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A three-component model of spatial
vision is proposed, consisting of (1) a
feedback stage, (2) a feedforward stage,
(3) a threshold detector. The components
correspond to physiological processes; in
particular, the feedforward control signal
corresponds to the "surround's" signal in
the receptive fields ofretinal ganglion cells.
The model makes appropriate qualitative
predictions of" (1) a square-root law
( ~Q a: QY2) for detection at low luminances,
(2) a Weber law (t:.Q a: Q) at high
luminances, (3) additivity of threshold
masking effects at high background
luminances, (4) receptive fields that, in the
dark, consist only of an excitatory center
and that, in the light, also contain
inhibitory surrounds, (5) the variation of
spatial characteristics of receptive fields
depending on the temporal characteristic
of the test stimulus used to measure them,
(6) the subjective appearance of Mach
bands, (7) sine-wave contrast-threshold
transfer functions, (8) the frequent failure
of disk-detection experiments to

demonstrate inhibitory surrounds, and
(9) various second-order threshold effects,
such as reduced spatial integration for
long-duration stimuli, reduced temporal
integration for large-area stimuli, and the
increased effect of background luminance
on the detection of large-area stimuli.
Predictions areimproved by assuming there
exist various sizes of receptive fields that
determine thresholds jointly.

I. INTRODUCTION
This article describes a shunting

feedback-plus-feedforward model of visual
contrast detection." Shunting networks
derive from neurophysiology, where they
describe a kind of synaptic inhibitory
process. Though nonlinear, the
mathematical analysis of the steady-state
response of the shunting networks is
basically simple. On the other hand, human
contrast detection is basically complex,
probably involving several different
mechanisms. Whereas a complete model for
contrast would be correspondingly
complex, the model proposed here is
neither complex nor exact. The
justification for proposing it is that, for a
model of its simplicity, it has remarkable
correspondences to vision.

Shunting Inhibition

Fatt and Katz (1953) and Coombs,

Perception &Psychophysics, 1970, Vol. 8 (3)

:7'
o----l I'~ :

I
I

FEEDFOAWAAD 1~ FEEDBACK
---_/ '----

Fig. 1. Electronic analogue of shunting
synaptic inhibition. The input current is H;
the output voltage is G; the triangle
indicates an isolating transconductance.
The shunt path is R, which is controlled by
inhibition, I. Inhibition may arrive either
via feedforward or feedback paths; I
increases the conductance (diminishes R)
of the shunt path proportionally to its own
strength.

Eccles, and Fatt (1955) first established
the basic mechanism of neural inhibition.
This mechanism may be called shunting
inhibition (Furman, 1965) because
inhibitory signals cause a portion of the
excitatory signals to be diverted, or
shunted. An electronic analog of shunting
inhibition is an RC·stage in which the value
of R is decreased by inhibition (Fig. 1). At
high levels of inhibitory input, the net
effect is analagous to arithmetic division of
excitation by inhibition.

Lateral Interaction
All visual systems of more than one

receptor exhibit phenomena of lateral
interaction; namely, the outputs of the
adjacent receptors combine at various
levels in the nervous system. A priori, at a
particular level, lateral interaction may be
characterized as feedback or feedforward,
and as shunting or subtractive (Furman,
1965), although these categories are not
exhaustive. For example, the lateral
interaction in the eye of Limulus has been
characterized as feedback and subtractive
(Hartline & Ratliff, 1958).3

Various subtractive models of lateral
interaction have been proposed for vision
(e.g., Schade, 1956; von Bekesy, 1960;
Lowry & DePalma, 1961; Rodieck, 1965;
Nachmias, 1968). A desirable feature of
these models is that, because they are
linear, the full power of linear analysis
applies. Unfortunately, linear models do
not handle the problem of light adaptation,
except by ad hoc mechanisms. On the

other hand, shunting models of lateral
interaction intrinsically are models of
adaptation.

Boundary Detection
When viewing the boundary between

two adjacent, uniform fields of slightly
different luminances, Os see an illusory
light band near the boundary on the light
side and an illusory dark band near the
boundary on the darker side (Fig. 2). These
illusory light-dark bands are called Mach
bands because of their similarity to the
light-dark bands observed by Mach at
discontinuities in luminance gradients
(Ratliff, 1965).

Because of Mach bands, the apparent
contrast between two fields of nearly equal
luminance is greatest at the boundary
between them. Thus, in searching for a
liminal test field superimposed on a
masking field, it usually is the boundary of
the test that the 0 detects (Lamar et al,
1947). For a boundary to be detected, it is
assumed that the excitation in the light
band (plus-zone, z+) must differ by a
criterion amount from the excitation in the

z+
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Fig. 2. Mach bands at a boundary (a),
and at the ends of gradients (b) and (c).
The anaular curves indicate the stimulus
retinal illuminance £(x) as a function of x;
the short horizontal lines indicate Q(x)=O.

The smooth curves are G(x), the
predictions by the model of the retinal
response to £(x). G(x) corresponds
approximately to the subjective appearance
of the stimulus. In (a), the light band z+
and the dark band z_ are indicated.
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lib. Simplifying Assumptions; Corollaries
The aim of this article is to illustrate

general properties of the model that obtain
over wide ranges of parameters. We,
therefore, make the following simplifying
assumptions.

(I) Homotropic. The weighting
functions WH(X,y), WI(X,y) are assumed

j=I,···,n

It is interesting to note that a similar
equation for lateral interaction originally
was proposed by Mach one hundred years
ago (Mach, 1868; Ratliff, 1965).4

(4) Prior adaptation. The adaptation
mechanism proposed by Fuortes and
Hodgkin (1964) consists of a cascade of n
RC stages in each of which the R is
controlled by shunting feedback from the
final stage. This n-stage feedback system is
described by equations of the form

where X = t/RC and Yo = ~ (Sperling &

Sondhi, 1968). For constant input i', the

output Y is defined by

In the case of prior adaptation, the ~ of
Eqs, 1 and 2 is replaced by Y of Eq, 4.

(5) Boundary detection. The detector
locates the point z; with maximum output
in the light band near the boundary and
the point z_ with minimum output in the
dark band of the boundary. It forms the
difference .lG = G(z+) - G(z_), adds a
random variable N to this difference, and
produces a detection response if
.lG + N;;;' e. The criterion E may vary from
experiment to experiment but is assumed
to remain fixed within an experiment.

Equation 3 arises from the circuit of Fig. 1.
which describes shunting inhibition. For H
and I constant in time, Eq.3 reduces to
G = R • H/(I +kl), For convenience, the
parameter R is absorbed into G so that-for
steady inputs-Eq. 3 reduces to the form

Fig. 3. Example of an excitatory

weightinS function WJI(r) and of an

inhibitory weighting functiOR WI[r]. Both

functions are two-dimensional normal

distributions-; or/ou=3. These functions
are used in all numerical examples of this

article; The indicated effective diameters of

wH and WI are 2OUv'2 aad 201..fi,
respectively.

where WI and VI are the inhibitory
area-weighting and temporal-weighting
functions. Figure 3 illustrates the wH and
WI that are used in the examples of this
article.

I(x,y,t)= ~ ( x , y , t ) ... wI(X,y) * vIet) (2)

H(x,y,t)= ~ x , y , t ) * wH(x,y) * vH(t).

(Ia)

H(x,y ,t) =f {[ ~ (x',,/ ,t') wH

(x-x',y-y'}vH (t-t') dx' dy' dt'.

are not interested in these details may skip
to Section 111.

I
= CH(x,y,t). (3)

Here WH represents the excitatory
area-weighting function, VH represents the
excitatory temporal-weighting function,
and R represents integration over the area
of the retina.

By defining the symbol * to denote the
operation of convolution, Eq. 1 can be
rewritten as

(l)

lIa. Basic Assumptions
(1) Excitation: At each point in space

x,y and at each instant in time t, excitation
H is given by the weighted sum of retinal
illuminance ~ in a spatial and temporal
region around x,y,t, namely

The definition of H by an integral is an
approximation to a sum that involves an
the receptor elements; because these are
numerous, the approximation is good.

(2) Inhibition. Inhibition I(x,y,t) is given
by

d 1+ kl(x,y,t)
dt G(x,y,t) + RC G(x,y,t)

(3) Output. The output G(x,y,t) is
defined by

dark band (minus-zone, z_). An expression
for the difference in excitation between z+
and z_ is derived from the feedforward
shunting model.

II. FEEDFORWARD MODEL
Outline

Let ~(x,y), the illuminance distribution
on the retina, be the input to the model.
The input undergoes a transformation
(feedforward neural field) so that
corresponding to each point x,y there
ultimately is an output G(x,y). The output
G is composed of an excitation term H and
an inhibition term I. The excitation term H
is given by a weighted sum of illuminances
falling on the excitatory area around x,y;
inhibition is given by the weighted sum of
illuminance falling on a larger, concentric
inhibitory area (Fig. 3). Inhibition interacts
with excitation by feedforward shunting to
produce the net output G. A detector scans
G(x,y) to find the point z+ where G(z) is a
maximum and the point z_ where G(z) is a
minimum. When .lG,

jDIAM(WH>1
r- --,
I I

I

I

.lG = max G(z) - min G(z)

= G(z+) - G(z_),

exceeds a threshold criterion e, detection is
signaled.

------DIAM (WI> ------

Adaptation

As a complication, the input to the
feedforward neural field may not be ~(x,y)

directly, but some transformation of ~ .

There are good reasons for supposing that
the H and I terms of the feedforward field
are not composed simply of weighted sums
of ~ , but that a feedback transformation
(adaptation) precedes the feedforward
transformation (Sperling' & Sondhi, 1968).
If the initial adaptation is taken to be the
shunting feedback transformation
proposed by Fuortes and Hodgkin (1964)
and by Sperling and Sondhi (1968), then
results obtained with pure feedforward
shunting carry over-with only slight
modification-to the case of feedback plus
feedforward.

The next section presents a formal
statement of the assumptions. Readers who
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IIc. Derivation of Predicted Contrast

Thresholds for Incremental Tests upon

Uniform Backgrounds
Variation of incremental threshold

luminance .:lQ with background luminance
Q. Approximate solution. The critical
difference .:lG for detection is assumed to

be

is based on the difference in output
between two points, z+,z_, rather than
between two areas, e.g., appropriately
weighted neighborhoods of z.; and z_.
Comparison of neighborhoods rather than

points is equivalent to spatial filtering in
the detector, that is, to a convolution
integral of G(x,y) with the neighborhood
weighting function of the detector. Since,
in the model, the effects of spatial filtering
at different levels are difficult to
discriminate, all spatial filtering is assumed
to occur in the feedforward neural field.

Fig. 4. Typical spatial and temporal
relations between background (B), masking
(M), and test (T) fields. Spatial relations
only are illustrated at left; spatial and
temporal relations at right. On the right,
the Q·axis represents retinal illuminance Q,

the t-axis represents time and the r-axis

represents the diameter of the stimuli

'"-_--------, £B (after Sperling, 1965).

the effective area of WH , and

denotes a time-varying field QM(X,y,t).
Typical relations between T, M, and B are

illustrated in Fig. 4.

The contribution of a field j of retinal
illuminance Qj(x,y,t) to H at tm is given by

Hj = Qj * wH * VH. The units of Hj are total
illuminance energy, i.e., retinal illuminance
X area X time; it is useful to think of Hi as
the total energy contributed by Field J to

H at the moment of detection. To calculate

Hj it usually is not necessary to know

WH(X,y) and VH(t) exactly. For example,
when QB(X,y,t) = QB, i.e., a constant, it
only is necessary to know

not to vary within the domain being
studied. Further, they are assumed to be

radially ~mmetric, that is, functions only
of r = v'x~ The weighting functions
WH,WI are defined so that (a) the
maximum value of each is I, and (b) WI
extends beyond wH' Assumption a is
arbitrary for convenience; Assumption b

is amply supported at the retinal level by
physiological evidence.

(2) Additivity of luminance
components. When the net retinal
illuminance Q(x,y,t) is composed of several
component illuminances, such as a
background illuminance QB(x,y,t), a
masking illuminance QM(X,y,t), and a test
QT(X,y,t), then the contributions of each of
these illuminance components to H and to
I can be computed separately and the
results added together. For example,

H = [~Qj(x,y,t)] * wH(x,y) * vH(t)
J

= ~Q/x,y,t) * wH(x,y) * vH(t) (5)
J

where Qj denotes a component illuminance.
Equation 5 follows from the superposition

(linear) property of convolution.
(3) Effective areas and durations. In

order to determine whether or not a
boundary is detected, it is not necessary to
find .:lG as a function of time; it is only
necessary to find its maximum value.
Suppose .:lG attains its maximum at time
tm . By assuming the interaction to be of
the form of Eq. 3a, the problem of
calculating .:lG reduces to calculating H
and I at t m.

The calculations of H and I usually can
be simplified by considering Q to be
composed of several fields; a field to be
detected-the test, T, a background field,
B, and/or a masking field, M. B and M
impair the detectability of T over the
time and areas of interest. Usually M

the effective duration of VH (cf. Fig. 3).
The energy contributed by B to H then is

HB = QB • WH • VH·
When a field does ndt cover w or v

entirely, estimates can be made of the
intersection between the field and the
weighting function, i.e., of their fractional

overlap (Fig. 5). In the case of area
weighting functions, good estimates can be
made for the cases of interest (see below
and Fig. 5). For the case of temporal
weighting functions, two cases are by far
the most frequent: (a) Qj(x,y,t) =

Qj(x,y) 5 (t) and (b) Qj(x,y,t) = Q(x,y). In
Case I, the temporal weight is 1.0; and in

Case 2, only the effective areas (VH, VI)
matter. By confining our treatment to T
fields, which either are impulses or steady,
to M fields, which are impulses coincident
with T or steady, and to B fields, which are

steady, only one parameter, VI/VH, need
be known to describe the temporal

weighting functions.
(4) Comparison-detection ofneighboring

areas. It may seem artificial that detection

r;;)\-,.@
V'- 0

(e) (d)

Fig. S. Location z+ of maximum
response and z_ of minimum response for
two stimuli: (a) and (b) a light-dark
boundary; (c) and (d) a small test spot. The

effective areas of WH and of wI are drawn

around z+ and z_. Receptive fields are
illustrated for (a) z+ inside light areas;
(b) z_ in dark area; (c) z+ centered around
stimulating spot; (d) z_ located with test
spot at fringe of WH but within WI.
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(15)

~ H = QT(x,y) * wH(x+-x,y+-y)

- QT(x,y) * wH(x_ -x,y _ -y)

[~I] r ~H r'
a = U(z_ll • LH(z_lJ = /3/0..

In words, a is the ratio of the proportional

increase in inhibition /3 to the proportional

increase in excitation a.. It reflects the

amount by which T increases inhibition

relative to the amount by which T
increases excitation. For the case of M and

B fields that uniformly cover the entire
area of interest, a reduces to a-2 ~l/~H,

the form used in Eq. II. Finding the effect

of test area on threshold ~ Q involves first

calculating a. The first case to be

considered is: T = a point.

A point stimulus at (0,0) is defined as

QT(x,y) = 5(0,0)l2T' The factor ~ H is

Maximum excitation occurs at z, = 0,0;

minimum excitation occurs ~ x away, at
z_ = (~x,O). Writing WH as a function of

distance ~ x and letting ET denote the total
energy in the test gives

~H = ET[wH(O) - wH(~x)]

=ET[1-wH(~x)],

and

is remains valid. For test stimuli oflarge area,

the correction factor becomes about 2 at

high luminance and, therefore, is

significant. Details of the definition and

calculation of the area factors are given

below.
The effect of test stimulus area on ~Q vs

Q. (1) Point-stimulus. In the expansion of
Eq. 8 into Eq. 11, a term containing the

ratio of inhibition to excitation occurred

repeatedly, and it was convenient to

.designate it by the symbol a. In fact, a is

the ratio of two pure numbers

(10)

~ G [ 1 + kI(z_)]
~ H = • (11)

1 - eo: - a/[I + l/kl(z_)]

where C3(l2) = Ea + akl(z )/ [I + kl(z )].

For extreme values of l2, the limits of c-;(l2)
are

For a = 0, the denominator of Eq. 11 is

1.0; the numerator of Eq. 11 is identical to

the first two terms of the right-hand side of

Eq. 9. Therefore, for a = 0, Eq. 11 is

equivalent to Eq. 10, which used only the

first two right-side terms of Eq. 9. More

generally, Eq. 11 may be written in terms
ofEq. 10 as

of Eq. 9 vanishes. At threshold, t.G

constant so Eq, 9 reduces to

where the positive constants c, and C2

depend on the overlap of the B, M, and T

fields with the weighting functions, on the

threshold criterion ~ G , and on the relative

amounts of QM and QB. This elementary

equation describes the response of the

feedforward system to the usual contrast

detection stimulus, i.e., an incremental test

field T of threshold luminance l2T = ~Q

added onto a larger background field B of

luminance l2. Variations in procedure cause
predictable changes in the constants c, and

C2'
Variation of ~ l 2 with 12.. Complete

solution. The exact solution of Eq. 6 is

much more complicated than the
approximate solution (Eq. 10), but it is
basically quite similar to Eq. 10. To derive

this solution, we may start with Eq. 8,
expand I(z+) into I(z_) + ~I, G(z_) into

H(z_) and I(z_), and make the following
substitutions, which will be explained later.

For H(z_) substitute l(z_)/a2; for ~I

substitute aa2 ~H; for ka 2 ~G write E. This

ultimately yields

t.H = HT(z+) - HT(z_)

= [p(z+,T) - p(z_,T)]WH • t.Q

= ~p. WH • ~l2

t.H = t.G + [kt.G] I(z _) + [kG(z+)] t.I.

(9)

To simplify Eq.9 further, the following

assumptions are made:

(1) M and B entirely cover the area of

interest so that only T contributes to

differences between z., and z_ in the

amount of H and I received.

(2) ~ H can be expressed in terms of

fractional overlaps as follows. Let

t.Q = max l2T(X,y). From the definition of

H(x,y) by Eq. 1, it follows that HT(Z+) can
be expressed as some constant

[p(z+,T) • WH] times ~ l 2 , where p(z+,T)
represents the fractional overlap of the area

WH with T at the point z+. Similarly,
HT(Z_) = p(z_ ,T) • WH • ~l2. To calculate
t.H, the additivity property (Eq. 5) is
convenient:

Since it was assumed in (1) that M and B

uniformly covered the entire area of

interest, HM+B(Z+)= HM+B(Z_) giving

t.H = H(z+) - H(z_)

t.H = [HT(z+) + HM+B(z+)]

- [HT(z_) + HM+B(z_)].

Equation 8 can be rewritten as

Defining ~ H = H'( z ,") - H(z_),

t.1 = I(z+) - I(z_),substituting into Eq. 6,

and algebraically reducing gives

Rearranging terms of Eq. 7 gives

where the constant ~ p is defined as

p(z+,T) - p(z_ ,T). Thus, ~ H , the left side

of Eq. 9, reduces to a constant (t.p • WH)
times ~ l 2 .

(3) The time-relations and geometry of

M, T, and B are assumed to remain fixed
and either (a) QM and QB are varied

together (Q = cQM + c'l2B) or (b) only one

of QM and l2B (denoted l2 is varied). By this
definition of l2, I(z_) becomes c" -t--c"'l2,

where the c's depend on the time relations
and geometry of M, T, and B.

(4) For the moment, ~ I will be assumed

to be negligibly small so that the last term

Iimc3(l2)=a(I+E) (13a)
l2--+oo

lim C3 (l2) =ae . (13b)
lI--+0

This means that ~ l 2 ' s computed from

Eq. 10 (the simplified solution of Eq.6)
must be increased by a correction factor of
(1 - ue )-1 at low background luminances

and a correction factor of
[1 - a(l + E)] - 1 at high luminances to

satisfy the exact solution. These factors

depend on the area of T. For test stimuli

that are points, the correction factors

differ insignificantly from 1.0, and Eq. 10

~l = ET [wI(O) - wI(~x)]

= ET [1 - wI(t.x)].

The total energy contributed to H at z.,

(and at z_) by a uniform masking field is

simply the effective area WH of WH times

l2M: H = l2M WH. If WI is of the same form

as WH, but larger by a factor of

a[wI(x) = wH(ax)] then the effective area

WI of WI is a
2WH,

and 1= a 2l2MWH.

Putting these terms together in Eq. 14 gives

(for a point stimulus):
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Ell ,

A -A
c- J1po[1-ao(I+E)]

lim J1Q = (E/J1p)Q =--:--------:,.,-EQ_
Q-->oo I - a(1 + 1:) J1p (J + E)J1q

The subscript 0 denotes a small test field

(i.e., a point) and the subscript 1 denotes a

large test field (i.e., a half-field). To

calculate Ac , we substitute Eq. 19 into

Eq. 19a, giving

From Eq. 19, it is possible to predict the

observed "critical area" of the feed forward

field; i.e., the intersection of two

asymptotes in a graph of the energy of a

threshold test stimulus vs the area of the
stimulus. The equation of the small-area

asymptote is A • J1Q = Eo (Ricco's law),

where A is the area of the test stimulus,

and Eo is the minimum energy for

detection. The equation of the large-area

asymptote is Ac • J1Q = Eo, where Ac is the

critical area. To solve for critical area, these

two quantities are set equal, namely

(19)

giving

gives: J1G(threshold) = E/(ka
2

) , or
E = ka2 J1G. This is the definition of E given

earlier. It also is presumed that E is small,
i.e., E';;; 0.1.

Equation 18 indicates another reason for

defining the threshold E as above. Together

with J1p, E gives the main factor in the

slope of J1Q vs Q, dllT/d£B, the Weber

fraction. When J1p is 1.0 (T overlaps

perfectly with WH at z., and not at all with

WH at z_) E is simply the fractional

amount by which QT must increase the flux

being received by WH at z+ in order to

bring the increase to threshold. When

J1p< 1, the Weber fraction is larger than E

because T stimulates WH at z, imperfectly

[p(z+) < I] and/or because it stimulates

wH at z [p(z ) > 0]. The effect of T on

inhibition (wr) is smaller, and it is
subsumed in the area term a of the

denominator of Eq. 18.

Critical area. When Q is large, Eq. 18

reduces to a simpler form,

EQ ,- 1

'/J1Pdl -al(1 +E)]

AJ1pI [1- al(1 + E)]
A = (19b)

c J1Po[1 - a o(1 + E)]

Equation 19b is valid for large values of Q.

To reduce Eq. 19b further, it is necessary

(18)

J1Q =

Using the same normal functions for WH

and wj in the case of the half-field as in the
point test gives, for the half-field:

p(z+) "'" 0.94, p(zJ"" 0.06, q(z+) "" 0.70,
q(z_) "" 0.30, so that a = J1q/J1p =
(0.40)/(0.88) "" 0.45. This value of a

cannot be ignored in Eqs. II and 12, which
shall now be reconsidered.

Effect of test stimulus area on J1Q vs Q.

(3) General form. According to Eqs. 13a

and 13b, the area correction is smallest at

low retinal illuminances, when it is I - ae.
The threshold criterion E is assumed to be

small, that is, E .;;; 0.1. Using the values of a

that were calculated above, we see that

ce < 0.045 even for large-area tests; the

area correction always is negligible at zero

background illuminance. At high

illuminances, the correction factor is
[1 - a(J + 1:)]-1. For point tests

(a "" 0.038), the area correction differs

insignificantly from 1.0. For large-area

tests, a = 0.45; assuming E = 0.1 gives
[1 a(1 + 1:)]-1 = (0.505)-1 "" 2.0, i.e.,

an area correction of about 2 for J111 vs Q.

For the case of an incremental test

stimulus of illuminance QT on a large
uniform background 11 it is possible to

write an almost-explicit exact form of

Eq. 11 to define the threshold value J1l1 of
QT. Using J1p as defined above, ignoring

time effects, assuming large, uniform M
and B fields gives

The area parameter a Illj.Ist be calculated

separately for each test stimulus

configuration. It must also be calculated

separately for each background illuminance

Q because a depends on z_ and z+, and z
and z, vary somewhat with the values of Q

and of J1Q. Fortunately, using the same

value of a for all liT ,liB' introduces only a
minor error into Eq. 18.

The parameter J1p, which describes the

difference in overlap of T with WH at z,

and at z _' reaches values near 1.0 for large

test fields (0.884 of a possible 1.0 for the

WH and WI assumed in the examples) and

J1p goes to zero as the area of T goes to

zero. This means that the main effect of

test area on threshold occurs in the
calculation of J1p; the effect of test area via

a is only of second-order importance.
The meaning of E. For a large uniform

field B, the asymptotic value of G as
liB ..... 00 is G =H/kl = I /(ka2

) . Assuming

that the threshold of detection J1G is some

fractional value E of the limiting value of G

a =t'-T' a
2

WH • J1~\( QMWH ) = ~q.
\ 11M ' a

2WH /\lITWH J1P p

(I 7)

The effect of test stimulus area on J1Q vs
Q. (2) Half-field stimulus. For a half-field

QT(X,y) = U(X)QT, where u(x) is a unit step

at the point zero [u(x) =0, x < 0; u(x) = I,
x > OJ. When QT is very small, the

maximum and minimum of G are

symmetrical around the boundary,

z, =-z . Choosing WH and WI as above

give sf z , =J1x/2 "" 1.57. Substituting

QT(X,y) in Eq. 15 gives:

I
a = 9" (0.351)/(0.980) = 0.038.

gives5

Equation 17 was derived without any

specific assumptions about geometry and,

therefore, holds for all test stimuli. Note

that the area-factor a2 appears wherever

WI appears, i.e., in both the numerator and

denominator of J1I(I, and therefore a2
is

cancelled in Eq, 17.

Ta .ing

wH(X) =e _x
2
/2, wI(X) =e-X 2 /(2(72),

a =3 and J1x "'" 2.80

The calculation of J11 is the same as Eq. 16

with WI substrtuted for WH·
To simplify Eq. 16, it is convenient to

define the fractional overlap of T with WH

at z , as p(z+) QT(X,y) *
WH (x , -x.y+-y)/(QTWH)' When QT(X,y)
covers all of WH at z., then p(z+) = 1. The
range of p is 0';;; P .;;; I. By defining p(z )

similarly (with z substituted for z+), and

defining J1p = p(z+) p(z_), J1H may be

written as liTWHJ1p. Analagous fractional

overlaps of liT with WI may be defined as

q(z+), q(z ), and J1q. Substituting these

into Eq. 14 gives
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lim Ac/WH "'" 0.47.
Q.-o

EQuation 23 is of the form
m

A = (24)
1- m2 B '

l1G' = m(2""(/k) exp [ -~ n
2 a~]

[I-""(exp [ - ~ ( a f - a ~ ) J ]

/[I-m2""(2exp(-n2ai)].(23)

(21)

Substituting these values into Eq. 22 gives

Q(x,y) * wH(x)

G(x,y) = I + kQ(x,y) * Wt(x)

""( = kQ/(I + kQ).

c=""(/k';

[
1 + a J Il-aj a-bl1G=c -- -c -- =2c--
1+ b 1- b 1- b2

To find the threshold it is necessary only

to determine AG = max G(x) - min G(x).

The algebra is simplified by disposing early

of unneeded terms. Equation 20 is of the

form (CI + VI)/(C2 + V2) where c and v
denote constant and variable terms (as a

function of x). Furthermore, the maximum
of G occurs when x = 0, the minimum

occurs at x = 1T/W, so that VI (x+) =
-VI (x _) and V2 (x+) = -V2 (x_). Thus l1G

is of the form

a s m cos e w'q =mexp [ - ~ n 2 a ~ J ;

b = my cos * w'l = m exp [-~ n2ail;

an exact solution is derived to relate all the
factors.

When a sine stimulus Q(x,y) is the input

to the feedforward system, the output is:

(20)

(I + kQ) + rnkQ cos * WI

Before substituting for a, b, and c in Eq. 21

it is desirable to change scale factors

s l i g h t l ~ and to define w'H =
(21T)-V2 a H - l w H and W'H =
(21T)- \l,al- I WI, so that W'H(X) and W'I(X)

are probability distribution functions. By
defining AG' = (21T)-'12aH- IAG and

k' = (21Tt\l,alk the primed system becomes

equivalent to the unprimed system. In

Eq. 20, and in all equations derived from

it, changing from unprimed to primed WH ,

WI, l1G, and k preserves the equalities.
Considering Eq. 20 to be of the form

c( I + a)/O + b) gives the following

identifications of a, b, c:

Q(x,y)= Q(l + m cos wx).

lid. Sine-Wave Contrast Thresholds

A sine-wave contrast stimulus is defined
by Q(x,y),

Q(x,y) is a one-dimensional stimulus in the

sense that retinal illuminance varies only in

the x-dimension. For a given threshold

criterion AG of the feedforward model,

and for a given average illuminance Q, the

modulation threshold m is a function of w.

The function depends on Q and on AG. By
assuming, as before, that

shape of l1Q vs Q, which cannot be

compensated by linear transformations of

the coordinates. Because H(z+), H(z_),

I(z+), I(z_) occur in C3(Q) only in terms of

Q directly and in terms of the area factor a,
the problem reduces to that of finding the

effect of temporal stimulus variations upon
a.

In Eq. 14, a was defined as the ratio of
(3 = l11/I(z_) to 0: = l1H/H(z_). Visual
responsiveness to transients means that test

stimulus illuminance QT contributes more
effectively to l1H and to l11 than

background illuminance QB contributes to

H(z_) and I(z_). Let 1/H be the factor

expressing the increased effectiveness of a

transient input to l1H relative to that of a

steady-state input; i.e., we use 1/HQT to

calculate l1H rather than QT. Let 1/1 be the
fac tor expressing the increased

effectiveness of a transient inpu t to l11

relative to that of a steady-state input. Let

1/= 11I/1/H· By substituting 1/H and 111 into
Eq. 14, the revised area factor a' is seen to

be a' =na.
The effect of temporal variations on the

form of l1Q vs Q is thus given by a single

parameter, 1/. When T and B have the same

temporal waveshape [i.e., QT(t) = cQB(t)],

then by definition 1/= 1.0. When T is a step

function, superimposed on a steady

background B, then the effective value of1/

will vary with time. Suppose inhibition

grows more slowly than excitation [for

example, VI(t) = vH(mt), m > 1]. Then 1/

becomes a function 1/{t) of the time t after

onset of the step. Initially 1/(t) < I, finally

1/(t) = I, and for reasonable assumptions
about VH(t), VI(t), 1/(t) will overshoot the

value 1.0 for some intermediate value of
t. 7

The variation of 1/ with time means that

the spatial response characteristics vary
with the duration of a test stimulus. In

considering psychophysical data, a
simplifying assumption will be made;

namely, at a moment of detection td, the

model can be represented by the currently
effective value of 1/,1/(td).

(l9c)

A similar calculation of the critical area

of the dark-adapted model shows it to

differ negligibly from WH.

General solution. The values of H, I, and

G are defined by Eqs. I, 2, and 3a, even

when a closed-form solution does not exist.

By using summations to approximate

integrals, G may be calculated for any

explicitly defined QT, QM, QB. The author is

indebted to Mrs. J. T. Budiansky for a

computer program to calculate G(x,y) for

the special case of T = a disk stimulus of

radius r, B = a uniform background of

illuminance Q, and the weighting functions

WH, WI proportional to normal
distributions (Fig. 3). The results of these

computations are illustrated later, in

Section III.
Transient effects. In vision, transient

responses generally are greater than

steady-state responses, and test stimuli are

detected by their transient response. In the

model, transient effects are subsumed
under the temporal weighting functions,

VI! , VI, which are not known exactly. In

this section, some conclusions are derived
from very general considerations about

VH, VI·
In considering temporal effects, the

concern here is primarily with the form of

the l1Q vs Q function rather than with the

particular values of l1Q. E.g., the basic form

of the l1Q vs Q function is l1Q = c I + C2 Q .

The temporal weighting functions affect CI

and C2' On a graph of l1Q vs Q, changes in

CI and C2 merely shift the curve vertically

and/or change the scale of the horizontal

coordinate; they do not change the form of

the curve. When area effects are Significant,

l1Q is given by Eq. 12, which contains a

factor of [1 - C3(Q)] -I. The factor C3(Q)

depends on Q, producing changes in the

to calculate the l1p's and the a's. This has

already been done for the case of point T's

(l1po ,ao) and for half-field T's (l1PI ,al ) .

For T = a point, l1po

[A/WH)[I - WH(l1X)] "'" 0.98 A/WH, and
ao = 0.038. For T = a half-field, PI "'"0.88,
independent of A, and al = 0.4,.

Substituting the algebraic quan tities into

Eq. 19b yields

The last expression of Eq. 19c is a
convenient, rough approximation.

Substituting the numerical values obtained

for the case where wH, WI are normal
distributions, and al/aH = 3, gives
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The dimensionless constant C2 is called the
Weber constant for contrast detection.

Figure 6 also illustrates five cases in
which shunting-feedback adaptation

precedes the feedforward stage. The
amounts of feedback and feedforward are
given by rand 1, respectively (Fig. 7). In
the case of pure feedforward, r is O. When
feedback and feedforward control signals
are evenly matched (r = 1, Curve B in
Fig. 6) the AQ vs Q function is barely

discriminable from the case of pure
feedforward. As feedback becomes
relatively more significant (r = 10, 102,

104
, 106

, respectively), the predicted
thresholds AQ follow a square-root law
(slope = \6) for a bigger and bigger region
between the two unchanging asymptotes of
slope 0 and I. No matter how large the

Fig. 7. Block diagram of the model. FB
is feedback component; FF is feedforward
component; Q is input retinal illuminance;
G is neural output; r is the relative amount
of signal fed back (FB/FF). The detector is

not indicated.

Fig. 6. Theoretical log AQ vs log Q (test
threshold vs adapting bact.ground}

functions. (a) Pure feedforward forward
model; (b-I) models with feedback plus
feedforward (see Fig. 7). The ratio r of
feedback to feedforward for each of the
curves is (a) r = 0, (b) r = I, (c) r = 10,
(d)r= 102,(e)r= 104,(f)r= 106

•

III. PROPERTIES OF THE MODEL

Light Adaptation: Weber Law and
Square-Root Law

Change in AQ with Q. Consider detection

of contrast at the boundary of a small
incremental test field of retinal illuminance
AQ superimposed on a background field of
retinal illuminance Q. To produce a small,
constant output AG in the feedforward
neural field, Eq. 6 showed that
AQ = c t + C2 Q, where the values of c, and
C2 depend on the spatial geometry and
temporal waveforms of the test and
background fields. This predicted relation
between AQ and Q is illustrated in Curve A

of Fig. 6. The horizontal asymptote
represents the dark-adapted threshold c, ;
the diagonal of slope I (the
high-illuminance asymptote) represents a

Weber law with intercept C2' That is,

3

AQ = (k, x + v'kt x + 14 + !h.)AG. (27)

th e r efore, the behavior of the

feedback-plus-feedforward system and of
simple feedforward system is identical. In
fact, when n is small, the two kinds of
systems are quite similar at all levels of

input; n merely determines the gradualness
of the transition from the constant
response characteristic at small inpu ts to
the proportional response characteristic at

large inpu ts.
So far, it has been assumed that the

feedback and the feedforward components
were equally weighted in the sense that the
feedback signal becomes effective in the
same range of illuminances as the feedfor­
ward signal. This assumption is unimportant
when the input is very small or very large.
For example, when the input is sufficiently
sm all, both the feedback and the
feedforward stage, behave like simple
transducers; their output is proportional to
the input. Feedback and feedforward
become significant only when intermediate

values of Qare attained.
If the feedback stage became effective at

a much lower input level than the
feedforward stage, then the overall

response of the system would go through
three distinct phases: (l) for very small Q,

AQ "'" CI, (2) for intermediate Q,

AQ"" QI/(n + 1), (3) for large Q, AQ "'" C2 Q ·

Significant feedback at small Q increases

the size of the transition zone between
constant AQ (small Q) and proportional AQ

(large Q) by interposing a zone of slope "'"
I/{n + 1). For the case of n = 1 (one stage
of feedback adaptation) an explicit
expression for AQ is derived from Eqs. 3a

and 4, in terms of the amounts of feedback
k, and feedforward k2; namely,

1 2

LOG10 R.

o-I-2

2

Equation 24 is a quadratic equation in
m; the positive root is

m = (2AB) 1 ['I'I + 4A 2B - I], (25)

A = k'AG'{2'y)-t exp (\6 n2 a~)

/[1 'Yexp [-\6 n2 (a: - a~)ll

and

~AQ'=[ Y+ I JAG (26)
aQ I .

Y+ n+ 1

where A and B are defined above.

Equation 25 is an exact expression for the
input modulation depth m needed to
produce a response of AG' in the output of
the feedforward system. However, Eq. 25
does not take into account any prior

feedback adaptation.

where

~

<I

23

8
...J

4

5

lIe. Prior Feedback Adaptation
Incremental thresholds. Let AQ be the

incremental threshold for a feedforward
system and AQ' be the incremental
threshold for the same system preceded by

n stages of shunting feedback. If we take
the gam of each stage as unity, It can be

shown from Eq. 4 that in the steady-state'

where Y is the output of the nth stage. For
large Q, Y also is large, i.e., y-7 QI/(n + 1),

so that AQ' -7 AQ' + O{AQ) , where O(AQ)

represents a quantity that becomes
negligible with respect to AQ as Q -7 00

•

Similarly, as Q -7 0, AQ' -7 (n + 1)AQ +

C -7 C': At high and at low levels of input,
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ratio of feedback to feedforward signal

may be, the same asymptotes ultimately
are achieved!

Figure 6 illustrates how the nature of
the transition from dark-adapted behavior

(horizontal line) to light-adapted behavior
(line of slope 1) can be determined by the

ratio of feedback to feedforward signals.
For example, a line of slope ~ over a

horizontal range of about 3 logs (Curve C)
occurs when r = 102. The threshold
relation of ~ l / ex l/v, is a square-root law. It
is commonly observed at low levels of l/,
particularly in peripheral viewing, i.e., in
rod vision. According to the model, the

difference between threshold functions
observed in different regions of the retina
is explained by a regional variation in the
parameter r.

In terms of neural mechanism, a large

value of r (in the peripheral retina) requires
that feedback signals be mediated by
special cells-possibly horizontal cells. This
is because the feedback is effective even

when only one quantum per hundreds of
rods is being absorbed from l/, so that the
probability of a quantum from ~l/ striking

a rod that recently received a quantum
from l/ is small. Adaptation of a rod is
determined by its environment (e.g., the
rod pool, Rushton, 1963). Although the

same also may be true for foveal vision
(Le., cones), it cannot be proved on a priori
grounds, because cones respond only at
higher levels of retinal illumination (e.g.,
several quanta/cone; Brindley, 1960,
p. 187ft) and therefore the feedback loop
theoretically could be within a single
receptor.

Shunting feedback: An evolutionary
adaptation to quantum noise. At low levels
of illumination, visual discrimination
approaches the limits set by photochemical
absorption and the quantum variability of
the stimulus (Hecht et al, 1942; DeVries,
1943; Pirenne, 1962; Barlow, 1962b). That

is, the performance of the eye approaches
the performance of a perfect detector
which absorbs the same number of quanta
as does the eye (Barlow, 1962a). At high

retinal illuminances, the eye is not nearly
so efficient.

The measure of quantal

(Poisson-distributed) stimulus noise is the
noise's standard deviation, i.e., its
root-mean-square (RMS) value. If the limit
of visual discrimination were determined
by quantum noise of the stimulus, then the
detection threshold ~ l / would increase as
l/1/2 , because the RMS value of quantum
noise increases as l/1/2 • If there were no

visual adaptation, test signals ~l/ of equal

detectability would then produce vastly
different visual responses at the point of
detection; i.e., ~l/ signals from high-Q

backgrounds would produce much larger

signals than equally detectable ~ l / signals
on low-l/ backgrounds. To utilize the

stimulus information efficiently, the a
would have to adjust his detection criterion
delicately to each background level l/. In

fact, human as are notoriously unable to
make accurate judgments of background
retinal illuminance, which poses the
problem of how as could adjust a criterion

to depend on something (l/B) that they
cannot estimate. On the other hand,

humans are able to make stable detection
judgments of ~l/, even with little practice.
These difficulties are resolved naturally by
the shunting feedback component.

Shunting feedback produces an output
that is asymptotically proportional to Qv,.

Thus, intensity discrimination would be
impaired because of the reduced dynamic
range of the output. On the other hand,
small threshold increments of 0' • Qv, would

produce output increments proportional to
0' an d therefore would be equally
detectable. The shunting feedback system,
which reduces the input by a factor of l/v"
is the ideal match to a stimulus in which
RMS noise increases by a factor of l/Y'. In
the output of a shunting feedback system,
the RMS value of quantal noise in l/
remains constant, independent of Q. Thus,

as Q varies, increments ~ l / of constant
statistical significance produce constant
incremental outputs, independent of l/.
With one stage of shunting feedback, the

detection rules can be independent of l/-an
enormous simplification of the detection
problem.

The second remarkable property of
shunting feedback is that it does not alter
the desirable properties, at high input
luminances, of a subsequent feedforward
component. The Weber-law characteristics
of the system result from the feedforward
component; these characteristics are left
entirely intact by shunting feedback.

Additivity of illuminance components.

Consider a stimulus composed of several
components; for example, of a brief
masking flash and of a steady background

(Fig. 4). The threshold luminance
measured in the presence of each
component stimulus, individually, is ~l/h

~l/2, ••• , ~Qn, etc., and the threshold in
the presence of all components together is

~l/1 + 2 ••• + n- Then the model (Eq. 10)
predicts that

(28)

The left equality holds for low retinal
illuminances (where the ~l/ vs l/ function is
flat) and the right equality holds at high

illuminances (where ~l/ is proportional to
l/). For the right-hand equality to hold,

each compornent l/i must already be in the
Weber-law range, and the ~l/'s must be
taken in the same direction (e.g., all

increments or all decrements).
The right-hand equality has not been

widely tested. Sperling (1965) found it to
hold over a wide range of masking flashes
superimposed on backgrounds of varying
luminances (cf. Fig. 4), but his range of
backgrounds was limited.

Many theorists have proposed that the
visual system behaves linearly for small
signals. Small-signal linearity is a trivial

consequence of any realizable continuous
system (i.e., also having a continuous
derivative). The problem with small-signal
linearity is that the linear range may be
very small. The significance of Eq.28 is

that it predicts superposition to hold for
large signals; the larger the background
inpu t signals, the better it holds.
Considering how nonlinear the elements of
the model are, it is remarkable that
additivity should ever obtain, all the more
remarkable that the model should become
a linear system with large masking signals.

Receptive Fields
Consider the output of the model G(x,y)

at a particular point x,y. Let the input be a
point of light ~l/(x',y') superimposed on a
steady uniform background l/. It was
assumed (Section II) that the excitatory
WH and inhibitory WJ weighting functions
were radially symmetrical, so that G is a
function only of ~r =../(X_X')1 + (y_y')2,

the distance of spot ~l/ from x,y. When
y' =y, then ~r = ~x.

To calculate G(r), specific distributions

must be given for wH(r) and wJ(r). In the
examples of this section, it is assumed that

WH and WJ are proportional to
two-dimensional normal distributions, with

the standard deviation aJ of WJ equal to
3aH (Fig. 3). In terms of area, the effective

area WJ of WJ is nine times the effective
area Wjj OfwH: WJ!WH =(aJ/aH)2,

The shape and magnitude of the
response G(r) to ~l/ depend on both Qand
~l/. Three values of l/ are considered: Q= 0,

1/18, and 103
, representing darkness, a

dim background, and an
asymptotically-intense background. The
input value of ~l/ is chosen arbitrarily so
that-in the absence of self-inhibition-it
would produce a maximum response ~G of
magnitude equal to the asymptotic
steady-state value of G in the light (e.g., so
that

max ~G =lim G(l/B) = l/ka2).

l/400

Because the self-inhibiting effect of ~l/ on

itself is neglected in choosing the value of
~ l / , the actual value of max ~G is
somewhat less than l/ka 2

.
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adaptation. These effects of light
adaptation occur without any change of
connectivity of the model; they simply
reflect the nonlinear, intensity-dependent
mode of response of the feedforward
component.

Comparison of the Phase I and Phase 2
responses shows that: for small values of
Llr, both Phase I and Phase 2 responses are
positive; for intermediate values of Llr,
Phase I responses are positive and Phase 2
responses are negative; for large values of

Llr, both Phase I and Phase 2 responses are

negative. The areas defined by these values
of ~ r correspond to the on-center, on-off
surround, and pure-off surround of an

on-center receptive field. These areas are
similarly defined for off-center receptive

fields, except that the sign of the model's
response must be reversed.

Impulse response (point-spread
function). The curves of Figs. 8a, 8b, and
8c give the output G(x,y) at a single point
x,y, as the location x + ~x,y of a

stimulating spot is varied. A little reflection
will convince the reader that when the spot
is stationary at x,y and the output is
measured at different locations, x + Llx,y,
the resulting curves describing G(x + Llx,y)
are identical to those shown in Fig. 8. This
symmetry between input and output exists
whenever the properties of the

Fig. 8. Output of the feedback
component of the model at one point (x,y)
as the location (x + Llx,y) of a test stimulus
is varied. Horizontal scale markings indicate

radial distances of 1.0 uH' Sections a, b, c
show responses to a point stimulus; Sections

d, e, f show responses to a line stimulus;
Sections g, h, i show responses to a

half-field stimulus. The retinal illuminance

~ Q of the line and of the half-field stimuli
is such that when they are optically

superimposed on wH they provide wH with
exactly as much light as the corresponding
point stimuli. Responses are illustrated at

three different times after onset of ~Q:

Phase I (a,d,g) is peak of initial transient,

11 =2; Phase 2 (b.e.h) transient rebound,
11 = 0.5; steady-state (c,f,i) 11 = 1.0. The
three different curves in each section
represent responses G(Llx,QAQ) calculated

at three different levels of background Q:

darkness (lowest curves), asymptotically
intense Q (highest curves), and an
intermediate level of Q(middle curves). The
dashed curves in Sections c, f, i indicate
test-induced excitation ~ H and inhibition
LlI separately (-LlI is illustrated). The
illuminance LlQ of the test stimuli was so
chosen that the maximum value of LlH is
the same for all 27 curves; within a section
the entire curves for LlH and LlI are the
same at all three levels of background Q.

See text for more details.

, I

;'
/

Figures 8a and 8b illustrate the
point-response of the model in Phase I and

Phase 2, respectively, with these values of
.;vershoot and undershoot. The actual
amount by which transient responses
exceed steady-state responses is immaterial
to the shape of the spatial response
characteristics illustrated in Fig. 8. The
various temporal effects on spatial response
characteristics were shown in Section IIc to
be determined by a single parameter 11
which is a ratio of two ratios, B!«: (3 is the
ratio of effectiveness of transient (test)

inhibition to steady-state (background)
inhibition, and a is the ratio ofeffectiveness

of transient (test) excitation to steady-state

(background) excitation. For Phase I and
Phase 2, 11 is assumed to be 0.5 and 2.0,
respectively; in the steady state, 11 is 1.0 by
definition.

In the usual type of physiological
recording, the maximum of response is

noted without regard for the precise time
of occurrence of the maximum. Therefore,
the appropriate responses to compare to
physiological recordings are the maxima of

Phase I combined with the minima of
Phase 2. However, the main features of the
comparison are independent of these
details. First, they show that in the dark

the receptive field has a response that is
characteristic only of the center. With
increasing light adaptation, the receptive
field shows, more and more, the effects of
an antagonistic surround. The light-adapted

receptive field contains areas that had
responded with the center characteristic in
the dark, but which respond with the
surround characteristic in the light. Thus
the effective diameter of the center of the
receptive field shrinks with light

------

POINT LINE HALF-FIELD

~ ~ ,:,1-,
i~ ~ =±========,

x
<J
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Consider first Fig. Be. It illustrates the
steady-state response G(x,y) to a point LlQ

as a function of Llr, the distance of LlQ

from x,y. In darkness, the response G has

no undershoot. At high backgrounds, the
response G has a slight undershoot. The
curves illustrating the response G(x,y) to

LlQ(x+ Llr,y) are analogous to the usual
physiological representation of neural
responses, e.g., of the firing rate of a retinal

ganglion cell as a function of the retinal
location of a stimulating spot of light. The
reasons for identifying the feedforward
stage with retinal ganglion cells are set
forth by Sperling and Sondhi (1968,

p. 1139). The WH function corresponds to
the center of the receptive field and the WI

function to the surround.
To represent visual processes more

accurately, temporal factors need to be
taken into account. Using a similar model
(feedback plus feedforward), Sperling and
Sondhi (1968) showed that its temporal
response to an impulse of lightwas
monophasic at low background luminances
and biphasic at high luminances. The
surround portion contributed its response
more slowly than the center and thus
seemed to be delayed. Step inputs to the
feedforward system may be considered to
induce three recognizable phases. In
Phase I, the excitatory input H is at its
maximum overshoot (e.g., two times the
steady-state value) and the inhibitory
component has acquired its steady-state

value. In Phase 2, the excitatory
component has subsided to its steady-state
value, but the inhibitory component is
overshooting to two times its steady-state
value. Phase 3 is the steady-state, described

above.

Perception & Psychophysics, 1970, Vol. 8 (3) lSI



05,----------------,

Fig. 9. Spatial sine-wave modulation

thresholds of the feedforward section of

the model as a function of spatial

frequency. Average retinal illuminance is

the same for aU points of a curve, and

differs by 0.5 log, 0 units for adjacent

curves. Dashed curves are theoretical

calculations for modulations greater than

100%. Maximum resolution occurs at

highest average illuminances for gratings of

approximately 0.1 cyc1es/oH.

Responses to Spatial Sine Waves
When the eye is confronted with a sine

wave acuity grating (see Section lid),

detection of the grid depends on three

main variables: the fineness of the grid
(spatial frequency w in terms of number of
cycles per degree), the average luminance
(Q), and the modulation amplitude of the

sine perturbation (m, a fraction of Q).
Detection also depends on other factors,

such as the D's internal threshold criterion
and the number of cycles viewed.
Predictions of the model (considering only
the feedforward component) were

generated from Eq. 25 by assuming a
detection threshold of € = 0.01 and
neglecting the effect of number of visible

cycles. The predicted sine wave thresholds
(m vs w curves for various values of Q) are

illustrated in Fig. 9.
Figure 9 shows that as average

luminance increases, so does the model's
acuity for sine wave gratings. At high
luminances, this trend reverses itself for
low-frequency gratings, thereby producing
a pronounced peak of sensitivity at about
0.09 cycles/og , At the peak, a modulation
of about 0.007 is detected. Beyond this
peak, the loss of acuity with frequency is
very rapid, so that the highest frequency
that can be detected is about

0.4 cycles/og ,
The modulation transfer functions of

Fig. 9 resemble transfer functions
measured for the human eye under various
conditions, e.g., by Schade (1956),

Westheimer (1960), Campbell and Green
(1965), Green and Campbell (1965),

Robson (1966), Campbell et al (1966), and
Campbell and Robson (1968). To
determine the amount of quantitative

agreement, 0H must be specified. Perhaps
the most easily specified feature of the
human detection data is the peak in the
transfer function which, at high luminance,
occurs at about 8 cycles per degree
(Campbell & Green, 1965; Campbell et aI,
1966) and at 2 to 4 cycles per degree
(Campbell & Robson, 1968). Setting the
peak of model's response to 4 cycles per
degree determines 0H = 1.47 min. The
predicted acuity limit is then about 4.4
times the peak (18 cycles per degree)
whereas the observed acuity limit is about
50 cycles per degree for stimuli viewed
through the normal optics of the eye and
about 60 cycles per degree for retinal
stimuli of 100% contrast modulation.
Typically, the observed acuity limit
exceeds the observed sine-sensitivity peak
by a factor of about 4 to 20.

Generally, then, the model predicts a
too-small range of peak-to-cutoff in

sine-wave modulation thresholds. This is
not a critical error because it results from

the steep high-frequency attenuation
characteristic of the normal ·distribution

assumed for wH(r). In fact, from the
observed h.igh-f'requency attenuation
characteristic, it is possible to calculate a

wH(r) (different from a normal
distribution) that would reproduce the

observed high-frequency attenuation
characteristic exactly and thereby
eliminate the prediction error completely.

Multiple sizes of receptive fields. The
calculation of an optimally fitting wH(r) is
not made here because the probable reason
for the failure of the model to reproduce
the sine-wave threshold data precisely is

o- 2 -I
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corresponding point and line stimuli in the
left and center of Fig. 8. At high values of
background Q, this value of AQ is such that

AQIQ = 0.25, a rather low contrast ratio.
Spreading a line stimulus into a half-field

greatly enhances the manifestations of

inhibition. For example, at high
background retinal illuminances, the
Phase 2 response to a half-field stimulus is
negative everywhere, corresponding to a

negative afterimage.
Half-field stimuli are among those that

produce the Mach band iHusion. Mach
bands in the model are evident in Phase 1,
Phase 2, and in the steady-state (Figs. 8g,

8h, and 8i), although the vertical scale of

the figures is too small to show them well.
The transient, Phase 1 Mach bands are less
prominent than the steady-state bands.
Figure 8h (high background Q) illustrates
inverted Mach bands, such as would be
seen in a blurred afterimage. Mach bands
are considered in more detail later.

transformation remain homotropic
(independent of absolute location). It

follows that the curves of Figs. 8a, 8b, and
8c describe the spatial impulse response of
the model (i.e., its response to an impulse
in space, a point). In fact, Fig. 8 illustrates

only half of the spatial impulse response;
the response is mirror-symmetrical around
its maximum. The full spatial impulse

response function also is called a
point-spread function, i.e., a function that
describes the spread of excitation and

inhibition around a point input.
Line-spread function. The curves in Figs.

8d, 8e, and 8f describe the line-spread

functions of the model; they represent the
spread of excitation and inhibition around
a thin line stimulus. The intensity AQ of

the line stimulus is such that, when it is
centered directly over the receptive field, it
provides exactly as much stimulation to
the center of the field (WH) as did the
corresponding point stimulus in Figs. 8a,
8b, and 8c. However, line inputs induce
more inhibition relative to excitation (by a
factor of ol/oH) than do point inputs.

In the model, only the T/ ratio of
inhibition to excitation matters; it matters
not whether it is determined by temporal
or spatial factors. Thus, elongating a point
stimulus into a line is equivalent to
increasing T/ for a point stimulus by a
factor of oI!oH = 3, thereby greatly
enhancing the manifestations of inhibition.
For example, the peak of the Phase 2

excitatory response to a point stimulus is
six times greater than the peak of the
inhibitory response; the peak of the
Phase 2 excitatory response to a line
stimulus actually is smaller than the peak
of the inhibitory response.

Lines are one-dimensional impulses in a
two-dimensional space. The line spread

functions are the one-dimensional impulse
responses, and are the appropriate ones to
consider in analyzing one-dimensional
stimuli, such as those used to study grating
acuity and Mach bands. The acuity target

that has been used for the most thorough
and analytical experimental studies is the
spatial sine-wave grid; responses of the
model to these grids are considered later.

Halffield responses. A half-field test
stimulus at Location x, is defined as being
of retinal illuminance AQ everywhere to the
right of x and of illuminance zero to the
left of x. The response of the model to a
half-field test is illustrated in Figs. 8g, 8h,
and. 8i. Because the response has no
significant symmetries, it is necessary to
calculate the entire response, instead. of
merely half of it as for points and lines.
The intensity AQ of the half-field stimulus

is such that, when the light area completely
covers the center of the receptive field, it
delivers as much light to WH as do the
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not its nonoptimal choice of wH(r) and
wl(r) but its attempt to fit all the data with
but a singlechoice of WH and WI. There are
now at least three lines of evidence to
indicate that various sizes of 'receptive

fields operate jointly to determine
thresholds.

Originally, the existence of two or more
parallel detection systems with different
size constants was proposed by several
authors, based on their analyses of

detection thresholds (e.g., Hallett, 1963;
Campbell & Robson, 1968).

Unfortunately, various complex technical
factors, such as lack of perfect radial

symmetry of grid detectors (e.g., Campbell
et al, 1966), the effect of the number of

visible grid cycles (Coltman & Anderson,
1960; Campbell & Robson, 1968;
Nachmias, 1968) and the fact that

low-frequency sine waves extend over
nonhomogeneous retinal regions, make it

difficult to prove or disprove the multiple
receptor hypothesis by simple sine-grid
detection experiments.

The strongest evidence for multiple
receptor systems comes from Blakemore &

Campbell's (1968) study of selective
masking of sine-grids by sine-grids.
Blakemore observed that prolonged
viewing of a particular frequency of
sine-wave grating selectively increases the
detection threshold for a grating of exactly
the same spatial frequency. In Blakemore's
analysis, there are at least as many sizes of
neurons as there are frequencies that can
be selectively masked, and this appears to
be a very large number indeed.

Indirect evidence for multiple detection
systems. A third kind of evidence for the
existence of at least two parallel detection
systems, with different parameters, is

derived from studies that show that critical
duration depends on the O's task; i.e., on
whether he detects acuity targets or
brightness (Kahneman & Norman, 1964).

Additioral evidence comes from some
unpublished experiments by the author.

Critical duration was measured under

conditions in which the boundaries of the
test field coincided with the boundaries of
the masking field, and also in conditions in
which the test's boundaries lay within
those of a larger masking field. When the T

and M boundaries coincide, detection is
restricted to detection of a temporal
illuminance pulse. Under these conditions,
cri tical duration was found to be
substantially smaller than when test
boundaries were available for contrast
detection. The results imply that a system
with a long time-constant is operative when
a boundary is being detected and a system

with a short time-constant is operative
when temporal pulses are being detected.

In terms of information processing, it

Perception & Psychophysics, 1970, Vol. 8 (3)

makes good sense that a system for

detection of spatial detail should gather
information from a small area (in order to
gain maximum spatial resolution), and for
a long duration (in order to gain maximum
statistical significance of its input). On the
other hand, a system for detecting
t e m poral variation must sample

information in relatively short periods of
time (in order to achieve temporal
resolution) and, therefore, in order to

obtain a statistically significant sample, it
would have to increase the size of the

sampled area.
In most normal viewing situations, both

the primarily temporal and the primarily
spatial systems are likely to be stimulated.
In certain conditions, however, even when

boundaries are available for spatial contrast
detection, they may not be used; that is,
detection may be only of the temporal
variation. This fact accounts for some
obvious discrepancies between apparently
similar studies of detection (Sperling &

Sondhi, 1968, p. 1143).

Second-Order Threshold Effects
Change of area of integration with light

adaptation. The spatial responses of the
feedforward system to brief- and to
long-duration pulses of light are indicated
by the Phase I and steady-state responses

in Fig. 8. To find the output G(x,y) for
small-increment test signals lIT(x,y) other
than points, lIT(X,y) is convoluted (I.e.,
weighted) by the point-response G from
Fig. 8. This procedure uses the property of

small-signal linearity in the model.
Alternatively, G(x,y) for the test may be
calculated directly. When the difference
between max G(x,y) and min G(x,y)
exceeds the detection threshold E,

detection is signaled.
To compare the model wiQ! the results

of threshold experiments, it is more
convenient to reverse the procedure
outlined above, and

A
to calculate the spatial

impulse response G(x,y) implied by the
psychophysical threshold results, and then
to compare G(x,y) with G(x,y).
Calculations of this kind (Kincaid et al,
1960; Blackwell, 1963)8 indicate that the

functional impulse response G becomes
narrower with light adaptation, much as
does G in Fig. 8, i.e., qualitative agreement
with the model. The predicted shrinkage of
the critical area of the spatial response is
given by Eq. 19c. Shrinkage depends on
the area factor a. As the area factor a is

altered by 11 to a' = al1, shrinkage also

depends on the effective 11 value of the test
flash used to measure it. For 11 = 1, the
predicted shrinkage with light adaptation
was a factor of ~, which is quantitatively

somewhat less than typically was observed
by Blackwell (1963).

LOG I

Fig. 10. Dependence of predicted test
threshold All on the area of test stimulus.

Curve A is for a point stimulus; Curve B is
for a half-field stimulus. For A and B,

detection is assumed to occur in steady

state. Curve C represents theoretical
thresholds of a half-field stimulus when
detection is assumed to occur in Phase 2.

For ease of comparison, the curves were
moved verticaUy so as to make the
thresholds superimpose at left (Le., in the
dark).

Pulse duration. Barlow (1958)
demonstrated that pulses of a long
duration imply a narrower spread function
than do brief pulses. This effect is

predicted by the model because 11 for long
pulses is larger than 11 for brief pulses, thus
more shrinkage (cf. Eq. 19c, steady-state vs
Phase I responses in Fig. 8).

Pulse area. A third experimental
observation is that large-area stimuli have
shorter periods of temporal integration
than do small-area stimuli. This effect is
predicted by the temporal version of this

model (Sperling & Sondhi, 1968) via the
assumption that the feedforward
controlling signal comes from a larger area
(the surround area of the receptive field)
than does the controlled signal (center area
of the receptive field).

A fourth observation (Barlow, 1957) is
that thresholds of large-area stimuli
increase from their dark-adapted value at
lower luminances than do thresholds of
small-area stimuli. This is predicted from
Eqs. 12 and 18. The model's prediction is
illustrated in Fig. 10, which shows All vs II

threshold functions for a point test
stimulus and for a half-field test stimulus.

The parame ters for the curves are 11 = 1,
E =0.1.

Figure 10 also illustrates a speculative
All vs II function of a large test field for
which it is assumed T/ =2, i.e., detection
occurs in Phase 2 of a long test flash. This
function is particularly suggestive because

in a middle range of illuminances, All

increases more rapidly than lI, a mystifying
but not uncommon phenomenon of
experimentally obtained All vs II curves.
The phenomenon occurs in the model
because of the combined changes in
se n sitivity and in spatial field
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Fig. 12. Predicted threshold illl of an
incremental disk stimulus as a function of

its radius. Upper curve is for high
background retinal illuminances; lower

curve is for the dark-adapted model. For

ease of comparison, the curves have been
moved vertically to superimpose at the

extreme left, i.e., for point test stimuli.
The radii of disks of critical area are
indicated by (D) dark-adapted and (L)
light-adapted.

the (shifted) individual functions. The
overall function, perforce, has a shallower

minimum than any of the individual
functions. In fact, with certain
distributions of component receptive field
sizes, the overall ill/-vs-radius function will
have no observable minimum. As a practical

matter, it would be impossible to

discriminate psychophysically between a
shallow minimum and no minimum at all.
Differences occur only with large-area
disks; the gross nonhomogeneity of the
retina makes such threshold data too
difficult to interpret.

(2) Background retinal illuminance. If l/
is not asymptotically high, individual
ill/-vs-radius functions will be intermediate
between the ex tremes illustrated in Fig. 12;
the relative minimum will be
proportionately shallower.

(3) Statistical fluctuation effects. There

are various statistical factors that enter into
psychophysical thresholds. For example,
detection may occur independently in
different parts of the test field. The
number of opportunities for detection

3

From the locations and values of Gmin
and Gmax it is possible to calculate test
thresholds ill/. The results of these
calculations are illustrated in Fig. 12,
which shows how threshold depends on the
area (A =1Tr2 ) of a disk stimulus. Figure 12
shows thresholds calculated at very high
background retinal illuminances and also at
zero background retinal illuminance; the
two sets of thresholds are scaled to

coincide for point tests stimuli.
As in psychophysical experiments, for

small areas of disk, the threshold depends
only on the total energy (ill/ ex: r " 2 ,

left-hand asymptote). For large disks, ill/ is
constant, independent of r. The
intersections of the two asymptotes
determine the critical areas Ac of the disk
stimuli. In the dark Ac = WH (the effective

area of the excitatory center),
corre sponding to a disk radius of
r = aHV"2. In the light adapted model,
A c = .47 WH. These graphically
extrapolated values are the same as those

obtained by direct calculation from
Eq. 19c.

A shallow minimum in ill/ vs r occurs
when the radius of the test disk is 2.3 aH.

The minimum is about 0.2 log! 0 units
deep. The disks which contain the
minimum threshold energy, however, have
infinitesimally small areas (r ,."0).

There are three basic reasons to expect,

in psychophysical data, the depth of
observed relative minimum of ill/ vs r to be
even less than the depth of the minimum
predicted in Fig. 12: (1) multiple sizes of
receptive fields, (2) failure to use high
background light levels, (3) statistical
fluctuation effects.

(I) Multiple sizes of receptive fields. The

evidence for multiple sizes of receptive
fields was presented earlier in connection
with sine-wave thresholds. The effect of

altering the scale of WH and WI would be
to shift the curves of Fig. 12 laterally.
(Altering the sensitivity of a model would

correspond to shifting the curves of Fig. 12
vertically.) When disk-thresholds are
determined by the joint action of receptive

fields of various sizes and sensitivities, the
predicted l .:rall ill/-vs-radius function is

obtained by averaging the sensitivities of

.27 1 Fig. II. Spatial response of the model to
incremental disks of various diameters.
Background retinal illuminance is very
high. The responses are superimposed so
that the left edge of all the disks coincides

to with the center vertical line. Radii of the

100-...._ : : I : : : : : : S ~ ~ ! ~ : ! : ~ ~ ~ ~ t - + - - ............-+-...,.:~:!!!lIp- ..."""'I~-t disks are indicated in aH units. The
maxima of the responses have been
normalized to be equal. The horizontal

scales are marked in units of one au .
Responses are drawn only up to the center

of the disk (except for r =100 aH); each
response is mirror-symmetrical to the right
of its center.

Thresholds of Disk-Shaped Test Stimuli
Although disk-shaped stimuli are the

most common psychophysical test
stimuli, their thresholds are extremely

complicated to calculate in the model.

Threshold predictions were obtained under
the f'ollo w ing assumptions: (1) the
background retinal illuminance is large;
(2) the threshold is small (e <r{ 1); and
(3) wn ,WI are normal distributions with

aIlaH =3.0. The results are illustrated in
Fig. 11, which shows the model's output G
vs the radial distance from the edge of the
disk, for several sizes of disk. Note how the

shape of G depends on disk size; in
particular, how appreciable minima in G

recur only for quite large disks, and how

the separation between Gmin and Gmax
increases as disk size increases.

characteristics. The curve for 11 = 2 is
speculative because when 11 = 2, the model
predicts that in the interior of an
incremental test the response ilG is less
than it would have been in the absence of
the test. This condition describes a negative
afterimage, and frequently negative
afterimages of a test stimulus are more
detectable than the stimulus (Brindley,
1959; Sperling, 1960, 1965, p. 556).
However, the conditions under which ill/
increases more rapidly than l/ probably are
not limited to detection of afterimages.

The principle underlying the adaptation,

area, and duration effects is that the more
inhibition (feedforward control signal)
there is in the system, the sharper is the

spatial spread function and the shorter the
temporal function. In the model, these
properties result because the inhibitory
spatial weighting function WI is wider than
WH, and because inhibitory control is
slower than the controlled signal (Sperling
& Sondhi, 1968). Thus, large areas and

long-duration stimuli favor inhibition and
produce the results characteristic of more
inhibition. In fact, the various complex
second-order interactions of duration, area,
and background luminance are subsumed

in a single term [C3(l/), Eq. 12] , which can
be interpreted as the amount of inhibition
in the feedforward control pathway at the
instant of detection.
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would be proportional to the

circumference of the test disk (i.e., to 2m)
for r > diam(wH)' Another factor is the
quantum fluctuation of disk energy, even
when ~Q nominally is constant. Quantum

fluctuations increase in proportion to the
square root of the energy; the relative
fluctuation therefore decreases with the
square root of energy. In a detection
experiment, the decrease in relative
fluctuation could yield an improvement in
detection proportional to Ay,. The slope at
the right-hand side of the minimum of ~ Q
(Fig. 12) is less than that of Ay, (slope = I)
so that if either of these statistical effects
were operative in the region of the
minimum, the minimum would be
obscured entirely. In fact, in
psychophysical experiments, threshold ~ Q

usually continues to decrease with disk
diameter, even for quite large disks,
presumably for the reasons given above.

Basically, the reason that the inhibitory
field does not produce a large ~Q-minimum

in the predicted disk-detection function is
that large disks are detected not in their
center but at their boundaries. The
presence of the ~Q-minimum has been a

traditional psychophysical criterion of
physiological inhibition. The small, shallow
minimum predicted by the model, even at

the highest background retinal illuminance,
plus the additional facts that the
multiplicity of receptive field sizes and
statistical effects would tend to obscure it,

account for the difficulty of observing
evidence for inhibition in psychophysical
detection experiments.

When critical areas are calculated from
the thresholds of disks viewed foveally in
absolute darkness, they typically have
diameters of 4 to 5 min (Bouman &

Walraven, 1957; Glezer, 1965).9 To fit the

model to these data, 0H is estimated from
0H = diam (critical area in dark)/V8, giving
a 0H of about 1.4 to 1.7 min. The value of
0H estimated from disk detection
experiments thus is in agreement with the
value of 1.47 estimated from the peak of
the observed sine-wave threshold function.

Mach Bands
Figure 8 showed that the output of the

model has a much shallower minimum for
a point stimulus than it does for a line
stimulus, and the minimum for a line is
shallower than for a half-field. If the height
of the uninhibited maximum is designated

as Ji, then the depth of the minimum is
approximately proportional to h/o2 for a
poin t, to h/u for a line and to h directly for
a half-field. Since the minima of G are the
signs of inhibition, to demonstrate

inhibition one should use stimuli
containing relatively large uniform-or
nearly uniform-areas. The stimuli for
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producing Mach bands are precisely such
stimuli. Furthermore, the value of the
illuminance difference between adjacent
areas of the stimulus determines ~ G in the
output of the model. Thus, by using test
stimuli that are well above threshold,
inhibitory effects are magnified in the
output. With such stimuli, the model
predicts quite prominent Mach bands;
these were illustrated in Fig. 2.

Other predictions about Mach bands by
the model also are qualitatively in
agreement with observations. The model
predicts that Mach bands are not observed
at extremely low retinal illuminances, that
at moderately low illuminances the bright
Mach band is more prominent than the
dark band, while at high illuminances the
reverse is true. It also correctly predicts
that Mach bands can be seen in brief
flashes, but that they are less prominen t
than bands that appear in continuous
viewing.

The main deficiency of the model is in
its predictions of apparent brightness of

large uniform areas. Once a uniform area
reaches a moderate intensity, it no longer
can induce significantly greater responses

in the model as its intensity is increased
further; i.e., the model's response saturates
quickly. Thus the model can predict
brightness phenomena that involve low and
moderate degrees of contrast but not
brightness phenomena in general. In the
case of Mach bands, this means that
predictions of the model tend to emphasize
the prominance of a band relative to the
brightness of adjacent uniform areas. It is
quite probable that, in the visual system,
information about overall brightness is
handled differently than information about
contours, i.e., about brightness differences.
Insofar as this is true, the deficiency of a
contrast-detection model to in predicting
overall brightness of uniform areas is not a
defect.

The Effect of Feedback in the Model
Since spatial effects (as opposed to

adaptational effects) at the level of the
feedback stage (FB) are very difficult to

distinguish from those at the level of the
feedforward stage (FF), in the foregoing
analyses, all spatial effects were assumed to

occur in the FF stage. We now consider the
conditions under which FB becomes
important.

In predicting disk-thresholds (Figs. 11

and 12), FF alone and FB + FF are
equivalent because the thresholds are
determined at a constant adaptation level Q

and for infinitesimally small increments
~ Q .

In predicting sine-wave contrast
thresholds and Mach bands, FF alone and
FB + FF are similar-but not exactly the

same-because adaptation varies somewhat

across the field.
When predicting the effect of

background retinal illuminance on
threshold values of ~ Q , FF and FB + FF
are quite different; here the difference was
explicitly considered (Fig. 6).

The most important effect of FB is in its
temporal control of adaptation. This was
subsumed in the parameter 1/. We consider
now a significant phenomenon of contrast
detection that, strangely, appears to have
been overlooked. In very brief flashes, Os
cannot detect contrast differences of less

than about 5% across a boundary; 10% is a
more common limit on performance
(Brindley, 1959; Sperling, 1965). In a long

flash of 1.0 sec duration, Os easily detect a
contrast of 2%. Os will fail to detect a
low-contrast boundary in a brief flash and

yet detect the same boundary in a long

flash that contains but a fraction of the
energy. Better detection of long flashes
(when energy is held constant) is the
opposite of temporal integration. In terms
of the model, it implies that the output
"saturates" when the input becomes large.
This kind of saturation, of course, is a
characteristic of the FB stage. However, to
predict this phenomenon quantitatively,
indeed, to predict any of the vast number
of complex temporal-spatial interactions in
vision, would require a much more
complete dynamic specification of the FB
and FF stages than was necessary for the
eI emen t ary model of spatial vision
proposed here.

IV. SUMMARY AND CONCLUSIONS

A three-component model for spatial
vision is proposed. The first component is
an RC stage controlled by shunting
feedback. The second component is an RC
stage controlled by shunting fee dforward,
with the controlling feedforward signal
originating from a larger area than the
controlled signal. Finally, a detector

compares the locations that produce the

largest and the smallest outputs for a
particular signal and indicates detection

when the algebraic difference exceeds a

threshold criterion c. The shunting stages
are analogues of synaptic inhibitory
processes.

The model predicts that thresholds for
increments ~ Q on a background Q follow a
square-root law at low background
luminance ( ~ Q ex Q'!2) and a Weber law at
high background luminance ( ~ Q ex Q). The
model achieves its Weber-law response as a
consequence of the feedforward
component and without having any signals
proportional to the logarithm of the
stimulus. In the model, square-root law
responses are a consequence of the
feedback component, not of quantum
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noise directly; the square-root law is
presumed to be an evolutionary adaptation
(FB-component) to quantum noise.

With two stimuli A, B, both mask a test
~Q, the model predicts that the combined
threshold equals the larger of ~QA and ~QB

at low luminances and equals ~QA + ~QB

at high luminances; i.e., masking effects
add linearly in the model at high
luminances.

The model predicts a receptive field
structure that, in the dark, contains only
an excitatory center and that, in the light,
contains an inhibitory surround, the
apparent center reducing in size with
increasing background illumination.

By u sing a single parameter to
characterize the temporal response of the
model [derived from a similar system by
Sperling & Sondhi (1968)], the model
predicts different receptive fields for short­
and for long-duration pulses. It correctly
predicts the following second-order
threshold effects: (a) reduced spatial
integration for long-duration pulses,
(b) re duced temporal integration for
large-area pulses, (c) greater effect of
background retinal illuminance on
detection of large-area pulses.

When disk test stimuli are superimposed
on high background retinal illuminances,
the response of the model to the disk varies
greatly with disk diameter. For example,
the model detects disks of diameter smaller
than the diameter of its inhibitory
surround at their center, and detects larger
disks at their boundaries. This explains
why disk-detection experiments usually fail
to indicate an inhibitory surround. The
model accounts for Mach bands and shows
why they are an ideal way to demonstrate
spatial inhibition.

The model gives cnly fair predictions of
sine-wave contrast thresholds. By
modifying the normally distributed spread
function that was assumed for excitation,
the model could virtually eliminate its
prediction errors. However, the source of
difficulty is shown to be the existence of
units of different sizes and of different
temporal characteristics; the same basic
model (but with a different spatial scale)
applies to each size of unit.
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NOTES
1. Address: Bell Telephone Laboratories, lnc.,

Murray Hill, New Jersey 07974. (Currently a
fellow of the John Simon Guggenheim Memorial
Foundation, University College London.)

2. The author wishes to acknowledge the
intellectual contribution of G. Furman, who first
proposed the possibility of using shunting
feed forward networks to explain visual contrast
detection.

3. When logarithmic transformations of input
intensity are assumed to occur before
substractive lateral interaction, subtractive
interactions of the logarithms mimic
multiplicative interactions of the inputs. The net
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effects can be quite similar to the effects of
shunting interactions. The logarithmic subtractive
approach is unattractive because it requires two
complex operations (logarithms and subtraction)
to do what shunting processes do naturally in a
single interaction. Even in Limulus, whose eye
represents the most successful case of the
su-trr ,tive th.ory of interaction, the subtractive
theory is yielding to a shunting analysis (Purple &

Do-tee, 1965),
".- Mach computed a lateral interaction term of

the form HII, which is nearly equivalent to

Perception & Psychophysics, 1970, Vol. 8 (3)

H!(1 + kl) of Eq. 3a. However, Mach assumed
that the output was not given directly by the
interaction term, but was proportional to input X
interaction; namely, H2/1 (Mach, 1868, p. 15).

5. The minimum of G(x) in Fig. 8c indicates
Ax.

6. See Fig. 8i; also, the zero of G(x) in Fig. 8f
gives approximately ±Ax/2.

7. See Sperling & Sondhi (1968) for a specific
theory of slow inhibition.

8. The convolution procedure used by Kincaid
et aI (1960) and by Blackwell (1963) assumes

implicitly that disk test .stimuli are detected at
their center. The procedure is invalid when test
fields are detected at boundaries. (See next
section.)

9. These values are among the smallest critical
areas that have been reported. The small values
are used here because most experimental
artifacts, such as accommodation error (from
fixation lights of different wavelengths than the
disks being detected) and inaccurate fixation
tend to increase observed critical areas.
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