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Sabine Süsstrunk

School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

laurence.meylan@a3.epfl.ch; david.alleysson@upmf-grenoble.fr; sabine.susstrunk@epfl.ch

We present a tone mapping algorithm that is derived from a model of retinal

processing. Our approach has two major improvements over existing methods.

First, tone mapping is applied directly on the mosaic image captured by the

sensor, analogue to the human visual system that applies a non-linearity on

the chromatic responses captured by the cone mosaic. This reduces the num-

ber of necessary operations by a factor three. Second, we introduce a vari-

ation of the center/surround class of local tone mapping algorithms, which

are known to increase the local contrast of images but tend to create arti-

facts. Our method gives a good improvement in contrast while avoiding halos

and maintaining good global appearance. Like traditional center/surround al-

gorithms, our method uses a weighted average of surrounding pixel values.

Instead of using it directly, the weighted average serves as a variable in the

Naka-Rushton equation, which models the photoreceptors non-linearity. Our

algorithm provides pleasing results on various images with different scene con-

tent and dynamic range.
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1. Introduction

Most of today’s digital cameras are composed of a single sensor with a color filter array

(CFA) placed in front to select the spectral band that is captured at each spatial position

called pixel (Fig. 1, left). Since only one chromatic component is retained for each pixel, a

color reconstruction must be performed to obtain the full resolution color image with three

chromatic components per pixel.

In traditional color processing work-flows,1 this color reconstruction, or demosaicing

(Fig. 2, a) usually takes place before applying any rendering operations. The mosaiced im-

age captured by the CFA is first demosaiced to obtain an RGB image with three chromatic

components per spatial location. Color rendering operations, which include white balancing,

color matricing, and tone mapping, are performed later.

Instead of the work-flow shown in Fig. 2 (a), we propose a solution where the demosaic-

ing is the last step of the color processing work-flow. Color rendering operations are thus

performed directly on the CFA image (Fig. 2, b). In this article, we only consider the tone

mapping operation of color rendering. However, color matricing and white-balancing can also

be implemented before demosaicing.

Our motivations to use such a work-flow is that it is more analogous to the retinal process-

ing of the human visual system (HVS),2–4 as discussed in Section 2. Another motivation is

that applying the tone mapping directly on the CFA image requires only one third of the

operations. This, in addition to the use of small filters, makes our method relatively fast

compared to other existing local tone mapping algorithms. Finally, because the rendering

operations are performed directly on the values captured by the sensor, there is no loss of

information prior to rendering.

Our tone mapping algorithm takes inspiration from the non-linear adaptation that oc-

curs in the retina, which efficiently improves local contrasts while conserving good global

appearance.5,6 Fig. 2 (c,d) shows an example of applying our method on a high dynamic

range image (i.e., containing high contrast and important image details in dark and bright

areas). The left image shows the result obtained with standard global tone mapping7,8 (in

this case a gamma operator) and the right image shows the result obtained with our algo-

rithm. Our method successfully enhances detail visibility in the center of the image, they are

well rendered without requiring an additional sharpening operation.

We applied our algorithm on various kinds of captured scenes having different dynamic

ranges and different keys. Dynamic range is defined as the luminance ratio of the brightest

and darkest object in the scene. High and low key are terms used to describe images that

have a higher than average and lower than average mean intensity, respectively. Unlike other

methods that work well only with certain kinds of images, the results show that our tone

mapping operator successfully improves image appearance in all cases while not creating
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artifacts.

This article is structured as follows. Section 2 provides background knowledge on tone

mapping and the model of retinal adaptation that we base our method on. Section 3 presents

the algorithm. Section 4 shows the results obtained by our proposed work-flow, and Section 5

discusses the differences of our algorithm compared to other existing methods. Section 6

concludes the article.

2. Background

In this section, we discuss the correspondence of our tone mapping algorithm with a simplified

model of retinal processing. For this purpose, we take into consideration the sampling of

chromatic information by the cone mosaic and the non-linearity that applies on that mosaic.

We concentrate on one specific non-linear processing model proposed by Naka and Rushton5,9

that we use in our algorithm. We discuss the properties of the CFA images on which we

apply our tone mapping. Finally, tone mapping operators in general, and specifically the

center/surround family of local tone mapping algorithms is also reviewed, as our method

bears some similarity to the latter.

2.A. Model of Retinal Processing

Historically, many analogies with the HVS have been exploited to develop image and com-

puter vision applications. For example, there is a correspondence between trichromacy (the

ability of human vision to distinguish different colors given by the interaction of three kinds

of photoreceptors) and the three color channels that constitute a color image.10,11 Another

equivalence exists between the spatio-chromatic sampling of the cone mosaic and the sam-

pling of color in single chip sensor such as given by the Bayer CFA (Fig. 1).12,13

Our proposed work-flow (Fig. 2, b) exploits another analogy with human vision, namely

between the tone mapping operations in the image processing work-flow and the non-linear

adaptation taking place in the retina. The goal here is not to precisely model the dynamics

of retinal processing, such as is done, for example, by Van Hateren.14 We aim to identify, and

simplify, which processing acts on the retinal signal in order to develop algorithms suitable

for in-camera processing. We focus on the non-linearities applied to the mosaic of chromatic

responses captured by the cones.

One role of tone mapping is to non-linearly process the captured image to mimic the

retina’s non-linear adaptation and render the image as if the HVS had processed it. In

traditional work-flows, this non-linear encoding is usually applied to the RGB color image,

thus after the color mosaic captured by the CFA sensor is demosaiced. For the HVS, the

non-linear adaptation takes place in the retina directly after light absorption by the cones.

At this level, the retinal image is a spatial multiplexing of chromatic cone responses, there
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is no reconstruction of full color information at each spatial position. We know that the

sampled color responses are still in a mosaic representation at the output of the retina, as

illustrated by the behavior of ganglion cell receptive fields2 (see Fig. 3). We thus propose a

new image processing work-flow where the non-linear encoding (tone mapping) is directly

performed on the mosaic image provided by the Bayer CFA pattern.

Fig. 3 shows the model of the retinal cell layers on which we base our algorithm (readers

not familiar with the HVS can consult the web pages of Webvision15). We exploit the fact

that the retina is composed of two functional layers, the outer plexiform layer (OPL) and

the inner plexiform layer (IPL) that both apply an adaptive non-linearity on the input

signal. These two layers are composed of the cones, the horizontal and amacrine cells, which

provide the horizontal connectivity, and of the bipolar and ganglion cells. When the light

enters the retina, it is sampled by the cones into a mosaic of chromatic components. The

horizontal cells measure the spatial average of several cone responses, which determines

the cones’ adaptation factors through a feedback loop.16 The color signals are then passed

through the bipolar cells to the ganglion cells. We assume that the role of the bipolar cells

is simply to pass the color signal from the OPL to the IPL. In the IPL, a similar non-linear

processing is applied. We assume that the amacrine cells also provide a feed-back to modulate

the adaptive non-linearity of the ganglion cells. This second non-linearity has been found

to provide psychophysical17,18 and physiological9 evidence for an adaptation mechanism to

contrast rather than to intensity. Moreover, it has been suggested that this non-linearity

is postreceptoral and applies on color opponent representation.6,18 We assume here that it

originates in the interaction between bipolar, amacrine, and ganglion cells.

Our tone mapping algorithm also applies two non-linear processings on the CFA image in

imitation of the IPL and OPL functionalities. Both non-linear operations are based on Naka

and Rushton,5,9 who developed a model for the photoreceptor non-linearities and adaptation

to incoming light. Spitzer et al.19 also proposed a biological model for color contrast, which

used similar adaptation mechanisms. The non-linear mosaic image is then demosaiced to

reconstruct the RGB tone-mapped image.

2.B. Adaptive Non-Linearity

Our model of the OPL and IPL non-linearities takes inspiration from the Naka-Rushton

equation5,9

Y =
X

X + X0
, (1)

where X represents the input light intensity, X0 is the adaptation factor, and Y is the

adapted signal. In the original formulation,5 the adaptation factor (X0) is determined by

the average light reaching the entire field of view. In our method, X0 varies for each pixel.
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It is a local variable given by the average light intensity in the neighborhood of one pixel.

Fig. 4 illustrates the Naka-Rushton function for different values of X0. If X0 is small, the

cell output has increased sensitivity. If X0 is large, there is not much change in sensitivity.

In our model, the Naka-Rushton equation is used to calculate the non-linearities of both

the OPL and IPL. X0 is given by the output of the horizontal cells or amacrine cells,

respectively, and modulates the sensitivities of the cones and of the ganglion cells.

Usually, the first retinal non-linearity is assumed to be due only to the dynamics of the pho-

toreceptors themselves.14 We make the hypothesis that the horizontal cell network intervenes

in the light regulation of the photoreceptors. Because of its local spatial averaging charac-

teristics, the network could allow for a more powerful regulation of the cone sensitivities.

Also, horizontal cells influence the cone responses through feedback or direct feedforward on

bipolar cells.16 Thus, our assumption is that the mechanism by which horizontal cells modify

cone responses is due to a regulation of the cone’s non-linear adaptation factor, based on the

response of the horizontal cells network at the cone location.

2.C. Properties of a CFA Image

The two non-linearities described above are directly applied on the CFA image. In our

implementation, the CFA image is obtained using a Bayer pattern13 in front of the camera

sensor, which results in a spatio-chromatic sampling of the scene. This mosaic image has

certain properties that allows treating the luminance and the chrominance of the image

separately.

Alleysson et al.20 showed that if we analyze the amplitude Fourier spectrum of a Bayer

CFA image, the luminance is located in the center of the spectrum and the chrominance is

located at the borders. The luminance is present at full resolution while the chrominance

is down-sampled and encoded with opponent colors. It follows that a wide-band low-pass

filter can be used to recover the luminance and a high-pass or band-pass filter can recover

the down-sampled chrominance. Choosing the appropriate filters allows implementing an

efficient demosaicing algorithm. Their method was refined by Dubois21 and Lian et al.22 who

propose a more accurate estimation of the luminance.

In Section 3.C, we will apply the Alleysson et al. method for demosaicing. In Sec-

tion 3.A and 3.B, we use the property of localized luminance and chrominance when com-

puting the response of the horizontal and amacrine cells as a guarantee that using a low-pass

filter will indeed provide the average of the luminance in a surrounding area. In other words,

we apply the non-linearities only on the luminance signals, not on any chromatic components.
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2.D. Tone Mapping

Tone mapping is the operation in the image processing work-flow that matches scene to

display luminances. The goal of tone mapping may vary, but the intent often is to reproduce

visually pleasing images that correspond to the expectation of the observer.

Tone mapping algorithms can either be global (spatially invariant) or local (spatially

variant). A global tone mapping is a function that maps the input pixel value to a display

value, not taking into account the spatial position of the treated pixel (one input value

corresponds to one and only one output value). A typical tone mapping function can be

logarithmic, a power-law (often referred to as a “gamma” function) or a sigmoid, also called

“s-shape.” More sophisticated global tone mapping methods vary the function parameters

depending on global characteristics of the image.7,8, 23, 24 The key of the image can be used

to determine the exponent of the gamma function.23 In Braun and Fairchild7 and in Holm,8

a s-shaped function is defined by the image statistics, such as the mean and the variance

of the intensity. In Ward et al.,24 the histogram distribution is used to construct an image-

dependent global function.

With local tone mapping algorithms, one input pixel value can lead to different output

values depending on the pixel’s surround. A local tone mapping operator is used when it

is necessary to change local features in the image, such as increasing the local contrast to

improve detail visibility. Many local tone mapping algorithms have been proposed, which

can be grouped in different classes sharing the same common features (see Delvin25 and

Reinhard et al. 26 for a review). Center/surround methods take inspiration from the HVS

receptive fields and lateral inhibition. They increase the local contrast by taking the difference

between pixel values and an average of their surround.23,27–29 Their common drawbacks are

the creation of halos along high contrast edges and graying-out of low contrast areas. Because

center/surround methods share similarities with the proposed method, they are described in

more detail in Section 2.E. Gradient-based methods30 work directly on the image gradient to

increase the local contrast by weighting high and low gradient values differently dependent

on surrounding image data. One difficulty of this technique is to integrate the gradient to

recover the treated image. Frequency-based methods31 separate the low and high frequency

bands of the image. The low-frequency band is assumed to approximatively correspond to

the illuminant and is compressed while the image details given by the high frequency bands

are kept. These techniques work well for high dynamic range images but are less appropriate

for low dynamic range images.

Which tone mapping operation should be performed depends on the dynamic range of

the scene. However, it also depends on the dynamic range of the display, which is given by

the ratio between the brightest and darkest display luminance (determined by the display

technology and viewing conditions). In the case of a low dynamic range scene (e.g. a foggy
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scene with no high contrast), the input image’s dynamic range is smaller than that of the

display and thus needs to be expanded. In the opposite case of a high dynamic range scene

(e.g. a sunset), whose dynamic range exceeds that of the display, the luminance ratio must

be compressed. Since compressing high dynamic range images causes a loss of detail visibility

over the whole tonal range, it is often necessary to apply a local tone mapping in addition

to the global compression to increase the local contrast and keep detail visibility.

2.E. Center/Surround Methods

Traditional center/surround algorithms compute the treated pixel values by taking the dif-

ference in the log domain between each pixel value and a weighted average of the pixel values

in its surround.

I ′(p) = log(I(p)) − log(I(p) ∗ G), (2)

where p is a pixel in the image, I is the treated image, ∗ denotes the convolution operation,

and G is a low-pass filter (often a Gaussian).

A common drawback of center/surround methods is that the increase in local contrast

depends greatly on the size of the filter. When a small filter is used, halo artifacts appearing

as shadows along high contrast edges can become visible. When a large filter is used, the

increase in local contrast is not sufficient to retrieve detail visibility in dark or bright areas.

Another drawback of center/surround methods is that they tend to gray-out (or wash-out)

low-contrast areas. For example, a plain black area or a bright low-contrast zone will tend

to become gray due to the local averaging.

These drawbacks have already been discussed in the literatures28,29, 32 and solutions to

overcome them were developed. Rahman et al.29 introduced a multi-scale method where the

center/surround operation is performed for three different scales so that halo artifacts and

graying-out are reduced. However, these artifacts are still visible when the scene contains very

high contrasts. Meylan and Süsstrunk28 introduced an adaptive filter, whose shape follows

the high contrast edges in the image and thus prevents halo artifacts. The graying-out is

avoided by using a sigmoid weighting function to conserve black and white low-contrast

areas. Their method well retrieves details in dark areas but tends to compress highlights too

much. It is also computationally very expensive, as the filter has to be re-computed for every

pixel. We will compare our algorithm with these two methods in Section 4.

In general, existing center/surround tone mapping operators work well only for a limited

set of images. The advantage of the algorithm presented here is that it provides a pleasing,

artifacts-free reproduction for all kinds of scenes (see Section 4). It can be considered to

belong to the center/surround family of local tone mapping operators where the surround is

used to modulate an adaptive non-linear function rather than as a fixed factor subtracted
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from the input pixel.

3. A Local Tone Mapping Algorithm for CFA Images

Our local tone mapping method processes the images according to the retinal model that was

described in Section 2.A. The input mosaic image (or CFA image), which has one chromatic

component per spatial location, is treated by two consecutive non-linear operations. Last,

demosaicing is applied in order to obtain a color image with three color components per

pixel. Each of these steps is described in the following sections.

3.A. The First Non-Linearity

The first non-linear operation simulates the adaptive non-linearity of the OPL. The adapta-

tion factors, which correspond to the horizontal cell responses, are computed for each pixel

by performing a low-pass filter on the input CFA image.

H(p) = ICFA(p) ∗ GH +
ICFA

2
, (3)

where p is a pixel in the image, H(p) is the adaptation factor at pixel p, ICFA is the

intensity of the mosaic input image, normalized between [0, 1], ∗ denotes the convolution

operation, and GH is a low-pass filter that models the transfer function of the horizontal

cells. GH is a two-dimensional Gaussian filter (Fig. 5) with spatial constant σH . For the

images shown in this article, we used σH = 3.

GH(x, y) = e
−

x2+y2

2σ2
H , (4)

where x ∈ [−4σH , 4σH ] and y ∈ [−4σH , 4σH ].

The term ICFA corresponds to the mean value of the CFA image pixel intensities. The

factor (here 1

2
) induces different local effects, and can be adjusted according to the image

key. If we decrease the factor to a value closer to 0, the contrast in the shadows is enhanced,

which might better render a low key image.

The input image ICFA is then processed according to the Naka-Rushton Equ. (1) using the

adaptation factors given by H . The responses of the bipolar cells network is computed with

the following equation (Equ. 5). The parameters correspond to the mosaic and horizontal

cell responses. A graphical representation is given in Fig. 5.

Ibip(p) = (ICFA(max) + H(p))
ICFA(p)

ICFA(p) + H(p)
, (5)

The term (ICFA(max) + H(p)) is a normalization factor that ensures that Ibip is again

scaled in the range of [0, 1].
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3.B. The Second Non-Linearity

A second, similar non-linear operation that models the behavior of the IPL is applied on the

image Ibip to obtain the tone-mapped image Iga.

Iga(p) = (Ibip(max) + A(p))
Ibip(p)

Ibip(p) + A(p)
(6)

A(p) simulates the output of the amacrine cells. Iga models the output signal that would be

transfered from the ganglion cells to the visual cortex. Similarly to Equ. (3), A is a low-pass

version of the image intensities at the bipolar cells level. It is computed by convolving the

mosaic image Ibip with a Gaussian filter of spatial constant σA. We used σA = 1.5.

A(p) = Ibip(p) ∗ GA +
Ibip

2
, (7)

where GA is given by

GA(x, y) = e
−

x2
+y2

2σ2
A , (8)

and x ∈ [−4σA, 4σA] and y ∈ [−4σA, 4σA].

The resulting mosaic image Iga has now been processed by a local tone mapping operator.

Local contrast has been increased. The next step before displaying the result is to recover

three chromatic components per spatial location. This can be performed by any demosaicing

algorithm.

3.C. Demosaicing

We use the demosaicing algorithm described by Alleysson et al.,20 which first obtains the

luminance image using a wide-band low-pass filter. Although some high frequencies are

removed by this method,21 the filter is sufficiently accurate to well estimate the luminance.

We chose a low-pass filter that removes even more high frequencies than the one presented

in Alleysson et al., as the two non-linearities applied before already enhance the contours

of the image. The implied Difference of Gaussian (DOG) filtering11 results in a sharpening

effect. In addition, removing high luminance frequencies also reduces noise.

We choose the luminance estimation filter to be Fdem.

Fdem =
1

256
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(9)

Then
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L(p) = Iga(p) ∗ Fdem, (10)

where Iga is the tone-mapped CFA image and L represents the non-linearly encoded lu-

minance, which we call “lightness”. Note that in,20 L corresponds to the luminance while

here L is non-linear and corresponds to perceived lightness. Nevertheless, the properties of

the Fourier spectrum remain the same. We will use the term “lightness” to refer to L in the

rest of the article.

The chrominance is then obtained by subtracting L from the mosaiced image Iga.

C(p) = Iga(p) − L(p) (11)

C(p) is also a mosaic and contains the down-sampled chrominance. In C(p), each pixel only

contains information for one spectral band. C(p) can be separated in three down-sampled

chrominance channels using the modulation functions mR, mG, mB (see Equ. 12). This is

illustrated in Fig. 6.

mR(x, y) = (1 + cos(πx))(1 + cos(πy))/4

mG(x, y) = (1 − cos(πx) cos(πy))/2

mB(x, y) = (1 − cos(πx))(1 − cos(πy))/4

, (12)

where x, y is the coordinate of a pixel p in the image, with the upper left pixel having

coordinate 0, 0. The chrominance channels are given by:

C1(x, y) = C(x, y) · mR(x, y)

C2(x, y) = C(x, y) · mG(x, y)

C3(x, y) = C(x, y) · mB(x, y)

(13)

In C1, C2, C3, the missing pixels (having a zero value) must be reconstructed to recover

the full resolution image. This is done using a simple bilinear interpolation. Although more

sophisticated methods exist, we deem it sufficient as the chrominances are isoluminant and

do not contain high spatial frequencies.33

After interpolation, the treated RGB image is obtained by adding the lightness and the

chrominance channels together:

R(p) = L(p) + C ′

1(p)

G(p) = L(p) + C ′

2(p)

B(p) = L(p) + C ′

3(p)

, (14)

where R(p), G(p), B(p) are the RGB channels of the image, L is the lightness (Equ. 10),

and C ′

1, C ′

2, C ′

3 are the interpolated chrominance channels.

10



4. Results

We present results obtained with a Canon camera (Canon EOS 300D) and legacy images. In

order to retrieve the RAW data, we used the free program DCRAW,34 which can handle RAW

formats from nearly all cameras but does not apply color matricing or white balancing. Thus,

to better illustrate the effect of the tone mapping algorithm alone, we present the results

in black and white so that incomplete color rendering does not influence the visual results.

Fig. 2 (d) shows a color example obtained from our algorithm.

To obtain simulated RAW images from legacy images, we inversed the original non-linearity

assuming a power function (gamma)35 of 2.4 and recreated the mosaic according to the Bayer

pattern.

The results for three scenes representing different dynamic ranges is shown in Fig. 7. The

left and right images are legacy images. The image in the middle is a Canon RAW image. The

results of our algorithm are compared to two center/surround local tone mapping algorithms:

MSRCR (Multi-Scale Retinex with Color Restoration) developed in Rahman et al.,29 and

the adaptive filter method by Meylan and Süsstrunk.28 The MSRCR image was obtained

with the free version of the software “PhotoFlair” using the default settings,36 (which puts

“demo” tags across the image). The globally corrected image (default camera settings) is

also shown.

The advantage of our method is that it provides good looking images regardless of the

characteristics of the input image, while other methods are often restricted to a set of images

having common features (dynamic range, key, and content). For example, MSRCR provides

good tone mapping when the dynamic range is standard or slightly high, but it tends to

generate artifacts when the input image has a very high dynamic range such as the one

of Fig. 7, right hand column, 2nd row. The method is not able to retrieve all details in

the center-right building, for example. The adaptive filter method28 does not have these

drawbacks, but in general does not sufficiently increase local contrast in the light areas,

which is visible in all images in the sky regions (Fig. 7, 3rd row). Our method performs well

for all three examples, the sky areas still have details, and the contrast in the dark areas is

also enhanced.

In addition, another advantage of our method is that it is quite fast compared to other

existing local tone mapping algorithms. First, the operation is performed on the CFA image,

which divides the time of computation by three. Second, the fact that relatively small filters

can be used for tone mapping (see Section 5) ensures that the algorithm has a reasonably

low complexity.

11



5. Discussion

We propose a tone mapping algorithm that is directly applied on the CFA image. It its

inspired by a simple model of retinal processing that applies two non-linearities on the spa-

tially multiplexed chromatic signals. The non-linearities are modeled with a Naka-Rushton

function, where the adaptation parameter is an average of the local surround. It performs

well in comparison to other local tone mapping algorithms.

Our interpretation of retinal processing is only partly supported by the literature on retina

physiology. However, there are two processes supporting our hypothesis that can be found.

First, there is a non-linear process that occurs post-receptorally. Second, the role of hori-

zontal cells that perform neighborhood connectivity is important for the formation of the

center/surround receptive fields present in the retina. As pointed out in Hood6 (pages 519-

520), the formation of receptive fields is not yet completely understood. In particular, how

horizontal cells modulate the cone responses is still under debate. We show here that using

the horizontal cell responses to regulate the adaptive non-linearity gives a good constraint on

the signals and also prevents the apparition of artifacts. Finally, the hypothesis that the reg-

ulation in the IPL operates similarly to the one in the OPL is supported by studies that show

a second non-linearity in chromatic processing after the coding into opponent channels.17,18

Section 4 compared the results of our algorithm with images obtained with other cen-

ter/surround methods. We saw that our algorithm does not suffer from halos nor graying-out

and renders different scenes equally well. The reason why our method is more generally ap-

plicable is due to the fact that it is not based on the same general equation (Equ. 2). Indeed,

with traditional methods, the local information is averaged and subtracted from the value of

the treated pixel. Our algorithm also uses an average of the surrounding pixel values, given

by H or A. However, it uses it as a variable in the Naka-Rushton equation (the adaptation

factor), which is then applied to the treated pixel. If the treated pixel lies in a dark area, the

adaptation factor is small and thus, the output value range allocated to dark input values is

large (Fig. 4). In a bright area, the adaptation factor is large and thus the mapping function

between the input pixel value and the output pixel value is almost linear. This allows to

increase the local contrast in dark areas while still conserving local contrast in bright areas.

Another advantage of using such a technique is that the resulting image does not change

much with different filter sizes. This makes our algorithm robust to varying parameters. In

our implementation of the algorithm, we used σH = 3 and σA = 1.5. However, other values

can be used without corrupting the results. Fig. 8 shows an example of our method using

different filter sizes, (σH = 1; σA = 1) for the left image and (σH = 3; σA = 5) for the right

image. There is no tonal difference between the two resulting images. The slight discrepancy

between the two images is due to the different sharpening effects induced by the change in

filter size.
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Our method aims to achieve pleasing reproductions of images. This can not be measured

objectively. “Pleasing” can mean different things to different people, and is not only depen-

dent on scene dynamic range and key, but also on scene content. There are no objective

criteria, and pleasantness should be evaluated using psychovisual experiments and human

subjects. Previous evaluations of tone mapping algorithms, however, led to different conclu-

sions depending not only on the scene content, but also on the task.37,38 Here, we provide a

comparison with two other algorithms on three scenes. We put the code available on-line39

so that figures and results are reproducible40 and for readers who wish to try our method on

their own images.

6. Conclusion

We present a color image processing work-flow that is based on a model of retinal processing.

The principle of our work-flow is to perform color rendering before color reconstruction

(demosaicing), which is coherent with the HVS. Our focus is on the tone mapping part of

the general problem of color rendering. The integration of other rendering operations, such

as white-balancing and color matricing, is considered for future work.

Our proposed tone mapping algorithm is performed directly on the CFA image. It shares

similarities with center/surround algorithms but is not subject to artifacts. The algorithm

is fast compared to existing tone mapping methods and provides good results for all tested

images.
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28. L. Meylan and S. Süsstrunk. “High dynamic range image rendering with a Retinex-based

adaptive filter.” IEEE Transactions on Image Processing, 15(9):2820–2830, September

2006.

29. Z.-U. Rahman, D. J. Jobson, and G. A. Woodell. “Retinex processing for automatic

image enhancement.” Journal of Electronic Imaging, 13(1):100–110, January 2004.

30. R. Fattal, D. Lischinski, and M. Werman. “Gradient domain high dynamic range com-

pression.” In Proc. ACM SIGGRAPH 2002, Annual Conference on Computer Graphics,

pages 249–256, 2002.

31. F. Durand and J. Dorsey. “Fast bilateral filtering for the display of high-dynamic-range

images.” In Proc. ACM SIGGRAPH 2002, Annual Conference on Computer Graphics,

pages 257–266, 2002.

32. K. Barnard and B. Funt. Colour imaging: vision and technology; ch. Investigations into

multi-scale Retinex., pages 9–17. John Wiley and Sons, 1999.

33. K. T. Mullen, “The contrast sensitivity of human colour vision to red/green and

blue/yellow chromatic gratings.”. Journal of Physiology, 359:381–400, 1985.

34. D. Coffin. http://cybercom.net/d̃coffin/dcraw/.

35. IEC 61966-2-1. Multimedia systems and equipment - Colour measurement and manage-

ment - Part2-1:Colour management - Default RGB colour space - sRGB, 1999.

36. Truview imaging company. http://trueview.com.

37. P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen. “Evaluation of tone mapping

operators using a high dynamic range display.” In Proc. ACM SIGGRAPH 2005, Annual

Conference on Computer Graphics, pages 640–648, 2005.

38. J. Kuang, H. Yamaguchi, G. M. Johnson, and M. D. Fairchild. “Testing HDR image

rendering algorithms.” In Proc. IS&T/SID Twelfth Color Imaging Conference: Color

Science, Systems, and Application, pages 315–320, 2004.

39. Supplementary material. http://ivrg.epfl.ch/supplementary material/index.html, 2007.

40. M. Schwab, M. Karrenbach, and J. Claerbout. “Making scientific computations repro-

ducible.” Computing in Science & Engineering, 2(6):61–67, November 2000.

15



Fig. 1. (color online) Bayer CFA (left) and the spatio-chromatic sampling of

the cone mosaic (right) [Inspired from Roorda et al. Vision Research, 2001].
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Demosaicing Rendering

Tone−mappedLinear

Demosaicing Rendering

a) Traditional image processing workflow 

b) Our proposed workflow

c) Global correction (gamma) d) Our proposed method

Fig. 2. (color online) Top (a): Traditional image processing work-flow. Cen-

ter (b): Our proposed work-flow. Bottom left (c): Image rendered with a

global tone mapping operator (gamma). Bottom right (d): Image rendered

according to our method.
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Fig. 3. (color online) Simplified model of the retina.
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Fig. 4. Naka-Rushton function with different adaptation factors X0.
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Naka−Rushton eq.

CFAI
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bipI
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bip
I    (p) = (I      (max) + H(p)) _________

CFA

Fig. 5. (color online) Simulation of the OPL adaptive non-linear processing.

The input signal is processed by the Naka-Rushton equation whose adaptation

factors are given by filtering the CFA image with a low-pass filter. The second

non-linearity that models the IPL layer works similarly.
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C3C1 C2

Fig. 6. (color online) The chrominance channels are separated before interpo-

lation.
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Fig. 7. Comparison of our algorithm with other tone mapping operators.

Left column: Low-dynamic range scene. Middle column: Medium to high-

dynamic range scene. Right column: High-dynamic range scene. First row:

Global tone mapping with camera default setting. Second row: Images

processed with MSRCR.29 Third row: Images processed with the Retinex-

based adaptive filter method.28 Fourth row: Images processed with our pro-

posed algorithm.
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Fig. 8. (color online) Example of our method applied with different filter sizes.

Left: Small filters (σH = 1 and σA = 1). Right: Large filter (σH = 3 and

σA = 5).
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