.

Model Checking Softw. (SPIN), Santa Barbara, CA, USA, 2017,

pp. 142–151.
[13] CVE–CVE-2019-12312. Accessed: Jul. 11, 2019. [Online]. Available:

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12312
[14] D. Angluin, ‘‘Learning regular sets from queries and counterexamples,’’

Inf. Comput., vol. 75, no. 2, pp. 87–106, Aug. 1987, doi: 10.1016/

0890-5401(87)90052-6.
[15] O. Niese, ‘‘An integrated approach to testing complex systems,’’

Ph.D. dissertation, Tech. Univ. Dortmund, Dortmund, Germany, 2003.
[16] M. Shahbaz and R. Groz, ‘‘Inferring mealy machines,’’ in Proc. Int. Symp.

Formal Methods, 2009, pp. 207–222.
[17] B. Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-

rent Systems. New York, NY, USA: Springer-Verlag, 1992.
[18] D. Piper, The Internet IP Security Domain of Interpretation for ISAKMP,

document RFC 2407, 1998. [Online]. Available: https://tools.ietf.org/

html/rfc2407
[19] D. Maughan and M. Schneider, Internet Security Association and Key

Management Protocol (ISAKMP), document RFC 2408, 1998. [Online].

Available: https://tools.ietf.org/html/rfc2408
[20] D. Carrel and D. Harkins, The Internet Key Exchange (IKE), docu-

ment RFC 2409, 1998. [Online]. Available: https://tools.ietf.org/html/

rfc2409
[21] T. Kivinen, P. Hoffman, C. Kaufman, Y. Nir, and P. Eronen, Internet

Key Exchange Protocol Version 2 (IKEv2), document RFC 7296, 2014.

[Online]. Available: https://tools.ietf.org/html/rfc7296
[22] H. Raffelt, B. Steffen, T. Berg, and T. Margari, ‘‘LearnLib: A framework

for extrapolating behavioral models,’’ Int. J. Softw. Tools Technol. Transf.,

vol. 11, no. 5, p. 393, 2009, doi: 10.1007/s10009-009-0111-8.
[23] P. Biondi, ‘‘Scapy,’’ 2011.
[24] D. Lee and M. Yannakakis, ‘‘Principles and methods of testing finite

state machines—A survey,’’ Proc. IEEE, vol. 84, no. 8, pp. 1090–1123,

Aug. 1996, doi: 10.1109/5.533956.
[25] A. Steffen. (2017). StrongSwan—The OpenSource IPsec-Based

VPN Solution. Accessed: Mar. 31, 2012. [Online]. Available: http://

www.strongswan.org
[26] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,

M. Roveri, R. Sebastiani, and A. Tacchella, ‘‘NUSMV 2: An OpenSource

tool for symbolic model checking,’’ in Proc. Int. Conf. Comput. Aided

Verification, 2002, pp. 359–364.

VOLUME 7, 2019 171331

http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.1007/s10009-009-0111-8
http://dx.doi.org/10.1109/5.533956

J. Guo et al.: Model Learning and Model Checking of IPSec Implementations for IoT

JIAXING GUO is currently pursuing the M.S.

degree in information security from the Henan

Key Laboratory of Network Cryptography Tech-

nology, Zhengzhou, China. His recent research

interests include protocol analysis, model learning,

and model checking.

CHUNXIANG GU was born in 1976. He is cur-

rently a Professor and a Ph.D. Supervisor with the

State Key Laboratory of Mathematical Engineer-

ing and Advanced Computing. His research inter-

ests include network security and cryptography.

XI CHEN was born in 1988. He received the

bachelor’s degree in computer science and tech-

nology from Tsinghua University and the master’s

degree from Information Engineering University.

He is currently a Lecturer with the Henan Key

Laboratory of Network Cryptography Technology.

His research interests include cyberspace security

and cryptography.

FUSHAN WEI received the M.S. and Ph.D.

degrees in applied mathematics from the

Zhengzhou Information Science and Technology

Institute, China, in 2008 and 2011, respectively.

He is currently an Associate Professor with

the Henan Key Laboratory of Network Cryp-

tography Technology, Zhengzhou, China. His

research fields include cryptography and informa-

tion security.

171332 VOLUME 7, 2019

	INTRODUCTION
	PRELIMINARIES
	MODEL LEARNING
	MEALY MACHINES
	MINIMALLY ADEQUATE TEACHER FRAMEWORK

	MODEL CHECKING
	LINEAR TEMPORAL LOGIC

	IP SECURITY PROTOCOL

	ADAPTING MODEL LEARNING FOR IPSec
	LEARNING PROCESS
	LEARNING RESULTS
	STRONGSWAN
	LIBRESWAN

	MODEL CHECKING
	CONCLUSION
	REFERENCES
	Biographies
	JIAXING GUO
	CHUNXIANG GU
	XI CHEN
	FUSHAN WEI

