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Model migration neural network for predicting

battery aging trajectories
Xiaopeng Tang, Kailong Liu, Member, IEEE, Xin Wang, Furong Gao, James Macro,

and W. Dhammika Widanage, Member, IEEE

Abstract—Accurate prediction of batteries’ future degradation
is a key solution to relief users’ anxiety on battery lifespan
and electric vehicle’s driving range. Technical challenges arise
from the highly nonlinear dynamics of battery aging. In this
paper, a feed-forward migration neural network is proposed to
predict the batteries’ aging trajectories. Specifically, a base model
that describes the capacity decay over time is first established
from the existed battery aging dataset. This base model is then
transformed by an input-output slope-and-bias-correction (SBC)
method structure to capture the degradation of target cell. To
enhance the model’s nonlinear transfer capability, the SBC-
model is further integrated into a four-layer neural network,
and easily trained via the gradient correlation algorithm. The
proposed migration neural network is experimentally verified
with four different commercial batteries. The predicted RMSEs
are all lower than 2.5% when using only the first 30% of
aging trajectories for neural network training. In addition,
illustrative results demonstrate that a small size feed-forward
neural network (down to 1-5-5-1) is sufficient for battery aging
trajectory prediction.

Index Terms—Electric Vehicle, Lithium-ion Battery Manage-
ment, Model Migration, Neural Network, Aging Trajectory
Prediction
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I. INTRODUCTION

Lithium-ion (Li-ion) batteries have gained significant mar-

ket share as the main power source for electrical vehicles

(EVs) [1] or hybrid electrical vehicles (HEVs) [2], owing to

their high energy density and high efficiency [3]. However,

battery health is a key element to affect battery performance

regarding the applications such as charging management [4,5],
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energy management [6], thermal management [7,8] and equal-

ization management [9,10]. To ensure the reliability and safety

of battery operation, effective health prognostic solutions are

required. In response to this challenge, numerous approaches

on the battery state-of-health (SoH) estimations have been

designed to provide the current information of battery health

[11,12]. However, SoH is not enough for further energy

scheduling and management due to the fact that EV users re-

quire to know the remaining service life the batteries still have

[13,14]. It is vital therefore to develop effective approaches for

battery aging trajectory predictions, helping to guarantee that

batteries are able to operate within the reliable conditions and

reduce the users’ anxieties on battery duration [15,16].

To achieve effective predictions of battery aging trajectories,

various approaches have been proposed in the literature. These

approaches can generally be divided into three categories,

first-principle model based methods, empirical model based

methods and data-driven model based methods.

For first-principle model based methods, a suitable elec-

trochemical model that describes the knowledge of battery’s

dynamic and aging, along with several observers, are utilized

to predict the battery degradation trajectories [17]. Although

battery electrochemical dynamics can be well described by

these methods, some problems still exist as: 1) there exists a

large amount of parameters for this type of model, which are

difficult to be identified accurately [18]. 2) these electrochem-

ical models generally contain partial differential equations,

leading to large computational and memory consumption [19].

Therefore, the popularity of first-principle-based methods in

EV applications is lower than that of the empirical or data-

driven based methods [20].

Rather than using complex electrochemical models, em-

pirical model based methods portray the battery capacity

degradation over time with mathematic functions such as

single exponential function [21], dual exponential function

[22], power function [23], hybrid linear function [24], and

polynomial function [25]. Then different data-fitting tech-

niques such as particle filters [22], Kalman filters [26] or

some offline optimization algorithms [27,28] are employed to

identify the models’ parameters. Due to their relative simple

structure, these methods are easy and straightforward to be

implemented in real applications. However, the parameters in

these simplified models usually lack physical meanings. It

would be difficult to add reasonable constraints during the

identification process to prevent potential over-fitting [29].

As a result, this kind of methods would be sensitive to the

noise and easy to diverge in the prediction phase [30]. In
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addition, the prediction performance is highly dependent on

the mathematical form of the empirical function, the selection

of which generally requires trial-and-error efforts [20].

Data-driven approaches, which generate the future predic-

tions based on the collected data, have also been widely

adopted. Through using advanced machine learning techniques

such as support vector regression [26], Gaussian process

regression [31,32] and neural network (NN) [33]–[35], these

methods do not assume any battery degradation mechanism a-

priori, and turn out to be suitable for general battery types.

With the development of vehicle data centers and cloud

platforms [36], data-driven methods would gain a foreseeable

popularity. However, there still exists some open technical

issues that should be considered when applying such methods

for the battery aging trajectory prediction. First, the knee-

point effect [37]. It is known that the degradation rate of a

battery is nonlinear. For some battery types, there exists a

point (known as the knee point) that the degradation rates

before and after are significantly different. In this case, the

knee point information has to be included in the training

dataset to make the predictions more accurate. Noting that

battery degradation takes several years, an overly long ex-

perimental time is required to accumulate such data. Second,

the computational issue. As the battery decay can be seen

as a time-series process, therefore a state-of-the-art technique

is to use NNs that contain internal feed-backs such as long

short-term memory (LSTM) recurrent neural network (RNN)

[33] to model battery time-series aging dynamics. In general,

this NN is accurate, but computationally complex due to

its gates structure. Third, the network initialization. Various

initialization methods would lead to different network training

results [38]. In this case, even if the same dataset is used

to train NN, various aging trajectories could be generated,

resulting in the increase of users’ anxiety on battery lifespan

[23]. However, as a pure data-driven method, how to select

a suitable initialization solution for battery aging trajectory

prediction is still an open issue [20].

To improve the performance of existing data-driven meth-

ods, the model migration technique from the field of injection

molding processes [39] has been introduced to the research

field of battery management by Tang et al. in 2019 [40]. In

the reported method, a base model developed from the existing

dataset is transformed through the slope-and-bias-correction

(SBC) method to model the aging process of a target battery. In

the SBC-model migration approach, the base model that covers

the entire aging information can be fully utilized. Therefore,

as long as the base model matches the degradation curve

of the target cell, this method is able to achieve satisfactory

performance through only training based on the first 30% of

aging trajectory. However, in general cases, the degradation

process of a target cell would be different from that of the base

model. Since SBC can only provide linear transforms of the

input and output from base model, there is no guarantee that

the nonlinear relation between the base and target processes

can be reliably compensated.

Based upon the above discussions and driven by the purpose

of predicting nonlinear battery aging trajectories with limited

training data, a feed-forward migration neural network that

merges the NN and the SBC-model migration is proposed.

Several key features make this work distinguishable from the

relevant literature. First, by integrating the SBC-migration

model into the NN, the knee point does not need to be

covered by the online accumulated training dataset. Second,

the nonlinear fitting performance is significantly improved

with the integration of SBC-migration technique and NN

structure. Third, a small-size feed-forward NN (down to 1-5-5-

1) trained by the light-weight gradient correction algorithm is

sufficient for aging trajectory prediction. Further, the proposed

migration NN is not sensitive to the tunable parameters such

as learning rate or initial weight metrics.

The rest of this article is organized as follows. Section 2

gives a detailed description of the datasets. Then the elab-

orations of fundamentals behind the conventional empirical

model-based prediction method, the slope-and-bias-correction-

based model migration method, the proposed model migration

neural network method, and the benchmarking algorithms are

presented in Section 3. Section 4 gives the detailed experimen-

tal verification, and finally, Section 5 summaries this study.

II. DESCRIPTION OF THE DATASETS

To verify the effectiveness of the proposed method, four

battery aging datasets are utilized, while each dataset is

composed of aging data from two batteries.
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Fig. 1. Datasets for verification. (a): SONYVTC6 batteries; (b): FST2500
batteries; (c): FST2000 batteries; and (d): NASA #06 and #07 batteries.

The first dataset was collected from SONYVTC6 batteries,

with a rated capacity of 3 Ah. For the first battery in this

dataset, a cyclic aging profile of constant-current-constant-

voltage (CCCV) charging [41,42] and constant-current (CC)

discharging is carried out. The current rate of this cyclic profile

was 1C in the CC phase, and the cutoff conditions were set

as 4.2V, 2.75V and 0.05C for the upper voltage limit, lower

voltage limit, and current limit, respectively. For the second

SONY battery, the aging profile was the same as the first
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one except that the upper voltage limit became 4.4V, in other

words, the battery was overcharged. The aging experiment was

carried out in Guangzhou HKUST Fok Ying Tung Research

Institute, and a UPower testing system described in [43] was

utilized to implement this experiment. The lifespan of the

SONYVTC6 batteries under nominal operating condition is

about 360 cycles.

The second dataset was collected from FST2500 batteries,

with a rated capacity of 2.5Ah. The batteries were cycled

based on a CCCV charging-CC discharging profile with the

cut-off conditions of 4.2V upper voltage, 2.75V lower voltage,

and 0.05C current limit, respectively. For the first battery, its

current rate was 0.4C in the CC phase, while for the second

cell, the corresponding current rate became 0.2C. The aging

experiments were also carried out using the UPower battery

testing system, and a lifespan of 300 cycles could be expected

for this battery type.

The third dataset was collected from FST2000 batteries,

with a rated capacity of 2 Ah. Two cells were cycled using

a CCCV charging-CC discharging profile with a 1C current

rate. However, their cut-off conditions were different. For the

first one, the cutoff conditions were 4.2V, 2.75V and 0.05C.

However, for the second one, the cutoff conditions became

4.2V, 1.9V and 0.05C, which means that the second battery is

over-discharged. This experiment was also carried out in our

research institute. The cyclic test of the first battery was carried

out using a SUNWAY battery testing system as described in

[44], while the second battery was cycled using the UPower

battery tester. Under nominal conditions, the expected lifespan

of FST2000 batteries is about 450 cycles.

In addition, cell #06 and cell #07 in the NASA

dataset [45] were selected. The NASA battery type was

LiNi0.8Co0.15Al0.05O2, with a rated capacity of 2 Ah. The

CCCV charging-CC discharging profile profiles were also used

to test their aging performances. Specifically, a charging rate

of 0.75C and a discharging rate of 1C were selected. The cut-

off voltage for charging is 4.2V, and the cut-off current rate

is 0.01C. For cell #06, the cut-off discharging voltage is 2.5V,

but only 2.2V for cell #07. It should be noted that this dataset

was tested 12 years ago, and the lifespan of the battery is

relatively low (≤ 170 cycles). However, NASA dataset is one

of the earliest open-access battery aging dataset, and has been

widely used for algorithm verification until very recently [46].

Therefore, this dataset could enrich our experimental results.

For all these datasets, the referenced battery capacity is

calculated by integrating the discharging current over each

cycle, and the aging trajectories of these selected batteries are

shown in Fig. 1. It should be pointed out that the experiments

are carried out in room temperature without precise control,

which brings additional noise to the measured capacity. Due

to the joint effect of the uncontrolled temperature, internal

chemical materials and battery manufacturing limitations, the

aging trajectories of these cells are distinct, containing the

cases of convex, concave, and close-to-linear capacity fade

trajectories.

Remark 1: The main purpose of this paper is to predict

the battery’s future degradation, and we do not limit the

selection of aging indicator. In our study, followed the same

way as many related works [46,47], the battery full discharging

capacity has been selected as health indicator for evaluating

battery aging state. Some other criteria from partial charg-

ing/discharging data such as impedance [48] and incremental-

capacity-based features [49] can be also utilized to reflect

battery SoH. After we adopt mature extraction techniques

from [43,50] to obtain these criteria, the related SoH aging

trajectory could be also conveniently predicted through using

our proposed model migration NN.

III. TECHNIQUE

This section describes the proposed model migration neural

network. For the purpose of comparison and motivating other

algorithms, the conventional empirical model-based predic-

tion technique is introduced first. Then, the standard input-

output slope-and-bias correction (SBC) based model migra-

tion method is discussed. After that, the SBC-based model

migration is extended to a model-migration neural network,

followed by a gradient-correction (GC)-based training algo-

rithm. Finally, two commonly used benchmarking algorithms,

namely, the empirical prediction and the NN-based prediction,

are briefly introduced.

A. Conventional empirical model-based prediction

The decrease in actual capacity is widely utilized to describe

the degree of battery degradation. However, the capacity of

the commercial batteries vary from case to case. Therefore,

normalization is required to compare the capacity of different

batteries. Following a widely used engineering definition for

the battery SoH [51], it is defined here as

SoH(k) =
Cn(k)

Cn(1)
(1)

where Cn(k) represents the actual battery capacity at time k,

which is usually sampled at each operating cycle, and Cn(1)
stands for the battery capacity that is measured at the first

cycle.

With this definition of battery SoH, the relation between

battery degradation and cycle number k could be formulated

as a single-input-single-output (SISO) function as follows,

SoH(k) = yk = f(k) (2)

After defining f(·) based on the partial aging data, it

can be extended to predict the aging trajectory of the entire

lifespan. The detailed procedure (EPREDICT) is described in

Algorithm 1.

Algorithm 1 Empirical model-based prediction algorithm

1: procedure EPREDICT(SoH1:L, l + L)

2: Select a mathematical form for f(·);
3: Set the input of f(·) as 1 : L;

4: Set the target output of f(·) as y1:L = SoH1:L;

5: Offline determine f̂(·);
6: ŷL+l = f̂(L+ l);
7: end procedure
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In Algorithm 1, several model forms such as single expo-

nential function [21], dual exponential function [22], power

function [23], hybrid linear function [24], and polynomial

function [25] are generally used for f(·), there also exists lots

of algorithms to identify these models’ parameters. Among

these methods, MATLAB nonlinear curve fitting algorithm

has been packed into the standard toolbox and widely used

in different areas. Therefore, it is selected for the offline

parameter identification in this study.

B. Slope-and-bias-correction-based model migration

Algorithm 1 is effective under the conditions where suffi-

cient aging data has been accumulated [40], but its prediction

accuracy is usually low with reduced training data due to the

effect of the knee point and the measurement noise.

In order to handle the above issues, an SBC-based model

can be utilized to model battery degradation as follows,

yk = F (k) = x1 · f(x2 · k + x3) + x4 (3)

where x = [x1, x2, x3, x4] are the migration factors under

identification, while f(·) is regarded as a base model, which

should be determined in advance.

A two-stage strategy can be applied for determining the

detailed form of F (·). First, the base model f(·) should be

determined offline using existing datasets that cover most

of the battery lifespan (e.g., dataset collected from some

accelerated aging experiments). Then, the online measured

partial aging trajectory from time 1 to time L is utilized

to identify x. Therefore, the overall procedure for aging

trajectory prediction using SBC-based model migration can

be summarized in Algorithm 2 (SBCPREDICT).

Algorithm 2 SBC-migrated model-based prediction algorithm

1: procedure SBCPREDICT(SoH1:L, l + L)

2: Select a mathematical form for f(·);
3: Select an existing dataset for f(·);
4: Offline determine f(·);

5: Set the input of F (·) as 1 : L;

6: Set the target output of F (·) as y1:L = SoH1:L;

7: Identify the x̂ in F̂ (·);
8: ŷL+l = F̂ (L+ l) = x̂1 · f (x̂2 · (L+ l) + x̂3) + x̂4;

9: end procedure

Noting that the base model f(·) has the information cov-

ering most of the battery SoH range, and that x is identified

through partial aging data accumulated from time 1 to L, the

prediction of SBC-based migration model can still use the

full SoH range battery degradation information. This is quite

different to the case of just using an empirical model, which

uses only partial information to generate the predictions.

There are three issues that need to be further clarified. First,

obtaining the training data for base model could be quicker

if accelerated aging experiments are carried out. For instance,

finding the knee point of the red curve shown in Fig. 1(a)

requires less than 20% of the total experimental time. Second,

the mathematical form of f(·) will not affect the logic of

the model migration. However, the quality of f(·) will affect

the accuracy of migrated model. For instance, F (·) in (3)

will remain linear if the base model f(·) is linear. Third,

different algorithms could be applied to identify x (line 7

of Algorithm 2). For instance, gradient correction [51] could

provide a computing friendly solution, while Bayes Monte

Carlo [22] methods would have a better accuracy.

C. Model migration network

The good fitting performance of the SBC-based model

migration relies on a strong assumption that the base model

and the target aging process maintains some similarities. This

assumption, however, might not be suitable for all testing

cases. To handle this issue, the SBC-based model migration

technique is integrated into a feed-forward neural network

in our study, with the expectation to improve the ability

of handling the nonlinearty behaviour in the battery aging

process. This integration includes two steps:

First, (3) is formally converted into a neural network with

the result as shown in Fig. 2. Specifically, the generated

network has one input (the cycle number k), and one output

(the SoH). Following (3), biases have been added to both

the input and output. The weighted summation of the cycle

number and the bias is treated as the input of f(·), and the

weighted summation of the output of f(·) and the second bias

is treated as the input of h(·). When h(x) = x is selected, the

network shown in Fig. 2 is equivalent to (3) mathematically.

Cycle number

1 1

Σ f hΣ
SoH

×1
x2

x3

x1

x4

Fig. 2. Illustration of the SBC-based model migration using a neural network
structure.

Next, the network shown in Fig. 2 is further enhanced.

The number of hidden-neurons could be improved to N . In

addition, to avoid simply using linear combinations of the SBC

model output, another hidden layer with K neurons is added.

The output bias is also shifted to the last hidden layer. Then,

a migration NN shown in Fig. 3 can be obtained, where g(·)
is the activation function of the additional hidden layer, which

is usually set as a nonlinear SISO function.

Cycle number

1

1

Σ

Σ

Σ

Σ

f1

fN

g1

gK

h1Σ
SoH

W1 ∈ R
N×2

W2 ∈ R
K×N

W3 ∈ R
1×(K+1)

×1

Fig. 3. Framework of the proposed migration NN.
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It should be noted that for battery aging trajectory prediction

tasks, the training data does not cover the range of the predic-

tion. Therefore, an activation function with saturation property

(such as sigmoid) is not suitable here [52]. In response, a

simple and effective leakly rectified linear unit (LReLU ) [53]

is selected as:

g(x) = LReLU(x) = max{0, x}+min{0, x} · λ (4)

where λ is commonly set as a small positive value, e.g.,

0.05. The LReLU function is light-weight as there is no

need to calculate the exponential response compared with the

conventional sigmoid activation function.

Mathematically, each fi(·) for i ∈ [1, N ] and gj(·) for

j ∈ [1,K] in Fig. 3 can be different. However, from the view

of NN design, a general multi-layer feed-forward NN with

each neuron sharing the same nonlinear activation function

is already sufficient to approximate a convex function with

a desired accuracy [54]. Therefore, there is no necessity to

improve the complexity of the network by selecting different

internal activation functions.

The process of using the proposed migration network for

aging prediction is almost the same as Algorithm 2: after

determining the base model f(·) offline, Wi for i ∈ {1, 2, 3}
is trained using the data collected from time 1 to L. By

changing the input, the SoH at any cycle can then be predicted

accordingly. The detailed algorithm (NNPREDICT) is listed in

Algorithm 3 as follows,.

Algorithm 3 Migration network-based prediction algorithm

1: procedure NNPREDICT(SoH1:L, l + L)

2: Select a mathematical form for f(·);
3: Select an existing dataset for identifying f(·);
4: Offline determine f(·);

5: Set the network size as {1−N −K − 1};

6: Add bias to the input of the 2nd and 4th layer;

7: Set the input of network as 1 : L;

8: Set the target output of the network as y1:L = SoH1:L;

9: [W1,W2,W3] = NETTRAIN(SoH1:L)
10: ŷL+l =NETSIM(W1,W2,W3, L+ l);
11: end procedure

In Algorithm 3, two functions are called, namely NETSIM

and NETTRAIN. NETSIM is utilized to generate the output of

the migration network with the provided Wi and the desired

cycle number k. This algorithm is implemented by calculating

the network output in a layer-by-layer manner, and its detailed

implementation can be found in Algorithm 4.

On the other hand, NETTRAIN is used to train the Wi

with the provided input and the corresponding desired output

(the input here is the cycle number 1 to L, which can be

omitted, as the desired output is already labelled as SoH1:L).

There exists many efficient algorithms to train the network.

However, to show that the training process of the proposed

algorithm could be implemented in a computationally efficient

way, an example of using the standard gradient-correction [55]

Algorithm 4 Migration network simulation algorithm

1: function [SoH ] = NETSIM(W1,W2,W3, k)

2: y0 = [k];
3: y0b = [k; 1]; // Add bias

4: v1 = W1 · y0b;

5: y1 = f(v1);
6: v2 = W2 · y1;

7: y2 = g(v2);
8: y2b = [y2; 1]; // Add bias

9: v3 = W3 · y2b;

10: y3 = h(v3);
11: SoH = y3;

12: return SoH;

13: end function

is provided.The detailed process of this algorithm is shown in

Algorithm 5.

Algorithm 5 Migration network training algorithm

1: function [W1,W2,W3] = NETTRAIN(SoH1:L)

2: Initialize: N,K,Wi and ηi for i ∈ {1, 2, 3};

3: Initialize: Epmax = 10000;

4: for cnt = 1: Epmax do // Each cycle

5: for k = 1 : L do // Each data point

6: y0 = [k];
7: y0b = [k; 1]; // Add bias

8: v1 = W1 · y0b;

9: y1 = f(v1)
10: v2 = W2 · y1;

11: y2 = g(v2);
12: y2b = [y2; 1]; // Add bias

13: v3 = W3 · y2b;

14: y3 = h(v3);
15: e3 = SoHk − y3;

16: δ3 = h′(v3) · e3;

17: e2b = W
T
3 · δ3;

18: e2 = e2b(1 : end − 1) // Remove bias

19: δ2 = g′(v2) · e2;

20: e1 = W
T
2 · δ2;

21: δ1 = f ′(v1) · e1;

22: W3 = W3 + η3 · δ3 · y2b;

23: W2 = W2 + η2 · δ2 · y1;

24: W1 = W1 + η1 · δ1 · y0b;

25: end for

26: ŷ1:L = NETSIM(W1,W2,W3, [1 : L]);
27: if rms(y1:L − ŷ1:L) ≤ ∆Th then

28: break;

29: end if

30: end for

31: return [W1,W2,W3];
32: end function

It can be seen from Algorithm 5 that the equations from

line 6 to line 14 are similar as those in Algorithm 4, which

actually represent the feed-forward propagation. The equations

from line 15 to line 24 are the standard procedure of gradient-

correction-based back propagation. Following line 3, the train-
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ing process will be stopped when the overall algorithm has

been run for 10,000 times. The 10,000 here is empirically

selected, which is sufficiently large for general training cases.

However, over-fitting is very likely to happen if the root-mean-

square-error (RMSE) of the training is too small. For a light-

weight gradient-based algorithm, a simple and efficient way to

prevent over-fitting is to stop training process before RMSE

reaches its minimum (also known as early stopping technique,

see [56] and [57] for details). As described in line 27 of

Algorithm 5, the training will also stop when the RMSE of

training is smaller or equal to a pre-determined threshold ∆Th.

The value of ∆Th should be slightly larger than the fitting

RMSE of the base model, but these two values should maintain

the same level of magnitude.

D. Benchmarking algorithms

In this subsection, two benchmarking algorithms are de-

signed to verify the superiorities of the proposed method.

Benchmark 1 applies a NN with the structure of Fig. 3 to do

the prediction. In this structure, fi(·) is selected as LReLU(·).
In this way, the proposed model migration network becomes

a conventional 4-layer feed-forward NN. The training process

can be implemented through following Algorithm 5.

Benchmark 2 predicts the aging trajectory by using Algo-

rithm 1, where f(·) is selected to be the dual exponential

function as follows [22]

f(k) = a · eb·k + c · ed·k (5)

where a, b, c, d are the parameters of this dual exponential

function.

IV. EXPERIMENTAL RESULTS

The experimental verification is carried out in this section.

First, the parameter configurations are described in detail to

guarantee the repeatability of the proposed method. Then,

the prediction accuracy is evaluated under the cases of using

70% and 30% aging trajectories for training, respectively. In

addition, discussions of modeling functions are carried out,

followed by the numerical analysis of the size of the NN.

A. Parameter configurations

According to the logic of the model migration, a base model

is required before predicting the aging trajectories of the target

cells. In our experiment, the blue curves shown in Fig. 1

are selected as the target cells, while the batteries with the

red curves are used to fit the base model. Without loss of

generality, a piece-wise cubic interpolation function is fitted

through the MATLAB toolbox, and the threshold for training

RMSE ∆Th = 0.95% is selected based on the fitting accuracy

of the four base models. N = K = 5 is selected as the size

of the network, and the learning rate ηi = 0.01 is selected for

i = {1, 2, 3}.

Compared to conventional NN, the weight metrics in the

migration NN have clear meanings. According to the training

process of equation (3), x = [1, 1, 0, 0] can be selected as the

initial value, so that without any training information, F (·)

should be the same as the f(·). Following this idea, it is

reasonable to use the following method to initialize the weight

matrices Wi as:

W1 =







1 0
...

...

1 0







N×2

+ 0.05 · randn(N, 2) (6a)

W2 =







1/N · · · 1/N
...

. . .
...

1/N · · · 1/N







K×N

+ 0.05 · randn(K,N)

(6b)

W3 =
[

1
K

· · · 1
K

0
]

1×(K+1)
+ 0.05 · randn(1,K + 1)

(6c)

where randn(a, b) returns an a-by-b random matrix of nor-

mally distributed random numbers. When ignoring the random

part in (6), the input of g(·) will be greater than 0, in which

case g(x) = x holds. In other words, the average of the N
base models is utilized to predict the aging trajectory when no

additional training data is available. This initialization agrees

with the basic idea of the model migration.

To verify that the proposed method is not sensitive to the

tuning parameters such as the learning rate, the above-stated

parameter configuration is applied to the four different aging

datasets, in which the batteries’ lifespan vary from 170 cycles

to 450 cycles. The algorithm performance is verified in the

next subsections.

B. Prediction with 70% data for training

To test the performance of both the proposed and the

benchmarking algorithms, we start with the case that most of

the aging data is available. To be specific, the first 70% of the

aging trajectories are used to train the corresponding model.

Then the remaining 30% of the aging trajectory is predicted.

For instance, when handling the SONYVTC6 battery, the first

252 cycles are used to train models, and the well-trained

models are utilized to forecast the battery degradation of the

remaining 108 cycles. The results are shown in Fig. 4 and

Table I.

All three algorithms (proposed, benchmark 1 and bench-

mark 2) are able to achieve a prediction RMSE within 2.5%

in at least one testing scenario, while the overall performance

of our proposed method is the best one among these three

algorithms. This means that both the proposed and the bench-

marking algorithms could effectively predict the battery aging

trajectory under the conditions that sufficient data is provided.

However, the benchmark 1 algorithm can only provide an

accurate prediction when the training data covers the knee

point of the aging trajectory, as shown in Fig 4-(a), (b) and

(d). When it comes to the Fig 4-(c), the conventional NN is not

able to accurately predict the changes in battery degradation

rate, and the RMSE of this prediction becomes 4.04%. For

the second benchmarking algorithm, it does not work well

when the measurement noise is large. Even though 70% data

is provided for training, the results of scenario (c) and (d) still

diverge.
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Fig. 4. Predicted aging trajectory when using 70% data for training.

TABLE I
RMSE (%) OF THE PREDICTIONS WHEN USING 70% DATA FOR TRAINING.

SONYVTC6 FST2500 FST2000 NASA

Proposed 0.65 1.43 0.83 1.06
Benchmark 1 0.98 1.53 4.04 1.18
Benchmark 2 1.43 14.7 71.3 7.90

C. Prediction with 30% data for training

It is more interesting to investigate the algorithms’ perfor-

mance when the training data is limited. In this subsection,

only the first 30% aging trajectory is utilized for training

process. The corresponding prediction results are shown in

Fig. 5 and Table II.
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Fig. 5. Predicted aging trajectory when using 30% data for training.

TABLE II
RMSE (%) OF THE PREDICTIONS WHEN USING 30% DATA FOR TRAINING.

SONYVTC6 FST2500 FST2000 NASA

Proposed 0.67 1.02 1.45 2.30
Benchmark 1 8.43 4.03 4.04 5.28
Benchmark 2 5.28 3.91 >100 >100

In the training phase, it can be seen that the output of all

three algorithms can follow the referenced aging trajectories

with high accuracy. However, the benchmarking algorithms

deviate significantly from the referenced trajectory in the pre-

diction phase, leading to unrealistic prediction error (>100%)

at the end of battery life.

In scenario (a), the training data covers only the first 108

cycles. However, there exists a knee point around 125th cycle.

Without this information, the RMSE of the two benchmarking

algorithms both exceed 5%, as these algorithms would only

propagate the aging trajectory based on the historical aging

trend. In comparison, the proposed method can predict the

change in degradation speed with the help of the base model.

As a result, its prediction RMSE is still better than 1%.

In scenario (b), the battery degradation rate of the first

90 cycles is significantly slower than that of the last 90

cycles. Again, the proposed method can accurately predict this

phenomenon and generate a reasonable prediction with 1.02%

RMSE. However, it becomes different for the benchmarking

algorithms. The first benchmarking algorithm tends to use

a linear method to propagate the existing aging trajectory,

while the second one extends the aging trajectory with an

exponential method. As a result, the predicted SoH of first

benchmarking algorithm is higher than the referenced value,

while that of the second benchmark is lower. The RMSE of the

benchmarking algorithms are 4.03% and 3.91%, respectively.

The dataset of the target cell is highly noisy in scenario

(c). In this case, the second benchmark diverges. The first

benchmarking algorithm can present a relatively non-diverging

result under noise-polluted condition thanks to the piece-wise

linear structure in the LReLU function, but similar to the case

of using 70% data for training, it cannot predict the change

in degradation rate. Even though the degradation rate of the

base model and the target cell are quite different (as shown in

Fig. 1(c)), the RMSE of the proposed prediction is still better

than 1.5%.

In scenario (d), the proposed method still exhibits the

highest accuracy, and benchmark 1 turns out to be better than

benchmark 2. In fact, the second benchmark provides a totally

wrong trend of the degradation curve due to the large noise

in the first 30% trajectory. The NN, on the other hand, shows

better robustness with the help of the over-fitting prevention

technique.

By comparing the Fig. 5-(a), (b) and (d), it can be found

that if the aging trajectory of the target cell presents a linear

trend, the accuracy of the second benchmark will become

better, as the activation function is a piece-wise linear function.

However, if the degradation trend contains some exponential

curves, the second benchmark would be better. This means that

the different selection of modeling functions f(·) in the NN or

empirical model can lead to different results. This phenomenon
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would be further discussed in the next subsection.

D. Further discussions

To further understand the properties of the proposed model

migration NN, the effects of modeling functions and the the

size of NN are discussed below.

1) Modeling functions: In the empirical model-based pre-

diction, we have multiple choices for the modeling function

f(·). Similarly, the activation functions in a NN are also

a variable. In this subsection, the performance of different

selections are compared quantitatively.

When using the empirical model-based prediction, the

performance of the linear functions (lr), single-exponential

function (se), dual-exponential function (de), 2-order polyno-

mial function (2p) and power functions (pr) are tested. Their

mathematical expressions are listed as follows:

flr(x) = a · x+ b (7a)

fse(x) = a+ b · ec·x (7b)

fde(x) = a · eb·x + c · ed·x (7c)

f2p(x) = a+ b · x+ c · x2 (7d)

fpr(x) = a+ b · xc (7e)

In addition, when using the NN based prediction, the

performance of the different transfer functions are tested. To

be specific, we change the transfer functions of the first hidden

layer from the SBC-model to the corresponding activation

functions, and keep the other parts of the network unmodified.

The candidate functions include LReLU , logsig, radbas,

tansig and satlin, and their definitions are listed below:

LReLU(x) = max{0, x}+ λ ·min{0, x} (8a)

logsig(x) =
1

1 + e−x
(8b)

radbas(x) = e−x2

(8c)

tansig(x) =
2

1 + e−2x
− 1 (8d)

satlin(x) = min{max{0, x}, 1} (8e)

In this test, the dataset of FST2500 batteries is selected. 50%

data is used for model training, and the remaining 50% aging

trajectories are utilized for prediction purpose. The results of

empirical fittings are shown in Fig. 6-(a). It should be known

that initialization1 of the NN could significantly affect the

prediction performance, three groups of NN-based prediction

results are shown in Fig. 6-(b), (c) and (d), respectively.

It can be seen that the fitting (training) results of the

conventional neural network can well track the global ref-

erenced aging trajectory. However, detailed predictions are

not accuracy and consistent. The prediction accuracy can

improve under some situations, such as the result of tansig in

Fig. 6-(b), but these results are almost not repeatable as they

highly rely on the random initialization. On the contrary, the

empirical fitting is able to provide similar predicting results

under multiple times testing, but all candidates could not

provide accurate predictions when the training data size is

1Implemented by MATLAB neural network tool box: train(net,X,T).
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Fig. 6. Predicted aging trajectory when using different modeling functions
or activation functions.

limited. Although the random initialization in (6) leads to

slight differences in the results of our proposed method, the

overall output is still satisfactory. The reason is mainly due

to that the mathematical expectations of Wi already have

clear meanings when being initialized: we tend to use the

base model for prediction when no new data is available. Such

an initialization could provide a reasonable starting point for

the NN training. From the perspective of NN design, it is

also interesting to note that through properly selecting the

activation functions, a general feed-forward NN turns out to

be capable of accurately predicting the lifespan of a battery.

2) Network Size: A key motivation of developing model-

migration NN is that the conventional SBC-based migration

might not be able to compensate all nonlinearties between

the base model and the target process, especially when their

similarity is low. To verify the improvement of integrating an

SBC model migration into a feed-forward NN, the proposed

algorithm is tested with different network sizes. Noting that

when N = K = 1 holds (in Fig. 3), the proposed NN actually

becomes the conventional SBC-based model migration. In this

test, the base model is established based on the NASA cell

#07, while the target cell is the FST2500 cell #01. We set

N = K = Sz in this test, and the performance for Sz ∈
[1, 5] is evaluated. 85% aging trajectory is utilized for model

training, and the result is shown in Fig. 7.

Compared with the case of Fig. 1-(b), it can be seen from

Fig. 7-(a) that the similarity between the base model and

the target aging process becomes low. When Sz = 1, the

performances of both training and prediction phase are not

satisfactory. Obvious under-fitting problems can be observed

between cycle 100 and 200. The last predicted 15% aging

trajectory is also far away from its true trend. Here, the

limitation is mainly caused by the mismatches between the

base model and the target degradation process. However,
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Fig. 7. Predicted aging trajectory with different network size.

when we set Sz = 3, the algorithm’s performance in the

training phase becomes satisfactory. Although the predicted

aging trajectory is slightly higher than the true curve, it is

much better than the case of Sz = 1. As expected, when the

network Sz increases to 5, the prediction of the future capacity

degradation also becomes more accurate. By comparing the

results of Fig. 7-(b) and (d), the model migration NN does

present better performance to consider nonlinear behaviors

than the conventional SBC-based NN.

3) Minor changes in training data proportion: With a lim-

ited training data size, the influence of the noise is, in general,

not negligible. Therefore, it is also important to check the

network’s performance under minor variations of parameters.

To implement this task, the first dataset is utilized and the

proposed migrated NN is trained using the first 21%∼30%

of the aging data, with an interval of 1%. The corresponding

results are provided in Fig. 8, and the RMSE of the predictions

are listed in Table III.
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Fig. 8. Aging trajectory of SONYVTC6 battery predicted using different size
of training data. (a): with 21%∼25%; (b): with 26%∼30%.

It can be seen that the prediction results would vary with

different percentages of training data. However, this change

is relatively small (0.5%-0.71%), and the RMSEs of all

predictions are smaller than 1%. This result implies that the

propose NN is robust over the minor changes of the training

data percentage.

4) Comparison with the existing results: To further illus-

trate the superiority of the proposed algorithm, we compare

our results with the existing publications. Noting that different

equipment, batteries, and testing conditions may be used in

different articles, it is, in fact, difficult to conduct a fair

comparison. In response, the results of cell #06 in the widely

used open-access NASA aging data set is selected to provide

a fair comparing. Refs [58]–[60] are several highly related

works from reputable journals within 2 years, and it can be

seen from Table IV that the proposed method can achieve

the best prediction performance under the case of minimum

training data (30%). The complexity of our proposed algorithm

is also lowest.

V. CONCLUSION

This paper develops a feed-forward migration neural net-

work to predict the aging trajectories of Li-ion batteries.

Through combining the benefits of both NN technique and

model migration concept for battery aging prediction, sev-

eral interesting conclusions can be observed: 1) As long

as the activation functions are properly selected based on

the accelerated aging curve, the light-weighted feed-forward

model migration NN (1-5-5-1) would be sufficient for general

aging trajectory prediction tasks for a battery system. 2) Knee

point is not necessary to be covered when predicting the

aging trajectory with the proposed model migration NN. 3)

When only using 30% of the aging trajectory for training, a

prediction RMSE within 2.5% can be achieved under highly

noisy conditions. 4) The prediction result is stable even if

the NN is randomly initialized. 5) Without any requirement

of battery electrochemical information, the proposed model

migration NN can be conveniently utilized to other battery

types for effective predictions of their aging trajectories.

In the future, the proposed method will be enhanced through

two aspects. First, improve the accelerated aging test so that

the experimental time could be reduced. Then the obtained

base model could better mimic the target degradation process.

Second, develop better network structure to preserve the flexi-

bility of model migration and reduce the number of parameters

that require to be identified. In addition, more tests, especially

those with extreme conditions, could be carried out to further

verify the effectiveness of the proposed method.
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TABLE III
RMSE OF THE PREDICTIONS WITH 21%∼30% TRAINING DATA.

Training data 21% 22% 23% 24% 25% 26% 27% 28% 29% 30%

RMSE(%) 0.60 0.59 0.50 0.57 0.56 0.62 0.59 0.59 0.67 0.71

TABLE IV
COMPARISON OF THE RESULTS THAT OBTAINED FROM CELL #06 IN

NASA DATA SET.

Method Training data RMSE Complexity

Proposed 1-5-5-1 NN 30% 2.30% Low
Proposed 1-5-5-1 NN 70% 1.06% Low
AUKF-GA-SVR [58] 43% 2.55% High
AUKF-GA-SVR [58] 64% 2.42% High

PA-LSTM [59] 46% 4.99% High
PA-LSTM [59] 83% 2.93% High
LR-GPR [60] 36% 2.92% High
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