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Using the new derivative called beta-derivative, we modelled the well-known infectious disease called break-bone fever or the
dengue fever. We presented the endemic equilibrium points under certain conditions of the physical parameters included in the
model. We made use of an iteration method to solve the extended model. To show the e�ciency of the method used, we have
presented in detail the stability and the convergence of the method for solving the system (2). We presented the uniqueness of the
special solution of system (2) and �nally the numerical simulations were presented for various values of beta.

1. Introduction

In the last two centuries, several new infectious diseases have
been discovered. �eir mode of transmission di	ers from
one disease to another. In some cases the transmission is
in direct contact with the patient; see, for instance, HIV.
�e transmission can also take place in air, for instance,
TB. In other cases the transmission is indirect; the virus is
transported by a vector such as a mosquito and others. One
of these infectious diseases is the so-called dengue fever also
known as break-bone fever. �e �rst record of this infectious
disease can be traced back in a Chinese medical instruction
book from the JinDynasty (265–420∘ AD)which referred to a
water poison associated with �ying insects [1, 2].�e primary
vector, A. aegypti, extended to Africa in the 15th to 19th
centuries because of the increased globalization secondary to
the slave trade [3]. In many years to follow, there have been
metaphors of epidemics in the 17th century, other than the
most credible premature reports of dengue epidemic are from
1779 and 1780, when an epidemic brushed away crosswise
Asia, Africa, and North America [2].

�is disease is transmitted by several species of mosquito
within the genus Aedes, principally A. aegypti. �e virus has
�ve di	erent types; infection with one type usually gives
lifelong immunity to that type, but only short term immunity

to the others [4]. When a mosquito carrying dengue virus
bites a person, the virus enters the skin together with the
mosquito saliva. It attaches to and enterswhite blood cells and
duplicates inside the cells at the same time as they progress
all the way through the body. In the process of defense,
the white blood cells take action by producing a number of
signalling proteins, such as cytokines and interferons, which
are responsible for many symptoms. �is mechanism can be
converted in mathematical equations.

SEIR model is one mathematical equation underpinning
the analysis of the simulation of the spread of dengue
virus between host and vector. A well-established knowledge
regarding the mathematical formulation of the model for the
human and mosquito populations can be found in [5] and is
given as

��ℎ�� = �ℎ�ℎ − (�ℎ	
V�ℎ + � + �ℎ) �ℎ,
�ℎ�� = (�ℎ	
V�ℎ + �) �ℎ − (�ℎ + �ℎ) ℎ,

�
ℎ�� = �ℎℎ − (�ℎ + �ℎ + �ℎ) 
ℎ,

Hindawi Publishing Corporation
BioMed Research International
Volume 2014, Article ID 523159, 10 pages
http://dx.doi.org/10.1155/2014/523159



2 BioMed Research International

�
V�� = �V	
ℎ�ℎ ( ��

V

− 
V
− 


V
) − (�

V
+ �

V
) 

V
,

�

V�� = �VV

− �
V


V
,

(1)

where�ℎ is the host population, �ℎ and �V are the death rate
of host and vector populations, respectively, �ℎ and �V are the
transmission probability from vector to host and from host
to vector, respectively, 	 is the biting rate of the vector, 


V
and
ℎ are infected vector and host population, respectively, �ℎ is

the number of susceptible persons in the host population, �
is the recruitment rate of the vector host, �ℎ is the recovery
rate of the host population, �

V
is the proportional rate of

the mosquitoes exposed to the virus infection, and �ℎ is the
rate of death caused by dengue fever. In the recent years
scholars in the area of applications of ordinary and partial
di	erential equations have paid their attentions to investigate
which concept of derivative is suitable for modeling real
world problems [5, 6]. �e outcome of these investigations
revealed that it is more suitable to model real world problems
with derivative based on the fractional concept than the
classical version. �e derivative based on the concept of
fractional order has therefore gained the world of modeling
in the recent decade including in the �eld of hydrology
studies, chemistry, engineering, and mathematical biology
[7–12].With the rewards of fractional derivatives, several new
de�nitions have been introduced recently [13, 14]. In the same
line of idea, we have put in place a new derivative called the�-derivative; this derivative may not be seen as fractional
derivative but has fractional compound [15, 16].We have used
this derivative in our previous work and the results obtained
were very interesting.�erefore in thiswork ourmain interest
is to extend (1) using the new derivative; a stability analysis
will be presented and �nally a special solution using some
interesting iterations methods will be presented as well. �e
extended version of (1) is given by
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where

�
0��� (� (�)) = lim

�→0

�(� + �(� + (1/Γ (�)))1−�) − � (�)
�

(3)

for all � ≥ �, � ∈ (0, 1]. When the limit of the above exists, �
is said to be �-di	erentiable.

�eorem 1 (see [16]). Assuming that � is di
erential and �-
di
erentiable on the opened interval (�, 	), then
�
0��� (� (�)) = (� + 1Γ (�))

1−�
lim
ℎ→0

� (� + ℎ) − � (�)ℎ . (4)

De�nition 2 (see [16]). Let � : [�,∞) → R be a given
function; thenwe propose that the integral of order�-integral
of � is

�
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1Γ (�))
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�e above operator is the inverse operator of the proposed
beta-derivative and is called the Atangana ‘beta integral.

2. Endemic Equilibrium

In this section, we will present the endemic equilibrium
points and also present the stability analysis. If we assume
that the system of equations does not depend on time, beta-
derivative allows us to have
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It is worth noting that there is no general solution of the
above equation in the literature; therefore in thisworldwewill
provide a general solution of the above system under some
condition on the physical parameters. Consider
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However, to �nd 

V
we will solve the following equation:
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Nonetheless, for simplicity, we put

�ℎ + �ℎ + �ℎ*ℎ = �ℎ, �1 = (�V + �V) �V�
V
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	 ,
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V
.

(9)

�en (8) can be converted to

�7�3� + �5 =
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-�2 + 2� − 3 = 0

- = �7�3�4 + �24 + �ℎ�6�1�3,
2 = �ℎ�6�1�3 − �7�3�4 − �7�2�4, 3 = �7�2�4.

(10)

�e solution of (10) is given as

�∓ = −2 ∓ √22 − 4-32- . (11)

Now according to the physical meaning of our problem,
we chose only the positive solution and we have the last

equilibrium endemic point 

V
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3. Method for Solving the System

One of the important aspects in modeling is not only to
formulate the physical problem into amathematical equation,
but also to be able to predict the behaviour of this physical
problem. �is can only be achieved by �nding the solution
of the system.�e problem under investigation is a nonlinear
problem and needs an e�cient analytical technique to derive
a special solution of the system. In this paper we will use the
so-called homotopy decomposition method to achieve this.
�e methodology of this technique can be found in several
papers, for instance, in [17, 18]. But in this paper, we will only
apply the method to solve the system (2). �erefore applying
the method on system (2), we obtain the following iteration
formulas:
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3.1. Stability Analysis. Before the presentation of the stability,
we will �rst present the following operator, which will be
referred to as Atangana ‘beta inner product.

De�nition 3. A function� de�ned on [� 	] is said to be beta-
integrable if

∫�
0
(� + 1Γ (�))

�−1� (�) �� (15)

exists.

De�nition 4. Let � and @ be two functions de�ned on [0, 	].
Assuming that �@ is beta-integrable, then the beta inner
product is de�ned as
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We will present some properties of the above operator.

Properties

(1) �(�, @) = �(@, �): the operator is symmetric;

(2) �(�, �@ + 	ℎ) = ��(�, @) + 	�(�, ℎ), any constant in
real space;

(3) �(�, @) = 0 if @ = 0 or � = 0;
(4) �(�, �) > 0 if � ̸= 0;
(5) if � and @ are bounded and are positive functions in
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Assume that � and @ are bounded in [0 	]; then we can
�nd two real numbers, say F and G, such that for all � in[0 	]�(�) < G and @(�) < F; this implies �(�)@(�) < MF;
thus

� (�, @) = ∫�
0
(� + 1Γ (�))

�−1� (�) @ (�) ��

< MF∫�
0
(� + 1Γ (�))

�−1�� = GFI

I = (	 + (1/Γ (�)))� − (� + (1/Γ (�)))�� .

(20)



BioMed Research International 5

With the above information in hand, we will now prove the
stability of the method for solving the system (2). To achieve
this, we will in addition consider the following operator:
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V
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�eorem 5. Let us consider the operator < and consider the
initial and boundary condition for (2); then the new variation
iteration method leads to a special solution of (2).

Proof. To achieve this we will think about the following �
sub-Hilbert space of theHilbert spaceR = S2((0, <)) [13] that
can be de�ned as the set of those functions in the following
space:

V : (0, <) T→ R, 2 = {J, V | � (J, V) < ∞} . (22)

We harmoniously assume that the di	erential operators are

restricted under the S2 norms. Using the de�nition of the
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We will now evaluate the inner product of U = (<(J,
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We will evaluate the above row a�er row. Now using the
properties of the inner function, we obtained the following:

(− (� + �ℎ) (J − J1) − �ℎ	�ℎ (JL − J1L1) , J − J1)
≤ WWWW−J + J1WWWW {(� + �ℎ) WWWW−J + J1WWWW + WWWWWWWW

�ℎ	�ℎ (JL − J1L1)
WWWWWWWW}

= X1 WWWWJ − J1WWWW
((�ℎ	�ℎ ) (LJ − L1J1) + � (J − J1)
− (�ℎ + �ℎ) (V − V1) , V − V1)
≤ WWWWV − V1

WWWW (WWWWV − V1
WWWW (�ℎ + �ℎ) + � WWWWJ − J1WWWW

+ WWWWWWWW(
�ℎ	�ℎ ) (LJ − L1J1)

WWWWWWWW) = X2 WWWWV − V1
WWWW

(�ℎ (V − V1) − (�ℎ + �ℎ + �ℎ) (K − K1) , K − K1)
≤ WWWWK − K1WWWW {WWWW−K + K1WWWW (�ℎ + �ℎ + �ℎ) + WWWW�ℎ (V − V1)WWWW}
= X3 WWWWK − K1WWWW

(−�ℎ	�ℎ ((M − M1) + (L − L1)) − (�V + �V) (M − M1)
+ ��

V

�
V
	 (L − L1)�ℎ , L − L1)

≤ WWWWL − L1WWWW {
WWWWWWWWW
��
V

�
V
	 (L − L1)�ℎ

WWWWWWWWW + (�V + �V)
WWWWM − M1WWWW

+ �ℎ	�ℎ (
WWWW−M + M1WWWW + WWWW−L + L1WWWW)}

= X4 WWWWL − L1WWWW
(�

V
(M − M1) − �V (L − L1) , M − M1)
≤ WWWWM − M1WWWW (WWWW�V (M − M1)WWWW + �V WWWW−L + L1WWWW) = X5 WWWWM − M1WWWW .

(25)

�erefore, we have that
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It follows that it is possible to �nd a positive >(X1,X2, X3, X4, X5) such that

(< (J, V, K, L, M) − < (J1, V1, K1, L1, M1) ,
(J − J1, V − V1, K − K1, L − L1, M − M1 )) ≤ > WWWW_ − _1WWWW ,

(27)
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with _ = (J,V, K, L, M) and _1 = (J1, V1, K1, L1, M1). We will
prove that we can also �nd a positive constant I =(�1, �2, �3, �4, �5) such that for all ` = (a1, a2, a3, a4, a5)

U1 = (< (J, V, K, L, M)
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In fact,
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(�ℎ (V − V1) − (�ℎ + �ℎ + �ℎ) (K − K1) , a3)
(−�ℎ	�ℎ ((M − M1) + (L − L1))
− (�

V
+ �

V
) (M − M1) + ��

V

�
V
	 (L − L1)�ℎ , a4)

(�
V
(M − M1) − �V (L − L1) , a5) .

(29)

Again, using a similar method that we used earlier, we obtain
the following inequality:

U1 ≤
{{{{{{{{{{{{{{{

�1 WWWWJ − J1WWWW WWWWa1WWWW ,�2 WWWWV − V1
WWWW WWWWa2WWWW ,�3 WWWWK − K1WWWW WWWWa3WWWW ,�4 WWWWL − L1WWWW WWWWa4WWWW ,�5 WWWWM − M1WWWW WWWWa5WWWW .

(30)

�erefore

(< (J, V, K, L, M) − < (J1, V1, K1, L1, M1) ,
(a1, a2, a3, a4, a5)) ≤ I WWWW_ − _1WWWW ‖`‖ . (31)

Inequalities (31) and (27) guaranty the stability of the method
used to solve (2) and also lead us to a special solution of
(2). We will now show in detail the uniqueness of the special
solution.

3.2. Uniqueness of the Special Solution

�eorem6. �e special solution obtained via the usedmethod
is unique.

Proof. Assuming that c is the exact solution of system (2),
let _ and _1 be two di	erent special solutions of system and
converge toc ̸= 0 for some large numbers d ande (2) while

using the homotopy method; then using�eorem 5, we have
the following inequality:

(< (J, V, K, L, M) − < (J1, V1, K1, L1, M1) ,
(K1, K2, K3, K4, K5)) ≤ I WWWW_ − _1WWWW ‖c‖ ,

I WWWW_ − _1WWWW ‖c‖ ≤ I WWWW_ −c +c − _1WWWW ‖c‖ .
(32)

Using the triangular inequality, we arrive at the following:

I WWWW_ − _1WWWW ‖c‖ ≤ I {WWWWc − _1WWWW + ‖_ −c‖} ‖c‖ . (33)

However, since _ and _1 converge toc for large numbers d
and e, then we can �nd a small positive parameter �, such
that

WWWWc − _1WWWW < �2I ‖c‖ , for d,
‖_ −c‖ < �2I ‖c‖ , for e. (34)

Now considerG = max(d,e); then
I WWWW_ − _1WWWW ‖c‖ ≤ I {WWWWc − _1WWWW + ‖_ −c‖} ‖c‖

< �2I ‖c‖ + �2I ‖c‖ = � for G. (35)

�en borrowing the topology idea, we have that

I WWWW_ − _1WWWW ‖c‖ = 0. (36)

Sincec ̸= 0 and I ̸= 0, then ‖_ − _1‖ = 0 implying _ = _1.
�is shows the uniqueness of the special solution.

3.3. Algorithm. We will give the following code that will be
used to derive the special solution of system (2):

(i) input:

�ℎ0 (�) = �ℎ (0)
ℎ0 (�) = ℎ (0)

ℎ0 (�) = 
ℎ (0)

V0 (�) = V

(0)


V0 (�) = 
V (0)

(37)

as preliminary input;

(ii) f: number of terms in the rough calculation;

(iii) output:

�ℎapp (�) ,
ℎapp (�)

ℎapp (�)

Vapp (�)


Vapp (�) ,

(38)

the approximate solution.
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Step 1. Put

{{{{{{{{{{{{{{{

�ℎ0 (�) = �ℎ (0)ℎ0 (�) = ℎ (0)
ℎ0 (�) = 
ℎ (0)
V0 (�) = V

(0)

V0 (�) = 
V (0) ,

{{{{{{{{{{{{{{{

�ℎapp (�)ℎapp (�)
ℎapp (�)
Vapp (�)

Vapp (�)

=
{{{{{{{{{{{{{{{

�ℎ0 (�)ℎ0 (�)
ℎ0 (�)
V0 (�)

V0 (�) .

(39)

Step 2. For f = 1 to d − 1 do Step 3, Step 4, and Step 5:

�ℎ1 = �0 
�� (�ℎ�ℎ − (�ℎ	
V0�ℎ + � + �ℎ) �ℎ0) ,
ℎ1 = �0 
�� ((�ℎ	
V0�ℎ + �) �ℎ0 − (�ℎ + �ℎ) ℎ0 ) ,


ℎ1 = �0 
�� (�ℎℎ0 − (�ℎ + �ℎ + �ℎ) 
ℎ0) ,

V1 = �0 
�� (�V	
ℎ0�ℎ (( ��

V

− 
V0 − 
V0)) − (�V + �V) V0) ,



V1 = �0 
�� (�VV0 − �V
V0) .

(40)

Step 3. Compute

3ℎ() (�) = �0 
�� (�ℎ�ℎ − (�ℎ	;V(−1)�ℎ )+ (� + �ℎ) �ℎ(−1)) ,
Rℎ() (�)
= �0 
�� ((�ℎ	�ℎ );V(−1) + ��ℎ(−1) − (�ℎ + �ℎ) ℎ(−1))

Sℎ() (�) = �0 
�� (�ℎℎ(−1) − (�ℎ + �ℎ + �ℎ) 
ℎ(−1))
R

V() (�) = �0 
�� (�V	�ℎ ((
��
V

− <
V(−1) − >V(−1)))

− (�
V
+ �

V
) 

V(−1))
S
V() (�) = �0 
�� (�VV(−1) − �V
V(−1)) .

(41)

Step 4. Compute

3ℎ(+1) (�) = 3ℎ() (�) + �ℎ(app) (�) ,
ℎ(+1) (�) = ℎ() (�) + ℎ(app) (�) ,

ℎ(+1) (�) = 
ℎ() (�) + 
ℎ(app) (�) ,

V(+1) (�) = V() (�) + V(app) (�) ,


V(+1) (�) = 
V() (�) + 
V(app) (�) ,
;
V(−1) (�) = −1∑

�=0


V(�)�ℎ(−1−�),

<
V(−1) (�) = −1∑

�=0


V(�)ℎ(−1−�),

>
V(−1) (�) = −1∑

�=0


V(�)
V(−1−�).

(42)

Step 5. Compute

�ℎapp (�)ℎapp (�)
ℎapp (�)
Vapp (�)

Vapp (�)

=
{{{{{{{{{{{{{{{

�ℎapp (�) + 3ℎ(+1) (�)ℎapp (�) + ℎ(+1) (�)
ℎapp (�) + 
ℎ(+1) (�)
Vapp (�) + V(+1) (�)

Vapp (�) + 
V(+1) (�) .

(43)

Stop.

�e above algorithm will be used to derive the special
solution of system (2).

4. Numerical Solution

�e above algorithm will be used to produce the numerical
solution of system (2) for given values of parameters that can
also be found in the literature. We chose the following:

50708225071126 = �ℎ (0) ,
507115071126 = ℎ (0) ,
3045071126 = 
ℎ (0) ,
0.01 = 

V
(0) ,

0.1 = 

V
(0) .

(44)

Now employing the above algorithm, we obtain

�ℎ1 (�) − (0.004633266482631293

× (( 1
Gamma [�])

−� − (� + 1
Gamma [�])

−�

× (1 + �Gamma [�])2))
× ((−2 + �)Gamma [�]2)−1,
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ℎ1 (�) = (0.8984731674318148

× (( 1
Gamma [�])

−� − (� + 1
Gamma [�])

−�

× (1 + �Gamma [�])2))
× ((−2 + �)Gamma [�]2)−1,


ℎ1 (�)
= (0.00002001739006287755

× (( 1
Gamma [�])

−�

−(� + 1
Gamma [�])

−�(1 + �Gamma [�])2))
× ((−2 + �)Gamma [�]2)−1,


V1 (�)
= (0.008558681695478807

× (( 1
Gamma [�])

−�

−(� + 1
Gamma [�])

−�(1 + �Gamma [�])2))
× ((−2 + �)Gamma [�]2)−1,



V1 (�)
= (0.0013830000000000003

× (( 1
Gamma [�])

−�

−(� + 1
Gamma [�])

−�(1 + �Gamma [�])2))
× ((−2 + �)Gamma [�]2)−1.

(45)

Many other terms can be computed using the algorithm.�e
numerical simulations of the special solution for the �rst two
components are depicted in Figures 1, 2, 3, 4, and 5. It is
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Figure 1: Numerical simulation of the population solution for beta
= 1.
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Figure 2: Numerical simulation of the population solution for beta
= 0.85.

very clear from Figures 3, 4, and 5 that the model depends
on the parameter beta; precisely, we observed that the set of
solutions is much dependent on the parameter beta; as beta
decreases, the set of numerical solutions also decreases.

5. Conclusion

In the last decade mathematic tools have been used to model
several physical phenomena, for instance, infectious diseases.
�ese mathematical equations describing infectious diseases
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Figure 3: Numerical simulation of the population solution for beta
= 0.65.
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Figure 4: Numerical simulation of the population solution for beta
= 0.45.

are using the idea of derivative. Nowadays there exist several
derivatives in the literature; all of them have their strength
and their weaknesses. For example, the fractional derivative
according to Riemann-Liouville and Caputo is not obeying
the product, quotient, and chain rule. A new derivative
called beta-derivative was used to model the break-bone
disease. �e resulting system of equations was examined
in the scope of an iteration method. For the �rst time, an
analytical expression underpinning the endemic equilibrium
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Figure 5: Numerical simulation of the population solution for beta
= 0.45.

points was presented. �e e�cacy of the used method was
demonstrated via the stability and convergence analysis. A
relatively new inner product was proposed and was used
to prove the uniqueness of the special solution. Numerical
simulationswere depicted in Figures 1, 2, 3, 4, and 5 for a given
value of beta. �e derivative used here will shed light on the
�eld of modeling.
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