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Model Misspecification and Under-Diversification

Abstract

In this paper we develop a model of intertemporal portfolio choice where an investor accounts
explicitly for the possibility of model misspecification. This work is motivated by the difficulty
in estimating precisely the probability law for asset returns. Our contribution is to develop a
framework that allows for ambiguity about the joint distribution of returns for all stocks being
considered for the portfolio, and also for different levels of ambiguity for the marginal distribution
of returns for any subset of these stocks. We then use this framework to derive in closed-form the
optimal portfolio weights of an investor who accounts for model misspecification. We illustrate the
model by calibrating it to data on international equity returns. The calibration shows that when the
overall ambiguity about the joint distribution of returns is high, then small differences in ambiguity
for the marginal return distribution will result in a portfolio that is significantly under-diversified
relative to the standard mean-variance portfolio.
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1 Introduction

Traditional rational expectations models of portfolio choice assume that an investor knows exactly

the true probability law for the stochastic processes of asset returns. We consider a setting where an

agent formulates a reference model of the probability law based on the data available, but recognizes

that it is only an approximation to the true model and hence subject to misspecification.1 The main

contribution of our work is to develop a framework that allows for multiple state variables whose

(marginal) probability laws are known to the investor with possibly different levels of ambiguity.

We then use this framework to show how an investor would choose a portfolio that is optimal in

the presence of model misspecification.

Several approaches have been developed in the literature to account for imprecise knowledge

about the probability law. In one approach, the parameter uncertainty or estimation risk is modeled

by a prior belief and a Bayesian methodology is adopted. A limitation of the Bayesian approach

is that it makes the strong assumption that the prior belief can be described by a probability

measure. However, this assumption is inconsistent with the evidence from experimental economics

and psychology such as the Ellsberg paradox (Ellsberg (1961)), where uncertainty arises from two

sources: uncertainty about the states of the world and uncertainty about the model itself. While

there is agreement that the states of the world can be described by an objective probability law,

evidence from the Ellsberg-type experiment raises the question whether model uncertainty can be

described by a (subjective) probability prior.

Two classes of models have been developed in the literature as alternatives to the Bayesian

approach. In one class, Dow and Werlang (1992) study the portfolio choice problem of an investor

under Knightian uncertainty in a static setting using Choquet expected utility. Epstein and Wang

(1994) in dynamic discrete time, and Chen and Epstein (2000) in continuous time, extend the

Lucas (1978) model to incorporate the effect of Knightian uncertainty by allowing for multiple

priors. An application of this approach to international portfolio choice in an equilibrium setting

is presented in Epstein and Miao (2000). Epstein and Miao is closest to our paper in that it
1For instance, Merton (1980) discusses the difficulty in estimating the expected return of an asset; French and

Poterba (1991) report that the standard error of the estimated mean annual return on the US stock market (based
on 60 years of data) is 200 basis points, and Gorman and Jorgensen (1999) report similar evidence for several non-US
equity markets.
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addresses both the model uncertainty issue and the issue of different levels of ambiguity about

the (marginal) probability laws governing the states. One feature of their minimization problem

is that all priors in the set are treated indiscriminately, other things being equal. Consequently,

agents exhibit extreme pessimism with respect to the given subset of priors and always pick the

worst-case scenario. In contrast, while agents under our approach also have multiple priors, they

do not exhibit extreme pessimism; instead, they use the reference model to differentiate among

the priors. This is an important conceptual difference: knowledge of the data and the economic

environment, although not perfect (otherwise there would be no model uncertainty), is used by

economic agents in discriminating among candidate priors for the true model of the economy. This

difference also leads to a formulation that has the differentiability needed for deriving the Bellman

equation. Consequently, our characterization of the optimal portfolio is a transparent extension of

the standard Merton (1971) portfolio model without ambiguity.

In the second class of models,2 Hansen, Sargent, and Tallarini (1999), Anderson, Hansen, and

Sargent (1999), and Hansen and Sargent (2001a) introduce model misspecification and preference

for “robustness” into the Lucas model.3 In their model, agents recognize the possibility of model

misspecification, and account for it in their decisions. Maenhout (1999) applies this framework

to study portfolio choice between a riskless and a single risky asset. In Anderson, Hansen, and

Sargent, and Maenhout, model uncertainty is described by a single parameter that reflects the

overall level of ambiguity. In contrast, we allow for differences in the degree of ambiguity about the

(marginal) probability laws for the various elements of the state vector process, and in the portfolio

context, for the returns of different assets.4 Our formulation is sufficiently general to incorporate

ambiguity about the joint distribution of returns for all stocks being considered, and different levels

of ambiguity also for the return distribution of any subset of these stocks, with the subsets possibly

overlapping.
2There is an on-going discussion about the exact relation between these two classes of models. The reader is

referred to Epstein and Schneider (2001) and Hansen and Sargent (2001b,c) for this discussion.
3Hansen and Sargent (2000) provides an extensive discussion of the relation of the robust decision-making approach

to Bayesian models, adaptive models, and models with filtering.
4As a by-product, we show that once one allows for differences in the level of ambiguity across assets, the investor’s

preferences are no longer observationally equivalent to recursive utility (Epstein and Zin (1989); Duffie and Epstein
(1992)). Hence, the observational equivalence result in Anderson, Hansen, and Sargent (1999) and Maenhout (1999)
holds only under the extreme case where the level of ambiguity is the same for all assets.
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The rest of this paper is organized as follows. In Section 2, we develop a utility function for

an agent who recognizes the possibility of model misspecification. In Section 3, we apply this

utility function to study the problem of portfolio selection when there are multiple risky assets, and

analyze some special cases that convey the intuition underlying our framework and its implications

for portfolio selection. In Section 4, we calibrate the model to data on international equity returns

to illustrate how one would apply our model, and also to show how one can gauge whether the

parameters determining the level of ambiguity are reasonable. We conclude in Section 5. Proofs

are presented in the appendix.

2 Preferences in the presence of model misspecification

In the first part of this section, we explain how the standard time-separable preferences have been

extended in the recent literature to allow for decision making in the presence of model misspeci-

fication. Our main contribution to the existing literature is in the second part, where we extend

this basic framework to allow for differences in the degree of ambiguity about the various elements

of the state vector process. While we will be using a model set in continuous time, we start by

motivating the analysis in discrete time.

2.1 The basic model with a single source of misspecification

In the standard model of portfolio choice and asset pricing, the investor is typically assumed to

have intertemporally additive expected utility of the form:

Vt = u(ct) + βE[Vt+1]. (1)

A fundamental assumption behind this model of investor preferences is that the investor knows

precisely the true probability law of asset returns when computing the expectation in the equation

above. It has been argued in the literature that this assumption is too strong and that agents

should be allowed to account for model misspecification in their decision process.5

5For references to this literature, see Epstein and Wang (1994), Chen and Epstein (2000), Hansen, Sargent, and
Tallarini (1999), Anderson, Hansen, and Sargent (1999), and Maenhout (1999).
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Our approach, where we formulate a recursive utility as in Epstein and Zin (1989) and use

relative entropy for the certainty equivalent, can be described intuitively as follows. Let the knowl-

edge of the investor about the uncertainty in the economy be described by a model of the relevant

economic variables such as stock prices, the interest rate, etc. Since what matters to an investor

is the distribution of the relevant economic variables, this model can equivalently be described by

a probability measure P , called the reference probability or reference model. It is often the case

that P is the result of some estimation process. If P could be estimated perfectly, there would be

no ambiguity about it representing the true economic model. However, due to insufficient data,

the estimation process is not capable of distinguishing all different models. Thus, P is subject to

misspecification error. Because the investor is not sure if P is the right model, it is natural that he

would consider alternative models. Let a possible alternative to the reference model P be described

by a probability measure Qξ given by

dQξ = ξ(Xt+1)dP, (2)

where Xt is the state variable and ξ(x) is a density function. Of course, there can be many possible

alternatives; knowing that the reference measure P is subject to misspecification error and that

the possible alternatives are Qξ, the investor’s problem is how to take into account the possible

alternatives when making his decisions.

To evaluate the alternative models, the investor needs an index that tells him, given his in-

formation, how each alternative compares with the reference model. There can be many useful

indices, one of which is the relative entropy index, φL(ξ), given by

φL(ξ) = φEξ [ln ξ] , (3)

where Eξ is the expectation under Qξ and φ ≥ 0 is a parameter whose role is explained below, after

we provide an intuitive explanation for this index.

One interpretation of (3) is that it is an approximation to the empirical likelihood ratio adjusted

for the level of ambiguity.6 To elaborate, suppose that the data set available to the investor has T
6See Anderson, Hansen, and Sargent (1999) and Hansen and Sargent (2001a) for other interpretations of the index

L(ξ).
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observations. For the alternative model, the log-likelihood of the data is

1
T

T∑
t=1

ln ξ(Xt)f(Xt),

where f(x) is the density function of the reference model P and ξ(x) is the density function of the

alternative model with respect to P . Thus the empirical log-likelihood ratio of the two models is

1
T

T∑
t=1

ln ξ(Xt).

According to traditional likelihood ratio tests, if the above sum is large then the two models, Qξ

and P , can be clearly distinguished. By the Law of Large Numbers, under the alternative model
1
T

∑T
t=1 ln ξ(Xt) converges to L(ξ) = Eξ[ln ξ(x)]. Thus, if Qξ is the true probability law, L(ξ) is a

good approximation to the empirical log-likelihood when T is large. Given that in reality, data is

limited and T is finite, ambiguity arises as to how close L(ξ) is to the empirical log-likelihood. For

instance, the same value of the empirical log-likelihood obtained from a longer data series is more

precise than that from a shorter data series.7

More generally, the ambiguity can be caused by any factor that affects the evaluation of the true

log-likelihood. The parameter φ is introduced to capture this ambiguity and a lower φ corresponds

to a higher level of ambiguity. For example, a shorter data series is associated with a smaller φ,

while a longer data series is associated with a larger φ′, so that φL(ξ) and φ′L(ξ) represent the

empirical log-likelihood ratios adjusted for the level of ambiguity.8

To incorporate information about model misspecification into his decision process, the investor

needs a function that combines this information with his future state-contingent utility. This is

done through a certainty equivalent function, CE(·), such that the utility of the investor is given
7See Stambaugh (1997) for a discussion of portfolio choice using a sample where not all the data series are of equal

length.
8It is worth emphasizing that large 1

T

∑T

t=1
ln ξ(Xt) or φL(ξ) should not be interpreted as evidence for rejecting

the reference model P , as in the usual likelihood test: as explained in the introduction, the very fact that P is the
reference model implies that the agent has already gone through the preliminary analysis and picked P over other
models. The issue at this stage is only to find an index that summarizes the information available.
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by9

Vt = u(ct) + β CE(Vt+1;φL). (4)

The interpretation of (4) is that φL(ξ) summarizes the investor’s information about model mis-

specification, and the certainty equivalent, CE, captures how the investor uses this information to

evaluate his future utility Vt+1.

One example of CE is relative entropy,

inf
ξ

[ψ(Vt)φL(ξ) + Eξ
t [Vt+1]], (5)

which, when substituted in (4), gives10

Vt = u(ct) + β inf
ξ

[ψ(Vt)φL(ξ) + Eξ
t [Vt+1]], (6)

where ψ(Vt) in (5) and (6) is a normalization factor that is introduced to convert the penalty to

units of utility so that it is consistent with the units of Eξ[Vt+1]; the particular functional form of

ψ(·) is often chosen for analytical convenience. The minimization over ξ in (6) reflects the agent’s

aversion to ambiguity/model-misspecification.

The role of φ, as reflecting the ambiguity of the investor about the quality of the informa-

tion/data, can be seen from (6). The investor ponders whether he should use model Qξ to evaluate

his future utility. The term φL(ξ) is used as a penalty function for rejecting the reference model

P and accepting the alternative model Qξ. However, if the available data allows one to easily

distinguish an alternative model Qξ from the reference model P , then accepting Qξ will incur a

penalty. The magnitude of the penalty depends on the level of ambiguity in the reference model P .

In the extreme case where φ ≈ ∞, i.e., the investor is extremely confident about P , any alternative

model Qξ that deviates from the reference model will be penalized heavily. In this case, equation

(6) reduces to the standard expected utility in equation (1). Thus the standard expected utility can

be viewed as a special case of (6) where the investor knows the true model—rational expectations—

and hence has no ambiguity about the reference model. On the other hand, for models that the
9The certainty equivalent CE(·) has the following two properties: (a) CE(V ) = V if V is a constant, that is, model

misspecification is irrelevant when there is no uncertainty; and (b) CE(V ) ≥ CE(V ′) if V ≥ V ′ almost surely, that
is, if V first-order stochastically dominates V ′, model misspecification should not change the agent’s preference for
V over V ′.

10An axiomatic foundation for these kind of preferences is available from the authors.
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investor cannot clearly distinguish, considering them will result in only a small penalty. Among

these models, due to his concern for model misspecification, the investor uses the one that gives

the lowest expected utility. For the extreme case where φ ≈ 0, i.e., the investor has no knowledge

about P , and equation (6) reduces to

Vt = u(ct) + β inf Vt+1.

In this case, the investor will consider the worst-case scenario as the only possible outcome.

In general, the investor balances his concern about model misspecification and the knowledge

he has about the economy as represented by P . He does not wish to throw away information by

setting φ ≈ 0 and only guarding against model misspecification, nor does he want to ignore his

ambiguity about the information by setting φ ≈ ∞ and overlooking completely the possibility of

model misspecification.

2.2 Extension: Different levels of ambiguity for each state variable

While the basic model in the previous section captures the investor’s concern for model misspec-

ification, it does not allow for different levels of ambiguity for different components of the state

process. In this section, we extend the basic model to allow for such differences in ambiguity,

which distinguishes our work from that of Anderson, Hansen, and Sargent (1999) and Maenhout

(1999). The basic intuition underlying this extended model is the same as that elucidated in the

preceding section for the model with a single state variable; the main change is the development of

an appropriate penalty function.

2.2.1 Discrete time

Suppose that uncertainty is generated by more than a single state variable. Imagine an investor

whose knowledge about the probability law for the state variables is limited, and this information

comes from separate sources and the investor is more confident about some sources relative to

others. For instance, in a universe with only two countries, each having one large firm and one

small firm, we would like to allow for knowledge about the joint distribution of returns for all four

stocks from an analyst who covers a broad spectrum of stocks, and also additional information from
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analysts specializing in a subset of these four stocks: the set consisting of only foreign stocks, only

domestic stocks, only large stocks, only small stocks, and each of the individual stocks. We would

like to develop a framework that is sufficiently general to allow for different levels of ambiguity for

information from different sources and about different subsets of assets. In order to have a model

capable of reflecting this feature of the investor’s information, we extend the basic model described

in the previous section by first generalizing the relative entropy index in (3) and then incorporating

this more general index into the utility function in (6).

Let Xt = (X1t, . . . , Xnt) be the vector of all state variables. Let Qξ represents an alternative

model as in the previous section, with

dQξ = ξdP,

where ξ is a scalar that perturbs P , the joint distribution of all the state variables. Let Ji =

{j1, . . . , jni} be a subset of {1, . . . , n}, and let XJi = (Xj1 , . . . , Xjni
) be the corresponding sub-

vector of Xt. Suppose that the investor has a separate source of information about the subset of

state variables, XJi . Then, as in (3), we can use an index to describe this information. However,

because the information is about the subset of state variables, the index is now calculated with

respect to the marginal distribution of XJi :

φiL(ξi) = φi

∫ [
ξi(XJi,t+1) ln ξi(XJi,t+1)

]
dPJi ,

where PJi is the marginal distribution of the sub-vector XJi under the reference probability measure

P , and ξi = dQξJi/dPJi . If there are K sources of information for the various subsets of state

variables, then the overall index is taken to be the sum,

K∑
i=1

φi L(ξi). (7)

The investor’s utility function is now given by the following recursive equation, which is similar

to (6), but with the index (7) that allows for multiple sources of information about the vector of

state variables:

Vt = u(ct) + β inf
ξ

{
ψ(Vt)

K∑
i=1

φiL(ξi) + Eξ[Vt+1]

}
, (8)
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where, as before, ψ(V ) is a normalization factor. The interpretation of (8) is essentially the same as

in the previous section. The only difference is that if one source of information about a particular

subset of the state variables is more reliable, the investor will assign a higher penalty for deviating

from that information. For instance, if the investor has very reliable information about the return of

a particular stock, he will put a high penalty for any alternative model whose marginal distribution

for the return on this stock deviates from that of the reference model.

2.2.2 Continuous time

In this section, we extend the utility function formulated in (8) to continuous time. Suppose that

the state variables Xt = (X1t, . . . , Xnt) follow the process

dXt = µX(Xt, t)dt+ σX(Xt, t)dwt,

where wt is a n-dimensional Brownian motion. Let

A(f) = ft + µXfX +
1
2
tr

(
fXXσXσ

�
X

)

be the differential operator associated with the diffusion process Xt. Denote by
[
σJiσ

�
Ji

]
n

the

n × n-matrix whose element in the jk-th row and j�-th column, for jk and j� in Ji, is equal to

the element in the kth row and �th column of the matrix [σXJiσ
�
XJi

]−1, which is the inverse of the

variance-covariance matrix of XJi ; otherwise it is zero.11

Theorem 1 The continuous-time version of (8) is

0 = inf
v

{
u(c)− ρV +A(V ) + v�VX +

ψ(V )
2

v�Φv
}
, (9)

where v = (v1, . . . , vn)� and

Φ =
∑
i

φi
[
σJiσ

�
Ji

]
n
. (10)

In equation (9), the first three terms correspond to the standard Hamilton-Jacobi-Bellman

equation for the expected utility function under the reference probability P . The second-last term
11Specific examples of

[
σJiσ

�
Ji

]
n

can be seen in equations (20) and (25).
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arises from the change of probability measure from P to Qξ in (8). By Girsanov’s Theorem, the

change of probability measure is equivalent to a change in the drift term of the process of Xt. The

drift change is given by v = (v1, . . . , vn). That is, under the probability Qξ, the process for Xt is

dXt =
[
µX(Xt, t) + vt

]
dt+ σX(Xt, t)dw

ξ
t ,

where wξt is a Brownian motion under Qξ. Observe that the effect of the change from the reference

model P to the alternative model Qξ is completely captured by this term, which will be useful

for understanding the results in the portfolio choice problem that we will consider in the next two

sections. The last term in (9) corresponds to the penalty function in (8). The fact that the utility

function of the agent can be characterized by the Hamilton-Jacobi-Bellman equation (9) indicates

that our formulation of the agent’s preference is dynamically consistent.12

We conclude this section with the following remarks on the comparison between the Bayesian

approach and our approach to model misspecification. In the Bayesian approach, model misspeci-

fication often comes in the form of parameter uncertainty. To be specific, suppose that a model of

the probability law for asset returns is estimated in which a parameter cannot be estimated pre-

cisely. Let P (X;α) be the probability distribution function and α be the parameter about which

one is uncertain. Given that the parameter α is unknown, the question for the investor is how

to incorporate the parameter uncertainty into his decision process. The critical assumption of the

Bayesian approach is that this parameter-uncertainty/model-misspecification can be represented

by a prior distribution F , and that the investor’s utility can be computed by13

Vt = u(ct) + βEF [EP (α)[Vt+1]].

In terms of the certainty equivalent, the equation can be written as

Vt = u(ct) + β CE(Vt+1;F ), where CE(Vt+1;F ) = EF [EP (α)[Vt+1]].

In contrast, under our framework one need not restrict model misspecification to uncertainty re-

garding a particular parameter. More importantly, we do not assume that model misspecification,

as a subjective matter, can be represented by a probability distribution. This difference between
12This implies that the criticism in Epstein and Schneider (2001) about the lack of dynamic consistency of the

Hansen-Sargent formulation does not apply to our model.
13If learning/updating is to be incorporated, then F is the posterior.
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the Bayesian approach and ours is exactly the same as that between the Savagian and Knightian

approaches to decision making under uncertainty. For a more extensive discussion of this difference,

see Ellsberg (1961).

3 Portfolio selection with multiple risky assets

In this section, we study the portfolio choice problem of an investor who is concerned about model

misspecification. The portfolio choice model we use is standard (Merton, 1971, 1973) except for

the preferences of the investor, which are the ones developed in the previous section.

3.1 Individual investor’s portfolio choice

The investor can consume a single good, can invest in N risky stocks, and can also borrow and lend

at an exogenously given riskless rate rt. We use c to denote the consumption rate of the investor,

W the wealth of the investor, and πj the share of the investor’s wealth invested in the j-th risky

asset.

The return processes of the N stocks are given by

dRt ≡ µR(Rt, Yt)dt+ σR(Rt, Yt)dwt, (11)

dYt = µY (Yt)dt+ σY (Yt)dwt. (12)

These processes are viewed as the reference model. We assume that Yt is a K-dimensional process

and that the Brownian motion is (N +K)-dimensional.

The dynamics of the investor’s wealth, for a given investment decision π and a consumption

decision c, is:

dWt = Wt

[
rt + πt (µR − rt)−

ct
Wt

]
dt+WtπtσRdwt. (13)

The investor wishes to maximize his intertemporal lifetime utility

E

[∫ T

0
e−ρtu(ct)dt

]
,
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subject to the budget equation (13) while taking into account model misspecification when making

his decisions.

To use Theorem 1 appropriately for deriving the Bellman equation corresponding to the in-

vestor’s utility maximization problem, we need to distinguish between exogenous and endogenous

state variables. As we know from Merton (1971), the investor’s knowledge about the investment

opportunities is described by the reference model given by (11) and (12). Thus, the state variables

for the problem without model misspecification are Rt, Yt and the investor’s wealth Wt. However,

the investor’s wealth process (13), is derived from the stock returns. This can be seen by expressing

the evolution of wealth in terms of stock returns:

dWt = Wt(1− πt1)rtdt− ctdt+WtπtdRt. (14)

Thus, Wt itself is not a source of the investor’s concern of model misspecification. It only inherits

the model misspecification through Rt. Because of this difference, Rt and Yt are called exogenous

state variables, while Wt is called an endogenous state variable. These two set of state variables

need to be treated differently: in particular, the drift adjustment for W is vW = WtπtvR, because

the amount of wealth invested in the risky asset is Wtπt and, under probability Qξ, the drift

adjustment for R is vR.

We write the investor’s indirect utility function as V (Wt, Rt, Yt, t). Applying Theorem 1, and

using the appropriate drift adjustment for W as discussed above, the Hamilton-Jacobi-Bellman

equation for the investor’s utility maximization problem is:

0 = sup
c,π

inf
vY ,vR

{
u(c)− ρV + Vt +WVW

[
r + π (µR − r)−

c

W

]
+
W 2

2
VWWπ

�σRσ
�
Rπ + VRµR

+ VY µY +
1
2
tr


(

VRR VRY
VY R VY Y

) (
σR
σY

) (
σR
σY

)� 
 +WπσRσ

�
Y VWY +WπσRσ

�
RVWR

+ VWWπvR + VY vY + VRvR +
ψ(V )

2
v�Φv

}
, (15)

where Φ is defined by the expression (10). The terms in the first two lines of this equation are

the same as the ones that would appear in the standard Bellman equation. The next three terms,
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VWWπvR + VY vY + VRvR, reflect the drift adjustment due to the change of probability measure,

while the last term, (1/2)ψ(V )v�Φv, is the penalty function.

Let IR to be the identity matrix of the same dimension as R, I the identity matrix of the

dimension of R plus that of Y , and πMerton the optimal portfolio when there is no model misspeci-

fication. Then, substituting the first-order condition for the minimization problem in (15) into the

first-order conditions for the maximization problem, and solving for π gives the following result.

Theorem 2 The optimal portfolio of an investor is given by

π = − 1
WVWW

[
σRσ

�
R

]−1 [
VW (µR − r + v∗R) + σRσ

�
Y VWY + σRσ

�
RVWR

]
(16)

where [
v∗R
v∗Y

]
= − 1

ψ(V )
Φ−1

[
VWWπt + VR

VY

]
.

Or, in closed-form,

π =
−1

WVWW
B

[
σRσ

�
R

]−1 [
VW (µR − r) + σRσ

�
Y VWY + σRσ

�
RVWR

]

+
VW

WVWW
B

[
σRσ

�
R

]−1
[
IR 0
0 0

]
Φ−1

[
VR/ψ(V )
VY /ψ(V )

]

= BπMerton +
VW

WVWW
B

[
σRσ

�
R

]−1
[
IR 0
0 0

]
Φ−1

[
VR/ψ(V )
VY /ψ(V )

]
, (17)

with

B =

(
I − (VW )2

ψ(V )VWW

[
σRσ

�
R

]−1
[
IR 0
0 0

]
Φ−1

[
IR
0

])−1

. (18)

Without the term v∗R, equation (16) reduces to the standard Merton formula. As noted above,

this term corresponds to the drift adjustment to the wealth process due to R. Hence, (16) can be

viewed as the Merton formula with µR adjusted by v∗R. Similarly, when the φs tend to infinity,

Φ−1 → 0, and equation (17) reduces to the familiar Merton (1971) result.
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3.2 Understanding the portfolio model

To gain some insight into the expression for the portfolio weight in (16), we consider an economy

where the stock price processes are given by geometric Brownian motions, the riskless rate is

constant and r < µR, the investor has power utility of the form U(c) = c1−γ/(1 − γ) and is long

lived (T =∞). Following Maenhout (1999), we also set ψ(Vt) = 1−γ
γ V . Under these assumptions,

V (W ) = κ0W
1−γ/(1− γ), where κ0 is a constant that depends on the parameters of the economy.

We first look at the case where there is a single risky asset (this is the case considered in Maenhout

(1999)) and then the case where there are two risky assets.

3.2.1 Example with one risky asset

In the case where there is only one risky asset, the explicit expression for the optimal portfolio

simplifies to

π =
(

φ

1 + φ

)
1
γ

µR − r
σ2
R︸ ︷︷ ︸

Merton weight

. (19)

The implications of model misspecification for portfolio choice can be observed from equation (19).

For the case of φ = ∞, the expression for the portfolio is simply the optimal Merton weight.

However, for values of φ <∞ the investment in the risky asset is less than what it would be in the

absence of model misspecification. In the limit, as φ approaches zero, investment in the risky asset

drops to zero and the investor holds only the riskless asset. Thus, in the context of the portfolio

choice problem, the consequence of model misspecification is a reduction in the investment in the

asset about whose process the investor is ambiguous. However, the adjustment is limited by the

penalty for being too far away from the reference model; this concern keeps the investor from

choosing the most pessimistic scenario.

Also observe that the portfolio weight is exactly the same as that in the Merton model when

the investor’s risk aversion is given by γ(1 + 1/φ). In other words, observationally the ambiguity

parameter φ is not separable from risk aversion. This is the observational-equivalence result noted

in Anderson, Hansen, and Sargent (1999) and Maenhout (1999). The intuition behind this result is

that when there is the possibility of model misspecification, this adds another source of uncertainty
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to the riskiness of the consumption process. If the investor is averse to model misspecification

and pessimistic in choosing alternative models, he appears more risk averse in evaluating the given

consumption process.

3.2.2 Example with two risky assets

In this section, we illustrate how concern for model misspecification affects the optimal portfolio

by deriving the weights for the setting where there are two risky assets whose returns are given

by Brownian motions. For expositional convenience, we assume that the two assets have the

same expected return (µ) and volatility (σ), and that their returns are uncorrelated. The more

general case, where the expected return and volatility is different for each asset and the returns are

correlated, is considered in the next section.

When there are two risky assets, there are three return distributions about which an investor

may have knowledge: the joint distribution for the returns on assets 1 and 2, the marginal distri-

bution for asset 1, and the marginal distribution for asset 2. We use φ0 to denote the investor’s

knowledge of the joint distribution of returns, and φj , j = {1, 2}, for the ambiguity about the

marginal distribution for the individual asset j. Thus,

Φ = φ0

(
σ11 σ12

σ21 σ22

)−1

+ φ1

(
σ−1

11 0
0 0

)
+ φ2

(
0 0
0 σ−1

22

)
. (20)

Case 1: Equal ambiguity about both return processes

We first consider the case where an investor has knowledge only about the joint process for the

returns on assets 1 and 2 implying that φ0 > 0, and that there is no additional knowledge about

the marginal distribution for returns on asset 1 or 2 (φ1 = φ2 = 0). Then, the optimal portfolio

weight is:

π =
1
γ

µ− r
σ2︸ ︷︷ ︸

Merton weights


 φ0

(1+φ0)

φ0

(1+φ0)


 . (21)

This is the expression we would get if we used the Maenhout (1999) formulation with multiple risky

assets. As one can see, the adjustment factor for model misspecification to the Merton portfolio
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weights is the same for both assets 1 and 2 , φ0/(1+φ0). Thus, under such a specification ambiguity

about the return distributions would not bias the portfolio toward a particular asset. In this setting

where the agent has knowledge only of the joint process for the returns on the two risky assets, the

adjustment to the Merton portfolio weights can be interpreted either as a change in risk aversion

from γ to γ(1 + 1/φ0) or as a change in the expected return from µ to
[
µ− (µ−r)

(1+φ0)

]
.

Case 2: Unequal ambiguity about the returns processes

In order to focus on the effect of differences in ambiguity about the returns processes for the two

assets, we now assume that φj 
= 0, j = {1, 2}, while φ0 is set equal to zero in order to obtain a

more transparent expression for the portfolio weights.

Under this specification, the optimal portfolio weights are:

π =
1
γ

µ− r
σ2︸ ︷︷ ︸

Merton weights


 φ1

(1+φ1)

φ2

(1+φ2)


 . (22)

We can interpret these weights as the Merton weights, adjusted by the factor φj/(1 + φj), with

j = {1, 2}. In the limit, as φj → 0, πj → 0; on the other hand, as φj → ∞, πj approaches the

Merton weight.

In this setting, where the agent has knowledge only of the marginal distributions for the returns

on the two risky assets but no knowledge in the joint distribution (φ0 = 0), the adjustment to

the Merton portfolio weights can no longer be interpreted in terms of a change in the agent’s risk

aversion, and the appropriate interpretation is that of an asset-specific change in the expected

return from µ to
[
µ− (µ−r)

(1+φj)

]
, j = {1, 2}. Thus, the the observational-equivalence result noted

in Anderson, Hansen, and Sargent (1999) and Maenhout (1999) between ambiguity aversion and

Stochastic Differential Utility is valid only if the agent is equally ambiguous about the distribution

of returns for all assets.

Finally, we note that the ratio of the portfolio weight for asset 1 to asset 2 is given by:

φ1 (1 + φ2)
φ2 (1 + φ1)

,
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which is greater than unity only if φ1 > φ2. Thus, if φ1 > φ2 then the portfolio that accounts for

model misspecification will appear biased toward asset 1 relative to the Merton (1971) portfolio

that ignores model misspecification and also relative to the Maenhout (1999) model where there is

a single parameter governing ambiguity toward all risky assets. In the next section, we examine

the magnitude of this bias in the context of international portfolio choice.

4 Calibration to international equity returns

In this section, we illustrate how one can apply the model developed above by exploring its im-

plications for underdiversification. Motivated by the evidence in Tversky and Heath (1991) that

individuals behave as though unfamiliar gambles are riskier than familiar ones (even though they

assign identical probability distributions to the two gambles), we calibrate the portfolio model to

data on domestic and foreign stock returns, and explore how the portfolio weights change as agents

exhibit a greater ambiguity about the return distribution for foreign stocks relative to domestic

stocks. We would like to emphasize that the goal of this exercise is not to reproduce the weights

documented in the literature on the “home-bias” puzzle,14 but rather: (i) to illustrate how one can

apply the model, (ii) to understand the conditions under which the model will yield a portfolio that

is under-diversified, and (iii) to show how one can evaluate whether the parameter values chosen

are reasonable.

In Section 4.1 we describe the choice of parameter values, in Section 4.2 we report the portfolio

weights for a range of ambiguity levels, and in Section 4.3 we explain how one can assess whether

the values chosen for the parameters determining the level of ambiguity are reasonable.

4.1 Choice of parameter values

We examine the problem from the perspective of a US investor under the assumption that asset

prices are geometric Brownian motions and the investment opportunity set is constant. We use the

same data on quarterly stock returns (from MSCI) as that used in French and Poterba (1990) and

French and Poterba (1991). This data is for the period 1975-89 and consists of CPI-adjusted real
14A survey of the papers attempting to provide various explanations for this puzzle can be found in Stulz (1995)

and Lewis (1999).
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returns where the investor is assumed to use 3-month forward contracts to fully hedge the amount

of the initial investment. We look at a universe with three “countries”: US, Japan and Europe

(consisting of France, West Germany, Switzerland, and the United Kingdom). The three countries

are indexed by i = {1, 2, 3}. The volatilities of the real rates of return for the US, Japan and Europe

are (0.1650, 0.1825, 0.2000), and the US-JP, US-EU, and EU-JP correlations are (0.53, 0.55, 0.40).

These estimates of volatilities and correlations are taken from French and Poterba (1990), with

the numbers for Europe being averages of the reported estimates for the France, West Germany,

Switzerland, and the United Kingdom. The expected real rate of returns on US, Japanese and

European equities, computed from the estimates in Table 2 of French and Poterba (1991) under

the assumption that the investor’s degree of risk aversion is 3, are (0.0464, 0.0430, 0.0460).

In the calibration exercise, we compute the portfolio weights for our model under the assumption

that the investor has knowledge of two return distributions. The first is the joint distribution of

the stock returns of all three countries; the investor’s ambiguity about the joint distribution is

represented by the parameter φ0 = φ. The investor is also assumed to have some knowledge about

the marginal distribution of US stock returns and the ambiguity about this is denoted by φ1; in

order to constrain the additional knowledge that the investor has about the marginal distribution

of US returns, we specify that φ1 = mφ0 = mφ. Finally, we assume that the US agent has no

additional knowledge of European and Japanese stock returns over and above what is known about

the joint distribution.

From Theorem 2, the portfolio weights for this specification are:

π = B
1
γ

[
σRσ

�
R

]−1
(µR − r), (23)

B =
(
I −

[
σRσ

�
R

]−1
Φ−1

)−1

, (24)

Φ = φ


 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33



−1

+ mφ


 σ−1

11 0 0
0 0 0
0 0 0


 , (25)

where σii is the variance of the stock returns for country i, and σij , i 
= j is the covariance between

the stock returns of i and j. Thus, for the calibration we need to specify values for two additional

parameters: φ and m. We first report the portfolio weights and the total investment in risky assets
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based on (23) for a range of values for these these two parameters, φ and m, and then explain how

one can assess whether the values chosen for these parameters are reasonable.

4.2 Portfolio weights

The portfolio weights from the model are compared to those from the Merton (1971) model, where

agents are assumed to have no ambiguity about the returns process (φ = ∞ so that B = I), and

also to the Maenhout (1999) model, where the agent has some ambiguity about the joint process

for the returns of all risky assets in the portfolio (0 < φ <∞), but no additional knowledge about

the returns process of any individual asset (m = 0).

The first three columns of numbers in Table 1 give the weights allocated to US, Japanese and

European equities in a portfolio consisting of only these three risky assets; in the next two columns,

we report the total proportion of wealth invested in the three risky assets and the proportion

invested in the riskless asset; and the last three columns of the table give the adjustment to the

expected return. The first row (from Table 1 of French and Poterba (1991)) reports the “Observed

weight” for the US economy, which exhibit a strong bias toward US equity. The second row (also

from Table 1 in French and Poterba) gives the value-weighted market weights. The third row gives

the weights determined from the Merton model.15

Panels A, B and C of Table 1 give the portfolio weights of an investor who accounts for model

misspecification. The three panels correspond to different levels of overall ambiguity, indexed by φ;

recall that a lower φ corresponds to a higher level of ambiguity. Within each panel, the portfolio

weights are reported for m ranging from 0 to 5, where 0 corresponds to the case where the investor

has no additional knowledge about the marginal distribution of US stock returns. Studying the

effect of the parameter m, we see that for the case where m = 0 the weights in the risky-asset

portfolio are the same as the Merton portfolio weights. This is true across all panels. Thus, a

model with only a single parameter controlling the concern for model misspecification, as is the

case in Anderson, Hansen, and Sargent (1999) and Maenhout (1999), cannot generate the limited

diversification we observe in the data. As m increases, the investor’s portfolio is increasingly biased
15The closeness of the market portfolio and the Merton portfolio is not typical, and the reader should not infer

that the two sets of weights will always be close.
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toward US equity relative to the Merton portfolio. This effect is smaller in Panel A, where the

overall level of ambiguity is given by φ = 1, and increases as φ decreases. For instance, relative to

the Merton weight in US equities of 0.504, the weight is 0.647 for the case where φ = 1 and m = 2

in Panel A, and it increases to 0.699 when φ = 0.5 and m = 2 in Panel B, and to 0.743 when

φ = 0.25 and m = 2 in Panel C.

The first plot in Figure 1 shows the share allocated to US equities in the portfolio of only risky

assets for a broader range of values of φ than displayed in the table. The horizontal solid line shows

that for the case where m = 0 the share allocated to US equities does not change with φ. However,

as m increases, the bias toward US equities increases. The figure shows that the bias is highest

when φ is low and m is high.

In addition to studying the home bias, we also evaluate the implications of the model for the

total share of net wealth invested in equities. Based on the Survey of Consumer Finances, Heaton

and Lucas (2000) provide estimates of the proportion of net worth that US households invest in

stocks. Their estimates, which depend on how one defines net worth, range from 15% to 34%.16

From Panel A of Table 1, we see that with an overall level of φ = 1, the concern for model

misspecification leads to a decrease in the proportion of wealth invested in the risky assets (see the

column titled “Weight in risky assets”): this drops from 0.700 to 0.350 for the “m = 0” case, and

it increases with m, suggesting that φ = 1 may be too high relative to the estimates reported in

Heaton and Lucas. In Panel B, where φ = 0.5, the total investment in risky assets is 0.233, which

increases to 0.328 for m = 1; for m ≤ 2, the total investment in the risky assets is within the range

documented by Heaton and Lucas. In Panel C, where φ = 0.25, we find that the weight in risky

assets is within the reported range for m ≤ 3. The total proportion of wealth invested in the three

risky assets, for a broader range of values of φ, can also be seen in the middle plot of Figure 1.
16Heaton and Lucas (2000) consider three definitions of net worth: (i) liquid net worth, defined as the sum of cash,

bonds, stocks and mutual funds less mortgages and consumer loans; (ii) financial net worth, which is liquid net worth
plus real estate holdings, proprietary businesses, pensions and trusts; and, (iii) total net worth, which is equal to
financial net worth plus capitalized labor and social security. In Panel A of their Table 1, the mean investment in
stocks as a proportion of liquid net worth based on the data for 1989 is 0.155 for households with income between
$10,000 and $100,000 and 0.340 for households with income greater than $1 million, with the rest invested in cash
and bonds. As a proportion of financial wealth (their Table 2), the proportion invested in stocks is about 0.150 in
1989 and for 1995 the proportion increases to about 0.250. Finally, as a proportion of total net worth (their Table 5),
investment in stocks ranges from 0.040 for individuals with a net worth between $10,000 than $100,000, to 0.257 for
individuals with a net worth exceeding $1 million.
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The table and the plot suggest that to match the overall investment in risky assets the value for φ

needs to be low, which is also the condition under which the bias toward US equities is high.

4.3 Appropriate choice of φ and m

Ideally, one would like have a priori information about the appropriate range for φ and for m.

Since we do not have direct information about φ and m, we infer this indirectly by examining

the adjustment to the drift of the returns process implied by the different levels of φ and m; this

is useful because it is easier to interpret an adjustment to the expected return—for instance, by

comparing it to the standard error in estimating expected returns–than to assess whether m and φ

are reasonable.

The adjustments to the US, Japanese and European expected returns arising from model mis-

specification are given in the last three column of Table 1. Again focussing on the case where m = 2,

we see from the first row of Panel A that the adjustment to US expected returns is −0.0155, which

is less than the 200 basis points standard error reported in French and Poterba (1991). This is

also illustrated in the bottom plot of Figure 1. Note also that the adjustment to the mean return

decreases as m increases; this is important because an increase in m corresponds to an increase in

the bias toward US equities. Thus, a small absolute adjustment to the expected returns is sufficient

to generate a large bias in portfolio holdings.

We conclude this section by summarizing the main observation: differences in the level of

ambiguity about the returns distributions leads to portfolios that are under-diversified relative to

the Merton (1971) model where there is no ambiguity, and also to the Maenhout (1999) model

where there is a single parameter measuring the agent’s ambiguity toward the distribution of all

the asset returns. The under-diversification effect is strongest when the overall level of ambiguity

is high.

5 Conclusion

In this paper, we have developed a model which formalizes the problem of investors who are

concerned about model misspecification because they understand that the distributions of assets
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returns are not estimated with perfect precision. Our model allows agents to have different levels

of ambiguity for the distribution of returns for each of the stocks in the portfolio. The model shows

that when the overall degree of ambiguity is high, then small differences in ambiguity about the

marginal distribution of asset returns will lead to a strong bias in portfolio holdings.

Traditional models of portfolio choice predict that investors should hold diversified portfolios.

However, there is substantial evidence of a bias toward familiar assets in both international and

domestic portfolios of institutions and individual households. International equity portfolios are

strongly biased toward domestic stocks (Cooper and Kaplanis, 1994; French and Poterba, 1991);

and, of the limited foreign investments by US and Canadian investors, a disproportionate share

is invested across the border, even though the correlation between US and Canadian returns are

higher than the correlations with Japanese and European equity returns (Tesar and Werner, 1995).

Evidence on domestic portfolios reveals a similar lack of diversification: US households are more

likely to invest in their local US Regional Bell Operating Companies rather than some other Re-

gional Bell Operating Company (Huberman, 2001); workers tend to hold their own company’s

stock in their retirement accounts (Schultz, 1996); and, Grinblatt and Keloharju (1999) report

that Finnish households are more likely to invest in firms that are located close to them and that

communicate in the investor’s native language (Swedish vs. Finnish). At the institutional level,

US mutual fund managers exhibit a preference for local companies (Coval and Moskovitz, 1999).

The model we develop can be viewed as offering at least a partial explanation for the observed

under-diversification and bias toward familiar securities
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Appendix: Proofs for theorems

Proof of Theorem 1

Let Q be an alternative model. According to Girsanov’s Theorem, dQ/dP = ξT is given by,

ξt = exp
{
−

∫ t

0
a�s dws −

1
2

∫ t

0
|as|2 ds

}
,

for some appropriate adapted process at. The result of this change of probability is a drift ad-

justment to the process of Xt, given by −σXat. In other words, at can be chosen of the following

form

a�t = −v�t [σXσ�X ]−1σX .

Then, applying Girsanov’s Theorem to XJi , dQ
ξ
Ji
/dPJi is given by

ξit = exp
{
−

∫ t

0
a�Jisdws −

1
2

∫ t

0
|aJis|2 ds

}
,

where

a�Jit = −v�Jit[σXJiσ
�
XJi

]−1σJiX .

Here vJit = (vj1t, . . . , vjni t), [σXJiσ
�
XJi

] is the instantaneous variance-covariance matrix of XJi , and

σJiX is the matrix whose rows are those of σX that correspond to XJi . Furthermore, by Girsanov’s

Theorem,

dwξt = dwt + atdt

is a Brownian motion under Qξ, and

dXt = [µX(Xt, t) + vt] dt+ σX(Xt, t)dw
ξ
t .

Let

Vt = inf
ξ

{
u(ct)∆ + e−ρ∆

[
K∑
i

ψ(Vt)φiL(ξit+∆) + Eξ
t [Vt+∆]

]}
.

Then

[Vt − u(ct)∆] eρ∆ = inf
ξ

{
ψ(Vt)

K∑
i=1

φiL(ξit+∆) + Eξ
t [Vt+∆]

}
,
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and thus,

0 = inf
ξ

{
ψ(Vt)

K∑
i=1

φiL(ξit+∆) + Eξ
t [Vt+∆]− Vt + Vt − [Vt − u(ct)∆] eρ∆

}
.

Letting ∆→ 0,

[Eξ
t [Vt+∆]− Vt]

∆
→ A[Vt] + v�t VX ,

and

−

[
[Vt − u(ct)∆] eρ∆ − Vt

]
∆

→ [u(ct)− ρVt].

Since dξit = −ξita�Jitdwt, we have,

L(ξit+∆) =
Et[ξit+∆ ln ξit+∆]− E[ξit+∆] lnEt[ξit+∆]

Et[ξit+∆]

=
Et[ξit+∆ ln ξit+∆]− ξit ln ξit

ξit
.

After a straightforward calculation using Itô’s Lemma, we have,

L(ξit+∆)/∆→ 1
2
a�JitaI1t =

1
2
v�Jit[σXJi σ

�
XJi

]−1 vJit.

Substituting yields the desired result.

Proof of Theorem 2

The first-order condition for the minimization problem in (15) is:

0 =

[
VWWπt + VR

VY

]�
+ ψ(Vt)

[
vR
vY

]�
Φ.

The first-order conditions for the maximization problem are

0 = u′(c)− VW ,

0 = VW [(µR − rt) + vR] + σRσ
�
Y VWY + σRσ

�
RVWR +WtVWWσRσ

�
Rπt.
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The first part of the theorem follows directly from these two first order conditions. For the second

part, re-write the first part of the theorem as,

π = − 1
WVWW

[σRσ�R ]−1

(
VW (µR − r) + σRσ

�
Y VWY + σRσ

�
RVWR + VW

[
IR 0
0 0

] [
v∗R
v∗Y

])

and [
v∗R
v∗Y

]
= −VWW

ψ(V )
Φ−1

[
IR
0

]
π − 1

ψ(V )
Φ−1

[
VR
VY

]
.

Solving for π yields the closed-form solution.
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Table 1: Portfolio weights and adjustment to expected returns
This table compares the portfolio weights of a US investor who accounts for model misspecification to those
from the Merton (1971) and Maenhout (1999) models. The first three columns of numbers report the weight
allocated to the US, Japanese (JP) and European (EU) equities in the risky-asset portfolio. The next two
columns give the proportion of total wealth invested in the three risky assets and the weight in the riskfree
asset. The last three columns report the adjustment to expected returns implied by the choice of φ and m.
As in French and Poterba (1991), the investor is assumed to have a risk aversion of 3, while the vector of
expected real rates of return on US, Japanese and US equities is {.0464, .0430, .0460}, the volatility vector for
US, Japanese and European markets is {.1650, .1825, .2000}, and the US-JP, US-EU, and EU-JP correlations
are {.53, .55, .40}. The three panels correspond to different levels of overall ambiguity, indexed by φ. The
first row in each panel, “m = 0” corresponds to the case in equation (25), where one has knowledge about the
joint distribution of asset returns for the three indexes (US, JP and EU) but no additional knowledge about
any of the marginal distributions; this matches the model in Maenhout (1999)). The rows titled “m = 1”
to “m = 5” correspond to the case where the investor is less ambiguous about the marginal distribution of
US returns. The table shows that the bias toward US equities increases as ambiguity about the marginal
distribution for US stock returns decreases (measured by an increase in m); this effect is larger when the
overall level of ambiguity is high (low φ).

Risky-asset portfolio Weight in Weight in Drift adjustment
US JP EU risky assets riskless asset US JP EU

Observed weights 0.938 0.031 0.031
Market weights 0.496 0.276 0.228
Merton-weights 0.504 0.278 0.218 0.700 0.300

Panel A: φ = 1.00

m = 0 0.504 0.278 0.218 0.350 0.650 -0.0232 -0.0215 -0.0230
m = 1 0.610 0.219 0.171 0.444 0.556 -0.0155 -0.0170 -0.0178
m = 2 0.647 0.198 0.155 0.492 0.508 -0.0116 -0.0147 -0.0153
m = 3 0.666 0.187 0.146 0.520 0.480 -0.0093 -0.0133 -0.0137
m = 4 0.678 0.181 0.141 0.539 0.461 -0.0077 -0.0124 -0.0127
m = 5 0.686 0.176 0.138 0.553 0.447 -0.0066 -0.0118 -0.0120

Panel B: φ = 0.50

m = 0 0.504 0.278 0.218 0.233 0.767 -0.0309 -0.0287 -0.0307
m = 1 0.647 0.198 0.155 0.328 0.672 -0.0232 -0.0241 -0.0255
m = 2 0.699 0.169 0.132 0.385 0.615 -0.0186 -0.0214 -0.0224
m = 3 0.726 0.154 0.120 0.423 0.577 -0.0155 -0.0196 -0.0204
m = 4 0.743 0.144 0.113 0.450 0.550 -0.0133 -0.0183 -0.0189
m = 5 0.754 0.138 0.108 0.470 0.530 -0.0116 -0.0173 -0.0178

Panel C: φ = 0.25

m = 0 0.504 0.278 0.218 0.140 0.860 -0.0371 -0.0344 -0.0368
m = 1 0.678 0.181 0.141 0.216 0.784 -0.0309 -0.0308 -0.0327
m = 2 0.743 0.144 0.113 0.270 0.730 -0.0265 -0.0282 -0.0297
m = 3 0.776 0.125 0.098 0.310 0.690 -0.0232 -0.0262 -0.0275
m = 4 0.797 0.114 0.089 0.342 0.658 -0.0206 -0.0247 -0.0258
m = 5 0.811 0.106 0.083 0.367 0.633 -0.0186 -0.0235 -0.0244
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Figure 1: Portfolio weights and adjustment to expected returns

The three panels plot as a function of the agent’s ambiguity (φ): (i) the portfolio weight allocated to US equity
relative to the total investment in risky assets, πUS/(πUS + πJP + πEU ), (ii) the total investment in risky assets
(πUS + πJP + πEU ), and (iii) the adjustment to the US expected returns (drift). The figure is obtained using the
same parameter values as the ones described in the legend of Table 1. In each panel, four cases are plotted. In the
first case, an investor’s knowledge of the joint distribution for the returns on US, Japanese and European equities is
given by φ, but there is no additional knowledge about the marginal distribution of US returns (m = 0). The three
other cases plotted correspond to m = 1, m = 2, and m = 4, where mφ measures the additional knowledge that the
investor has about the marginal distribution for US equity returns. From the first panel, we see that the holding of
the US assets increases with m, and is particularly pronounced for low values of φ, while the second panel shows that
the total investment in risky assets increases with φ and with m. The third panel shows the adjustment to expected
returns implied by different combinations of φ and m.
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