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Model of soft soils under cyclic loading

Abstract

This paper presents a new constitutive model for cyclic loading of soil to predict the behavior of soft clays
under undrained cyclic triaxial loading. It is inspired by the modified Cam-clay theory, and a new yield surface
for elastic unloading is proposed to capture the soil behavior under cyclic loading. Only two additional
parameters that characterize the cyclic behavior are used together with the traditional parameters associated
with the modified Cam-clay constitutive model. The details of the relevant soil properties, initial states, and
cyclic loading conditions are presented, and a computational procedure for determining the effective stresses
and strains is demonstrated. The new model is used to simulate cyclic triaxial tests on kaolin, and the model
predictions are generally found to be in agreement with the measured excess pore pressures and axial strains.
Furthermore, numerous factors that influence the cyclic performance of soft soils can be considered in the
new model, such as cyclic stress ratios, preshearing, and cyclic loading frequency. The critical cyclic stress ratio
is also predictable using the proposed model in terms of excess pore pressures and axial strains.
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Abstract: This paper presents a new constitutive model for cyclic loading of soil to predict the behaviour of 

soft clays under undrained cyclic triaxial loading. It is inspired by the Modified Cam-clay theory, and a new 

yield surface for elastic unloading is proposed to capture the soil behaviour under cyclic loading. Only two 

additional parameters which characterize the cyclic behaviour are employed together with the traditional 

parameters associated with the Modified Cam-clay constitutive model. The details of the relevant soil properties, 

initial states, and cyclic loading conditions are presented, and a computational procedure for determining the 

effective stresses and strains are demonstrated. The new model is used to simulate cyclic triaxial tests on kaolin 

and the model predictions are generally found to be in agreement with the measured excess pore pressures and 

axial strains. Furthermore, numerous factors which influence the cyclic performance of soft soils can be 

considered in the new model, such as the cyclic stress ratios, pre-shearing, and cyclic loading frequency. The 

critical cyclic stress ratio is also predictable using the proposed model in terms of the excess pore pressures and 

axial strains. 

Author keywords: Cyclic model; Soft clay; Cyclic stress ratio; Excess pore pressure; Axial strain. 

Introduction 

Attributed to relatively high fines fraction and water content, low-lying soft subgrade soils are often 

characterized by low bearing capacity, high compressibility and low permeability. The performance of such 

soils under static loading has been modeled by a number of researchers (Roscoe and Burland 1968; Mita et al. 

2004; Karstunen et al. 2012). By contrast, the cyclic behavior of soft subgrade soils is more complex. Excess 

pore pressure and strain continue to develop with increasing number of cycles, thereby decreasing the bearing 

capacity of the subgrade and often inducing excessive differential settlement. Therefore, the accumulation of 

excess pore pressure and excessive plastic deformation of the subgrade under significant cyclic loading is 

always a major concern for highway pavements, railway tracks and airport runways (Yamanouchi et al. 1975; 

Kutara et al. 1980; Li and Selig 1996; Chai and Miura 2002).  
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In the past few decades, experimental research has been devoted to the response of soils and pavement 

materials to traffic-induced cyclic loads. Factors influencing the cyclic performance of soft soils have been 

investigated: (i) cyclic stress level which determines whether the soil can reach a non-failure equilibrium state or 

not (Larew and Leonards 1962; Lashine 1971; Sangrey et al. 1978; Ansal and Erken 1989; Zhou and Gong 

2001), (ii) loading frequency which is responsible for the rate of excess pore pressure and axial strains  

(Takahashi et al. 1980; Yasuhara at al. 1983; Procter and Khaffaf 1984; Hyde et al. 1993; Liu and Xiao 2010), 

(iii) over-consolidation ratio  influencing the effective stress paths and the degradation of the undrained secant 

shear modulus (Sangrey et al. 1969; Brown et al. 1975; Vucetic and Dobry 1988), and (iv) static pre-shearing 

which decreases the cyclic shear strength but increases the total shear strength (Seed and Chan 1966; Zimmie 

and Lien 1986; Ishihara et al. 1993; Hyodo et al. 1994).  

By using a considerable body of data obtained from the laboratory tests, cyclic models have been 

developed. However, most models are empirical and sometimes based on unsubstantiated assumptions or 

hypotheses, either focusing on just one specific parameter or a combination of two or more conveniently 

selected parameters within practical limitations. The highlights of a few of these models and their shortcomings 

are summarised in Table 1. Therefore, more general constitutive models (e.g. Ramsamooj and Alwash 1990; Li 

and Meissner 2002) are desirable to establish in which various cyclic loading conditions can be considered. 

However, these models are often complex in terms of the required parameters, whereby some of them cannot be 

determined directly using conventional equipment, which makes the use of these models in practical situations 

somewhat limited. 

A relatively simple model was proposed by Carter et al. (1980, 1982) based on the Modified Cam-clay 

theory (Roscoe and Burland 1968). In this model only one additional parameter, which characterizes the cyclic 

behaviour, is needed along with the Modified Cam-clay parameters, and this can be conveniently determined on 

the basis of the cyclic triaxial loading tests.  However, the generation rate of excess pore pressures predicted by 

this model increases until the soil ultimately fails, in contrast to the opposite effect observed in some of the 

previously reported tests (Takahashi et al. 1980; Miller et al. 2000; Zhou and Gong 2001; Sakai et al. 2003).  

Therefore, a new cyclic model extending that of Carter et al. (1980, 1982) is presented in this paper. In this case, 

only two additional cyclic degradation parameters are needed (beyond the parameters defining Modified Cam 

Clay) to represent the yield surface function during elastic unloading. Many factors which influence the cyclic 

performance of soft soils are considered in this model, such as cyclic stress ratio, pre-shearing, and cyclic 

loading frequency. 

Framework of the new constitutive cyclic model 

Assumptions  

For normally consolidated soils, permanent excess pore pressures and strains only occur in the first cycle if the 

Modified Cam-clay model is strictly used to simulate the cyclic performance. This is because the yield surface 

remains unchanged after the first load cycle. So the subsequent behaviour of the soil is considered elastic and 

therefore no further permanent excess pore pressures and strains develop. However, when saturated soft clays 

are unloaded and then reloaded repeatedly, the permanent excess pore pressures and strains often keep 

increasing during the entire period of cyclic loading. One way of interpreting this real behaviour is to assume 
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that the position and perhaps the shape of the yield surface have been influenced in some way by elastic 

unloading. For simplicity, the form of the yield surface is assumed to remain unchanged, but with a reduced size 

in an isotropic manner by the elastic unloading. Therefore, a parameter 
  is introduced to indicate how much 

the yield surface contracts when the soil is elastically unloaded (Carter et al. 1980, 1982): 

''
yc

' '

c y

dd pp

p p
                                                                                                                                                         (1)        

where, 
'

cp  is a hardening parameter which can be considered as the pre-consolidation pressure. '

yp  is a variable 

defined as (Roscoe and Burland 1968): 

2

' '

y '

1q
p p

M p

    
 

                                                                                                                                              (2) 

In the above, M  is the slope of the critical state line in 
'

p - q  space, where 
'

p  and q  are the effective mean 

stress and deviator stress defined by the major (
'

1 ) and minor (
'

3 ) principal stresses as  ' ' '

1 3

1
2

3
p   

 
and

' '

1 3q    . 

In the proposed model, the parameter 
  in Eq. (1) is assumed to decrease with the increasing number of 

cycles, N, rather than being constant, taking the form of: 

21

1







N
                                                                                                                                                      (3)                               

where, 1  and 2  are experimental constants. If 01  , then Eq. (3) can be simplified to that of Carter et al. 

(1980, 1982), whereby assuming 2/1   : 

''
yc

' '

c y

dd pp

p p
                                                                                                                                                           (4) 

From Eqs. (1) and (3), it can be seen that for identical conditions, parameters 1   and  2  determine how much 

the yield surface contracts when the soil is elastically unloaded, and therefore determining  how much excess 

pore pressures and axial strains are generated for each cycle. As the rate of generation of excess pore pressures 

and axial strains indicate a corresponding dependence on the period of each cycle (Takahashi 1980; Andersen 

2009), the parameters 1   and  2  are indeed related to the frequency of the applied cyclic loading. 

Effective stresses and strains during cyclic loading 

The calculation of the effective stresses and strains is demonstrated against the stress path for normally and 

isotropically consolidated soils under cyclic loading, as shown in Fig. 1.  The parameter '

cl,ip  ( i =1, 2·· · ·· · , n ) is 
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the yield stress after the loading part of each cycle, 
'

,cu ip ( i =1, 2··· · · · , n ) is the yield stress after the unloading 

part of each cycle, and '
,y ip  ( i =1, 2·· · · · · , n ) is the loading parameter after each cycle. 

When the stress path of the soil element moves from point 
'

A  to point A  during the first loading period, 

excess pore pressure increases and the effective mean stress decreases.  
'

1,clp  is the yield stress corresponding to 

point A  which can be expressed by:  

 2' ' '

cl,1 /
A A A

p p q M p                                                                                                                                          (5) 

In the above, 
A

q  is equal to the cyclic stress cycq  and the effective mean stress at point A  is given by: 
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                                                                                                                             (6) 

where,   and  are the slopes of the normal compression and swelling lines in  -
'ln p space, respectively, 

where 1 e    is the specific volume and e is the void ratio. 

During the following unloading period, the stress path travels from point A  to A
*
, and the effective mean 

stress remains constant. 
'

y,1p  is the loading parameter corresponding to point A
*
.  The yield stress for the second 

cycle or the yield stress after unloading can be calculated as: 

*

'
1,cl

'
1,y'

1,cl
'

1,cu


















p

p
pp                                                                                                                                              (7) 

For the first part of the second cycle, the stress path travels from point A
*
 to point 

'
B  and the soil behaves 

elastically while yieldingqq  . The deviator stress yieldingq  causing the re-yielding of the soil can now be given 

by: 

  '
1,y

2'
1,y

'
1,cuyielding pMppq                                                                                                                           (8) 

Afterwards, the stress path moves from point '
B  to B  ( yielding cycq q q  ) and the effective mean stress 

decreases.  During this period, the soil behaves plastically. 

Computational procedure 

The procedure for calculating the excess pore pressures and strains generated under cyclic loading is explained 

in Fig. 2. The important steps are elaborated as follows. 

Essential parameters 

The parameters that need to be determined include: 
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(1) soil properties, viz., the slopes of the normal (virgin) compression line (  ), swelling line ( ), and the 

critical state line in 
'

p - q  space ( M ), shear modulus ( G ), and pre-consolidation stress   3/2 '
c3

'
c1

'
0c  p , 

where '

1c  and 
'

3c are the major and minor principal stresses after initial consolidation but prior to 

unloading or any cyclic loading; 

(2) initial soil states, viz., the effective mean stress ( '

0p ), deviator stress ( 0q ), and specific volume ( 00 1 ev  ) 

prior to cyclic loading; and 

(3) cyclic loading conditions, viz., the cyclic deviator stress ( cycq ), cyclic loading frequency ( f ), and cyclic 

degradation parameters ( 1  and 2 ). 

Set up steps and sub-steps 

Each loading and unloading step can be further divided into sub-steps, e.g., cycq  can be divided into a number of 

increments (say n ), then each step has an incremental deviator stress ( d
i

q ) ( i =1, 2, 3… n ). Based on the 

notation of the deviator stress ( d
i

q ) ( i =1, 2, 3… n ) and the state of the soil, the process of cyclic loading can 

be divided into three categories: (1) d 0
i

q  , soil is unloaded and behaves elastically; (2) d 0
i

q   and 
' '

y cp p , 

soil is reloaded and behaves elastically; (3) d 0
i

q   and 
' '

y cp p , soil is reloaded and behaves in a plastic 

manner. Then the corresponding processes as mentioned in the previous section can be applied to calculate the 

excess pore pressures and strains. 

Cyclic triaxial loading tests on kaolinite 

A series of undrained cyclic triaxial loading tests was conducted on specimens of reconstituted kaolinite, 38 mm 

in diameter by 76 mm high. The soil had the following properties: specific gravity 
s 2.7G  , liquid limit 

L 55%w  , plastic limit p 27%w  , compression index 
c 0.42 ( 0.182)C   , and swelling index 

Cs = 0.06 (k » 0.026).  Each of the specimens was subjected to an initial effective vertical stress of 40 kPa to 

represent the in situ stress  and consolidated in the triaxial cell under anisotropic conditions (
0 0.6k  ). 

The undrained cyclic loading tests were carried out using a triaxial loading apparatus which comprised the 

axial loading unit (dynamic actuator), an air pressure and water control unit, a pore pressure measurement 

system and a volumetric change measurement device. Excess pore pressure was measured through the drainage 

valve at the base of the specimen. Conventional monotonic triaxial tests were conducted to obtain the maximum 

deviator stress at failure ( u0s ) during static loading. Then the cyclic stress ratio was defined as the ratio of cyclic 

stress to the maximum deviator stress at failure ( cyc u0CSR /q s ).  All the test conditions are given in Table 2. 

Verification of the new cyclic model 

The parameters for the new constitutive model including soil properties, initial states, and cyclic loading 

conditions are provided in Tables 3 and 4. The values of cyclic degradation parameters 1  and 2  given in 

Table 4 indicate that the effect of cyclic stress ratio on the cyclic degradation parameters is negligible. 
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Furthermore, 2  increases with the increasing loading frequency, which implies that less excess pore pressure 

may be generated at a higher loading frequency. Takahashi (1980) proposed that the rate of generation of excess 

pore pressure would indicate a corresponding dependence on the loading frequency, e.g., for identical cycles, 

higher excess pore pressure is generated at a lower loading frequency. This observation is consistent with the 

study by Andersen (2009), where more cycles were needed to bring the specimen to failure at a higher 

frequency. However, in the proposed model the loading frequency is not an input parameter and the model has 

no intrinsic rate component, so therefore there needs to be an alternative input to represent the effect of the 

loading frequency. As indicated by the experimental results, 2  depends on the loading frequency (Fig. 3), 

where the corresponding plot of 
2  versus log f  is expressed as a linear relationship. 

The simulation together with the test data of normalized excess pore pressures and axial strains against the 

number of cycles for specimens tested under 0.1 Hz and 5 Hz is shown in Fig. 4. Acceptable agreement is found 

between the predicted results and the actual trends. As expected, both normalized excess pore pressures and 

axial strains increase with the increasing cyclic stress ratio. The plots shown in Fig. 4 clearly suggest that the 

excess pore pressure rises quickly at the initial stages, and continues to increase gradually with the number of 

cycles. For stable specimens ( CSR = 0.4 and 0.6), the excess pore pressures reach a stable state after their initial 

rapid development, with the final normalized excess pore pressures equaling 0.2 and 0.4 for CSR = 0.4 and 0.6, 

respectively. For failed specimens, the excess pore pressures develop so quickly that the critical normalized 

value of 0.6 is reached in the first few cycles. Failure of the specimen occurs before a stable state can be reached. 

It should be noted that there is no failure indicated for any of the samples by simply looking at these normalized 

excess pore pressures alone. In contrast, the failure of the two samples 03U  and 12U  ( CSR  = 0.8) is 

characterized by a dramatic rise in axial strains beyond a critical number of cycles. While the failure of 03U  ( f

= 0.1 Hz) occurs as N  approaches 2,000, for the highest frequency, i.e., 12U  at f = 5 Hz, the failure occurs as 

N  > 30,000 cycles. For specimens with CSR = 0.4 and 0.6, the axial strains are quite small (less than 1%) at 

the end of the tests. It is indicated that a rapid upward trajectory of the axial strains occurs when a normalized 

excess pore pressure of 0.6 is reached, as reflected by the comparison of excess pore pressures and axial strains 

for the specimens tested under CSR  = 0.8. 

Undrained Cyclic Model Analysis 

In this section, the effects of cyclic stress ratio, anisotropic consolidation condition and cyclic degradation 

parameters 1  and 2  on the development of excess pore pressure and axial strains are investigated using the 

proposed cyclic model.  The basic soil properties assumed in this parametric study are given in Table 5. 

Effect of cyclic stress ratio 

To investigate how the cyclic stress level affects the performance of soft soils, the predictions of normalised 

excess pore pressures and axial strains at various cyclic stress ratios using the proposed model are shown in Fig. 

5. The results plotted in Fig. 5(a) indicate that the critical cyclic stress ratio is around 0.5 (shown by the dashed 
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line), for the parameters used. When CSR = 0.6, 0.7, and 0.8, the excess pore pressure increases very fast such 

that the value of 
'

f c0/u p  (where fu  represents the excess pore pressure at failure) reaches 0.8 in the first few 

cycles. When CSR = 0.2, 0.3, and 0.4, the rates of excess pore pressure generation decrease and the specimens 

reach a stable state after an initial stage of rapid development. The determination of the critical cyclic stress ratio 

is made easier by observing the axial strains, as shown in Fig. 5 (b). At a critical cyclic ratio of 0.5, the axial 

strain at 1,000 cycles is around 7%, which is seven times that at CSR = 0.4, compared to twice for the excess 

pore pressures. 

When 2  increases from 10 to 50, the predictions of normalised excess pore pressures and axial strains are 

shown in Fig. 6.  These results indicate that the cyclic stress ratio becomes critical at around 0.6. Comparison of 

Figs. 5 and 6 suggest that an increased critical cyclic stress ratio from 0.5 to 0.6 is determined when 2  

increases from 10 to 50. 

Effect of anisotropic consolidation ratio 

To investigate how the initial anisotropic consolidation stress ratio (
' '

0 3c 1c/k   ) influences the performance of 

this soft soil, the predictions made by the proposed model under various anisotropic consolidation conditions are 

given in Figs. 7 and 8.  As shown in Fig. 7, five consolidation stress ratios from 0.6 to 1.0 with 0.1 intervals are 

considered and in each case 
1 1   and 

2 100  . For a relatively low cyclic stress ratio CSR = 0.3, the soft soil 

behaves in a stable manner under cyclic loading when 0k = 0.8, 0.9, and 1.0. When 0k  decreases to 0.7, even at 

CSR = 0.3, the excess pore pressure and axial strain build up significantly, and failure occurs around 400 cycles.  

With an even smaller anisotropic consolidation stress ratio at 0k = 0.6, the excess pore pressure and axial strain 

increase so rapidly that the soil would fail within fewer cycles, around 100 cycles. For a medium cyclic stress 

ratio CSR = 0.5, the effect of different anisotropic consolidation conditions is presented in Fig. 8. These 

predictions indicate that only the isotropically consolidated soil ( 0k = 1.0) is stable when subjected to cyclic 

loading. For instance, when 0k  decreases to 0.9, excess pore pressure and axial strain accumulate to a 

significant magnitude, and failure occurs around 980 cycles. With a decreasing value of 0k  from 0.8 to 0.6, the 

number of cycles at failure decreases from 200 to just 5 cycles. The comparison of Figs. 7 and 8 indicates that 

while the minimum value of 0k  is 0.8 at CSR = 0.3 to sustain cyclic stability, it increases to unity at CSR = 0.5. 

In summary, the model predicts that the anisotropic consolidation stress ratio has an effect on the 

behaviour of soft clays subjected to cyclic loading. For a given cyclic stress ratio, the excess pore pressure and 

axial strain increase as the consolidation stress ratio increases. A stable state can be reached at a relatively large 

value of 0k , while failure could occur at a small value of 0k . The number of cycles at failure decreases with a 

decreasing value of 0k . When the cyclic stress ratio increases, an increased value of 0k  should be applied 

during the process of consolidation to ensure that the soft clay behaves in a stable manner. 

The effect of the anisotropic consolidation stress ratio on the critical cyclic stress ratio is shown in Figs. 9 

and 10. For 0k = 0.82, the development of excess pore pressure and axial strain is shown in Fig. 9. The 
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predictions indicate that the critical cyclic stress ratio is about 0.4. When the cyclic stress ratio is above this 

critical level, the excess pore pressure develops rapidly and the value of 
'

f c0/u p  increases to 0.81. When the 

cyclic stress ratio is below the critical value, the excess pore pressure develops in a more gradual or stable 

manner after the initial stage of cycling. The axial strain at 0.4CSR continues to rise at an increasing rate, 

which causes failure of the specimen soon after the cyclic loading commences.  For 0.4CSR , the rate of axial 

strain development is relatively small (i.e., less than 1%) at 1,000 cycles. 

For a decreased consolidation stress ratio 0k = 0.68, the generation of excess pore pressure and axial strain 

is shown in Fig. 10. Here, a smaller critical cyclic stress ratio of 0.3 is observed compared to that under 0k = 

0.82. The comparison of Figs. 9 and 10 indicates that a reduced value of 
'

f c0/u p  from 0.81 to 0.78 is observed 

when the consolidation stress ratio decreases from 0.82 to 0.68. When 0.3CSR  , the excess pore pressure and 

axial strain increase significantly and the failure is shown to occur at around 150 cycles with an asymptotic 

increase in axial strain. When the cyclic stress ratio is below the critical value 0.3CSR , the excess pore 

pressure and axial strain develop in a stable manner. 

In summary, the value of critical cyclic stress ratio is influenced by the anisotropic consolidation stress 

ratio. Usually the critical cyclic stress ratio decreases with a decreasing value of consolidation stress ratio.  

Furthermore, the value of 
'

f c0/u p  decreases with a decreasing value of 0k . It is implied that to ensure the 

stability of a soft clay subgrade, a cyclic load with a smaller cycq  is preferred when the soil is preconsolidated 

under a smaller ratio of 
' '

3c 1c/  . This analysis also confirms the conclusion by some other researchers (e.g., 

Zimmie and Lien 1986; Andersen 1988; Ishihara et al. 1993) that the lower the value of 0k , the less the cyclic 

resistance of soft soil to cyclic loading. 

Effect of cyclic degradation parameters  

The influence of cyclic degradation parameter 1  on the development of excess pore pressures and axial strains 

is shown in Fig. 11.  The predicted results indicate that the rate of generation of excess pore pressures and axial 

strains decreases as the value of 1  increases. When 1  changes from 0 to 5, the number of cycles to failure 

also increases. Failure does not occur at higher values of 1 . To investigate the influence of the cyclic 

degradation parameter 2 , two particular cases will be discussed: (a) 01   which represents the special 

situation that coincides with the cyclic model of Carter et al. (1980, 1982); and (b) 01  . 

The development of excess pore pressure and axial strain versus the number of loading cycles for 01   is 

shown in Fig. 12, where the value of 2  ranges from 50 to 300 at intervals of 50. As expected, the predicted 

results indicate that the rate and magnitude of excess pore pressure and axial strain decrease as the value of 2  

increases. The results plotted in Fig. 12(a) also indicate that the rate of generation of excess pore pressure 

increases with the increasing number of loading cycles, regardless of the value of 2 . 
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When 01  , the effect of the level of cyclic stress on the development of excess pore pressures and axial 

strains is shown in Fig. 13. The data shown in Fig. 13(a) indicate that the rate of increase of excess pore 

pressures does not decrease with an increasing number of loading cycles for a cyclic stress ratio ranging from 

0.2 to 0.8, in contrast to the opposite effect observed in some of the previously reported tests (Takahashi et al. 

1980; Miller et al. 2000; Zhou and Gong 2001; Sakai et al. 2003), where a decreased rate of excess pore 

pressure is anticipated, especially for a low cyclic stress ratio. Unfortunately, for 01  , the critical cyclic stress 

ratio could not be distinctly identified because of similar trends of all excess pore pressure plots regardless of 

the value of the cyclic stress ratio.  In the same way, the critical cyclic stress ratio could not be predicted from 

the axial strains plots either as shown in Fig. 13(b).  Nevertheless, the number of cycles to cause failure rapidly 

decreases when CSR increases from 0.2 to 0.8. 

The relationships between 2/1   and the number of cycles at failure ( fN ) for different cyclic stress ratios 

are plotted in Fig. 14. The effect of 1  on the number of cycles at failure is also considered in the way that 

predictions are made for 1 = 0, 0.1 and 0.5, respectively. It is clear that at a constant cyclic stress ratio, the 

number of cycles to cause failure decreases as the value of 2/1   increases. In addition, at a constant value of

2/1  , the number of cycles to failure decreases as the cyclic stress ratio increases. For identical parameters, the 

number of cycles at failure increases as 1  increases. The cyclically generated excess pore pressures and axial 

strains for 01   are shown in Fig. 15, with the values of 2  changing from 50 to 300 in increments of 50. The 

results indicate that the generation of excess pore pressures and axial strains decreases as the value of 2  

increases. 

In essence, the excess pore pressure and axial strains decrease as the cyclic degradation parameters 1  and 

2  increase in magnitude. For 01   (Carter et al. 1980, 1982), the critical cyclic stress ratio is not predictable 

by simply detecting the development of excess pore pressure and axial strains, whereas when 01   (i.e., the 

proposed model), a dramatic increase in both excess pore pressure and axial strain is observed when the cyclic 

stress ratio increases towards a critical value. 

Limitations of the Current Study 

Within the scope of this study, the authors were able to test experimentally only one type of soft clay, and the 

results of these laboratory tests were used to validate the proposed cyclic soil model as well as to conduct a 

parametric analysis in order to understand and characterize the cyclic behaviour with the aid of two cyclic 

degradation parameters ( 1  and 2 ). In order to instill greater confidence in the use of the model and these two 

parameters, further testing on other types of clay soils over a broader range of frequencies is highly desirable.  

This will enable better understanding and quantification of the role of the initial state of the soil and the nature 

of cyclic loading, including the possible dependence of these two parameters on the loading frequency. In other 

words, the values of the cyclic degradation parameters specific to this study should not be readily adopted to 
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other soil types or when subjected to different cyclic loading conditions. In order to predict the cyclic soil 

hehaviour accurately, the values of the degradation parameters need to be evaluated on a case by case basis. 

Conclusions 

A new cyclic model to simulate the behaviour of soft soils under repeated loading is proposed in this paper 

extending that of Carter et al. (1980, 1982).  In the proposed model, only two additional cyclic degradation 

parameters ( 1  and 2 ) are needed together with the traditional modified Cam-clay parameters. The values of 

these two cyclic degradation parameters can be determined from undrained cyclic triaxial tests. The 

development of excess pore pressures and axial strains against the number of loading cycles for various cyclic 

loading conditions was studied, and the following conclusions could be drawn: 

1. Good agreement is found between the predicted results of excess pore pressure and axial strain from a 

series of undrained cyclic triaxial loading tests conducted on specimens of kaolinite. Cyclic degradation 

parameter 1  is a soil property which is independent of the loading frequency, while 2  increases with the 

magnitude of loading frequency. Furthermore, the effect of cyclic stress ratio on the cyclic degradation 

parameter is negligible. 

2. For 01   which is a special case of the proposed cyclic model that captures the original model of Carter et 

al. (1980, 1982), the critical stress ratio is not predictable by solely detecting the development of excess 

pore pressure and axial strain. In contrast, for the current model with 01  , a dramatic increase in both 

excess pore pressure and axial strain is observed when the cyclic stress ratio increases to a critical value. 

3. The excess pore pressures and axial strains decrease with the increasing values of the cyclic degradation 

parameters 1  and 2 . Therefore, the number of loading cycles at failure also increases when 1  and 2  

increase. 

4. The influence of cyclic stress ratio on the excess pore pressure and axial strain was studied, and it was 

found that with the increasing magnitude of cyclic stress ratio, the number of loading cycles to initiate 

failure would decrease. 

5. The initial shear stress has a significant effect on the cyclic performance of the clay specimen. With the 

initial shear stress, the critical cyclic stress ratio seems to decrease compared to specimens with no pre-

shearing.  In addition, the excess pore pressure at failure is reduced due to the initial shear stress. 
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The following symbols are used in this paper: 

      CSR = cyclic stress ratio cyc u0CSR /q s  

e
D , p

D  = matrix for incremental stress-strain law when a stress state is elastic and plastic, respectively 

         e    = void ratio 

        f    = cyclic loading frequency 

       G     = shear modulus 

      sG     = specific gravity 

      M    = slope of the critical state line in
'

p - q space 

      N     = number of loading cycles 

       
'

p    = effective mean stress 

       
'

cp    = hardening parameter which can be considered as pre-consolidation pressure 

      
'

cl,ip   = yield stress after the loading part of each cycle 

     
'

,cu ip  = yield stress after the unloading part of each cycle 

'

yp , '
,y ip   = loading parameter   

         q    = deviator stress 

    cycq     = cyclic deviator stress 

          u0s    = maximum deviator stress at failure for static loading 

    yieldingq  = deviator stress causing the re-yielding of the soil for each cycle 

            u   = excess pore pressure 

                = specific volume 

s , e

s , p

s  = shear, elastic shear, and plastic shear stresses             

v , e

v , p

v  = volumetric, elastic volumetric, and plastic volumetric stresses 

                = slope of the swelling line in  - 
'ln p  space 

                = slope of the normal compression line in  - 
'ln p  space 

                = 21/   

          
 

    
= 

1 2

1

N


 
 

  

   '

1 , '

1c   = major principal stresses 

    '

3 , '

3c  = minor principal stresses 

    1 , 2    = cyclic degradation parameters 
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Fig. 1. The stress path for cyclic loading 

 

Fig. 2. Computational Procedure 
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Fig. 4. Predictions of excess pore pressures and axial strains: (a) 1.0f , (b) 5f  
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Fig. 5. Predictions of the proposed model with different cyclic stress ratios ( 10 k , 11  , 102  ) 
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Fig. 6. Predictions of the proposed model with different cyclic stress ratios ( 10 k , 11  , 502  ) 
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Fig. 8. Predictions of the proposed model with different anisotropic consolidation stress ratios ( 5.0CSR  , 11  , 
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Fig. 9. Predictions of the proposed model with initial shear stress 82.00 k  
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Fig. 10. Predictions of the proposed model with initial shear stress 68.00 k  
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Fig. 11.  Predictions of the proposed model with different values of 1  
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Fig. 12. Predictions of the proposed model with different values of 2  
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Fig. 15. Predictions of the proposed model with different values of 2  

Table 1. Summary of selected cyclic models for soft soils 

   Source         Model Highlights         Shortcomings 

Procter and Khaffaf 

(1984) 

The relationship between cyclic stress level, 

loading frequency, and number of cycles at 

failure was modeled. 

The development of excess pore pressure 

or axial strain during cyclic loading was 

not formulated. 

Ansal and Erken 

(1989) 

Regression expressions were developed to 

estimate the cyclic yield strength and 

excess pore pressure buildup based on the 

number of cycles and cyclic stress level. 

The effect of the loading frequency was 

only experimentally investigated but not 

considered in the mathematical  

expressions. 

Hyde et al. (1993) Axial strain and normalized excess pore 

pressures were defined as a function of 

time-based power law. 

A limitation of this model is that the 

predicted behavior of the soils is 

independent of the loading frequency. 

Hyodo et al. (1994) An exponential relationship for pore 

pressure against time was established and 

corresponding stability criteria were 

developed using the critical state line. 

The effect of loading frequency is not 

taken into account.  

Zhou and Gong 

(2001) 

A mathematical model was presented to 

quantify the influence of cyclic stress level, 

loading frequency, and over-consolidation 

ratio. 

A shortcoming of this model is that six 

parameters are introduced from  

regression expressions, but their method 

of determination was not elaborated. 
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Table 2. Test conditions and results 

Specimen 

Cyclic loading frequency 

( f ), Hz 
Cyclic stress ratio ( CSR ) 

Loading cycles  

( N ) 
Failed or not 

01U  0.1 0.4 6,000 No 

02U  0.1 0.6 6,000 No 

03U  0.1 0.8 1,793 Yes 

04U  1 0.4 34,466 No 

05U  1 0.6 34,466 No 

06U  1 0.8 10,419 Yes 

07U  2 0.4 34,466 No 

08U  2 0.6 34,466 No 

09U  2 0.8 18,590 Yes 

10U  5 0.4 33,000 No 

11U  5 0.6 34,466 No 

12U  5 0.8 33,964 Yes 

 

 

Table 3. Parameters for soil properties and initial states 

 Soil properties  Initial states 

    M  '
c0p (kPa) 

30 

 '
0p (kPa) 0q (kPa) 0e  

0.18 0.03 1.68  30 16 1.32 

 

 

Table 4. Parameters for cyclic loading 

Cyclic loading conditions 

f  (Hz) Specimen 
1  2  

0.1 01U , 02U , and 03U  2.8 50 

1 04U , 05U , and 06U  2.7 280 

2 07U , 08U , and 09U  2.7 400 

5 10U , 11U , and 12U  2.8 550 

 

 

Table 5. Parameters for undrained model analysis 

    M  
'
c0p  (kPa) '

0p (kPa) 0e  G  

0.25 0.05 1.2 30 30 0.6 u0200s a 

a    /
' ' '

u0 c0 0 c0/ 4 2 /s p M p p
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