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Chapter 1

Introduction

In this chapter, we give a brief introduction to the field of electronic circuit simulation.
It contains a short historical account, and a discussion of the latest requirements that
have sparked quite a lot of research in the new century. The chapter also contains an
overview of the thesis.

1.1 Simulations in the electronics industry

The electronics industry provides the core technology for numerous industrial innova-
tions. Progress in the area of microelectronics is highlighted by several milestones in
chip technology, for example microprocessors and memory chips. The ongoing increase
in performance and memory density would not have been possible without the exten-
sive use of computer simulation techniques, especially electronic circuit simulation. The
basis of the latter is formed by a sound framework of methods from the area of numeri-
cal methods, or scientific computing as some would say. In fact, it is not widely known
that advances in numerical algorithms also satisfy a ”law” that is similar to the well
known Moore’s law describing advances in chip technology. Figure 1.1 compares the
two, and clearly demonstrates that methods for solving linear systems of equations, at
the core of every circuit simulation program, have indeed developed in a similar way
over the past 35 years.
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Figure 1.1: Relating Moore’s law to advances in linear system solution

Electronic circuit simulation started in the 1970’s, and gradually has grown to become
one of the most important ingredients of today’s virtual design environments in the
electronics industry. Designers of electronic circuits, both digital and analog, use these
virtual design environments in order to avoid prototyping that would increase the de-
sign cycle by many months. Such increased design time is unaffordable nowadays in
view of competition. On the other hand, this places an enormous responsibility on the
shoulders of the mathematicians and software engineers that provide the knowledge
going into these virtual design environments. The latter should be perfectly compatible
with experimental set-up, and provide accurate and efficient solutions that enable the
designer to design according to the right first time adagio.

During the 1980’s and 1990’s, many companies developed and used their own in-house
circuit simulation software, many of these developments being based upon the Spice
simulator [60]. Siemens, later Infineon and Qimonda, developed the Titan simula-
tor [23], whereas Philips, now NXP Semiconductors, developed Philpac [48], which
in the 1990’s became Panacea and is now named Pstar [34]. But just as in the area of
semiconductor device simulation, we now observe a shift towards commercial EDA
(”electronic design automation”) simulators being used. The three main EDA compa-
nies, Cadence, Synopsis, and Mentor, all have their own circuit simulators. Interestingly,
most of these are based on university codes that have been upgraded and updated. This
holds both for Spectre and Spice [60], the latter appearing in many forms like H-Spice,
E-Spice and others. An important observation is that the developments with respect
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to the in-house simulators have been essential for the development of the commercial
simulators. This is not surprising, as in-house knowledge about the industrial problems
is essential for the development of the right tools, and this knowledge is usually only
available in the companies.

Figure 1.2: Interconnect structure

An important type of analysis in circuit simulators is time domain analysis, which calcu-
lates the time-dependent (transient) behaviour of electrical signals in a circuit respond-
ing to time varying input signals. A network description of the circuit is generated
automatically in computer-aided electronics-design systems from designers drafts or
fabrication data files. An input processor translates this network description into a data
format reflecting the mathematical model of the system. The mathematical network
equations are based on the application of basic physical laws like energy or charge con-
servation onto network topology and characteristic equations for the network elements.
This automatic modeling approach preserves the topological structure of the network
and does not aim at systems with a minimal set of unknowns. Hence an initial value
problem of differential-algebraic equations (DAEs) is generated which covers charac-
teristic time constants of several orders of magnitude (stiff equations) and suffers from
poor smoothness properties of modern transistor model equations.

In recent years, the demands on the capabilities of circuit simulation have become even
more stringent. Circuit simulators are actually at the core of all simulations within the
electronics industry. Crosstalk effects in interconnect structures1 (see Figure 1.2), ob-
served only in the new era, are modeled by appending large extracted RLC netlists to
the electronic circuit at hand. Also, substrate effects that start playing a crucial role in

1In order to connect all devices in the silicon area, a three dimensional metal interconnect structure must
be used. Nowadays, this consists of up to 10 metal layers containing ”wires”, with so-called ”vias” between
the layers
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determining the performance are modeled by extracting, again, a large resistive or RC
network and appending it to the original nonlinear electronic circuit. The total network,
consisting of the original one and the additional extracted networks, needs to be simu-
lated accurately, both in the time and frequency domain. Many circuit simulation pro-
grammes have difficulty in solving such extremely large networks, often in size larger
than one million. Thus, new algorithms are needed to cope with such situations that
are extremely crucial for designers. This is addressed in many papers, a recent example
being [70] where it is shown that the latest techniques in numerical linear algebra can
be used to solve such extremely large problems.

Another important aspect is the fact that there is an increasing deviation between de-
sign and manufacturing. Due to the ever decreasing feature sizes in modern chips,
deviations from the intended dimensions are becoming more probable. Designers need
to cope with this, and design the circuits in such a way that a deviation from intended
dimensions does not alter the functionality of the circuit. In order to investigate this
properly, one needs to assume that all components can possibly be slightly different af-
ter manufacturing. The effects this has on the performance of the circuit can be studied
by introducing many thousands or even millions of parameters, describing the devia-
tions, and performing a sensitivity analysis of the circuit w.r.t. parameter changes.

Also due to the high complexity, extensive modeling of parasitic2 effects leads to a very
high number of elements to be taken into account during simulation. This is even more
true for timing critical circuits where it is necessary to use a very accurate model for the
extraction of parasitic elements. Simulation of such circuits can be very time consuming
and in some cases not even possible. The complexity caused by this extraction must be
reduced to facilitate the simulation of the circuit while preserving accuracy. Now we
make the observation that highly accurate parasitic extraction is not necessary for all
parts of the design. In fact, each layout contains critical blocks or paths whose timing
and performance is crucial for the overall functionality of the chip. High precision in-
terconnect modeling must be used for these circuit parts to verify the functionality of
the design. On the other hand, there is interconnect outside of critical paths which adds
to the complexity but whose exact model is not necessary and can be simplified. Here
too, sensitivity analysis can bring a major achievement in speed-up, by automatically
determining the critical parasitic elements that provide the most dominant influence.

The latter two problems have inspired us to study the topic of this thesis. Sensitivity
analysis is crucial for the correctness of virtual design environments based on electronic
circuit simulators, and gives designers insight in how to alter the designs in order to
guarantee more robustness with respect to variability in the design. The problem is
that a thorough sensitivity analysis requires derivatives of the solution with respect to
a large amount of parameters. This is not feasible using classical methods, being far
too time-consuming for modern circuits. Recently proposed methods using the adjoint
problem to calculate sensitivities are far more efficient, and these form the basis for our
methodology as well. Our work has concentrated on making such methods even more

2Electronic circuits are first designed using a so-called schematic, based only upon functionality. Actual
production needs a layout design which, however, may introduce undesired effects such as crosstalk and
other parasitic effects
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efficient, by mixing them with concepts from the area of model order reduction. As
will be shown in this thesis, this leads to very efficient, robust and accurate methods for
sensitivity analysis, even if the underlying circuit is large and the number of parameters
is excessive.

1.2 The COMSON project

The research described in this thesis was carried out within COMSON, a Marie Curie
Research Training Network supported by the European Commission in the framework
of the programme ”Structuring the European Research Area” within the 6th Frame-
work Research Programme of the European Union. It was established on October 1st,
2005, and ended March 31, 2010. Project leader was the Bergische Universität Wup-
pertal, and the other partners came from several European countries. Most essential
about the latter is that 3 of the main European semiconductor companies were involved,
namely NXP Semiconductors, Qimonda and ST Microelectronics, plus universities spe-
cialized in electronics: TU Eindhoven, University of Catania and Polytechnic University
Bucharest.

COMSON is an acronym for COupled Multiscale Simulation and Optimization in Nano-
electronics. The main objective of the consortium was to implement an experimental
Demonstrator Platform in software code. This platform comprises coupled simulation
of devices, interconnects, circuits, EM fields and thermal effects in one single frame-
work. It connects each individual achievement, and offers an adequate simulation tool
for optimization in a compound design space.

The consortium used the Demonstrator Platform as a framework to test mathematical
methods and approaches. The Demonstrator Platform was used also to assess whether
these methods are capable of addressing the industry’s problems. Finally the Demon-
strator Platform was used, and can be used in future, to train and educate young re-
searchers by hands-on experience on state-of-the-art problems.

The platform did not aim at replacing existing industrial or commercial codes. How-
ever, it is capable of analyzing medium sized coupled problems of industrial relevance,
thus offering a chance to develop advanced mathematics for realistic problems. Such a
platform is urgently needed for academic research, since it provides a natural test bench
with state-of-the-art models and parameters from the different domains rather than aca-
demic simplifications. The second benefit of such a platform is to collect the knowledge
about models and methods, which is widespread distributed over the different nodes
of the consortium, thus giving excellent opportunities for transfer of knowledge and
mutual stimulation of new research. In addition, the Demonstrator Platform has be-
come a central realization of all needed documents, reports, manuscripts, and courses
developed during the project execution. It also played a central role in the training and
transfer of knowledge within the COMSON consortium.



6 Introduction

The basis of the Demonstrator Platform is the development and validation of appro-
priate mathematical models to describe the coupling, their analysis (well-posedness)
and related numerical schemes. To this end, COMSON was divided in 5 main areas of
research:

• Mathematical Modeling and Analysis (MOD)

• Simulation Techniques for Coupled Domains (SIM)

• Model Order Reduction (MOR)

• Optimization (OPT)

• E-Learning (e-L)

The research described in this thesis was mainly conducted within the MOR area. Being
only interested in an adequate input-output behavior, distributed effects are described
by behavioral models. In the COMSON project, the focus was mainly on generating ad-
equate low-order circuit models by extending MOR to differential-algebraic equations
and PDAEs, including first steps towards nonlinearity and time domain.

In the mean time, the COMSON project has finished. As a major deliverable, a book
will appear in the course of this year or 2011, describing the achievements of the project
in the various areas. See http://www.comson.org or [35].

Besides the research that is described in this thesis, also work on the Demonstrator Plat-
form was performed. This work is not described explicitly in the thesis, as it was not a
research task.

1.3 Outline of this thesis

This thesis presents new theories and efficient computational methods for noise and
sensitivity analysis of electronic circuits depending on parameters. To this end, various
tools from numerical analysis and circuit simulation are needed: modified nodal analy-
sis, model order reduction, proper orthogonal decomposition and the backward adjoint
method. These are the basic building blocks on which our work is based, and methods
have been developed using these tools.

As for an outline of the thesis, in Chapter 2 we start with a brief introduction to elec-
tronic circuits and the way they are modeled in modern circuit simulation programmes.
We introduce the concept of modified nodal analysis (MNA), and show that the result-
ing systems of equations belong to the class of differential algebraic equations (DAE).

The next chapter reviews methods for model order reduction. This is an extremely pop-
ular and important field of research nowadays, both in the scientific computing com-
munity and in the area of dynamical systems and control. In the former field, Krylov
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subspace techniques is the basis of most techniques, whereas in the latter field one is
usually concerned with the solution of large systems of Lyapunov equations and the
calculation of so-called Hankel singular values. For linear problems, the theory in both
areas is fairly well developed, but for nonlinear problems this is certainly not the case.
The most effective technique for such situations is proper orthogonal decomposition,
and this method will be discussed in more detail as it forms the basis of our methods.

Chapter 4 then discusses in detail the problem of sensitivity in electronic circuits, and
methods to perform analyses. Methods that have been proposed are discussed, and the
state-of-the-art is summarized. We then derive the backward adjoint method for the
specific case of electronic circuits, discuss stability issues and present an estimate of the
computational cost. The latter then clearly rules out the use of forward methods in an
industrial context, and also shows that the backward method leaves a lot of room for
improvement.

In Chapter 5, the first new development is then discussed, which is the backward re-
duced adjoint method, published under the name BRAM. It consists of employing the
POD method for the forward problem, and then using the resulting basis for the solu-
tion of the backward adjoint problem. An analysis of the method is also provided, and
the important relat ion to Tellegen’s theorem is demonstrated.

As the original version of BRAM was fairly difficult to analyse, a different version
named BRAM II was developed. This method is also based on the use of the POD
basis for the forward problem, but first projects the original circuit before constructing
the adjoint problem. This is discussed in Chapter 6. It turns out that, for this method, a
much more thorough analysis is possible.

A very interesting part of the research concentrated on the parameter dependence of
the POD basis. These investigations, presented in Chapter 7, serve two purposes. First
of all, it is an extremely intriguing research question to find how POD bases depend on
problem parameters for electronic circuits, which, to the best of our knowledge, has not
been demonstrated before in this detail. Secondly, the analysis of the methods BRAM
and BRAM II is impossible without a statement about the parameter dependence of the
POD basis. This is the first time results of this kind are presented for truly industrial
examples.

As the proof of the pudding is in the eating, several designers within NXP Semiconduc-
tors were asked to provide examples for which we could test our methods. The results
of these experiments are presented in Chapter 8. In this chapter we discuss both the
parameter dependence of the POD basis and the performance of the newly developed
methods for sensitivity analysis.

The thesis is concluded with Chapter 9 which summarizes results achieved and presents
an outlook and recommendations for future research in the area of sensitivity analysis.





Chapter 2

Electronic Circuit Modelling and
Simulation

In this chapter we present an overview of techniques used for modeling and simulation
of electronic circuits. We will first introduce the idea of modeling an electronic circuit
by breaking down an example circuit into its constituting parts. A description of the
general network and electrical properties will be provided, including that of some com-
mon electronic elements; resistors, inductors and capacitors. Next, making use of these
circuit properties and by applying the method of Modified Nodal Analysis (MNA), it
is shown that the resulting system is a differential algebraic equation (DAE). The prop-
erties of this DAE model and the matrix representation of a circuit system will be dis-
cussed, and we will cover finally how such models can be solved in the time domain. A
detailed description can be found in [34].

2.1 Electronic circuit modeling

As usual in scientific computing, a model is the first requirement before one can even
start to think about simulations. In this section, we therefore discuss the modeling of
electronic circuits by providing an example and showing how this can be modeled.
The same technique is used also for the much more complex electronic circuits that are
encountered in an industrial context. Furthermore, we will discuss some properties of
the resulting systems of equations, essential knowledge for the subsequent choice of
numerical simulation techniques. The discussion will be somewhat concise, as there are
many good works about circuit modeling and simulation available.
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2.1.1 Circuit networks and topology

A circuit model is an idealized representation of an imperfect real world physical sys-
tem, created by the combination of ideal components within a network structure of
branches and nodes. A branch is defined as the connection between two nodes, and a
node as a point connecting at least two circuit components.

R1 R2
1 2 3

0

C
Vin

Figure 2.1: An Electronic Circuit

Figure 2.1 is a simple example of a complete circuit diagram. Stripping away the circuit
components gives a clearer representation of the network structure which is shown in
Figure 2.2. The assumption we make is that the connections between components, the
branches they exist on, i.e. the ’wires’ of our circuit are ideal and have no resistance,
capacitance or inductance.

1

B3

2

30

B2

B1

B0

Figure 2.2: Branch-Node Network
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The flow of electric current through a circuit has an associated magnitude and a direc-
tion. A circuit network is actually a directed graph consisting of nodes connected by
branches that posses a direction property. This network topology can be described by
an incidence matrix A ∈ {−1, 1, 0}Nn×Nb , the columns of this matrix represent the cir-
cuit branches, the rows represent circuit nodes. A branch entering a node is signaled
by a matrix entry of “-1” if entering, a “1” if leaving and a “0” if there are no branch
connections to a node. Nn is the number of circuit nodes and Nb the number of circuit
branches.

On applying the above rules to the example shown in Figure 2.2 the following incidence
matrix is developed.

A =









1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1









. (2.1)

If we take a look at the first row of (2.1), the row that represents the first node, labeled
as 0 in figure 2.2, the entry “1” signals the first branch, branch B0 leaving this node. The
entry “-1” in the fourth column of this row signals that the fourth branch, labeled B3 is
entering node 0. On picking the first “0” column entry in this first row, one can see that
this signals that the second branch, labeled B1 is not connected with node 0 - neither
is the third branch, labeled B2, as there is a “0” entry in the third column entry of this
row. As a final inspection of this incidence matrix, looking at the final row, the row that
represents the fourth node, labeled 3, one can see that the third branch, B2 enters this
node and the fourth branch, B3, leaves this node.

In this directed graph network we associate a branch current value ij(t) flowing through
the jth branch, a branch voltage uj(t) across the same branch where j ∈ {1 · · ·Nb} and
finally a node voltage for the kth node as vk(t), where k ∈ {1 · · ·Nn}. The branch voltage
is defined as the voltage difference between two nodes at either end of a branch. The
node voltage is defined as the voltage drop between a node and a common node, usually
the ground node, this is labeled as node 0 in figure 2.1.

In column vector form, we write the branch current, branch voltage and node voltage
as I(t) ∈ Nb, U(t) ∈ Nb and V(t) ∈ Nn respectively. These vectors are used to describe
fully the characteristics of a circuit, for any topology, combination of circuit elements
and input signals. These vectors will also store the current and voltage transient circuit
responses, in case of a time dependent simulation.
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i1

i2

i3

Figure 2.3: KCL

2.1.2 Physical network laws

Kirchhoff’s Current Law (KCL)

The algebraic sum of all currents traversing each cutset of a circuit network is always
equal to zero. A cutset is a subset of branches that if cut isolates a subset of nodes from
the rest of a branch-node graph. A special case is a cutset that isolates exactly one node,
this is shown in figure 2.3. This node has two branch currents leaving and one branch
current entering, the total current sum on this node is equal to zero.

For a larger cutset or for a complete circuit network, KCL can be expressed by using the
incidence matrix A, and the column vector I(t) as,

AI(t) = 0. (2.2)

Kirchhoff’s Voltage Law (KVL)

The algebraic sum of all branch voltages around each loop of a network is always equal
to zero. An illustration of this, for our example circuit, is shown in figure 2.4. There are
four branch voltages u0, u1, u2 and u3, the total sum of these branch voltages is equal
to zero.
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u0

u1

u2

u3

Figure 2.4: Kirchhoff’s Voltage Law

For a complete circuit network, by using the incidence matrix, the relationship between
all branch and node voltages can be expressed at once as

AT V(t) = U(t). (2.3)

2.1.3 Circuit elements

The five basic building blocks used in circuit modeling are resistors, capacitors, induc-
tors, voltage sources and current sources. Any other real world circuit element, such as
diodes and transistors, are often modeled by a combination of these. These elements
and circuits can be categorized as either linear or non-linear devices.

Linear circuits and elements

Characteristic of the basic building blocks is their linear behavior. For example, the
application of a sine wave voltage to a single ideal resistor will return a proportional
sine wave current response. An example of an ideal linear circuit would be the potential
divider, a circuit composed of two ideal resistors and a voltage source. In that case,
application of a sine wave voltage at the input would result in a proportional sine wave
voltage of the same form at the output.

Table 2.1 shows the relationship between currents and voltages for the five basic circuit
components.The capacitor current iC is a function of the capacitance value C and the
dynamics of the branch voltage uC, the resistor current iR as a function of the resistance
value R and an applied branch voltage of uR, and the relationship for an ideal inductor
between its branch voltage uL, inductance L and the dynamics of the current iL. v(t),
i(t) are the voltage and current sources.
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Resistor iR =
uR

R

Capacitor iC = C d
dt

uC

Inductor uL = L d
dt

iL
Voltage Source v(t)

Current Source i(t)

Table 2.1: Common circuit components.

Nonlinear circuits and elements

Examples of a non-linear components include diodes and transistors, (2.4) models a
diode as a nonlinear resistor where Id is the diode current, Is the reverse bias saturation
current, VD the voltage drop accross the diode and Vth the threshold voltage. It is clear
that the response of this component model is non-linear. If we apply a sine wave voltage
to this diode it will not preserve the form of the sine wave signal.

Id = Is(e
VD/Vth − 1) (2.4)

Real world circuits are composed of many diodes and transistors, their designs can be
highly complex and their behavior highly nonlinear. Over the years, we see a significant
development in ever more complex models. Originally this development started with
the relatively simple Gummel-Poon models, whereas at this moment in time the Penn
State Philips (PSP) model is the world standard in MOS modeling [72]. A complicating
issue is that these models are derived with a mix of physical insight, huge amounts of
experimental results, curve fitting and heuristics. Mathematical properties of the result-
ing models are not an issue in the derivation, so that commonly used assumptions on
smoothness and other important properties are difficult to guarantee. Also, accuracy is
the main target of the models, whereas efficiency is not, and this means that the models
have a negative impact on the overall performance of circuit simulations.

2.1.4 Modified Nodal Analysis (MNA)

So far we have identified and described the properties and components of electronic
circuits, by demonstrating this for a simple example. However, KCL and KVL are read-
ily applied also to larger circuits, and the resulting equations hold also for the more
general case. Modified Nodal Analysis, abbreviated MNA, is a method that uses these
properties to generate a model of an electronic circuit. We will describe this method by
applying it to the circuit shown in Figure 2.1, taking a look at this figure it is easy to
identify the node-branch network, circuit components and the physical properties.

The first step is to start with the incidence matrix,
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A =









−1 0 0 1

1 −1 0 0

0 1 −1 0

0 0 1 −1









. (2.5)

We next obtain the branch voltages by the application of KVL, equation (2.3), which
gives,









1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1









T 







v0

v1

v2

v3









=









u0

u1

u2

u3









. (2.6)

This reveals our branch voltages as,

u0 = v0 − v1, (2.7)

u1 = v1 − v2, (2.8)

u2 = v2 − v3, (2.9)

u3 = v3 − v0. (2.10)

We choose node 0 as our reference (ground) node, the measured voltage drop with itself
is always zero and there is no need to calculate this obvious value. Using this fact and
updating the branch voltage expressions gives,

u0 = −v1, (2.11)

u1 = v1 − v2, (2.12)

u2 = v2 − v3, (2.13)

u3 = v3. (2.14)

Next we apply KCL, equation (2.2),









1 0 0 −1

−1 1 0 0

0 −1 1 0

0 0 −1 1

















ib0

ib1

ib2

ib3









=









0

0

0

0









, (2.15)

giving,
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ib0 − ib3 = 0, (2.16)

ib1 − ib0 = 0, (2.17)

ib2 − ib1 = 0, (2.18)

ib3 − ib2 = 0. (2.19)

Equation (2.16) is the current sum across our ground node, and for the reasons stated
before we can eliminate this equation. We are only interested in the following sums:

ib1 − ib0 = 0, (2.20)

ib2 − ib1 = 0, (2.21)

ib3 − ib2 = 0. (2.22)

Next we create, starting from our ideal component models, expressions for the currents
ib1,ib2 and ib3. Notice that these currents belong to branches that are not a host to
voltage sources, this is why ib0 is left out. The addition of voltage sources to our model
will be introduced later.

ib1 = u1/R1 = (v1 − v2)/R1, (2.23)

ib2 = u2/R2 = (v2 − v3)/R2, (2.24)

ib3 = C
du3

dt
= C

dv3

dt
. (2.25)

These current expressions are substituted into (2.20), (2.21) and (2.22. After grouping
time derivative dependent and non-dependent elements we have the following set of
differential and algebraic equations. This system of three equations is not yet a complete
system for the four unknowns u1,u2, u3,ib0, there is one more step before we have the
full circuit equations.





(v1 − v2)/R1− ib0

(v2 − v3)/R2− (v1 − v2)/R1

−(v2 − v3)/R2



+
d

dt





0

0

Cv3



 =





0

0

0



 . (2.26)

This final step is the addition of all voltage defining elements, which are the inductors
and the voltage sources. We have only one voltage source to add, Vin. Equation (2.27)
is the full DAE model for our circuit example, where i(V(t)) contains the circuit current
information, q(V(t)) the charge information and s(t) the circuit input signals.
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







(v1 − v2)/R1− ib0

(v2 − v3)/R2− (v1 − v2)/R1

−(v2 − v3)/R2

v1









︸ ︷︷ ︸
i(V(t))

+
d

dt









0

0

Cv3

0









︸ ︷︷ ︸
q(V(t))

=









0

0

0

Vin(t)









︸ ︷︷ ︸
s(t)

. (2.27)

Here is the complete MNA process in short:

1. Apply KCL.

2. Replace all current defining elements (resistors, capacitors and current sources),
by the corresponding element equation. This conveiently introduces branch volt-
ages.

3. Apply KVL to express branch voltages in terms of node voltages, substitute these
into step 2.

4. Add voltage defining elements to the equation, these are the inductors and voltage
sources.

Modified Nodal Analysis is the most frequently used method for setting up the circuit
equations. All known circuit simulators use this method, as it is quite efficient in dealing
with the full set of KCL and KVL equations. Alternative methods are discussed, for
example, in the classic book by Chua [19].

2.1.5 System equations

In a few simple steps (2.27) can be restated in a matrix system form. Our unknown
circuit values, or circuit states, are used to build a vector x of unknowns, called the state
vector:

x =









v1

v2

v3

ib0









. (2.28)

The vectors i(V(t)), q(V(t)) are differentiated with respect to the state vector (2.28),
which enables us to rewrite (2.27) as
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







1/R1 −1/R1 0 −1

−1/R1 1/R1+ 1/R2 −1/R2 0

0 −1/R2 1/R2 0

1 0 0 0

















v1

v2

v3

ib0









+









0 0 0 0

0 0 0 0

0 0 C 0

0 0 0 0









d

dt









v1

v2

v3

ib0









=









0

0

0

Vin









.

(2.29)

Equation (2.29) is a matrix system representation of our circuit example, the general
short form is written as

Gx(t) + Cẋ(t) = s(t), (2.30)

where the matrices C & G are referred to as the system matrices defined as,

C =









0 0 0 0

0 0 0 0

0 0 C 0

0 0 0 0









, (2.31)

G =









1/R1 −1/R1 0 −1

−1/R1 1/R1+ 1/R2 −1/R2 0

0 −1/R2 1/R2 0

1 0 0 0









. (2.32)

2.2 Properties of MNA systems

Here we briefly describe some properties of MNA systems that are important for our
subsequent analysis and proposed new methods. We will not go into detail, as there
are many good books and publications available that treat the MNA systems in-depth,
see for example [34] or Chapter 4 in [45] for a rather complete and mathematically deep
analysis.

Suppose we are given a circuit with Nn nodes and Nb branches, and select one node
as the ground node. As usual, the topology of the circuit is described by the incidence
matrix A. Each of the five different types of branches given in Table 2.1 gives a differ-
ent contribution to the equations. This can be made explicit by grouping branches by
category, and split the current and voltage vectors in smaller vectors. So, for example,
I = (IT

R, I
T
C, I

T
L , I

T
I , I

T
V )T . Also, the incidence matrix is split:

A = (AR|AC|AL|AI|AV) .
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Using this notation, we can write the Kirchhoff’s Laws in the following form:

∑

p∈{R,C,L,I,V}

ApIp = 0,

AT
pV = Up, p ∈ {R,C, L, I, V}.

Also, the branch equations can be grouped into five equations. The complete circuit
equation for general nonlinear circuits in the end becomes

d

dt
q(x, t) + j(x, t) = s(t) = 0, (2.33)

where x = (UT , IT
L , I

T
V)T . The circuit matrices G and C are then given by

G =





AR
djR

dvR
AT

R AL AV

AT
L 0 0

AT
V 0 0



 ,

C =





AC
dqC

dvC
AT

C 0 0

0 −dqL

dIL
0

0 0 0



 .

(2.33) is a differential algebraic system which, by the substitution y(x, t) = q(x, t) can be
written in the charge-oriented form

d

dt
y(x, t) = −j(x, t) + s(t),

0 = y(x, t) − q(x, t).

The price of this transformation is a doubling of the number of unknowns; on the other
hand, it is a form which is more easily handled by the theory. Since q does not always
have an inverse, one usually considers the function

g(x, t) = q(x, t) + λj(x, t),

where λ is a positive constant such that g is an invertible function with inverse ginv. If q,
j are continuously differentiable with Jacobian matrices G(x, t) and C(x, t), respectively,
the Lipschitz constants L, S can be defined as

L := max (||G(x, t)||) ,
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S := max (||C(x, t) + λG(x, t)||) ,

where the maximum is taken over the time domain [0, T ] and all x in the domain con-
sidered. Then we have the following theorem:

Theorem 2.1 The DAE (2.33) (with consistent initial condition) has a unique solution for t ∈
[0, T ] if the functions j and ginv are Lipschitz continuous with finite Lipschitz constants L, S.

For this specific case of the DAE arising from an MNA formulation of the circuit equa-
tions, a very detailed analysis is given in [79, 80]. The system can be shown to be of
index-1 under rather general conditions:

Theorem 2.2 Equation (2.33) is of index-1 if and only if

• the circuit contains no inductor/current-source cutsets, and

• the circuit contains no capacitor/voltage-source loops with at least one voltage source.

In practice these conditions are usually fulfilled. The theory developed by Tischendorf
is very elegant, and we have the impression that its potential has not been used to full
extent. For example, we feel that model order reduction could benefit from the detailed
structure.

2.3 Electronic circuit simulation

A transient simulation is done by finding the solution of the circuit system (2.30) for the
state vector, at each time interval, over a time period, (0, T).

For system (2.30) to be solvable its matrices must have a regular matrix pencil, {C,G}.
The linear combination of these two matrices must be regular, an inverse must exist.
Even though, for electronic circuits, the C matrix is not regular, the matrix pencil always
is. The reason for this will soon become clear.

2.3.1 Linear systems

Equation (2.34) below is the equation of a linear system, the charge and current vectors
are split, as shown before, into a product of the matrices C,G and the state vector x.
This is not a complicated task for linear circuits, the C,G matrices remain constant over
all time periods:
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C
d

dt
x(t) + Gx(t) − s(t) = 0. (2.34)

We assume that at the inital condition, at the first time point, the solution is known
and found by a DC analysis at t = 0. This system has state vector solutions at each
time point t(n−1), where n is the time point for which we are solving and is written as
x(n−1) = x(t(n−1)). The goal here is to determine xn = x(tn), the state vector at time
point tn = t(n−1) + ∆, where ∆ is some stepsize. xn would satisfy the following,

C
d

dt
x(t)

∣

∣

∣

t=tn

+ Gx(tn) − s(tn) = 0. (2.35)

Equation (2.35) is a differential algebraic equation, which can be solved numerically for
xn. There are various methods to perform this simulation and, as demonstrated in [34],
the preferred method is a backward difference formula (BDF). For illustration purposes,
here we apply an implicit, or backward, Euler discretization to the differential operator:

d

dt
x(t) ≈ x(tn) − x(t(n−1))

tn − t(n−1)

=
1

∆
(x(tn) − x(t(n−1))). (2.36)

Equation (2.34) can now be written as,

C
1

∆
(xn − x(n−1)) + Gxn − s(tn) = 0. (2.37)

Finally it can be written as a simple linear system,

(
1

∆
C + G)xn = (s(tn) −

1

∆
Cx(n−1)),

Yxn = b, (2.38)

where the latter equation also contains the initial condition. Y and b are known, the
only unknown is the state vector which we are looking for, xn. The role of the matrix
pencil is instantly clear here, the linear combination of the system matrices,Y , must be
regular to allow a solution for xn to be found.

The following is an outline of how a solution is found. First carry out an LU decompo-
sition on Y,
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Yxn = b (2.39)

YLYUxn = b, (2.40)

then find a solution for the linear system for the lower triangular matrix,

YLa = b, (2.41)

and finally use these solutions together with the upper triangular matrix to find the state
solution.

YUxn = a. (2.42)

As circuits are often built in a hierarchical way, it is also possible to use a hierarchical
way of solving the linear systems. This is done, for example, in the in-house software
package Pstar of NXP Semiconductors that we used for our simulations. We refer to [34]
for a detailed discussion of these aspects.

2.3.2 Solving the nonlinear system

The non linear circuit system is written as,

d

dt
q(x(t)) + j(x(t)) − s(t) = 0. (2.43)

We make the same assumption of having an inital solution to the first time point, and
our goal is still to find xn = x(tn). As before we can find xn that satisfies the non-linear
differential equation,

d

dt
q(x(t))

∣

∣

∣

t=tn

+ j(x(tn)) − s(tn) = 0. (2.44)

The implicit Euler discretization is again carried out and gives us,

1

∆
[q(xn) − q(x(n−1))] + j(x(tn)) − s(tn) = 0. (2.45)
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Grouping the same terms

[
1

∆
q(xn) + j(x(tn))] − s(tn) −

1

∆
q(x(n−1)) = 0. (2.46)

Equation (2.46) can be solved by applying the Newton method.

First we define,

H(xn) = [
1

∆
q(xn) + j(xn)] − [s(tn) +

1

∆
q(x(n−1))]

︸ ︷︷ ︸
Known constant value for each time step

. (2.47)

then,

H′(xn) = [
1

∆

d

dx
q(xn) +

d

dx
j(xn)],

or

H′(xn) = [
1

∆
C(xn) + G(xn)]. (2.48)

We then make the following iteration to find xn, the converged value of a sequence of
xk

n:

xk+1
n = xk

n − [
1

∆
C(xk

n) + G(xk
n)]−1[H(xk

n)]. (2.49)

Notice that the matrix pencil is again an important factor in (2.49). Besides this, we
need to take care of constructing a good initial guess, and also have to employ damping
techniques such as ”gmin stepping” in order to ensure convergence of the sequence of
Newton iterates. These aspects are discussed in detail in [34].

2.3.3 Final remarks

In practice, more general BDF and one step schemes are used for the discretization of the
time dependent problem. Also, sophisticated adaptive time stepping schemes are used
that are able to detect discontinuities in the source terms and, consequently, changing
character of the solution. It is not our intention to discuss here all of the advanced
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features that are used in the very mature field of circuit simulation. Other types of
simulations, such as AC analysis or periodic steady state analysis (PSS) are also not
discussed here. We refer to [34] for a recent and fairly complete overview.

2.4 Summary

In this chapter, we briefly discussed how electronic circuits can be modeled mathemat-
ically and solved numerically. An important aspect is the differential algebraic charac-
ter of the system of equations, which has an influence on the subsequent analysis and
numerical solution procedures. It also has an influence when using model order reduc-
tion, as most of these techniques have been developed for state space systems and not
descriptor type systems. Finally, it is extremely important to take the DAE character
into account when deriving the adjoint equations that are used in sensitivity analysis.
In subsequent chapters, several of the properties discussed in this chapter are used.



Chapter 3

Model Order Reduction

For a small system model, such as the model examined in the previous chapter, the so-
lution can be found after a short time integration. As systems increase in size, so do
their models, and so does the time taken to generate system solutions. Model Order
Reduction is a wide field that is concerned with finding a lower dimensional system,
whence faster to solve, that gives a very good approximation to the original system.
Each method finds an approximating subspace that spans the major characteristics of
a system’s response, a projection matrix is also found that is used to project the larger
system onto the smaller subspace. In this chapter we will first introduce the concept of
reduction by projection, and then discuss the method of proper orthogonal decomposi-
tion that is currently the method of choice for nonlinear systems.

3.1 Model order reduction in a nutshell

There are several definitions of model order reduction, and it depends on the context
which one is preferred. Originally, MOR was developed in the area of systems and con-
trol theory, which studies properties of dynamical systems in application for reducing
their complexity, while preserving their input-output behavior as much as possible. An
example of such a system is the following:

dx

dt
= f(x,u), y = g(x,u), (3.1)

where u is the input of the system, y is the output, and x is the so-called state variable.
The complexity of the system is characterized by the number of its state variables, and
model order reduction may be viewed as the task of reducing the dimension of the state
vector. In other words, we should find a dynamical system of the form
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dx̂

dt
= f̂(x̂,u), ŷ = ĝ(x̂,u), (3.2)

where the dimension of x̂ is much smaller than that of the original state space vector x.

The field has also been taken up by numerical mathematicians, especially after the pub-
lication of methods such as PVL [28]. Nowadays, model order reduction is a flourishing
field of research, both in systems and control theory and in numerical analysis. This has
a very healthy effect on MOR as a whole, bringing together different techniques and
different points of view, pushing the field forward rapidly.

So what is model order reduction about? We need to deal with the simplification of
dynamical models that may contain many equations and/or variables (105 − 109). Such
simplification is needed in order to perform simulations within an acceptable amount of
time and limited storage capacity, but with reliable outcome. In some cases, we would
even like to have on-line predictions of the behavior with acceptable computational
speed, in order to be able to perform optimizations of processes and products.

Model Order Reduction tries to capture the essential features of a structure. This means
that at an early stage of the process, the most basic properties of the original model must
already be present in the lower dimensional approximation. At a certain moment the
process of reduction is stopped. At that point all necessary properties of the original
model must be captured with sufficient precision. All of this has to be done automati-
cally.

Figure 3.1: Graphical illustration of model order reduction

Figure 3.1 illustrates the concept in a graphical easy-to-understand way, demonstrating
that sometimes very little information is needed to describe a model. This example with
pictures of the Stanford Bunny shows that, even with only a few facets, the rabbit can
still be recognized as such (Graphics credits: Harvard University, Microsoft Research).
Although this example was constructed for an entirely different purpose, and does not
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contain any reference to the way model order reduction is performed mathematically, it
can be used to explain (even to lay persons) what model order reduction is about.

In the history of mathematics we see the desire to approximate a complicated function
with a simpler formulation already very early. In the year 1807 Fourier (1768-1830)
published the idea to approximate a function with a few trigonometric terms. In linear
algebra the first step in the direction of model order reduction came from Lanczos (1893-
1974). He looked for a way to reduce a matrix in tridiagonal form [52,53]. W.E. Arnoldi
realized that a smaller matrix could be a good approximation of the original matrix [5].
He is less well-known, although his ideas are used by many numerical mathematicians.
The ideas of Lanczos and Arnoldi were already based on the fact that a computer was
available to do the computations. The question, therefore, was how the process of find-
ing a smaller approximation could be automated.

The fundamental methods in the area of Model Order Reduction were published in
the eighties and nineties of the last century. In 1981 Moore [59] published the method
of Truncated Balanced Realization, in 1984 Glover published his famous paper on the
Hankel-norm reduction [33]. In 1987 the Proper Orthogonal Decomposition method
was proposed by Sirovich [76]. All these methods were developed in the field of systems
and control theory. In 1990 the first method related to electronic systems was born, in
Asymptotic Waveform Evaluation [66]. The focus of this paper was on finding Padé
approximations. Then, in 1993, Freund and Feldmann proposed Padé Via Lanczos [28]
and showed the relation between the Padé approximation and Krylov spaces. In 1995
another fundamental method was published. The authors of [63] introduced PRIMA, a
method based on the ideas of Arnoldi, instead of those of Lanczos, the emphasis being
on the preservation of passivity.

In more recent years much research has been done in the area of the Model Order Reduc-
tion. Consequently a large variety of methods is available. Some are tailored to specific
applications, others are more general. There is one striking fact, however, namely that
most methods are based on projection. In the next section, we will go into this in more
detail. For an extensive recent overview of methods, see [3, 13, 73].

3.2 Reduction by Projection

Consider the linear equation

Cẋ +Gx − s(t) = 0, x ∈ R
n (3.3)

The DAE circuit model (3.3) has solutions in the full basis, x ∈ R
n, this could be approx-

imated by using a smaller vector z ∈ R
n where z ≈ Vx. The projection matrix V is of

row dimension n, but the number of columns r is usually much smaller. We substitute
this approximation into (3.3) to give,
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CV̇z +GVz − s(t)
︸ ︷︷ ︸

r(z), Residual

̸= 0 z ∈ R
r. (3.4)

System (3.4) is no longer equal to zero, it has a residual value r(z). It is also an overde-
termined system with more equations than unknowns.

We are interested in the solution of z(t) such that the remaining residual r(z) is orthog-
onal to the subspace spanned by the approximating basis vectors. We apply Galerkin
projection giving the following constraint,

VT r(z) = 0. (3.5)

Applying (3.5) to (3.3) we finally have,

VTCV ż + VTGVz − VTS(t) = 0,

Ĉż + Ĝz − Ŝ(t) = 0 (3.6)

We now have a determined system with an equal number of unknowns an equations,
it is a system that is also solvable by Newton methods if the matrix pencil {Ĉ, Ĝ} is
satisfied.

Projection methods are extremely popular with the area of model order reduction. PVL,
Arnoldi and PRIMA all are within this category, and also the Laguerre method [37, 49].
Most of these methods are developed for linear problems, and researchers in recent
years have concentrated on aspects like passivity, parametrization and structure preser-
vation [9, 30]. Also, the concept of realizability plays an important role, as one would
like the reduced order model to be in the form of an electronic circuit. These are non-
trivial problems, however, for which more research is needed.

3.3 Balancing methods

Model order reduction is certainly not the exclusive domain of numerical analysts; in
the area of dynamical systems and control, one has worked on reduced order modeling
for a long time. Within this area, methods have been developed that are entirely dif-
ferent from Krylov subspace methods. To illustrate how the methods work, consider a
linear dynamical system

dx

dt
= Ax + Bu,



3.3 Balancing methods 29

y = CT x +Du.

This is the most-used form for a linear input-output system where, as before, u is the
input, y is the output, and x is the state space vector [3]. It is easy to see that applying a
state space transformation

T x̂ = x,

does not affect the input-output behavior of the system. This transformation can, thus,
be chosen in a more or less optimal way (later it will become clear what this means).
The method of truncated balanced realization (TBR) uses a transformation that is based
upon finding solutions of the Lyapunov equations1

AP + PAT + BBT = 0,

ATQ+QA+ CTC = 0.

The matrices P andQ are the controllability and observability Gramians associated with
the linear time-invariant system (A,B,C,D). Finding these is a rather time-consuming
effort, but whenever found a balancing transformation can be carried out in such a way
that P = Q = Σ = diag(σi), where the latter are the singular values of the Hankel
operator [71].

The balancing transformation changes the matrices in the dynamical system, and also
leads to transformed Gramians [62]:

P ′ = T−1PT−T ,

Q ′ = TTQT,

that are balanced.

Reduction can then be achieved by discarding the smallest singular values. A big ad-
vantage of balancing methods is that the error, in a suitable norm, can be shown to be
bounded by the sum of discarded singular values.

For nonlinear problems, balancing techniques have also been developed, but the field
is still under development. Early work can be found in [71]. More recent work can be
found in [31, 84].

1In order to guarantee the existence of P and Q, we need to assume asymptotic stability of the original
system. Furthermore, T must be non-singular, otherwise the input-output behavior may be affected.
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3.4 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition, also known as Principal Component Analysis or
Karhunen-Loéve theorem, is a method that is used to create lower dimensional models
that accurately approximate data sets extracted from an original system. A data set
can be extracted from almost anything, for example; image data, video footage, sound
recordings and circuit response data. POD first identifies a set of basis functions that
spans a given data set, next a subset of these basis vectors is selected in such a way as to
preserve the most dominant, or required, characteristics of a system. A reconstruction
or approximate full model is carried out by projection on a reduced space consisting of
a linear combination of these dominant basis vectors, the basis selection procedure also
provides an error estimate of the reconstructed system. In this section we will introduce
the concepts of POD, followed by its derivation and show how POD can be applied to
a data set generated by our DAE circuit model and some error analysis.

3.4.1 Introducing POD

The data set collected from a transient circuit simulation is referred to as the snapshot
matrix, it is the collection of vector states at each time point in the simulation (in the
discrete case, we assume that the solution is stored atm time points):

X = {x(t)} t ∈ [0, T ] or t ∈ {0 = t1, t2, . . . , tm = T } (3.7)

POD finds a subspace approximating the space spanned by the columns of this snapshot
matrix (for the case of a finite number of snapshots) in an optimal least-squares sense, it
is looking for a d-dimensional subspace S = span{φ1, . . . , φd} ⊂ R

n that minimizes,

∥X− ρX∥2 := κ · ∥x − ρx∥2
L2
. (3.8)

The components of equation (3.8) are κ = 1
T

for continuous time or κ = 1
m

discrete
time data. ρ : R

n → S is the orthogonal projector on to the subspace S, where S is the
approximating orthonormal basis that is selected by POD, it is the POD basis.

3.4.2 Derivation

We will give a short derivation here to introduce important concepts of the POD method.
Our starting point is the truncated POD basis,

{φ1, . . . , φd}. (3.9)
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This orthonormal basis S can be completed by the Gram-Schmidt process to form a full
basis of R

n,

span{φ1, . . . , φd, φd+1, . . . , φn}. = R
n (3.10)

Each snapshot x(t) in the snapshot matrix can be expresses as an expansion in the full
basis ,

x(t) =

n∑

j=1

(x(t), φj)φj, (3.11)

or as an approximating expansion in the smaller POD basis,

ρx(t) =

d∑

j=1

(x(t), φj)φj. (3.12)

At this point we can already find an expression for the POD basis projection error, the
error between the expansions (3.11) and (3.12), this is done by the application of (3.8),

1

T
∥x − ρx∥2

L2
=

1

T

∫T

0

∥
n∑

j=d+1

(x(t), φj)φj∥2
L2dt (3.13)

=

n∑

j=d+1

(x(t)
1

T

∫T

0

(φj, φj)
2dt using (φj, φk) = δj,k (3.14)

=

n∑

j=d+1

⟨x, φj)⟩2. (3.15)

The overall strategy to derive POD is to find an ordered orthonormal basis of R
n such

that x can be expressed as an expansion,

⟨x, φ2
1⟩ > · · · > ⟨x, φd⟩2 > ⟨x, φd+1⟩2 > · · · > ⟨x, φn⟩2. (3.16)

The first basis vector φ1 is chosen so that it maximizes the averaged projection,

⟨x, φ1⟩2 = max︸︷︷︸
ϕ∈Rn

⟨x, φ⟩2, (3.17)
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the following basis vector φ2, is chosen so that it has the second highest maximising
effect on the averaged projection. The constraints placed on these successive choices
in this sequence would be φi ⊥ φj for j = 1, . . . , i − 1 and that ∥φ∥2 = 1. In this
way, we ascertain we have build an orthonormal basis from a set of orthogonal vectors
φ1, · · · , φn with singular values λi ≥ 0.

The above process is equivalent to the eigenvalue problem,

M(φ) = λφ. (3.18)

where,

M(φ) = ⟨(X, φ) · x⟩ (3.19)

The averaging operator M(φ) can be written as,

M(φ) = ⟨(x, φ)x⟩ =
1

m

m∑

j=1

m∑

k=1

xT
kφ︸︷︷︸
∈R

xj =
1

m

m∑

j=1

m∑

k=1

xjx
T
kφ =

1

m
XXTφ (3.20)

giving a final expression, in terms of our snapshot matrix X = (x1, . . . , x1) ∈ R
n×m, for

the eigenvalue problem as,

1

m
XXTφ = λφ (3.21)

On solving (3.21), we will instantly have found our POD basis,

φ1, . . . , φn, (3.22)

ordered such that,

λ1 > · · · > λn. (3.23)

3.4.3 Singular Value Decomposition

The singular value decomposition can be used to solve the eigenvalue problem. We will
demonstate the svd decomposition on a snapshot matrix X,
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X = Φ
(

Σ 0
0 0

)

ΨT (3.24)

where,

Φ = (φ1, . . . , φn) ∈ R
n×n (3.25)

Ψ = (ν1, . . . , νm) ∈ R
m×m (3.26)

Σ = diag(σ1, . . . , σk) (3.27)

Equation (3.25), is an orthonormal set of left singular vectors and, (3.26) is an orthonor-
mal set of right singular vectors, (3.27) contains the singular values. These vectors and
singular values satisfy,

Xνi = σφi (3.28)

XTφi = σiνi. (3.29)

To solve (3.21), we apply POD to the eigenvalue problem formed from the correlation
matrix.

XXTφi = σ2
iφi, (3.30)

λi = σ2
i . (3.31)

Once we have the left and right vectors, and the ordered singular values we can find
an optimal POD basis from an energy point of view, here we choose a set of containing
d basis vectors so that the corresponding summed singular values give 99% energy
conservation in the following,

Energy =

∑d
i=1 σi∑n
i=1 σi

× 100. (3.32)

We now have a suitable matrix V that can be used to approximate our original system.

ρ = VVT , (3.33)

VTV = I(d×d). (3.34)
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3.4.4 Application of POD to circuit models

The first step is to build a snapshot of states over a time period by carrying out a sim-
ulation of the circuit equation. Here, for simplicity, we state the linear equation, but
in principle POD is suited for nonlinear equations as well. The main problem is in the
use of the Galerkin projection in the nonlinear case, which is described in more detail in
Chapter 7. So, let’s consider here the linear circuit equation

C
d

dt
x(t) +Gx(t) − S(t) = 0. (3.35)

Once we have generated a POD basis and projection matrix V , we are able to approxi-
mate x(t)

x(t) ≈ Vz(t). (3.36)

By using the Galerkin projection method described earlier, we can create the reduced
system,

Ĉ
d

dt
z(t) + Ĝz(t) − Ŝ(t) = 0 (3.37)

with,

Ĉ = VTCV ∈ R
d×d (3.38)

Ĝ = VTGV ∈ R
d×d (3.39)

Ŝ = VTS ∈ R
d (3.40)

3.4.5 Error Analysis

Proper orthogonal decomposition is not a method that is easy to analyze. The main
reason is, of course, that the method deals with nonlinearities that may come in many
different variations. Several researchers have become interested in the method, and
published on error estimates [39, 85, 87]. The most complete and relatively recent refer-
ence is, however, the seminal paper by Rathinam and Petzold [68]. In that paper, basic
properties of POD are investigated and, more importantly, an analysis of all errors in-
volved in solving an ODE initial value problem using a POD reduced order model is
provided. The main theorem that is proved in the paper is the following:
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Theorem 3.1 Consider solving the initial value problem x ′ = f(x, t), x(0) = x0, using the
POD reduced order model in the interval [0, T ]. Let ρ ∈ R

k×n be the relevant projection matrix,
and let S denote the affine subspace onto which POD projects. Write the solution of the full
model x(t) and the solution x̂(t) of the reduced model as

x(t) = ρT u(t) + ρT
c v(t) + x̄,

and

x̂(t) = ρT u(t) + ρT w(t) + x̄,

so that the errors e0(t) and ei(t) and the projected solution x̃(t) are given by

e0(t) = −ρT
c v(t),

ei(t) = ρT w(t),

and

x̃(t) = ρT u(t) + x̄(t).

Note that u(t) ∈ R
k, w(t) ∈ R

k, and v(t) ∈ R
n−k. Let γ ≥ 0 be the Lipschitz constant of

ρf(x, t) in the directions orthogonal to S in a region containing x(t) and x̃(t). To be precise,
suppose

||ρf(x̃(t) + ρT
c v(t), t) − ρf(x̃(t), t)|| ≤ γ||v||

for all (v, t) ∈ D ⊂ R
n−k × [0, T ], where the region D is such that the associated region

D̃ = {(x̃(t) + ρT
c v, t) : (v, t) ∈ D} ⊂ R

n × [0, T ] contains (x̃(t), t) and (x(t), t) for all
t ∈ [0, T ]. Let µ

(

ρ ∂f
∂x

(x̄ + ρT z, t)ρT
)

≤ µ̄ for (z, t) ∈ V ⊂ R
k × [0, T ], where the region V is

such that it contains (u(t), t) and (u(t)+w(t), t) for all t ∈ [0, T ] and µ denotes the logarithmic
norm related to the 2-norm. Let ϵ = ||e0||2. Then the error ei in the ∞-norm satisfies

||ei||∞ ≤ ϵ γ√
2µ̄

√

e2µ̄T − 1,

and the 2-norm of the total error satisfies

||e||2 ≤ ϵ
√

1+
γ2

4µ̄2
(e2µ̄T − 1− 2µ̄T).
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This is an important theorem that provides a quantitatively reasonable error estimate,
and also explains the various factors that affect the error.

3.5 Summary

In this chapter, we briefly reviewed methods that are used to reduce original models to
more concise representations. To this end, the class of Krylov projection methods can
be used, or the class of balancing methods. Both are fairly well developed for linear
problems, but for nonlinear problems the techniques are still in their infancy. Of the
methods proposed, proper orthogonal decomposition (POD) is the most popular and
most frequently used method. In principle, it provides a representation for solutions,
but via the Galerkin (or Petrov-Galerkin) projection it can also lead to reduced order
models. This is the method of choice that will be used in subsequent chapters.



Chapter 4

Sensitivity Analysis

Sensitivity analysis is a key tool in the design of very large scale integrated circuits. It
plays a role in evaluating the impact of the variability of design parameters on the per-
formance, which is crucial knowledge in determining the next design iteration. In ad-
dition, sensitivity information is indispensable during automatic optimization of elec-
tronic circuits. In this chapter, we discuss the concept of sensitivity in more detail, and
present commonly used methods for calculating it. The forward method can be used
in the case of a small number of parameters, whereas the backward adjoint method has
been designed specifically to deal with a multitude of parameter sensitivities.

4.1 Adjoint equations

Before we start the discussion about techniques for sensitivity analysis, it is important
that we briefly discuss the notion of adjoint equation1. This is a crucial concept in ob-
taining more efficient methods for sensitivity analysis, especially in the case of a large
number of parameters. The adjoint operator is a well known concept in functional anal-
ysis, and we refer to standard works on the subject for the precise meaning of

Consider first the linear ordinary differential equation

Ax ′ + Bx = f, (4.1)

with continuous coefficients A,B : [0, T ] → L(Rm), with A nonsingular and where ’
denotes time differentiation. For ease of notation, we leave out the time dependence of

1The adjoint operator is a well known concept in functional analysis, and we refer to standard works on
the subject for the precise meaning of it.
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A,B. To obtain the adjoint equation, we first transform (4.1) into the form

x ′ +A−1Bx = A−1f,

which is possible due to our assumption on A. The adjoint corresponding to the latter
equation is given by [20]

z ′ − BTA−T z = g.

Now we set y = A−T z, and hence obtain the adjoint of the original equation (4.1):

(AT y) ′ − BT y = g. (4.2)

If (4.1) is not an ODE but a differential algebraic equation, i.e. when the coefficient ma-
trix A is singular, a different situation is encountered, and we need to take care when
forming the adjoint equation. In this case, we follow the theory of März for (canonical)
projectors (see [56] and also Section 6.4 for a more detailed discussion) and first con-
struct a projector P : [0, T ] → L(Rm) projecting along the null space of A. For example,
we could choose P = A+A, where ”+” indicates the Moore-Penrose inverse. Equiva-
lently, we can choose a projectorQ onto the null space, and define P = I−Q.

Using the projector P, we can rewrite (4.1) into the form

A(Px) ′ + (B−AP ′)x = f, (4.3)

In [11], it is shown that this formulation is independent of the choice of projector P, and
that, because of this, we can write it in the form (4.1).

Now following März, who has actually set up a whole theory of (canonical) projectors
for differential algebraic equations of any index [56], we define:

B0 = B−AP ′,

A1 = A+ B0Q.

We can then decompose our problem into two parts, namely the regular ODE

LsPy = PA−1
1 f, (4.4)
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and the algebraic equation

Qsy = QA−1
1 f, (4.5)

where

Lsz := z ′ + (PA−1
1 B0 − P ′)z,

Qsz := Qz +QA−1
1 BPz.

It is easily seen that Q2
s = Qs, so that Qs is a projector. The operator Ls is well defined,

and the corresponding initial value problem is uniquely solvable in C1([0, T ],Rm).

The adjoint of Ls is given by

L∗
sw := w ′ − (BT

0A
−T
1 PT − P ′T )w (4.6)

for w ∈ C1([0, T ],Rm). The corresponding initial value problem

L∗
sw = h,

w(0) = w0,

is uniquely solvable in C1([0, T ],Rm). Furthermore, we have that

PT w ∈ C1([0, T ],Rm),

and

(PT w) ′ − (PTBT
0A

−T
1 − P ′T )PT w = PT h,

PT w(0) = PT w0.

Defining then

P∗s := A−T
1 PTAT

1 = A−T
1 AT ,

and
u := A+PT w,
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a straightforward calculation shows that (see also [11])

PT h =
[

AT (P∗su)
] ′

− BT (P∗su).

The projector P∗s can be shown to be independent of the choice of projector P. Combin-
ing all these facts, the following conclusion can be drawn:

Theorem 4.1 Let A : [0, T ] → L(Rm,Rm), dim(Im(A(t))) < m for all t ∈ [0, T ]. Assume
that the matrix pencil (A(t), B(t)) is regular of index 1 for all t ∈ [0, T ], and that there exists a
projectorQ ∈ C1([0, T ], L(Rm,Rm)) onto ker(A). Then the initial value problem involving the
operator Lx := Ax ′ + Bx is well defined and uniquely solvable, and the corresponding adjoint
problem is given by L∗ϕ = s where

L∗ϕ := (ATϕ) ′ − BTϕ.

As can be seen in the foregoing, in this case the adjoint operator is what we expect it
to be. For DAEs with a higher index, however, the adjoint problem may look quite
different, and we may have to solve a so-called augmented set of equations. For a very
detailed analysis, we refer to [10, 11]. This work has been generalized further by März
in [57], where equations of the type

A(Dx) ′ + Bx = q, (4.7)

are considered, with corresponding adjoint equation

DT (AT y) ′ − BT y = p.

For nonlinear DAEs, the situation may be quite different. Therefore, we will give a
detailed derivation of the corresponding adjoint problem in the special case of the elec-
tronic circuit equations. The equations in that case are of a form similar to (4.7):

A
(

q(AT x(t))
) ′

+ b(x(t), t) = q(x(t), t);

see also [25,38]. Before that, we will review some methods for finding sensitivities in the
next two sections. As one will see, the notion of the adjoint operator plays an extremely
important role in this.
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4.2 Basic sensitivity analysis

The main goal of sensitivity analysis it to calculate the rate of change of the output
variables of a system as a result of changes in a set of parameters of that system. There
are two sensitivity types that are of interest, the state solution sensitivity to a parameter
change and the sensitivity of an observable circuit function, the observation function
sensitivity.

For illustration purposes, consider the general non-linear system of the form

F(x,p) = 0, (4.8)

where x ∈ R
n, p ∈ R

m, F : R
n × R

m → Rn. Assume that ∂F
∂x is non-singular for all

parameter settings p. Then the state sensitivity amounts to calculating dx
dp , i.e. the sen-

sitivity of the state variable x with respect to the problem parameters p. In many cases,
however, there is an observable derived function G(x,p) ∈ R

k with k much smaller
than m,n, and one is more interested in the behavior of this function with respect to
parameter changes. Thus, one needs to calculate dG

dp , which can be done by writing

dG

dp
=
∂G

∂x

dx

dp
+
∂G

∂p
. (4.9)

Basically, there are two methods to calculate both types of sensitivity: the forward
method and the backward adjoint method. Let’s first discuss the forward method,
which is a direct approach to find the desired sensitivities. To this end, we linearize
the system in (4.8) around some nominal parameter set:

∂F

∂x

dx

dp
+
∂F

∂p
= 0, (4.10)

from which we can find the n×mmatrix dx
dp of state sensitivities due to the assumption

of non-singularity of ∂F
∂x . Note that, in order to find this matrix of sensitivities, we need

to solve m linear systems, which is feasible if the number of parameters is small. The
sensitivity of the observable function G is then easily computed using the obtained state
sensitivities.

Whenever the number of parameters is large, the forward method is often not feasible
anymore and computationally too expensive, as too many linear systems need to be
solved. In that case, the backward adjoint method provides a useful alternative as it
avoids the direct calculation of the matrix ∂x/∂p, and directly leads to the sensitivity
of the observable function G. It works as follows. First, we multiply the linearized
equation (4.10) from the left by a new parameter λ ∈ R

n, called Lagrangian multiplier,
so as to obtain

λT ∂F

∂x

∂x

∂p
+ λT ∂F

∂p
= 0.

Now assume that λ is the solution of the linear system

λT ∂F

∂x
=
∂G

∂x
. (4.11)
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Then we have
∂G

∂x

∂x

∂p
= −λT ∂F

∂p
,

and hence, using (4.9):
dG

dp
= −λT ∂F

∂p
+
∂G

∂p
.

Thus, the sensitivity of the observable function G is now obtained by solving only one
linear system! Hence, there is no dependence anymore on the number of parameters;
having calculated the paramater λ, all desired sensitivities can be calculated. This ex-
plains why the adjoint method is especially attractive when the number of parameters
in the problem is very large.

The conclusion is evident, without even having to go into a detailed operation count:
the original method is best suited to find sensitivities of a possibly large number of state
variables with respect to a small number of parameters, while the adjoint method is
ideal for finding the sensitivity of a low-dimensional observable function of the state
variables with respect to a large number of parameters. Note that the adjoint method
will become more expensive if the number of right hand sides in (4.11) goes up; this is
directly related to the dimension of the range of the function G.

4.3 Sensitivity analysis for differential-algebraic systems

In the foregoing section, we discussed the basics of sensitivity analysis. In practice,
one will often be confronted with a situation in which a time dependent system must
be solved. This changes the sensitivity analysis, as we will need to solve time depen-
dent systems rather than just linear systems as given in (4.11). In order to see how this
changes our methods, let’s consider the system

F(x, ẋ, t,p) = 0, (4.12)

where ẋ = ∂x
∂t

, with initial condition x(0) = x0(p).

An important issue before turning our attention to the sensitivity analysis in this case, is
the matter of adjoints of differential-algebraic equations. This topic has been discussed
in Section 4.1. As we have seen in that section, for a linear DAE without parameters,

Aẋ + Bx = 0,

with sufficiently smooth matrix functions A and B (dependent on time), we obviously
have that

F(x, ẋ, t,p) = Aẋ + Bx,

and the adjoint DAE is given by

∂

∂t

(

ATλ
)

− BTλ = 0.
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In [10,11], a detailed analysis is provided. The most interesting result, as far as our work
described in the following chapters is concerned, is that Balla and März prove that for
an index-1 DAE the adjoint system is also of index-1. This strengthens our ideas about
similarities between the structure of the original DAE and the adjoint equation.

Another important remark in this context is that März, in a separate paper [57], has
shown that for a certain class of differential algebraic systems, the operations of ”ad-
joint” and ”discretization” commute. This means that we can either first form the ad-
joint equation, then discretize it, or alternatively first discretize the original DAE and
then form the discretized adjoint equations. A corollary is that the stability of the ad-
joint equation and its discretized form is maintained. Again, this is important material
for our work in subsequent chapters.

We now return to the general nonlinear case as displayed in (4.12). The forward method
works very much as described in the previous section, but now we need to take into
account the time derivatives. Thus, we construct the linearized system (around some
nominal parameter p0)

∂F

∂x

∂x

∂p
+
∂F

∂ẋ

∂ẋ

∂p
+
∂F

∂p
= 0,

and observe that (”Schwarz”)

∂ẋ

∂p
= ∂

(

∂x

∂t

)

/∂p =
∂

∂t

∂x

∂p
.

Hence, the linearized system takes the form

(

∂F

∂ẋ

∂

∂t
+
∂F

∂x

)

∂x

∂p
+
∂F

∂p
= 0,

providing a differential-algebraic system for the state sensitivity ∂x
∂p . Its initial condition

is provided by
∂x

∂p
(0) =

∂x0(p)

∂p
.

Thus, the forward method consists of solving a linear differential-algebraic system for
the state sensitivities.

Now we turn our attention to the construction of the backward adjoint method. This is,
however, much more complicated than in the previous section. We follow the approach
as described in detail in [17], where an adjoint approach is presented for the sensitivity
of the derived function

G(x,p) ≡
∫T

0

g(x, t,p)dt.

First, a Lagrange multiplier λ is introduced and the augmented objective function is
formed:

I(x,p) ≡ G(x,p) −

∫T

0

λT (t)F(x, ẋ, t,p)dt.
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Since we know that F(x, ẋ, t,p) = 0, we find that the sensitivity of G with respect to p is
the same as the sensitivity of I. Hence, using the definition of G,

dG

dp
=

dI

dp
=

∫T

0

(

∂g

∂p
+
∂g

∂x

∂x

∂p

)

dt−

∫T

0

λT

(

∂F

∂p
+
∂F

∂x

∂x

∂p
+
∂F

∂ẋ

∂ẋ

∂p

)

dt. (4.13)

Now we use integration by parts on the last term in this expression:

∫T

0

λT ∂F

∂ẋ

∂ẋ

∂p
dt =

[

λT ∂F

∂ẋ

∂x

∂p

]T

0

−

∫T

0

d

dt

(

λT ∂F

∂ẋ

)

∂x

∂p
dt.

Substituting this into (4.13), we find

dG

dp
=

∫T

0

(

∂g

∂p
− λT ∂F

∂p

)

dt−

∫T

0

[

−
∂g

∂x
+ λT ∂F

∂x
−

d

dt

(

λT ∂F

∂ẋ

)]

∂x

∂p
dt−

[

λT ∂F

∂ẋ

∂x

∂p

]T

0

.

Setting the argument in the middle integral equal to zero, i.e. requiring that

d

dt

(

λT ∂F

∂ẋ

)

− λT ∂F

∂x
= −

∂g

∂x
, (4.14)

we find that
dG

dp
=

∫T

0

(

∂g

∂p
− λT ∂F

∂p

)

dt−

[

λT ∂F

∂ẋ

∂x

∂p

]T

0

. (4.15)

Note that we have

[

λT ∂F

∂ẋ

∂x

∂p

]T

0

= λT ∂F

∂ẋ

∂x

∂p
(T) − λT ∂F

∂ẋ

∂x

∂p
(0) =

(

λT ∂F

∂ẋ

)

(T)
∂x

∂p
(T) −

(

λT ∂F

∂ẋ

)

(0)
∂x0

∂p
.

The final term in this expression is easily obtained, as it is the sensitivity of the initial
condition with respect to the parameters. At t = T , the situation is more complicated,
as this will provide the initial condition for the adjoint sensitivity calculation. This can
be rather tricky for higher index systems, as is explained in [17]. Here we will restrict
to index-0 and index-1 problems (assuming the conditions of Tischendorf [79, 80] are
satisfied), and then we can use the initial condition

(

λT ∂F

∂ẋ

)

(T) = 0. (4.16)

Then we find that the sensitivity of G is given by

dG

dp
=

∫T

0

(

∂g

∂p
− λT ∂F

∂p

)

dt+

(

λT ∂F

∂ẋ

)

(0)
∂x0

∂p
. (4.17)

Hence, summarizing the calculation of the sensitivity of G with respect to the parame-
ters p:

1. solve the forward DAE in (4.12) for x
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2. solve the adjoint problem (4.14), subject to the initial condition (4.16) at t = T , for
λ

3. find the sensitivity of G using the expression in (4.17)

The second step explains why one usually refers to the method as the backward adjoint
method.

4.4 Sensitivities for electronic circuits

Without a deeper insight into the response of circuits, their states and intended func-
tions, to small physical changes, a new circuit implementation created without the
benefit of an experienced designer may be open to volatile responses, chip to chip, to
the smallest parameter variation in the manufacturing step. Sensitivity Analysis is the
study of the reaction of a system or model to the change of the parameters it contains.
A measure of the sensitivity of a given state or circuit function to a list of parameters is
revealed once a system has been analyzed, there is an instantly useful set of data that
can be used to confirm a good circuit design or identify a subcircuit that needs better
care or implementation. All of this circuit analysis can take place before the fabrication
process which helps to keep the yield loss to a minimum.

The calculation cost of circuit sensitivities varies with the size of a circuit, for larger
circuits one can expect a proportionally larger calculation cost. In this section we will
introduce the different types of circuit sensitivities, their derivation and also the basic
building blocks, following mostly the discussion in the previous sections. We will also
cover the existing methods for the calculation of circuit sensitivities, the direct forward
brute force approach and a cheaper Lagrangian method based on a backward adjoint
approach.

The most basic sensitivity measure is taken by observing the reaction of a single circuit
state, for example the voltage drop between two resistors, to a change in the parameters
of the surrounding components. More complex sensitivity measurements can be taken
by constructing more complex sensitivity expressions upon the basic state sensitivities,
these are used to measure the sensitivity of more complex circuit functions, such as
potential dividing or amplifier gain, which are a combination of the basic circuit state
values.

Circuit parameters are intrinsic to the circuit model, the characteristics of each individ-
ual circuit component depends upon them and also the performance of the total circuit.
This is reflected in the circuit equations, a DAE model of a more specialized form than
the general form given in (4.12):

d

dt
[q(x(t,p),p)] + j(x(t,p),p) = s(t,p). (4.18)
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This equation reveals the dependence of the circuit states, the charge and current vector
behavior and the signal source upon the parameter vector p, which contains the list of
circuit parameters. Here the state solution x(t,p) is a function of time and the parameter
vector p; the charge q(x(t,p),p) and current j(x(t,p),p) behavior of the system are
dependent on the state vector and also themselves depend upon the parameter vector.

An imperfection in the manufacture stage, unless extreme, will not change the circuit
topology and therefore not change the equations modeling the circuit. However, the
resulting change in parameter values for the affected components will be registered
in the circuit model (4.18) as a change in a parameter value in the vector p. It is clear
from the circuit dependency relationships mentioned, and just by referring to the circuit
equation model, that any change inside this list of parameter values has the potential
to completely change the circuit state solutions and push the circuit outside its origi-
nal design tolerances or even modify the behavior of the circuit beyond its intended
function.

A pronounced example is found in the area of fault analysis for analog circuits. Faults
are modeled as resistors that bridge a pair of nodes which are not connected in the orig-
inal circuit. For some pairs of nodes, such resistive bridges may cause the transient
solution to deviate dramatically from the solution of the original circuit. Hence, when
appending many bridges to the original circuit between all possible pairs of nodes, a
large number of parameters (the resistive values of the bridges) is introduced, some
causing no deviation from the original solution, others deviating a lot. Such analyses
enable designers to quickly trace the location of faults. Sensitivity analysis is currently
being explored within the electronics industry as a means of obtaining such quick in-
sights. Note that this specific example implies a change of topology, deviating from the
original circuit.

Before going into the specific methods for sensitivity analysis of electronic circuits in
the next section, we briefly discuss some aspects in the following subsections that are
important in dealing with parameters in practical situations.

4.4.1 State sensitivity

The circuit state vector x(t,p) is dependent upon time, t, and the parameter vector p.
Each individual circuit state listed in the state vector could have a dependence on none,
one or more of the parameter values listed in the parameter vector, this is dependent
upon the type of components adjacent to the circuit states and the choice taken over
which parameters to observe. A resistor is dependent upon a number of parameters, its
length l, its electrical resistivity ρ and its cross-sectional areaA = w · d = width∗depth:

R =
l · ρ
A
. (4.19)
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A voltage state in the node between two resistors will have a dependence upon each
of the parameters contained in (4.19). If a capacitor is then connected to this node, of
capacitance

C = ϵrϵ0

A

d
, (4.20)

then the voltage state of this node suddenly has a whole new set of parameters that
could influence its value. Again, a choice has to be made on which parameters should
be entered into the parameter vector.

As stated in the general case in Section 4.1, the state sensitivity of an individual circuit
state to a particular parameter is then defined as the differential of that state with respect
to a parameter in the list. The state sensitivity matrix x̂(t,p) contains the sensitivity
values of each state with respect to each individual parameter:

x̂(t,p) ≡ ∂x(t,p)

∂p
∈ Rn×m (4.21)

The state sensitivity result is a matrix of size n×m, where n is the number of system
states and m the number or parameters under investigation. If only one parameter is
under investigation then a column vector of equal size to the state vector is returned as
the result. Thus,

x̂(t,p) ≡









∂x1

∂p1
· · · ∂x1

∂pm

...
...

∂xn

∂p1
· · · ∂xn

∂pm









. (4.22)

Chain rule access to parameters

There exist a very large number of components and there are also many model vari-
ations of any type of component, each having their own individual parameter lists.
Bearing this in mind one can expect that for large circuits a comprehensive parameter
sensitivity analysis can quickly create very large parameter vectors and system matrices.
Using the chain rule one can dramatically cut down the sizes of vectors and matrices in-
volved, it is possible to just calculate the sensitivity of state values to changes in the
component values and then later retrieve individual model parameter values.

For example, if one calculates the sensitivity of a state with respect to a resistor value,
∂x
∂R , one could then extract specific parameter sensitivities at a later point on the fly by
using the chain rule:



48 Sensitivity Analysis

∂x

∂l
=
∂x

∂R

∂R

∂l
, (4.23)

∂x

∂w
=
∂x

∂R

∂R

∂w
, (4.24)

∂x

∂ρ
=
∂x

∂R

∂R

∂ρ
. (4.25)

Equation (4.23) shows how the chain rule is applied to calculate the sensitivity of a state
to the length parameter within a particular resistor expression, (4.25) for the resistivity
parameter and (4.24) for the width parameter. This approach can be taken when extract-
ing parameter sensitivities for any other component model, a chain rule example for a
capacitor model parameter is shown below:

∂x

∂d
=
∂x

∂C

∂C

∂d

The conclusion is that one should take care in defining parameters for which sensitiv-
ities need to be calculated. Any dependence between parameters should be avoided,
and the list of parameters should be minimal. Ideally, one should reduce the list of
parameters to a set of basic parameters that can be used to describe all desired sensitiv-
ities in the end. In what follows, this aspect will not be reconsidered, we will always
assume that a set of parameters is given and that all sensitivities with respect to these
parameters must be calculated.

4.4.2 Observation function sensitivity

It is often required to observe the combined effect or meaning of each individual circuit
state, in other words the realization of a circuit design solution, and the effect of the sen-
sitivity of the overall design to a change in circuit parameters. A frequently occurring
concern in the electronics industry is the energy consumption of their devices, circuits,
subcircuit and individual component efficiency. A well known standard expression for
the power consumption of a resistor is power = current × voltage and after applying
Ohm’s law, we have power = (voltage)2/resistance. We can express this as a function
of the state vector x(t,p), as follows2:

2We henceforth change our notation, and use Gobs for the observable function, which in turn is a function
of some F that depends on the solution x and the parameters p
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F(x(t,p)) =
1

R
f2(x(t,p)), (4.26)

where f(x(t,p)) selects voltage states and finds the potential difference across a specific
resistor with value R. The total power used by the resistor over a period of time, the
energy use, is found by integrating (4.26) over that same time period:

Gobs(x,p) ≡
∫T

0

F(x(t, p),p)dt. (4.27)

Equation (4.27) is an observation function that observes the energy use over a selected
subcircuit area. The calculation and prediction of the sensitivity of energy consumption
to minor parameter changes is invaluable, electronic components are expected to have
a stable power supply.

The observation function sensitivity is calculated by differentiating (4.27) with respect
to the parameter vector, giving (around some nominal parameter)

dGobs

dp
=

∫T

0

(

∂F

∂x
· ∂x

∂p
+
∂F

∂p

)

dt, (4.28)

or, using the previously introduced notation x̂ = ∂x
∂p ,

dGobs

dp
=

∫T

0

(

∂F

∂x
· x̂ +

∂F

∂p

)

dt. (4.29)

Note that the state sensitivity expression is present in (4.28), this is stated more clearly in
(4.29) and confirms that the more complicated observation functions are built upon and
are dependent upon the state sensitivity vector. This dependence on the state sensitivity
vector introduces a constant initial cost, before any observation function sensitivities can
be evaluated, the state sensitivities must first all be calculated. This is entirely analogous
to what we explained in Section 4.2 for the general abstract case.

A simple illustration of the backward adjoint idea

The adjoint method introduced in Section 4.2 may look like a mathematical trick. How-
ever, if we consider a simple linear circuit, the idea of using the adjoint comes out very
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naturally. To demonstrate this, consider a linear circuit that can be described (for exam-
ple by employing the MNA method) by (note that, in this case, no dynamics is involved)

Ax = b.

Here, the vector x contains node voltages and branch currents. If the system contains
parameters, denoted by the vector p, we find that

A
∂x

∂p
+
∂A

∂p
=
∂b

∂p
.

Hence, we find that
∂x

∂p
= −A−1

(

∂A

∂p
−
∂b

∂p

)

.

Very often, however, the output function is a linear combination of the components of
x, i.e.

ϕ = dT x

for some vector d. This is clearly a function of the solution x. We now wish to find

∂ϕ

∂p
= dT ∂x

∂p
= −dTA−1

(

∂A

∂p
−
∂b

∂p

)

.

From this expression we see that it would be convenient to calculate a vector z such that

zT = dTA−1,

implying that
z = A−T d.

If we have the LU-decomposition of A available, then

z = L−TU−T d,

and having found this vector z, the sensitivity is easily found as

∂ϕ

∂p
= −zT

(

∂A

∂p
−
∂b

∂p

)

.

Thus, the occurrence of the adjoint operator is quite natural in the context of sensitivities
for observed quantities, and should not come as a surprise.

4.5 Applying the direct forward method to circuit sensi-

tivity

The direct forward method for calculating the state sensitivities reuses information that
is already available from an initial circuit simulation. However, it depends on how
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much time we wish to invest in calculating the actual sensitivities. We can use the
method based upon expression (4.10) or its dynamic counterpart, but to do this we
must calculate exactly the matrix ∂F/∂x and the right hand side vector/matrix ∂F/∂p.
This may be quite a cumbersome task, especially since we must do this at all time steps
as described in Section 4.2. For this reason, one often resorts to a numerical approach.
Then, the main requirement is the circuit state solutions, which can be obtained, for
example, by using an Euler-backward time integration of the circuit equations,

1

∆t
[qn+1 − qn)] + jn+1 − sn+1 = 0, (4.30)

where the quantities at n and n+1 are discrete approximations of the continuous quan-
tities at the time points tn and tn+1, respectively. A Newton-Raphson solution of (4.30)
involves the coefficient matrix Y = 1

∆t
C + G, where C = ∂q/∂x and G = ∂j/∂x. The

LU-decomposition of the matrix Y = LU carried out while solving for the state solutions
to this circuit system should also be saved as it can also be reused in the calculation of
the state sensitivities.

Calculation of state sensitivities

The direct forward method is so called because a direct forward differentiation is carried
out on the circuit equations as part of the method. Here we first differentiate (4.30) with
respect to the parameter vector p,

0 =
1

∆t
[
∂q

∂p

n+1

−
∂q

∂p

n

] +
1

∆t
[Cx̂n+1 − Cx̂n] + Gx̂n+1 +

∂jn+1

∂p
−
∂sn+1

∂p
,

which, after applying a re-arrangement of terms, leads to

((1/∆t)C + G)
︸ ︷︷ ︸

Y

x̂n+1 = −
1

∆t
[
∂q

∂p

n+1

−
∂q

∂p

n

] + (1/∆t)Cx̂n −
∂j

∂p
+
∂s

∂p
︸ ︷︷ ︸

f

.

This is an equation for the state sensitivity where x̂n+1(p) ≈ x̂(tn+1,p).

Once the initial DC value x̂0 is calculated the only unknown is the state sensitivity x̂n+1.
The initial sensitivity of x̂DC(p) with respect to p is similar to x̂(t,p). Reusing the solu-
tions and the LU-decomposition from (4.30), the sensitivity x̂n+1(p) ≈ x̂(tn+1,p) may
be calculated by recursion [22, 40]
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x̂n+1(p) = Y−1f, in which (4.31)

f = −
1

∆t
[
∂q

∂p

n+1

−
∂q

∂p

n

] −
∂j

∂p

n+1

+
∂s

∂p

n+1

+
1

∆t
Cx̂n(p). (4.32)

The last term in vector f requires O(PN2) operations, in addition each other term needs
O(PN) evaluations. Solving the system requires an additional O(PN2) operations.

One final remark is that, from the point of view of reducing use of storage, it is opti-
mal to calculate the sensitivity immediately after the Newton iterative process for the
solution at time tn+1 has converged. The LU-decomposition needed is then still avail-
able (assuming a direct solution is employed for the linear systems), and it is a simple
exercise to calculate the desired sensitivities.

Function sensitivities

Once an expression for the observation function sensitivity has been derived, in our
case we previously derived a function observing the sensitivity of the circuit power us-
age (4.33). It is evaluated while substituting the state sensitivity values calculated for
the time period being observed. The initial cost of evaluating the state sensitivities is not
avoided, but if more than one observation function is formulated these state sensitivity
values can be reused with the restriction that one must only observe the next observa-
tion function in the same time period with the same parameter and component values,
which is quite likely.

As an example, one may want to test the sensitivity of the amplification function (or
gain) of an amplifier, and for the same time period and parameter values, test the indi-
vidual component power performance or even just the total power consumption. Until
the need arises to change the test signals, parameter values and the time frames, this
reuse does maximize the productivity of the initial cost, but frequently it is desired to
test a range of conditions and parameters to fine tune a circuit design. If one wanted to
modify the amplification of an amplifier, the parameters would change and one would
then need to recalculate all of the state sensitivities before re-evaluating all of the de-
sired observations again. For a design life cycle, this constant re-evaluation becomes
very expensive.

If we take a closer look at the sensitivity of each observation function,

dGobs

dp
=

∫T

0

(

∂F

∂x
x̂ +

∂F

∂p

)

dt, (4.33)

we find that if the only step taken is the substitution of x̂ and the cost of determining ∂F
∂x

is cheap, then the main concern for calculating observation function sensitivities, as in
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(4.33), is the efficient initial calculation of x̂(t,p), or even the efficient calculation of the
matrix-vector product ∂F

∂x x̂.

Note that, from (4.31), we can derive an expression to judge the cost of this inner product
using the direct forward method:

∂F

∂x
x̂ =

∂F

∂x
Y−1f = [Y−T [

∂F

∂x
]T ]T f (4.34)

This inner product can be calculated in O(min(F,m)n2 + Fmn) operations.

For challenging industrial problems where the number of parameters in a model is
large, and when more than one function is observed, this brute force approach becomes
very expensive very quickly. Especially as this operation takes place at each time point
during integration.

4.6 Application of the backward adjoint method to circuit

sensitivity

By applying a Lagrangian multiplier approach, the method of finding sensitivities re-
formulates the observation function sensitivity equation into a form which is faster to
evaluate. No extra work is needed to obtain the state sensitivities x̂ found in (4.33), as
these are implicitly present in the new formulation. We have developed this concept in
the general abstract case in Section 4.2, and will now apply it to the specific case of the
circuit equations.

Calculation of function sensitivities

In the previous section we encountered the product ∂F
∂x x̂ and concluded that its cost is

quite high; this is mainly caused by the high cost of evaluating the state sensitivities. Us-
ing an approach utilizing Lagrangian multipliers the Backward Adjoint Method [17] can
be used to eliminate this product, or better put it replaced that product with a cheaper
expression.

The starting point is the circuit equation, which is multiplied by λ(t) and then inte-
grated. These steps are detailed in the following. The circuit equation reads:

d

dt
[q(x,p)] + j(x,p) − s(t,p) = 0.
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The first step is now to differentiate this equation with respect to p and then integrate
with respect to time over a specified period. Using the chain rule, we easily find (re-
member that G and C are functions of x)

d

dp
j(x(t,p),p) =

∂j

∂x

dx

dp
+
∂j

∂p
= G

dx

dp
+
∂j

∂p
,

d

dp
q(x(t,p),p) =

∂q

∂x

dx

dp
+
∂q

∂p
= C

dx

dp
+
∂q

∂p
,

where, as is commonly denoted, G =
∂j
∂x and C =

∂q
∂x . Now multiplying by λT (t) and

integrating gives

0 =

∫T

0

λT (t)

[

d

dt

dq

dp
+
dj

dp
−
ds

dp

]

dt,

0 =

∫T

0

λT (t)

[

d

dt

dq

dp

]

dt+

∫T

0

λT (t)

[

dj

dp
−
ds

dp

]

dt.

Using integration by parts, we find for the first integral that

∫T

0

λT (t)

[

d

dt

dq

dp

]

dt =

[

λT (t)
dq

dp

]T

0

−

∫T

0

dλT (t)

dt

dq

dp
dt. (4.35)

Recombining this with the second integral, we have

0 =

[

λT (t)
d

dp
q(x(t,p)

]∣

∣

∣

∣

T

0

+

∫T

0

[

−

(

dλT

dt
C − λT G

)

x̂ −
dλT

dt

∂q

∂p
+ λT

(

∂j

∂p
−
∂s

∂p

)]

dt.

The state sensitivity x̂ is clearly part of this equation, but it will be seen soon that we can
avoid having to evaluate it explicitly. To this end, we rearrange the foregoing equation
in order to isolate the state sensitivity:
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∫T

0

[(

dλT

dt
C − λT G

)

x̂

]

=

[

λT (t)
dq

dp

]∣

∣

∣

∣

T

0

+

∫T

0

[

−
dλT

dt

∂q

∂p
+ λT

(

∂j

∂p
−
∂s

∂p

)]

dt

(4.36)

We can now begin to eliminate the costly state sensitivity calculation. Notice that (4.33)
and (4.36) both have a term containing x̂, we can eliminate the costly matrix-vector
product ∂F

∂x x̂ in (4.33) by using the following so-called Backward Adjoint Equation:

CT(p)λ̇(t) − GT(p)λ(t) = −

(

∂F(x(t,p),p)

∂x(t,p)

)T

. (4.37)

After the substitution step using (4.37) our original observation function (4.33) now
takes the following form,

d

dp
Gobs =

∫T

0

∂F

∂x
x̂ +

∂F

∂p
dt

=

∫T

0

[−
dλT

dt
C + λT G]x̂ +

∂F

∂p
dt

= −[λT (t)
dq

dp
]|Tt=0 +

∫T

0

dλT

dt

∂q

∂p
− λT (

∂j

∂p
−
∂s

∂p
) +

∂F

∂p
dt.

(4.38)

We now have an integral term and a boundary term to calculate, the x̂DC value (at t = 0)
is already known and easy to find but the calculation of the boundary value at t = T

would mean calculating all intermediate values and so the new found efficiency would
be lost.

A good choice of initial values for the solution of the equations for λ eliminates this
problem, we choose,

λ(T) = 0. (4.39)

This then immediately explains the reason why we have a backward equation: we can-
not specify the initial condition at t = 0, but only a condition at t = T . Hence, we need
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to integrate the adjoint equation in a backward way. Going back to our example in Sub-
section 4.4.2, this is similar to the use of an LU decomposition, solving both a forward
and a backward system.

We can now solve for correct values of λ, and our expression for the observation function
sensitivities simplifies further to

d

dp
Gobs(x(p),p) = λT (0)[

∂q

∂x
(0)x̂DC +

∂q

∂p
(0)] +

∫T

0

[

dλT

dt

∂q

∂p
− λT (

∂j

∂p
−
∂s

∂p
) +

∂F

∂p

]

dt. (4.40)

Thus, just as in the case of the general nonlinear DAE in Section 4.2, we can find the
observation function sensitivities by solving first the Backward Adjoint Equation (4.37)
for the Lagrangian multiplier λ(t), and then apply the formula (4.40) to find the desired
sensitivities. In other words, we avoid the calculation of the state sensitivities at each
time point, this cost being replaced by having to solve an additional DAE backward in
time. The cost of calculating x̂DC can be neglected, it is readily available after the DC

solution has been calculated. Furthermore, the derivatives ∂q
∂p , ∂j

∂p , ∂s
∂p and ∂F

∂p should be

readily available as the parameter dependence of the functions q, j, s and F is known
explicitly.

Cost analysis

The main burden of the backward adjoint sensitivity equations still is the W = O(nα)

(α = 3 for full systems, for sparse systems 1 ≤ α ≤ 2 ) work needed for the LU-
decompositions when integrating backward in time for the adjoint equations for λ(t).

The costs can be summarized as follows:

1. Each time integration step of the backward adjoint equations (4.37) requires W +

O(Fn2) operations.

2. The initial condition at t = 0 in (4.40) has a costW +O(min(F,m)n2 + Fmn), this
is done once only.

3. Each time integration step in (4.40) is now only O(mn+ Fm).

Stability considerations

Clearly, if we wish to adopt the backward adjoint formalism to calculate sensitivities
for our electronic circuits, it is of the utmost importance that the adjoint equations are
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stable whenever the original circuit equations are. Otherwise, numerical solution of the
adjoint equation is severely hampered.

This is certainly not a trivial issue, as has been demonstrated for a simple example
in [17]. In that case, an augmented formulation of the adjoint system must be used to
circumvent the instability. This implies a larger system must be used, thereby making
the solution process more expensive. Fortunately, the same paper also shows that for
systems of the form we are using, this problem does not occur due to the fact that the
original equations constitute a semi-explicit differential-algebraic equation of index-1.
Hence, stability is guaranteed whenever the original problem is stable. This also be-
comes clear when reformulating the adjoint problem into a forward problem, as is done
in the next chapter in Section 5.2. A final confirmation of this fact is found in [57], where
it is shown that for ”well-formulated” DAE systems, stability of the adjoint equation
and its discretization is maintained.

4.7 Summary

In this chapter we discussed several ways to calculate sensitivities with respect to pa-
rameters. In principle, there are two main methods that can be used. The direct for-
ward method is simple and straightforward, but becomes computationally expensive
when the number of parameters is large. The main advantage of the backward adjoint
method is that it outperforms the direct forward method when the number of parame-
ters is large. From the analysis in this chapter it is clear that in this case a dramatic speed
up in the evaluation of the integrand will be observed.

Despite the advantages of the backward adjoint method over the direct forward method,
it still requires the solution of a differential algebraic system backward in time. For in-
dustrial problems, this cost is absolutely not negligible, and so any alternatives that
guarantee a fast yet accurate calculation of sensitivities are very welcome. In the next
section we introduce a first idea by using an application of Model Order Reduction to
enable us to reduce the cost. It turns out that this makes the adjoint method an even
more attractive option. In subsequent chapters, the idea will be refined.





Chapter 5

The Backward Reduced Adjoint
Method

In this chapter we introduce the first of our ideas to improve the performance of the
, leading to a method that we named Backward Reduced Adjoint Method (BRAM). It
consists of applying the Proper Orthogonal Decomposition method to the backward
adjoint problem, the basis being based on the forward problem. In this way, the need
for solving the full backward equation is eliminated, only a much reduced backward
problem needs to be solved. In order to be able to apply POD, it must be shown that the
POD bases for the forward and backward adjoint problems are similar. This is done by
applying various arguments, one of which is the application of

5.1 Introduction

In the previous chapter, we discussed a number of methods that are used for finding
the sensitivities of the state vector and derived observation functions with respect to the
parameters in the problem. For the specific case of electronic circuits where the DAE
is in a special form, a dedicated derivation was provided. We concluded that, when
many parameters are involved, the backward adjoint method is the preferred technique.
Indeed, when coping with electronic circuits in the electronics industry, often a huge
number of parameters is involved (tens of thousands or even more), and designers are
extremely keen on finding all of the corresponding sensitivities.

Despite the fact that the backward adjoint method is the method of choice, it is clear
that the additional cost of having to solve yet another differential algebraic system of
the same size as the original circuit problem does not sound very attractive. Designers
expect that, whenever the original forward problem has been solved, the sensitivities
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will be readily available. Of course, one could try to convince them that this is not
feasible, on the other hand it is worthwhile to explore alternatives that may lead to the
desired sensitivities in a more efficient way and avoid the additional DAE solution. In
doing this, it helps that designers are often not interested in the state sensitivities, but
merely in the sensitivity of several derived observation quantities such as, for example,
consumed power.

To show the performance of the backward adjoint method on some industrial examples,
within the COMSON project (see Section 1.2) some experiments were carried out. One
of the main issues, as one can expect, is the solution of the linear systems. In princi-
ple, one could save the LU-decompositions of the final Newton steps in the forward
solution, as the Jacobians will be the same in the backward problem. But, clearly, this
would mean an enormous amount of additional storage, practically infeasible. Thus,
the implementation used made no use of storing the LU-decomposition, but instead re-
calculated it for the backward adjoint equation. The results obtained for four industrial
examples are summarized in the following table:

Circuit # R # C # MOS trans. # R,C # MOS trans.
sim. param. param. + sens.

cross1 1566 9476 508 65 sec 11042 104 sec
cross2 1566 9476 508 65 sec 508 110 sec
x− sect 13629 11916 34607 5210 sec 34607 11111 sec
clock 15199 144067 4869 167 min 159266 424 min

These results clearly indicate that solving the backward adjoint problem is just as expen-
sive as the forward problem, in fact the time is usually doubled. For more information,
see [4]. Positive is, of course, that we are able to calculate a huge number of sensitivities
at the same time.

In recent years, a number of approaches have been proposed in the literature to use re-
sults from the field of model order reduction and carry these over to the problem of sen-
sitivity analysis in order to drastically reduce the time needed for the additional back-
ward simulation. Early approaches consisted of constructing an auxiliary basis [47, 54].
The main motivation of this work is to avoid the computation of the derivative of the
original basis used in the simulation. The advantage of these methods was that the
sensitivity information is obtained from the generation of only two orthogonal bases,
regardless of the number of parameters present in the problem. Unfortunately, the
methods have a severe limitation. The range of application is frequency-domain sen-
sitivity analysis, implying that sensitivity analysis in the presence of nonlinear ele-
ments remains impractical. A similar limitation is attached to the method described
in [29], where a Lanczos-based model order reduction technique was used to calculate
the frequency-domain sensitivity of the small-signal response of linear circuits.

From the foregoing, it is clear that several techniques have been developed success-
fully for the frequency domain, but that the real problem is found when doing sen-
sitivity in the time domain in the presence of nonlinear components. In [1], a tech-
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nique was presented for 1-port systems, whereas in [2] the method was extended to
the case of multiport systems. The proposed algorithm is based on the Arnoldi method
and, therefore, enables systems reduced by orthogonal projection techniques (such as
PRIMA [63]) to have their sensitivity evaluated with incremental computational cost.
In other words, the accuracy can be influenced by employing more iterations of the
reduction process. This paper also demonstrates that passivity is retained. A severe
drawback of the method is that it assumes a decomposition of the circuit is known into
linear subnetworks and one large network containing all nonlinear components. Al-
though we did not implement the method to assert its efficiency, we are afraid it will
not be able to address the large circuit problems we envisaged in our research. In fact,
the examples given in the paper are all very small, and only contain transmission lines
and not general nonlinear circuits. Furthermore, only sensitivities of linear subnetworks
can be obtained, whereas designers are interested in the sensitivity of the entire network
including the nonlinear components.

Finally, we wish to mention a more recent development that is presented in [44,74], and
which is of a rather general nature. The authors present an analysis of the perturbation-
induced errors in the solution of dynamical systems, and estimate errors for a POD-
based model order reduction applied to both ODE systems [44], and also differential
algebraic systems [74]. These papers contain a very detailed analysis of the errors oc-
curring, and present a technique that can be used to obtain the direction in parameter
space that provides maximum growth in the output functional. This direction vector
can be calculated with a small number of solutions of the backward adjoint model. In
this sense, the emphasis in the paper is not so much on the combination of MOR and
the backward adjoint method. However, the analysis can certainly be very useful in
investigating the various errors that are associated with such combinations.

In view of the foregoing, we concluded that there is not really a good combination of
the backward adjoint method with model order reduction techniques that works for
general nonlinear circuits in the time domain. In the mean time, the proper orthogonal
decomposition method had been developed much further, and matured. Researchers
also started to use it for reducing nonlinear circuits. Hence, we developed a new method
that is based on a combination of the backward adjoint method and the POD reduction
technique, hoping that this would be feasible for general nonlinear circuits. Indeed, the
latter was a strict requirement at the start of the research, as designers in the electronics
industry need to be able to cope with such situations continually.

Within this chapter we will cover the derivation of the BRAM method, including giving
some of our initial thoughts and justifications of why. From the widely available choice
of Model Order Reduction methods and techniques, POD was our first and almost only
choice. We explain what it is about the properties of the POD method that we find use-
ful, how we can use it to find a relationship connecting both the forward and backward
problems that makes it the most suitable and almost only choice of method to aid the
task of reducing the overall cost of a circuit sensitivity analysis within the framework of
the backward adjoint method.

We include in our discussion of the backward reduced adjoint method pointing out
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further important properties of the systems themselves. We point out the structural
similarities of both the forward and reverse differential algebraic equations including
the identical circuit topology of the system circuits and the links to Tellegen’s treatment
of adjoint circuits based on his famous theorem. This is a feature of our systems that
is very special to electronic circuits 1. We show that the snapshot solution matrices of
both the forward and backward systems share a common full space basis, and that they
do have a common dominant subspace which we take advantage of by reducing the
computational cost of the reverse system by applying a projection matrix, constructed
from reused data found in the initial circuit simulation, to its system matrices.

We finish with a discussion pointing out the cost advantages of our new method and
then discuss some areas for further improvement and development such as the sensitiv-
ity of the projector itself to parameter changes and also the influence of full space data
and operations on a solution unfolding in the truncated subspace. This will then lead to
refinements of the backward reduced adjoint method in the subsequent chapter.

5.2 The structure of the backward adjoint equation

Here we begin by revisiting the original backward adjoint equation as derived in Chap-
ter 4. Our aim is to apply the POD model order reduction method to obtain the sensitiv-
ities via the backward adjoint equation, but we need convincing arguments to be able
to do so. These are found by recalling that the backward adjoint method for sensitivity
analysis depends heavily upon having its backward adjoint equations initial conditions
set at the time point t = T , and that is has to be solved back towards time point t = 0.
We see that this is reflected in the equation when it first appears in the derivation, it is
found in the following backward time form (we have omitted the dependence of C and
G on the solution x, but it is clear that for nonlinear problems this plays an important
role):

CT (p)λ̇(t) − GT (p)λ(t) = −

(

∂F(x(t,p))

∂x(t,p)

)T

. (5.1)

We get a step closer to making the similarities with the forward circuit equation system
clearer if we let t̃ = T − twhere t̃ now is forward time, and then rearrange the equation
into the following:

GT (p)λ(t̃) + CT (p)λ̇(t̃) =

(

∂F(x(t̃,p))

∂x(t̃,p)
.

)T

(5.2)

1It is possible to abstract the resulting theory beyond electronic circuits, and formulate a class of problems
that has similar properties, but we have not done this here.
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For linear systems C,G are symmetric matrices (and without dependence on x), and
hence equivalent to their transposes. When applied to the above this reveals that, if
we express the backward adjoint equation in the forward form, we find that the system
shown actually has an identical node and branch circuit structure as the forward system.
In this case, we can thus write the modified forward time expression:

G(p)λ(t̃) + C(p)λ̇(t̃) =

(

∂F(x(t̃,p))

∂x(t̃,p)

)T

. (5.3)

We place alongside here the original forward circuit equations for comparison, and just
by taking a look it is clear we have the same circuit topology, except that they have
different right hand sides:

G(p)x(t,p) + C(p)ẋ(t,p) = s(t,p). (5.4)

The foregoing change of time variable clearly shows that there is an intimate relation-
ship between the original and adjoint systems. In [10, 11, 57] this relation is also ob-
served. Related to this is the analysis in [16], where observability of the original system
is shown to be related to controllability of the dual system, and solvability of the two
problems is linked. From this work, it can be concluded that the forward and backward
problems have a similar structure of solutions.

For linear problems, this conclusion is immediate, whereas for the nonlinear case it
needs some additonal arguments. One could argue that the forward problem can be
solved, and solutions x can be stored at all time points. If we then calculate the deriva-
tive matrices C and G at these time points, substituting the solutions found, then it is
clear that the solution x satisfies a linearized forward equation of a form similar to (5.4).
Thus, also in the nonlinear case, there is a similarity between the forward and back-
ward problem. In this case, the matrices G and C may be non-symmetric, at least in the
subcircuit areas where nonlinear components are used.

The foregoing gives a clear indication that the POD bases for the forward and backward
problem may have a similar structure. This has some interesting consequences, not only
because it enables us to formulate a method that combines the backward adjoint equa-
tion with the method of proper orthogonal decomposition, but also because it strongly
points to applications of Tellegen’s theorem. Therefore, we will first explore the latter in
the following sections, before presenting the backward reduced adjoint method.
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5.3 Tellegen’s Theorem

The discussion in the previous section has revealed a strong relation between the for-
ward and backward adjoint problems. Apparently, the topological structure of the cor-
responding circuits is the same, and electronic engineers then immediately think of ap-
plying Tellegen’s theorem [64, 78]. An interesting coincidence is that Bernard D.H. Tel-
legen in 1923 joined the Philips Research Laboratories in Eindhoven, which is also the
place where most of our work on the subject of this thesis was carried out!

Theorem 5.1 Consider an electronic circuit consisting of B branches, and having potential dif-
ferences Vb and electrical currents Ib, where b = 1, ..., B, associated with each branch. If the
branch voltages Vb satisfy the constraints given by Kirchhoff’s voltage law and the branch cur-
rents Ib satisfy the constraint given by Kirchhoff’s current law, then,

B∑

b=1

VbIb = VT I = 0. (5.5)

The proof of this remarkable fact is relatively straightforward. If the node potentials are
denoted by ϕ, then we have that

V = ATϕ,

A being the so-called incidence matrix of the circuit that we have also encountered in
Chapter 2. Kirchhoff’s current law then states that

AI = 0.

But then we immediately observe that

VT I = ϕTAI = 0.

This simple theorem is very general, and because it is based upon two fundamental con-
servation laws it can be demonstrated to be valid beyond the linear circuits discussed
here. It is valid for any electrical circuit or other network having any type of component
on its branches, be they linear, non-linear, active or passive. In electronics this includes
the entire range of voltage and current sources, resistors, diodes and capacitors. Indeed,
as we can see from the proof of the theorem, nowhere the branch constitutive equations
are used.

Tellegen’s theorem can also be lifted up and extended beyond its application to just
one circuit network and give a relationship linking two topologically identical circuits,
even if they contain different components on each branch. This can sometimes lead
to very interesting observations, such as for example reciprocity relations between two
networks. The extension we have in mind is the following theorem:
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Theorem 5.2 Consider two electronic circuit networks that are topologically identical, in other
words sharing the same incidence matrix A. Denote the vectors of branch voltages by VB1 and
VB2, respectively, and the vectors of branch currents by IB1 and IB2, respectively. Then we have
the following identities for these voltage and current vectors:

VT
B1IB1 = 0,

VT
B2IB2 = 0,

VT
B1IB2 = 0,

VT
B2IB1 = 0.

Clearly, this theorem relating two topologically identical networks is very interesting
for our research, as we already concluded that the forward problem and the backward
adjoint problem for electronic circuits have the same topological structure.

Another useful extension is dependent upon the fact that Kirchhoff’s voltage and cur-
rent laws are not violated by a set of branch voltages and currents if linear operations
are applied to them. A linear operation on a zero sum still gives a zero sum result.

Theorem 5.3 Given two linear operations f1, f2 acting upon the branch voltages and branch
currents of a circuit, the modified values Vf, If preserve the zero sum. This is because KVL and
KCL are immune to linear operations.

B∑

b=1

f1(Vb)f2(Ib) = VT
f If = 0. (5.6)

This is also valid when mixing branch values for two topologically equivalent circuits.

Tellegen’s theorem has been generalized in several ways, see for example [65].

5.4 Tellegen’s theorem and adjoint sensitivities

In view of the discussion in the previous section, especially about the topological resem-
blance between the forward and backward problems, it is not surprising that Tellegen’s
theorem can be connected to the calculation of sensitivities. See, for example, the work
described in [36]. The presence of Tellegen’s theorem within the inner workings of the
backward adjoint method explains the apparent similarities we have found between
the adjoint equation (5.3) and the original circuit equation. This should indeed not be
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a great surprise as these properties were used in the original derivation. We have al-
ready pointed out that they share the same structure, and thus have the same incidence
matrix. This adjoint pair of systems is also evaluated over the same time period over
the same basis. In this section, we will therefore have a closer look at the application of
Tellegen’s theorem for the purpose of calculating sensitivities 2.

Here we present first a discussion of how Tellegen’s theorem(s) can be used to calculate
sensitivities. To this end, consider a linear time-invariant networkN, which we assume
to be a 2-port network. Let N̂ be a 2-port network which is topologically equivalent to
N, i.e. the graphs of the two networks are identical. Furthermore, let Ve and Ie denote
the voltage and current, respectively, associated with an element e in the network N,
and ψe and λe denote similarly for the corresponding element e in N̂. Finally, Vi and Ii,
i = 1, 2, denote the voltage and current variables associated with the 2 ports of N, and
similarly we have ψi, λi, i = 1, 2 for the network N̂. The configurations are shown in
Figure5.1.

Figure 5.1: 2-port system

We now apply Tellegen’s theorem to both networks, and find

V1λ1 + V2λ2 =
∑

e

Veλe, (5.7)

2In a very recent paper, an approach is presented to calculate second-order sensitivities, based upon a
variation of Tellegen’s theorem; see [89]
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I1ψ1 + I2ψ2 =
∑

e

Ieψe. (5.8)

Now suppose that we are going to disturb networkN, but keep the network N̂ the same
as before. Then we can again apply Tellegen’s theorem, now to the perturbed network
and N̂, to give

(V1 + ∆V1)λ1 + (V2 + ∆V2)λ2 =
∑

e

(Ve + ∆Ve)λe, (5.9)

(I1 + ∆I1)ψ1 + (I2 + ∆I2)ψ2 =
∑

e

(Ie + ∆Ie)ψe, (5.10)

where ∆V and ∆I represent the changes in the voltages and currents as a result of the
perturbations in N. Subtracting now (5.7) from (5.9) and (5.8) from (5.10), we get

∆V1λ1 + ∆V2λ2 =
∑

e

∆Veλe,

∆I1ψ1 + ∆I2ψ2 =
∑

e

∆Ieψe.

Subtracting the latter two equations we obtain

(∆V1λ1 − ∆I1ψ1) + (∆V2λ2 − ∆I2ψ2) =
∑

e

(∆Veλe − ∆Ieψe) (5.11)

Notice that, up to now, we did not say anything about the construction of the network
N̂, so we still have freedom in doing this. We wish to define the corresponding element
e of N̂ for every element e in the original networkN in such a way that each of the terms
in the right hand side of (5.11) reduces to a function of the voltage and current variables
and the change in value of the corresponding network element.

To show how this is done, we consider the simple case of a linear resistive element, for
which we have

VR = RIR.

Let us now change the resistance to R+ ∆R, then

VR + ∆VR = (R+ ∆R)(IR + ∆IR),
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and, on neglecting second-order terms,

VR + ∆VR = RIR + R∆IR + IR∆R.

Subtracting the original relation for the resistor, we thus obtain

∆VR = R∆IR + IR∆R.

Using this expression in (5.11), the terms corresponding to the resistive elements of N
can be written as

∑

R

[RλR −ψR]∆IR + IRλR∆R. (5.12)

Thus, if we choose

ψR = RλR, (5.13)

the term (5.12) reduces to

∑

R

IRλR∆R,

which involves only the network variables in the orginal, unperturbed, network N and
the second network N̂, as well as the changes in resistance values. This immediately
shows how sensitive the original circuit is to changes in resistor values.

Equation (5.13) defines the corresponding elements in the network N̂. Proceeding in
a similar manner, we can determine other elements of N̂ corresponding to other types
of network elements, such as inductances, capacitances, controlled sources etc. Indeed,
using a notation based on element related incidence matrices (for details, see Chapter 2
in [83]), we know that

q(t, x) =
∑

e

Aeqe(t, BT
e x),

j(t, x) =
∑

e

Aeje(t, BT
e x),

so that
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C(t, x) =
∑

e

AeCe(t, BT
e x)BT

e ,

G(t, x) =
∑

e

AeGe(t, BT
e x)BT

e .

Thus, the network N̂ can also be defined element-wise.

A table defining adjoint elements corresponding to different types of network elements
can be found in [77]. The approach was first presented in [24], which contains a nice
derivation and also a table of adjoint descriptions and sensitivities for various types of
elements. In [14], the method is used to calculate delay time sensitivities.

5.5 Tellegen’s theorem mirrored in vector space

Our initial inspiration to apply a projector, created by applying Proper Orthogonal De-
composition to the forward problem, to the backward adjoint equation is the striking
similarity of the structure of both systems and because they are evaluated over the same
time period. Hence, they most probably also share a set of common basis vectors. In
this section, we will substantiate this further.

An interesting point to consider is what happens to the basis in the reverse problem,

GT (p)λ(t̃) + CT (p)λ̇(t̃) =

(

∂F(x(t̃,p))

∂x(t̃,p)

)T

. (5.14)

To examine this we create here, for illustration purposes, an observation function that
observes the energy consumption of a resistor between voltage nodes 1 and 2 of a 5 state
electronic system.
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VR =
[

1 −1 0 0 0
]













x1(t, p)

x2(t, p)

x3(t, p)

x4(t, p)

x5(t, p)













(5.15)

VR = [x2(t, p) − x1(t, p)] (5.16)

Power = V2
R/R (5.17)

F(x(t,p)) =
[

x2
2(t,p) − 2x1(t,p)x2(t,p) + x2

1(t,p)
]

/R1 (5.18)

Gobs(x(p)) =

∫T

0

F(x(t,p))dt (5.19)

The observation function Gobs integrates the power consumption over a period of time
used by our resistor. When applying the backward adjoint method, the right hand side
of our backward adjoint equation (5.14) is set to the differential with respect to the state
vector of F:

GT (p)λ(t̃) + CT (p)λ̇(t̃) =













1

R1













2 −2 0 0 0

2 −2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

























x1(t̃, p)

x2(t̃, p)

x3(t̃, p)

x4(t̃, p)

x5(t̃, p)

























T

(5.20)

The right hand side of (5.20) shows the input vector to the backward adjoint system at
a particular point in time is formed by applying a linear operator onto the state vector
of the forward system at the same point in time.

This also holds more generally. An observation function is very rarely active, it does not
introduce new excitations to a system and at most is a linear operation of the existing
state solutions of the forward system. Keeping in mind Tellegen’s theorem and other
observations we have made so far, we can state the following properties with confidence
about these two systems that are each others adjoints:

• The two systems can be treated as two circuits with an identical topology.

• The two circuits share the same incidence matrix and branch component distribu-
tion.

• Tellegen’s Theorem and its extensions can be applied to the pair of circuits.
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• The observation function within the backward adjoint method feeds back to the
backward adjoint equation at a point in time the state vector, or a linearly operated
state vector as the right hand side, from the same point in time.

• No new excitation or basis changing/extending information is provided to the
reverse system.

If we consider the pair of equations at a particular instant in time, not only do they have
interchangeable current and branch values that satisfy Theorem 5.3, they also share the
same instant in time and their state solutions are a linear function of each other, and so
the same set of basis functions, at that point in time.

If we extend this Tellegen pairing to each snapshot in the set of all system solutions,
W = {x1, x2, ..., xNS}, for the forward system and, R = {λ1, λ2, ..., λNS} where NS is the
number of snapshots taken in the time period of evaluation we can say both systems
share the same full basis vectors.

The other reasons why POD is the most suited method, is that we already have the
circuit state snapshots from the initial forward solve of the circuit, these are already
stored for use in evaluating the right hand side of the backward adjoint equation, being
able to reuse the already stored data once more is an attractive prospect, especially if
it contributes to speeding up the calculation. These advantages and the above analysis
gives us the confidence to apply a POD projection matrix created from the forward
system, to the reverse system. This will then be the basis for the methods developed in
this thesis, starting within the following section.

5.6 The backward reduced adjoint method

Having clarified the relation between POD bases for the forward and backward adjoint
problems, we are now ready to formulate our first method to accelerate the calcula-
tion of sensitivities in the general nonlinear setting. We formulate the circuit equations
for the circuit under analysis and choose the signal inputs, the period of time and the
component parameters for which we want to analyze the sensitivity:

d

dt
[q(x(t,p),p)] + j(x(t,p),p) = s(t,p). (5.21)

We then solve (5.21) (it goes without saying that we need to use the specified initial
conditions) over the required time period and store each state in the snapshot matrix,
W = {xt=1, ..., xt=T }. Applying the singular value decomposition to this snapshot ma-
trix we obtain the POD basis and also a distribution of singular values each associated
with a single POD basis element listed in order of magnitude.
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Once we have the complete decomposition, we build the projection matrix V by using
the method we have already described in detail earlier. In short, we truncate the POD
basis using the distribution of singular values as a measure of the dominance of the
information represented by the remaining non-truncated basis functions. The remain-
ing subspace contains the most dominant basis functions. We must be careful to keep
a balance between the required or desired magnitude of the system reduction and the
acceptable error tolerance set for a particular problem. If we over-truncate, although
we may have a smaller system to solve, once our system results are projected back into
full space we may find they no longer accurately represent the system. An initial good
choice is to take the first few dominant singular values that account for 99% of the total
diagonal sum. In practice, this may often be relaxed quite considerably, for example to
95% or even less.

At this point we apply the backward adjoint method in the usual way, we choose an
observation function and as before we derive the form of the sensitivity equation and
also obtain the backward adjoint equation for our particular problem. The circuit sen-
sitivities we are looking for are given once the observation function is evaluated, using
the calculated values of λ.

It is at this point that we begin the model order reduction step by using the projection
matrix V , and reducing the backward adjoint equation using the Galerkin method of
projection. The solution λ ∈ R

n of the backward adjoint equation is the solution in full
space, we can approximate it by using a smaller vector k ∈ R

k where Vk ≈ λ:

CT (p)Vk̇(t̃) + GT (p)Vk(t̃) −

(

∂F(x(t̃,p))

∂x(t̃,p)

)T

︸ ︷︷ ︸
r(k) Residual

∼ 0. (5.22)

Equation (5.22) is now an overdetermined system, with more equations than unknowns.
It is also not equal to zero, except, of course, if V spans the entire space.

We are interested in finding k(t) such that the remaining residual r(k) is orthogonal to
the subspace spanned by the approximating basis vectors chosen in the truncation step.
As we have shown the standard way to do this is to apply a Galerkin projection giving
the following constraint,

VT r(k) = 0. (5.23)

Applying the constraint set in (5.23) to our overdetermined backward adjoint equation
(5.22), we obtain the following set of equations:
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VT CT (p)Vk̇(t̃) + VT GT (p)Vk(t̃) = VT

(

∂F(x(t̃,p))

∂x(t̃,p)

)T

. (5.24)

Introducing the notation ĈT, ĜT to represent the reduced system matrices we have the
following reduced system of equations:

ĈT (p)k̇(t̃) + ĜT (p)k(t̃) = VT

(

∂F(x(t̃,p))

∂x(t̃,p)

)T

. (5.25)

The function on the right hand side of (5.25) is evaluated in full space, using the state
solution x(t̃,p), before being projected to the truncated subspace. This is a system that
is also solvable by Newton methods if the matrix pencil {Ĉ, Ĝ} is nonsingular.

The method described in the foregoing is the first version of our backward reduced ad-
joint method, shortly indicated by BRAM. It was introduced and presented at the SCEE
2006 conference in Sinaia, see [46]. In the next section, we will discuss some features of
the method, but will also indicate that there is a need for a reformulated approach in
order to facilitate a more sound analysis of the errors involved in the reduction process.

5.7 Analysis of the backward reduced adjoint method

The backward reduced adjoint method introduced in the foregoing section constituted
the first idea of rendering the calculation of sensitivities using the backward adjoint
method more efficient. Indeed, it avoids the solution of the backward adjoint equation;
instead, a POD basis is formed for solutions of the forward problem, and this basis
is used to expand the solution of the backward adjoint problem. All it takes is the
storage of the snapshots at all, or a subset, time points, followed by a singular value
decomposition. Solutions of the backward adjoint problem are then found in the form
λ = Vk, where V is the projection matrix associated with the truncated POD basis. It
then remains to solve the reduced backward adjoint problem.

Having formulated the procedure for calculating the approximate sensitivities, it is now
essential to evaluate the new technique as far as cost and accuracy is concerned. This
will be done in the following subsections.

5.7.1 The cost of the backward reduced adjoint method

We have managed to preserve the advantages of the original backward adjoint method,
and have enhanced the method by the application of a model order reduction technique
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to one of the most costly steps by re-using existing data. We identified the main burden
of the backward adjoint sensitivity equation as W = O(N3), we have now been able to
reduce that to W = O(N3

k) where Nk represents the dimension of the reduced system.
Clearly, this amounts to quite a reduction in computation cost ifNk << N.

There is also additional cost associated with the use of POD, of course. This is associ-
ated with the singular value decomposition of the matrix of snapshots. This cost is more
difficult to assess, as it depends on the number of time points chosen to store snapshots.
It is not advisable to store the solution x at all time points, as this may lead to an exces-
sively large matrix. Instead, we could use snapshots only at a prescribed sequence of
time points, or use a more sophisticated adaptive procedure to assess when snapshots
should be added. Clearly, this is a point of research to be addressed separately, and is
one of the points we will mention in our conclusions in Chapter 9.

The calculation of the dominant singular values and corresponding POD basis vectors
can also be done in a more efficient way by exploiting recent developments in numerical
linear algebra, more specifically concerning the calculation of specific eigenvalues. For
more information, we refer to [8, 41, 42].

5.7.2 System subspace restriction concerns

The matrices ĈT, ĜT are the system matrices of the reduced system, restricting the sys-
tem and also the evolution of the λ solutions to the truncated subspace which we will
denote by S. A representation of the evolution of the solution λ is shown in the follow-
ing figure.

If we pay closer attention to the right hand side of our reduced backward adjoint system
(5.25), we notice the following.

1. We are using the system state solution x in the full space

2. We are evaluating the right hand side in full space

3. We then project the result onto the subspace before continuing to solve for λ.

The points above introduce some uncertainty in the development of the solution λ, or
more specifically its reduced order approximation, as it is unknown how a function will
behave in full space when interacting with the restricted solution flow in the truncated
subspace. This is illustrated in the above figure. Hence, it is important to investigate
this in more detail, as will be done in the next subsection.

It is worth mentioning here that this problem is addressed in detail in [68]. The above
features imply that additional errors are made, and this severely complicates the error
analysis of the POD method. The paper mentioned provides a study of the different
components of the error.
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Figure 5.2: Backward Adjoint Equation and Subspace

5.7.3 The effect of the projection matrix on sensitivity values

Although the calculation of individual state sensitivities is done implicitly in the BRAM
method, taking a closer look at the effect a projection matrix could have on state sensi-
tivities reveals an extra term which we need to be careful about. This extra term shows
that the sensitivity is dependent on the sensitivity of the projection matrix to changes in
its parameter values, which can also be thought of as the sensitivity of the most domi-
nant system basis functions.

x(t,p) ≈ P(p)x̃(t,p) (5.26)

∂x

∂p
(t,p) ≈ ∂P(p)

∂p
· x̃(t,p) + P(p) · ∂x̃

∂p
(t,p) (5.27)

One can see in (5.27) that there is now an extra term involved in the projection of the
reduced state sensitivity back to the original space, namely the dependence of the POD
basis on the set of parameters p. As long as this term is relatively small, and we can
show that it varies slowly as a function of changing parameter values, then we are al-
lowed to apply POD to the backward adjoint method using a projection matrix based
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upon a fixed setting of the parameters (usually the nominal value of parameters). If
this is not the case, then the second term in the above expression will have a significant
effect, and hence the accuracy of our approximation may deteriorate quickly.

5.8 Summary

In this chapter, we have introduced the backward reduced adjoint method (BRAM),
in which sensitivities are approximated by solving a reduced (by projection) form of
the backward adjoint equation. We have demonstrated that the use of the POD basis
obtained from the solution of the forward problem is adequate, as this basis is similar to
the one for the backward problem. This is verified in several ways, and also guaranteed
by Tellegen’s theorem.

A point of concern with this first idea of reducing the backward adjoint equation is
that the accuracy of the approximate sensitivities depends on the sensitivity of the POD
basis on the parameters. Another complication is that a full analysis of the error is rather
complicated, especially in the case of nonlinear components. It is not clear at this stage
how the various errors contribute to the total error made in calculating the sensitivities.
For these reasons, we will propose in the next chapters to change the formulation of the
BRAM technique, and also perform a thorough investigation into the behavior of the
POD basis as a function of parameters in a subsequent chapter.



Chapter 6

Backward Reduced Adjoint
Method II

In this chapter we introduce a modified method, BRAM II, that is also based on the use
of proper orthogonal decomposition. It introduces an additional forward problem to
be solved, but has the advantage of guaranteeing a more accurate sensitivity analysis.
Its accuracy is dependent only on the sensitivity of the POD basis with respect to the
parameters, which is an issue that will be discussed in the next chapter.

6.1 Method overview

The BRAM II method is very similar to the BRAM method introduced in the foregoing
chapter, except for the following point. We take the projection matrix obtained using
the snapshot data from the forward system solution, and apply this projection to the
original forward system which we then solve again over the same time period. The
backward adjoint equation is then reduced in the same way, but the observation func-
tion is evaluated on the states of the reduced forward solution. This action restricts
all system operations and solutions to evolve on the same subspace, and thereby takes
away the concerns we expressed in Chapter 5.

A very attractive feature of this new approach is that the adjoint method formulation
itself guarantees that the sensitivity result obtained is exactly the same as the sensitivity
result obtained from the direct forward method. In other words, there is no approxi-
mation anymore going from the forward to the backward problem. This is in contrast
with the original BRAM method, where we do have an approximation error in going
from the forward to the backward problem and a resulting complex structure of the
total error.
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Figure 6.1: Flow chart for BRAM

The foregoing does not mean that there is no error in the calculated sensitivities. How-
ever, this error can be assessed entirely by studying approximation properties of the
forward problem. In fact, the error is the same as the error made in the POD method.
We will discuss this in more detail later in this chapter. Let us now first illustrate the
differences between the methods BRAM and BRAM II in a flow chart, as given in Fig-
ures 6.1 and 6.2.

From these flow charts it is clear that the BRAM II method involves some additional
steps as compared to the original BRAM method. This will have an effect on the cost
of the method, but this is compensated by a better insight into the errors made and the
final approximation.

6.2 Setting up BRAM II

In a previous chapter we followed through the steps of the backward adjoint method
to derive the expressions for the sensitivity equation in terms of the unknown vector λ,
and the backward adjoint differential algebraic equations. Here we will go through the
same steps, but before we do that we will take the forward circuit equation reduction
step, obtain the projection matrix and then derive the steps again, but this time restrict
the problems to the reduced subspace from the very beginning.
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Figure 6.2: Flow chart for BRAM II

Over the required time period (0,T) we solve the circuit equations,

d

dt
[q(x(t,p),p)] + j(x(t,p),p) = s(t,p), (6.1)

and store the snapshots in the snapshot matrix W = {x(t = 0), ..., x(t = T)}. To simplify
the analysis, we will assume that the solution is stored at all time points. Taking the
singular value decomposition, W = VTSU, we obtain the POD basis V . Observing the
decaying singular values, we determine the most dominant subspace containing the
basis vectors associated with the strongest singular values and truncate the POD basis
accordingly to obtain the projection matrix V . In the following chapters, we will show
the decay of these singular vectors for a number of industrial examples. It turns out that,
for our industrial examples, the dimension of the space can be reduced considerably.

Applying this projection matrix to the forward equation by approximating the solution,
x ≈ Vz, where z is the reduced subspace solution that would evolve in the subspace
spanned by the the basis in V when solving the reduced system. Substituting the ap-
proximation in the forward problem gives a system,
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d

dt
[q(Vz(t,p),p)] + j(Vz(t,p),p) ∼ s(t,p). (6.2)

Applying the Galerkin projection we have the following reduced system:

VT d

dt
[q(Vz(t,p),p)] + VT j(Vz(t,p),p) = VT s(t,p). (6.3)

We solve this reduced equation (6.3) and record the results, keeping them in the snap-
shot matrix Z = {z(t = 1), ..., z(t = T)}. These results are solutions that have evolved
entirely in the restricted subspace and are expressed in the basis of the reduced space.
We will later need to evaluate the observation function using these state solutions, we
can express these solutions in full space by a change of basis, x̄ = Vz, where x̄ is the
exact reduced solution expressed in the coefficients of full space, but restricted to the
truncated subspace.

We now carry on as we would have done in the backward adjoint method, but we place
the whole process in the reduced space by using the exact subspace solutions, and the
substitution of x̄ = Vz. To start the calculation of the sensitivities, we proceed as before.
The starting point is the reduced circuit equation (6.3). We equate this equation to zero
(by putting all terms in the left hand side), multiply it by λ(t), and then integrate it over
a time period:

0 =

∫T

0

λT (t)

[

VT d

dt

dq

dp
+ VT dj

dp
− VT ds

dp

]

dt,

0 =

∫T

0

λT (t)

[

VT d

dt

dq

dp

]

dt+

∫T

0

λT (t)

[

VT dj

dp
− VT ds

dp

]

dt.

The left integral is evaluated by parts and on completing all differentials we arrive at

0 =

[

λT (t)VT d

dp
q(x̄(t,p))

]∣

∣

∣

∣

T

0

+

∫T

0

[

−

(

dλT

dt
VTCV − λT VTGV

)

^̄x−
dλT

dt
VT ∂q

∂p
+ λT VT

(

∂j

∂p
−
∂s

∂p

)]

dt.

(6.4)

We then rearrange (6.4) to isolate the state sensitivity:
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∫T

0

[(

dλT

dt
VTCV − λT VTGV

)

^̄x

]

dt =

[

λT (t)VT d

dp
q(x̄(t,p)

]∣

∣

∣

∣

T

0

+

∫T

0

[

−
dλT

dt
VT ∂q

∂p
+ λT VT

(

∂j

∂p
−
∂s

∂p

)]

dt.

(6.5)

We finally have expressed the backward adjoint equation for the reduced subspace and
now have,

VTCT(p)Vλ̇r(t) − VTGT(p)Vλr(t) = −VT

(

∂F(x̄(t,p))

∂x̄(t,p)

)T

. (6.6)

Rewriting (6.6) in its forward form by setting t̃ = T − t gives us the familiar structure,

VTCT(p)Vλ̇r(t̃) + VTGT(p)Vλr(t̃) = VT

(

∂F(x̄(t,p))

∂x̄(t,p)

)T

. (6.7)

The λr values are the solutions of the backward adjoint equation in the truncated space,
they are restricted to the reduced basis. The right hand side observation function eval-
uation is done on forward state solutions that are themselves restricted to the truncated
space. The total system is restriced to the reduced space:

λ̄ = VTλr.

Once we have the λ̄ and x̄ solutions, we can substitute them in to the expression for the
system observation function sensitivity:

d

dp
Gobs(x̄(p),p) = λ̄T (0)[

∂q

∂x
(0).^̄xDC +

∂q

∂p
(0)] +

∫T

0

dλ̄T

dt

∂q

∂p
− λ̄T (

∂j

∂p
−
∂s

∂p
) +

∂F

∂p
dt. (6.8)

Figure 6.3 illustrates how we have manipulated the solution flow of both forward and
backward systems, and the observation function evaluation on to the dominant trun-
cated subspace. We have shown that it is possible to apply the backward adjoint method
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in combination with the proper orthogonal decomposition reduction step to calculate
system sensitivities, we retain the advantages of model order reduction and are able
to improve upon our BRAM method by restricting the system fully to the truncated
subspace.

Figure 6.3: Backward Adjoint Equation Restricted to Subspace

What we have done is rather than applying POD to the forward problem and using
the basis immediately for the approximate solution of the backward adjoint equation,
we have introduced first a reduced order model for the forward problem. This is an
essential additional step, which we think is vital in obtaining a good insight in the errors
made during the entire BRAM process. It does not necessarily mean that the original
version of the backward reduced adjoint method will not work in practice. From a
mathematical point of view, it is better to take care and develop the methods and theory
in a more incremental way.

6.3 Analysis of the BRAM II method

The method developed in the previous section is similar to the method described in
Chapter 5. For linear problems, the results obtained are the same, but if the circuit con-
tains nonlinear components there may be differences between the sensitivities obtained.
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Our intention in developing this new version of the backward reduced adjoint method
was to clarify the various errors made in the approximation of sensitivities. For the orig-
inal method, the total error consists of several contributions that are not easily assessed.
For BRAM II, however, the situation is much more clear due to the fact that the calcu-
lated backward adjoint sensitivities are exactly equal to the sensitivities of the reduced
forward problem. In other words, no error is made after the original circuit has been
put into its reduced formulation. This follows directly from the derivation given in the
foregoing section.

Thus, for the new method, the error is equal to the difference between the sensitivities
of the original problem and the reduced problem. This can be measured by evaluating

e =
∂x

∂p
−
∂Vz

∂p
.

Clearly, this can also be written as

e =

(

∂x

∂p
− V

∂z

∂p

)

−
∂V

∂p
z.

This implies that the error consists of two main parts:

• the error in approximating x by Vz for a fixed p

• the rate of change of the POD basis, represented by the projection matrix V , as a
function of the parameters p

The former of these contributions can be controlled by the POD process, and can be re-
duced by taking more singular values and corresponding basis vectors into account. In
the limit of V spanning the entire space, this error term reduces to zero. In principle, of
course, it is not just the error of the POD approximation, but the parameter dependence
of the POD error that must be considered. However, it is clear that these errors are very
much related, and the latter error can also be influenced by extending the POD basis
used for the approximations. We discuss this in more detail in the next section.

Much more interesting is the second contribution to the error. In practice, one will
always use a certain nominal parameter setting for which the solutions x and z are
calculated, and the matrix V will be based upon the POD basis for that nominal setting.
However, for other settings of the parameter set p, it may well be that the POD basis
changes considerably, and this would lead to a large contribution of the term containing
∂V
∂p . Hence, the crucial question is: what is the parameter dependence of the projection

matrix V for our applications in the electronics industry? This is an important question,
which we will answer in the next chapter.

The much clearer picture for BRAM II as far as the error is concerned, comes with a cost.
This cost is the additional forward solution of a reduced equation. Maybe this can be
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avoided, but we have not made an attempt to do this as our research concentrated on
the question a few lines above, i.e. the dependence of the POD basis on the parameters.
Therefore, we leave the question of avoiding the extra forward solve as a future research
problem, and it is mentioned as such in Chapter 9.

6.4 The Galerkin projection and POD error estimation

In the discussion so far we have stepped over the problems that can occur while con-
structing (6.3). This is, however, an extremely important point that is still topic of on-
going discussions in the POD world. It is certainly not natural that the reduced prob-
lem is well-defined. Especially for the complex nonlinear transistor models [72] that are
common in the electronics industry, it is rather difficult to assess what the effects are of
the substitution x = Vz. These models are constructed in a largely heuristic way, using
a combination of physical and electronic arguments as well as a wealth of experimental
results summarized in fitted data. Besides this, the cost for evaluating the nonlinear
reduced models may even be larger than for the original models!

Apart from the foregoing problems, which are almost impossible to address due to the
complexity and high degree of heuristics of the models used, there is also the problem
of assessing the accuracy of the reduced order model. Fortunately, in recent years, the
theory has been advanced quite a lot. Let us start with an ODE system of the form

x ′(t) = Ax(t) + f(t, x(t)), (6.9)

with continuous f : [0, T ]×R
n → R

n and with initial condition x(0) = x0. Letψ1, ψ2, ..., ψl

be a POD basis of rank l, and use the Galerkin ansatz

xl(t) :=

l∑

j=1

(

xl(t)Tψj

)

ψj =

l∑

j=1

xl
j(t)ψj.

Then the Galerkin projection leads to the system

ψT
i x ′(t) = ψT

i Axl(t) +ψT
i f(t, xl(t)), (6.10)

with initial condition

ψT
i xl(0) = ψT

i x0,

for i = 1, 2, ..., l.
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If f ≡ 0, then it can be shown that

∫T

0

||x(t) − xl(t)||2dt ≤ C
(

∞∑

i=l+1

σi +

∫T

0

||x ′(t) − Plx ′(t)||2dt

)

,

where Pl denotes the projector onto the span of the POD basis vectors ψ1, ψ2, ..., ψl,
and the σi are the singular values associated with the POD basis.

In view of the fact that a term involving the derivative x ′(t) and its projection appears
in the error estimate, some researchers prefer to use a modified POD method:

min

∫T

0

||x(t) − Plx(t)||2 + ||x ′(t) − Plx ′(t)||2dt s.t. (ψi, ψj) = δij.

In this case, the error estimate is

∫T

0

||x(t) − xl(t)||2dt ≤ C
∞∑

i=l+1

λi.

For more information and a precise derivation, we refer to [39, 43, 51, 68, 85]. In some
of these papers, the nonlinear case is addressed too. For example, [68] presents a very
detailed study of the errors involved in solving a nonlinear ODE initial value problem
using POD and Galerkin projection under rather general (but difficult to verify) condi-
tions on the nonlinearities.

For DAE systems, the POD literature is not well developed yet. In [82, 83], nonlinear
systems of DAEs are considered for a number of specific IC models. Here, both Galerkin
and Petrov-Galerkin projections are taken into consideration.

On the other hand, we feel that it is not necessary to develop a separate theory for
differential-algebraic systems. The reason for this is that the theory of canonical projec-
tors [56] can be used to split the DAE into an ODE and a number of algebraic systems.
First the system for the ”differential variables” can be solved. After that, the ”algebraic
variables” can be calculated as they depend on the ”differential variables” and their
time derivatives up to a certain order. We used this argument already in Section 4.1
when constructing the adjoint equation in the DAE case.

Now tet us consider the system

Ax ′ + Bx = q, (6.11)

with A,B ∈ R
n×n matrices and x,q ∈ R

n vectors. We assume that the matrix A is
singular, so that the system is differential-algebraic. We introduce the projector Q onto
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kerA, and the complementary projector P. They are characterized by

AQ = 0, Q2 = Q, Q+ P = I. (6.12)

Thus, it also holds:
AP = A, P2 = P, PQ = QP = 0. (6.13)

By using these properties, we find the following identities:

(A+ BQ)P = A, (A+ BQ)Q = BQ. (6.14)

Then, recalling (6.12), we can rewrite (6.11) as:

(A+ BQ)(Px ′ +Qx) + BPx = q. (6.15)

If the matrix A+ BQ is non-singular, we can write:

Px ′ +Qx = (A+ BQ)−1(q − BPx). (6.16)

Since we have the decomposition of the identity I = P+Q, and P,Q are orthogonal pro-
jectors, this equation is equivalent to the two equations obtained after left-multiplication
by P and Q:

Px ′ = P(A+ BQ)−1(q − BPx), (6.17)

Qx = Q(A+ BQ)−1(q− BPx). (6.18)

The first equation is an ordinary differential equation for y := Px, the second is an
algebraic equation which expresses z := Qx in terms of y. In this case we say that system
(6.11) has tractability index 1. We call y differential component of x, and z algebraic
component of x. The previous equations can be written as:

y ′ = P(A+ BQ)−1(q − BPy), (6.19)

z = Q(A+ BQ)−1(q − BPy). (6.20)

If the matrix A + BQ is singular, the previous procedure can be iterated, but this is not
necessary for our index-1 circuits.

Having found a decomposition of a general DAE system in terms of differential and
algebraic equations, we now apply the foregoing to circuits in order to see what the
projectors are in that specific case. For simplicity, we consider a linear RLC electric
network, that is, a network which connects linear capacitors, inductors and resistors,
and independent voltage and current sources, v(t) ∈ R

nV and ı(t) ∈ R
nI . The un-

knowns which describe the network are the node potentials u(t) ∈ R
n, and the currents

ȷL(t) ∈ R
nL and ȷV (t) ∈ R

nV through inductors and voltage sources, respectively.

Following the formalism of Modified Nodal Analysis (MNA), we introduce: the in-
cidence matrices AC ∈ R

n×nC , AL ∈ R
n×nL and AR ∈ R

n×nG , which describe the
branch-node relationships for capacitors, inductors and resistors; the incidence matrices
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AV ∈ R
n×nV and AI ∈ R

n×nI , which describe this relationship for voltage and current
sources, respectively. Then the DAE network equation for the unknown x = (u, ȷL, ȷV)⊤

is given by





ACCA
⊤

C 0 0

0 L 0

0 0 0





dx

dt
+





ARGA
⊤

R AL AV

−A
⊤

L 0 0

−A
⊤

V 0 0



 x +





AIı

0

v



 = 0, (6.21a)

with consistent initial data
x(t0) = x0. (6.21b)

Here, C ∈ R
nC×nC , L ∈ R

nL×nL and G ∈ R
nG×nG are the capacitance, inductance and

conductance matrices, which are assumed to be symmetric and positive-definite.

We apply to (6.21a) the procedure described in the previous section. We pose:

A0 =





ACCA
⊤

C 0 0

0 L 0

0 0 0



 , B0 =





ARGA
⊤

R AL AV

−A
⊤

L 0 0

−A
⊤

V 0 0



 ,

and

q =





AIı

0

v



 .

We denote by QC the projector onto the kernel of A
⊤

C, and set PC = Id − QC, such that
PCQC = QCPC = 0. Then we can write:

Q0 =





QC 0 0

0 0 0

0 0 Id



 , P0 =





PC 0 0

0 Id 0

0 0 0



 ,

and we find

A1 = A0 + B0Q0 =





ACCA
⊤

C + ARGA
⊤

RQC 0 AV

−A
⊤

LQC L 0

−A
⊤

VQC 0 0



 ,

B1 = B0P0 =





ARGA
⊤

RPC AL 0

−A
⊤

LPC 0 0

−A
⊤

VPC 0 0



 .

A vector x belongs to the kernel of A1 if and only if:

(ACCA
⊤

C + ARGA
⊤

RQC)u + AV ȷV = 0, (6.22)

−A
⊤

LQCu + LȷL = 0, (6.23)

−A
⊤

VQCu = 0. (6.24)

Multiplying the first equation by u⊤Q
⊤

C from the left, and using the third equation, we
find:

u⊤Q
⊤

CARGA
⊤

RQCu = 0,
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which implies

A
⊤

RQCu = 0.

In this way, recalling the definition of QC, we have found

QCu ∈ kerA⊤

C ∩ kerA⊤

V ∩ kerA⊤

R ≡ ker(AC,AV ,AR)⊤. (6.25)

Then the first equation reduces to:

ACCA
⊤

CPCu + AV ȷV = 0.

Multiplying this equation by Q
⊤

C from the left, we find

Q
⊤

CAV ȷV = 0,

which implies

ȷV ∈ ker(Q⊤

CAV). (6.26)

Once we have determined QCu, ȷV from (6.25), (6.26), we can find PCu, ȷL from the
remaining equations:

P
⊤

CACCA
⊤

CPCu + P
⊤

CAV ȷV = 0,

−A
⊤

LQCu + LȷL = 0,

that is

PCu = −(P⊤

CACCA
⊤

CPC + Q
⊤

CQC)−1P
⊤

CAV ȷV , (6.27)

ȷL = L
−1

A
⊤

LQCu. (6.28)

In conclusion, the kernel of A1 is:

kerA1 =
{




u

ȷL
ȷV



 ∈ R
n+nL+nV

∣

∣

∣

QCu ∈ ker(AC,AV ,AR)⊤, ȷV ∈ ker(Q⊤

CAV),

ȷL = L
−1

A
⊤

LQCu,

PCu = −(P⊤

CACCA
⊤

CPC + Q
⊤

CQC)−1P
⊤

CAV ȷV

}
.

Notice that the condition ȷV ∈ ker(Q⊤

CAV) is equivalent to

(QCu) · (AV ȷV) = 0 ∀u ∈ R
n,

which implies

ȷV ∈ ker(Q⊤

CAV) ⇐⇒ AV ȷV ∈ (kerA⊤

C)⊥ ≡ imAC. (6.29)

If we have the conditions:

ker(AC,AV ,AR)⊤ = {0}, (6.30)

ker(Q⊤

CAV) = {0}, (6.31)



6.5 Experimental validation of the backward reduced adjoint method 89

then we find that x ∈ kerA1 only if QCu = 0, ȷV = 0, which, using (6.27), (6.28),
imply PCu = 0, ȷL = 0. Thus the conditions (6.30), (6.31) are equivalent to the index-1
condition detA1 ̸= 0. In this case, the differential variable y and the algebraic variable
z are given by

y = P0x =





PCu

ȷL
0



 , z = Q0x =





QCu

0

ȷV



 . (6.32)

We notice that, by using (6.29), condition (6.31) is equivalent to

imAC ∩ imAV = {0}. (6.33)

Having found the projectors in the linear case, we note that for the nonlinear case we
can use the same projectors, as the incidence matrices will always be the same for a
given circuit. Hence, we can use the same definition of the differential and algebraic
variables as in (6.32). But then we can use the POD error estimations as derived at the
beginning of this section.

6.5 Experimental validation of the backward reduced ad-

joint method

Clearly, after having developed two different backward reduced adjoint methods, we
would like to perform experiments with these methods. On the one hand to verify that
these methods can indeed be used to obtain accurate approximations of the sensitivities
desired by designers. On the other hand, to verify the computational advantage over
existing methods. And, finally, to assess the differences in accuracy and computational
complexity between the two methods.

The aforementioned task is, unfortunately, far from being trivial. For examples of an
academic nature, it is possible to use Matlab to obtain the desired results and insights,
and we have done so in Chapter 8. However, for truly industrial examples, it is essential
to perform the desired analyses in industrial codes. Companies like Infineon and NXP
have their own in-house software for circuit simulation, namely Titan [23] and Pstar [34].
These codes are extremely sophisticated, and have many different features. They also
contain a full library of models for the nonlinear devices, such as MOS [72] and bipolar
transistors. All of these features are usually not present in academically available tools,
such as Spice [50, 60] (Simulation Program with Integrated Circuit Emphasis). This is
rather unfortunate, as it is clear that the experiments indicated in the above must be
carried out in an industrial context, having the right device models available. And, even
more important, we should have access to the software in order to make the necessary
changes to the code so that both BRAM and BRAM II can be implemented and tested.

Long and detailed discussions at NXP Semiconductors, where the main part of the work
in this thesis was carried out, led to the conclusion that an implementation into the cir-
cuit simulator would only be feasible by involving local experts in the circuit simulator
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Pstar. The time associated with this effort was estimated to be too high, and therefore
declined. The alternative of implementing the changes independently was strongly ad-
vised against, as the software contains too many features that need to be taken into
account.

In view of the foregoing, we had to re-consider how to obtain good indications of the
performance of the BRAM and BRAM II methods. In view of the discussion given be-
fore in this chapter, we concentrated our attention on the BRAM II method and, more
specifically, on the approximation properties of POD for some challenging industrial
circuits and the parameter dependence of the POD basis. This will give sufficient in-
sight into the accuracy of the BRAM II method, as argued in section 6.3. It is hoped that
the promising results presented in Chapters 7 and 8 will convince developers of Pstar,
Titan, Spice and Spectre to implement the BRAM II method.

6.6 Summary

In this chapter, we have introduced a new type of backward adjoint method for calcu-
lating sensitivities based upon the POD method applied to the forward problem. The
main advantage of this method is that the error structure is less complex than for the
original BRAM method. The accuracy of BRAM II can be influenced by the choice of
POD basis, and otherwise depends on the sensitivity of this POD basis with respect
to the parameters. The latter is, therefore, addressed thoroughly in the following two
chapters.



Chapter 7

Parameter Dependence of POD
basis

We have so far shown the development of sensitivity analysis methods in which we
combine the Proper Orthogonal Decomposition method with backward adjoint meth-
ods. We have demonstrated how to construct a projection matrix from the POD basis
obtained by analyzing the response of an electronic circuit system and then how to ap-
ply the projection to obtain a reduced adjoint system. The second backward adjoint
reduced method delivers the benefits of having a smaller, less complex system to solve
in combination with the extra benefits contributed by the application of the backward
adjoint method.

By restricting the total backward adjoint system to the truncated subspace we have also
shown that the results obtained from the reduced, by the Galerkin projection, brute
force forward sensitivity calculation are identical to the second backward reduced ad-
joint method which gives the advantages of the adjoint approach to these sensitivity
problems and system reduction by projection. It is in BRAM II that we have eliminated
the potential for undesired errors in our reverse backward adjoint equation.

The POD basis is the center of our method’s added advantages, and having eliminated
all other concerns in previous chapters, in this chapter we will focus our discussion on
the subject of parameter dependence of the complete set of basis functions of a circuit
system, the dependence of the projection matrix which is built up from the dominant
system basis functions and the sensitivity value dependence on the parameter when
obtained via a model order reduced system.
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7.1 State sensitivity approximation complications

When solving a circuit system that has been reduced by a projection matrix V(p) for the
system state vectors, each state solution that we find is an approximation to the original
full state vector. It is the choice of basis functions we take from the full system basis to
construct the projection matrix that determines how accurate this approximate solution
is.

Here is an expression of the full state solution, and its approximation:

x(t,p) ≈ V(p)x̃(t,p). (7.1)

To explore the influence that the parameter vector p has on the projection matrix V ,
it is at this point interesting to take the partial derivative of (7.1) with respect to the
parameter vector p. This is the step taken to find the state sensitivity in the brute force
forward method, but this time we do this also to the state approximation on the right
hand side:

x̂ =
∂x(t,p)

∂p
≈ V(p)

∂x̃(t,p)

∂p
+
∂V(p)

∂p
x̃(t,p). (7.2)

Equation (7.2) demonstrates that the original full space state sensitivity does have a
truncated space approximation, but the result we have derived shows that the approxi-
mation is not a simple projection, it is a combination of two terms. The first term is the
projection of the reduced state sensitivity, which is a straight forward projection of the
truncated space sensitivity,

V(p)
∂x̃(t,p)

∂p
. (7.3)

The error associated with this term can be made smaller by increasing the number of
basis vectors used in the projection. The second term shown is one that is found to also
contain the projection matrix, but in this term we find that the projection matrix itself
is sensitive to the parameter vector, this leads to an additional effect on the error made.
This term is not easily decreased. In fact, even if we take a full basis, this term may
be a significant source of errors made. This has to do with the fact that we are using a
projection that is based on one fixed set of parameters, usually the nominal ones. Hence,
it is important to investigate the behavior of the following term:

∂V(p)

∂p
x̃(t,p). (7.4)



7.2 Projection matrices and basis comparison 93

7.2 Projection matrices and basis comparison

Projection matrices are constructed from the dominant basis functions chosen after a
singular value analysis of a circuit system response. If we make a small change in the
parameter of a component in the system we will observe a slightly different response,
and also find that the basis functions used to construct the new system solutions also
change. We expect that a small change in the physical parameters of a linear compo-
nent will not affect the basis as much as a change in a non-linear exponentially defined
physical parameter. A topologically significant parameter changing event such as a dis-
connection of a component would have a far greater impact on the system solutions, a
parameter event such as this can be seen as having a large sensitive effect on the projec-
tion matrix.

In our analysis, and also the expected use of the backward adjoint reduced method,
we do not expect parameters to vary much. Often, the area of application is in circuit
tuning where gradient-based nonlinear optimization algorithms are used. Usually, first
a nominal simulation of the circuit is performed, followed by the optimization proce-
dure. Nevertheless, we have observed cases where the initial parameter settings are
dramatically changed during the optimization process. However, a violent parameter
failure would be detected in the semiconductor industry as part of yield loss, and not
the responsibility of the design and development stage.

We will assume and also restrict parameter changes to relatively small variations, in
the order of around 10-15 percent. This is a typical number that is encountered in most
circuit optimizations, the larger factors mentioned before are rare. In fact, one could say
that in those cases where this occurs, designers have not done their work well enough!

We will apply a principal component analysis to measure the change in the dominant
basis functions as we vary parameters and also interchange basis functions and system
solutions from simulations of different parameters.

In what follows, we will need the concept of angle between two subspaces. This can be
defined as follows. For two subspaces F and G of a unitary space Em with p = dimF ≥
dimG = q ≥ 1 the principal angles θ1, ..., θq are recursively defined by,

cos(θk) = max︸︷︷︸
u∈F

max︸︷︷︸
v∈G

uHv = uk
Hvk, ∥u∥2 = 1, ∥v∥2 = 1, (7.5)

subject to uj
Huk = 0, vj

Hvk = 0, j = 1, ..., k − 1. The vectors u1, ...,uq,v1, ...,vq maxi-
mizing (7.5) are named principal vectors, where v1, ...,vq form a unitary basis of G and
vectors uq+1, ...,up can be found such that u1, ...,up form a unitary basis.

Assume now that the columns of QF and QG form a unitary basis for F and G, respec-
tively, this representing the full space basis vectors of a system solutions. We then put,
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M = QH
F QG ∈ Cpxq, (7.6)

construct the singular value decomposition, and build the POD basis of M. This action
will yield the unitary matrices,

Ỹ ∈ Cpxp,Z ∈ Cqxq, (7.7)

and

C̃ =

(

C
0

)

∈ Cpxq, (7.8)

with C = diag{σ1, ..., σq} such that,

M = ỸC̃Z. (7.9)

Note that we have ỸHỸ = ỸỸH = Ip, and Z̃HZ̃ = Z̃Z̃H = Iq. The foregoing expression
can be rewritten as

M = YCZ, (7.10)

where Y are the first q columns of Ỹ with Y ∈ Cpxq, C ∈ Cqxq and Z ∈ Cqxq.

Considering the above, the principal angles and vectors of the two systems can be cal-
culated from,

cosθk = σk, (k = 1, ..., q) (7.11)

(v1, ...,vq) = V = QG · Z, (7.12)

(u1, ...,uq) = U = QF · Y. (7.13)

We now have a method in which we can compare the principal angles of two subspaces,
and this method will be used to compare POD bases that are obtained for a number of
industrial examples in order to assess the dependence of such bases on the parameters
p. Before doing that for one of our industrial test cases, we investigate a special case of
the foregoing procedure in order to verify that the method yields appropriate results.
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7.3 Principal angles of two identical subspaces

To put the method described in the foregoing through a dry run, let’s assume that QF

and QG both span the same subspace (which, however, can be smaller than the dimen-
sion of the full space). Our mathematical intuition tells us that the principal angles
should all be equal to zero!

In general when comparing two subspaces of two systems we have to deal with the case
where we have a mismatch in the number of basis functions,

QF ∈ Cmxm,QG ∈ Cmxq, (7.14)

with colspan QF = colspan QG.

Thus, we will have to distinguish two different cases, and this will be done in the fol-
lowing. It will be seen that, in both cases, the result predicted by our mathematical
intuition is indeed obtained.

7.3.1 The simple case q = m

Here we compare the two vector spaces QF and QG, and in this case assume they are of
equal size:

QF ∈ Cmxm,QG ∈ Cmxm. (7.15)

The columns of QF and QG each build a unitary basis, QF and QG are unitary matrices,
because of this fact we can now take the following steps. The SVD of M is found in the
following valid way,

M = QH
F QG = QH

F ImQG. (7.16)

This immediately demonstrates that the singular values are all equal to 1, so that

cosθ1 = ... = cosθm = 1, (7.17)



96 Parameter Dependence of POD basis

implying that all of the principal angles are equal to zero:

θ1 = ... = θm = 0 (7.18)

In this special case, the SVD in full reads,

M = UΣV, (7.19)

V = QGQH
G = Im, (7.20)

U = QFQH
F = Im. (7.21)

7.3.2 The general case q ≤ m

Next we consider the case that q ≤ m; because of the assumption that the column spans
are identical we can write,

QF = QGQH
GQF, (7.22)

QG = QFQH
F QG. (7.23)

Because of the following relations,

(QH
F QG)(QH

F QG)H = QH
F QH

GQH
G︸ ︷︷ ︸

QF = QH
F QF = Iq, (7.24)

(QH
F QG)H(QH

F QG) = QH
G QH

F QH
F︸ ︷︷ ︸

QG = QH
GQG = Iq, (7.25)

we also have that QH
F QG ∈ Cqxq is unitary. Thus, in this case, we can write down the

following singular value decomposition:

M = QH
F QG = QH

F QG︸ ︷︷ ︸
Y

· Iq︸︷︷︸
C

· IH
q︸︷︷︸

ZH

(7.26)

Using this decomposition we can say that, for the general case, the principal angles are
given by,
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cos(θ1) = ... = cos(θq) = 1 ⇒ θ1 = ... = θq = 0, (7.27)

and the principal vectors are given by,

V = QGIq = QG, (7.28)

U = QFQH
F QG = QG. (7.29)

This shows that, in all cases, the principal angles are equal to zero. This strengthens our
confidence in the method proposed for measuring the angles between the subspaces
generated by two different POD bases. In the following section, we will use the method
for an industrial test case.

7.4 Battery example

Having derived a procedure to compare subspaces generated by different sets of prin-
cipal component vectors generated by applying the proper orthogonal decomposition
method, it is time to start considering the variation of the POD basis with respect to
parameter changes. As the proof of the pudding is in the eating, we will now consider
a challenging industrial circuit for which designers wish to perform an optimization
cycle.

The motivation for considering this example is as follows. If you pick up any portable
electronic equipment, anything from mobile phones to laptops and modern electronic
cars, there is a high chance that within their casing you will find that a lithium-ion bat-
tery has been chosen as part of the design. Lithium-ion batteries have many advantages
and to name just a few, they can be constructed and shaped to fit any device, they have
a high energy to weight ratio, and have low self discharge rate.

These advantages are available in exchange for some manageable risks. Lithium in
its pure form is a highly reactive element which makes for a potentially very unstable
battery. Lithium-ion batteries are known to become very dangerous and go very wrong
very quickly if mistreated, these batteries are responsible for the well known stories in
the media of exploding consumer electronics.

Lithium-ion batteries are sensitive to temperature changes and overheating, from exter-
nal and internal current flows, overcharging and over-discharging. Complicated battery
circuit charger circuits have the primary function of watching over and regulating the
battery charging process in order to keep it safe. Once this primary target is achieved,
then changes in the charging circuit can be designed to increase efficiency in terms of
charging time, power output.
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The charging circuit is critical to the safety of users. An unexpected variation in a com-
ponent parameter in the manufacturing stage has the potential to dramatically affect
the output, this is one good example of where a full parameter sensitivity analysis of a
circuit is very useful.

We have had access to a computer simulated model of a Li-ion charger at NXP semicon-
ductors, and decided to use this circuit to demonstrate the effect of parameter changes
on the system basis functions and also demonstrate the feasibility of the backward re-
duced adjoint method. We would like to see a low sensitivity to parameter changes for
the projection matrix.

We ran a simulation between 0ms and 200ms and collected 3500 snapshot circuit states,
and we chose a single capacitor for parameter variation by choosing to vary its area.
The initial area value was set at 30, and the circuit was re-simulated for area values
32,34,36,38 and 40. We stored the snapshot states for each simulation.

For each parameter value, pv = {30, 32, 34, 36, 38, 40}, we calculated an initial singu-
lar value decomposition, denoted by

UpvSpvVpv = Wpv (7.30)

We then plotted the singular value distribution of all parameter responses over the time
period. Figure 7.1 shows that the first 100 singular values are enough for a good recon-
struction, which as a by-product also shows a high potential for the application of the
backward reduced adjoint method as the dimension of the problem can be reduced by
roughly a factor of 35. The plot also shows that a change in parameter does have an
effect on the system response.

We now take a look at the effect of the parameter changes in the rotation of the principal
angles, a full basis analysis (i.e. no reduction) is taken on each set of data. We take the
parameter value of 30 as our reference parameter and compare the system principal an-
gles, with itself and the response of the rest of the parameters. The results are displayed
in Figure 7.2.

When comparing the reference system response with itself as expected there is no rota-
tion (here, the results of Section 7.3 apply), and at this scale it seems there is no rotation
at all. Looking at the log scale, see Figure 7.3, we find that there is a small variation
in the principal angles when varying the parameter values. This is, however, within
machine precision.

Referring back to the minimum number of 100 basis vectors needed to create a good re-
construction of the system response, we now truncate the basis to the first 100 dominant
vectors and then compare their rotation. The results are displayed in Figure 7.4. The ap-
parent jump to 90 degree rotations near the cut off point is due to the matrix diagonal
zero padding introduced in the general case for principal vector analysis. These large 90
degree rotations are not due to principal vectors influenced by parameter changes and
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Figure 7.1: Singular values of battery example

Figure 7.2: Effect of parameter changes
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Figure 7.3: Comparison of reference system with itself

should not be taken into account.

Figure 7.5 shows the same data, but now with a logarithmic scale.

We repeat the same experiments, but now for the first 50 dominant basis vectors. Note
that this is, in principle, not sufficient to accurately represent the sensitivities, as we ne-
glect too many singular vectors that influence the solution. The idea behind performing
this experiment is that we are interested in the most dominant singular vectors. Namely,
it may well be that the spaces of 100 singular vectors spans the same subspace, but that
the first 50 are gradually changed, and that some of these vectors gradually become the
less dominant vectors for different parameter values. Figure 7.6 and Figure 7.7 show
the results of these experiments, the latter displaying the results again in a logarithmic
scale.

From this initial analysis we have found that for a complicated industrial circuit a
change in parameter values does not affect the total set of basis vectors by a disruptive
amount, and also not at the point of truncation which is the projector matrix construc-
tion step. This sets the parameter sensitivity term to a small amount in the reduced
sensitivity analysis equation.
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Figure 7.4: PVR100vRD

Figure 7.5: Results of Figure 7.4 on logarithmic scale
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Figure 7.6: Results for truncation at 50 vectors

Figure 7.7: Results of Figure 7.6 on logarithmic scale
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7.5 Summary

In this chapter, we analyzed in more detail the parameter dependence of the POD basis,
as this is the main contribution to the error in the BRAM II method. First, we presented
a method for determining the angle between two subspaces generated for two different
parameter settings. This method was shown to give the expected result in case the two
subspaces are equal, i.e. when the bases span the same space. Next, a detailed analysis
was provided for a challenging industrial circuit, showing that the subspaces generated
for different parameter values are not dramatically different, even for changes of the
parameters of up to 30 percent.





Chapter 8

Academic & Industrial Examples

Having verified the relative parameter independence of the POD basis, in this chapter
we present some additional examples in order to verify whether the backward adjoint
methods have potential to yield accurate sensitivity results also for challenging state-of-
the-art industrial problems. Before doing that, we first present a simplified example and
work this in detail to show the equivalence of sensitivity results obtained for the forward
and backward methods. The main aim of this chapter is to analyze the performance of
the POD method, with special emphasis on its sensitivity to parameter changes.

8.1 A simple test example

We start by considering a simple test circuit for which we can actually perform calcu-
lations by hand. This will provide insight in how the computations are done, and will
also lead to more insight in why the different sensitivity calculations lead to the same
results. In Figure 8.1 we display the circuit under consideration.

We choose to observe the sensitivity of the energy used by the resistor R2 to changes in
the parameter value R2. The observation function is given by

Gobs =

∫T

0

F(t)dt, (8.1)

where
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Figure 8.1: Simple circuit for comparison of sensitivities

F(t) =
V2(t)2

R2

. (8.2)

We will now calculate the sensitivity in two ways, using the direct forward method and
the backward adjoint method, and will demonstrate that the two results are exactly the
same. The example shows that, even though it is a rather simple problem, the calcula-
tions can be quite involved.

8.1.1 Sensitivity - direct forward method

We begin by calculating the direct forward sensitivity. The sensitivity of the observation
function with respect to R2 is given by

dG

dR2

=

∫T

0

dF(t)

dR2

.dt (8.3)

On expanding the integral, we find that

dF(t)

dR2

=
1

R2

∂V2
2 (t)

∂R2

+ V2
2 (t)

−1

R2
2

Thus, we find the following expression for the direct forward sensitivity:
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dGobs

dR2

=

∫T

0

2V2(t)

R2

∂V2(t)

∂R2

.dt

︸ ︷︷ ︸
int 1

−

∫T

0

V2
2 (t)

R2
2

.dt

︸ ︷︷ ︸
int 2

(8.4)

Here we depart temporarily from the forward method, and first calculate the result for
the backward adjoint method.

8.1.2 Sensitivity - backward adjoint method

We recall the following expression for the sensitivity of the observation function with
respect to a parameter P as found by using the backward adjoint method:

dG

dP
= λ⋆(0)

[

∂q(0)

∂x
· x̂DC +

∂q(0)

∂P

]

(8.5)

+

∫T

0

∂λ⋆(t)

∂t
· ∂q
∂P

− λ⋆(t)

(

∂j

∂P
+
∂S

∂P

)

dt

+

∫T

0

∂F(t)

∂P
dt,

where

x̂ =
∂x

∂P
. (8.6)

As we have chosen P = R2, we find

dG

dR2

= λ⋆(0)

[

∂q(0)

∂x
· x̂DC +

∂q(0)

∂R2

]

(8.7)

+

∫T

0

∂λ⋆(t)

∂t
· ∂q
∂R2

− λ⋆(t)

(

∂j

∂R2

+
∂S

∂R2

)

dt

+

∫T

0

∂F(t)

∂R2

dt.
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For the given circuit, it can be shown that some of these terms will equal zero. The

term ∂q(0)

∂x
x̂DC is equal to zero, owing to the fact that the DC solution is zero. It is also

immediate that ∂q
∂R2

= 0 and ∂S
∂R2

= 0. Thus, the sensitivity expression reduces to

dGobs

dR2

=

∫T

0

−λ⋆(t)

(

∂j

∂R2

)

dt+

∫T

0

∂F(t)

∂R2

dt. (8.8)

Again referring back to the circuit equations, the terms in the first integral can be sim-
plified. The partial derivative w.r.t R2 of the jmatrix is as follows,

j =





x1

R1
− x2

R1
− x3

−x1

R1
+ x2

R1
+ x2

R2

x1



 (8.9)

∂j

∂R2

=





0
−x2

R2

2

0



 (8.10)

The partial derivative term in the second integral is expanded as follows,

∂F(t)

∂R2

=
−V2

2 (t)

R2
2

(8.11)

Collecting all of these results, it turns out that (8.8) can be written as,

dG

dR2

=

∫T

0

λ2(t)
V2(t)

R2
2

dt−

∫T

0

V2
2 (t)

R2
2

dt. (8.12)

8.1.3 Comparison of the direct forward and backward sensitivity

Having determined expressions for the sensitivity both for the forward and backward
methods, we can now start comparing these results. For convenience, we summarize
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the results obtained previously. The sensitivity calculated using the forward method
leads to the expression

dG

dR2

=

∫T

0

2V2(t)

R2

∂V2(t)

∂R2

dt

︸ ︷︷ ︸
int 1

−

∫T

0

V2
2 (t)

R2
2

dt

︸ ︷︷ ︸
int 2

, (8.13)

whereas the sensitivity calculated using the backward approach is given by

dG

dR2

=

∫T

0

λ2(t)
V2(t)

R2
2

dt

︸ ︷︷ ︸
int 1

−

∫T

0

V2
2 (t)

R2
2

dt

︸ ︷︷ ︸
int 2

. (8.14)

At first sight, these expressions do not seem to be equal. The second integral is the same,
but the first one looks quite different. Matters would be simple if we would have

λ2(t) = 2R2

∂V2

∂R2

,

but this is, unfortunately, not the case. Thus, we will need to work the integrals, and
compare after having done that. Thus, in the following subsection, we evaluate the
integrals.

Working the forward expression

For the circuit example at 0 < t < T , we have the following:

λ2 (t) = β

[

Teα(t−T)

α2
+
eα(t−2T)

2α3
−
t

α2
−
eα t

2α3

]

, (8.15)

V2(t) = x2(t) =
A

C1R1

[

t

α
−
1

α2
+
e−αt

α2

]

, (8.16)

α =

[(

1

C1

)(

1

R1

+
1

R2

)]

, (8.17)
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β =
−2A

C2
1R2R1

, (8.18)

∂V2(t)

∂R2

=
∂V2(t)

∂α

∂α

∂R2

,

∂V2(t)

∂R2

=
−A

C2
1R

2
1R1

[

−t

α2
+
2

α3
+
te−α t

α2
−
2e−α t

α3

]

. (8.19)

Using these expressions, the desired integrals can be calculated. First we have that

∫T

0

2V2(t)

R2

∂V2(t)

∂R2

dt =

β

∫T

0

[

t

α
−
1

α2
−
e−αt

α2

] [

−t

α2
+
2

α3
+
te−α t

α2
−
2e−α t

α3

]

dt (8.20)

Using integration by parts a number of times, we find that this equation is equal to the
following:

β

[[

t

α
−
1

α2
+
e−αt

α2

] [

−t2

2α2
+
2t

α3
+
te−α t

α3
+
e−α t

α4
−
2e−α t

α4

]

(8.21)

−

[

1

α
−
e−αt

α

] [

−t3

6α2
+
2t2

2α3
−
te−α t

α4
−
e−α t

α5
−
e−α t

α5
−
2e−α t

α5

]

+
[t3e−α t

6α3
+
3t2e−α t

6α4
+
6te−6α t

α5
+
6e−α t

6α6

−
t2e−α t

α4
−
2te−α t

α5
−
2e−α t

α6
+
te−2α t

2α5
+
e−2α t

4α6
+
e−2α t

2α6
+
3e−2α t

2α6

]

]T

0

.

At t = 0 (8.21) quickly reduces to the following,

β

[

5

4α6

]

(8.22)
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At t = T (8.21) becomes,

β
[−T3

2α3
+
2T2

α4
+
T2e−α T

α4
+
3Te−α T

α5
+
T2

2α4
−
2T

α5
−
Te−α T

α5
−
3e−α T

α6

−
T2e−α T

2α4
+
2Te−α T

α5
+
Te−2α T

α5
+
3e−2α T

α6
+
T3

6α3
−
2T2

2α4
+
Te−α T

α5

+
4e−α T

α6
−
T3e−α T

6α3
+
2T2e−α T

2α4
−
Te−2α T

α5
−
4e−α T

α6
+
T3e−α T

6α3
+
3T2e−α T

6α4

+
6Te−α T

6α5
+
6e−α T

6α6
−
T2e−α T

α4
−
2Te−α T

α5
−
2e−α T

α6
+
Te−2α T

2α5
+
e−2α T

4α6

+
2e−α T

α6

]

(8.23)

Combining these results, we finally obtain the following expression for the sensitivity
obtained from the direct forward method:

∫T

0

2V2(t)

R2

∂V2(t)

∂R2

dt =

β
[ T3

α3

[

−2

6
+
e−α T

6

]

+
T2

α4

[

3

2
+ e−α T

]

+
T

α5

[

−2+ 4e−α T +
e−2α T

2

]

+
1

α6

[

−5

4
+
5e−2α T

4

]

]

(8.24)

Working the backward expression

In a similar way, we can evaluate the integral obtained using the backward adjoint
method. Substituting the expressions found at the beginning of the previous subsec-
tion, we find

∫T

0

λ2(t)
V2(t)

R2
2

dt
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= β

∫T

0

[

Teα(t−T)

α2
+
eα(t−2T)

2α3
−
t

α2
−
eα t

2α3

] [

t

α
−
1

α2
+
e−αt

α2

]

dt (8.25)

Again applying two rounds of partial integration, we find

β[

[

t

α
−
1

α2
+
e−αt

α2

] [

Teα(t−T)

α3
+
eα(t−2T)

2α4
−
t2

2α2
+
e−α t

2α4

]

(8.26)

−

[

1

α
−
e−αt

α

] [

Teα(t−T)

α4
+
eα(t−2T)

2α5
−
t3

6α2
−
e−α t

2α5

]

+

[

Tte−α T

α4
+
te−2α T

2α5
+
t3e−α t

6α3
+
3t2e−α t

6α4
+
6te−α t

6α5
+
6e−α t

6α6
+
e−2α t

4α6

]

]|T0

8.1.4 The final comparison

At this stage it is not immediately clear that (8.27) is equal to (8.21). To show that it is,
one needs to fully evaluate (8.27) taking into account the boundary conditions. At t = 0,
(8.27) quickly reduces to,

β

[

5

4α6

]

, (8.27)

whereas at t = T (8.27) becomes,

β[

[

T

α
−
1

α2
+
e−αT

α2

] [

T

α3
+
e−α T

2α4
−
T2

2α2
+
e−α T

2α4

]

(8.28)

−

[

1

α
−
e−αT

α

] [

T

α4
+
e−α T

2α5
−
T3

6α2
−
e−α T

2α5

]

+

[

T2e−α T

α4
+
Te−2α T

2α5
+
T3e−α T

6α3
+
3T2e−α T

6α4
+
6Te−α T

6α5
+
6e−α T

6α6
+
e−2α T

4α6

]

]

which expands to,
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β[
T2

α4
+
Te−α T

α5
−
T3

2α3
−
T

α5
−
e−α T

α6
+
T2

2α4
+
Te−α T

α5
(8.29)

+
e−2α T

α6
−
T2e−α T

2α4
−
T

α5
+
T3

6α3
+
Te−α T

α5
−
T3e−α T

6α3
+
T2e−α T

α4

+
Te−2α T

2α5
+
T3e−α T

6α3
+
3T2e−α T

6α4
+
6Te−α T

6α5
+
6e−α T

6α6
+
e−2α T

4α6
]

Thus, collecting terms, we find that

∫T

0

λ2(t)
V2(t)

R2
2

dt =

β

[

T3

α3

[

−2

6
+
e−α T

6

]

+
T2

α4

[

3

2
+ e−α T

]]

+β

[

T

α5

[

−2+ 4e−α T +
e−2α T

2

]

+
1

α6

[

−5

4
+
5e−2α T

4

]]

(8.30)

which immediately shows that both expressions for sensitivity derived from the back-
ward adjoint method and the direct forward method are equal.

8.1.5 The remaining integral

For completeness we will expand the second integral that appears both in (8.13) and in
(8.14).

−

∫T

0

V2
2 (t)

R2
2

dt = (8.31)

= γ

∫T

0

[

t

α
−
1

α2
+
e−αt

α2

] [

t

α
−
1

α2
+
e−αt

α2

]

dt (8.32)

where,
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γ =
−A2

C2
1R

2
1R

2
2

= γ

∫T

0

[

t2

α2
−
t

α3
+
te−α t

α3
−
t

α3
+
1

α4
−
e−α t

α4
+
te−α t

α3
−
e−α t

α4
+
e−2α t

α4

]

dt (8.33)

= γ

[

t3

3α2
−
t2

2α3
−
te−α t

α4
−
e−α t

α5
−
t2

2α3
+
t

α4
+
e−α t

α5
−
te−α t

α4
−
e−α t

α5

]T

0

+ γ

[

e−α t

α5
−
e−2α t

2α5

]T

0

(8.34)

= γ

[

T3

3α2
−
T2

α3
+
T

α4

[

1− 2e−α T
]

+
1

α5

[

1

2
−
e−2α T

2

]]

(8.35)

8.1.6 The complete sensitivity expressions

Having performed all of these calculations, and having shown that indeed the sensitiv-
ities obtained via the direct forward and the backward adjoint methods are the same,
we can now provide the complete expression for the sensitivity of our simple example:

dG

dR2

=

β

[

T3

α3

[

−2

6
+
e−α T

6

]

+
T2

α4

[

3

2
+ e−α T

]

+
T

α5

[

−2+ 4e−α T +
e−2α T

2

]]

+β

[

1

α6

[

−5

4
+
5e−2α T

4

]]

(8.36)

+γ

[

T3

3α2
−
T2

α3
+
T

α4

[

1− 2e−α T
]

+
1

α5

[

1

2
−
e−2α T

2

]]

where

α =

[(

1

C1

)(

1

R1

+
1

R2

)]

,
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β =
−2A

C2
1R2R1

,

γ =
−A2

C2
1R

2
1R

2
2

,

Thus, even though this concerns a very simple example, the sensitivity is far from being
a simple expression in terms of the parameters of the circuit.

8.2 A simple rectifier example

We now consider a more challenging, but nevertheless still rather simple, example,
namely a rectifier circuit.

The diode bridge rectifier is an electronic circuit used to convert AC voltage to DC volt-
age, or as near as possible DC signal. Figure (8.3) shows a schematic of the bridge
rectifier, a sinusoidal input signal varying from positive to negative is inputted on the
left on nodes 1 and 2, on the right a signal of positive values is outputted. The circuits
ability to rectify a sin signal depends upon the properties of the four junction diodes
arranged in the centre of the schematic.

Junction diodes are highly non-linear devices, their ideal operating characteristics are
that once a forward bias is applied the device switches on and conducts current, a con-
stant voltage drop is observed across the junction. In reverse bias mode, the diode
switches off, no current is able to pass through.

Junction diodes can be models as non-linear resistors, figure (8.2) shows a simple equiv-
alent model of the junction diode. Equations (8.37) and (8.38) model the diode current
and conductance.

Id = Is(exp((vp − vn)/Vth) − 1) + (vp − vn)/Rpar (8.37)

gd = Is exp((vp − vm)/Vth)/Vth + 1/Rpar (8.38)

Figure (8.4) demonstrates the operation of the circuit under a positive input voltage.
Diodes 1 and 4 are switched off, diodes 2 and 3 are able to conduct the current. If you
follow the polarity of the devices, you will see the output voltage is positive.

Figure (8.5) demonstrates the rectifier response when a negative input signal is applied
at the input. Diodes 2 and 3 switch off, diodes 1 and 4 are switched on and are now able
to conduct, again if you follow the polarity of the devices you will see that the output
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Figure 8.3: Bridge rectifier circuit.
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Figure 8.4: Operation under positive half cycle

signal is again positive.

The capacitor at the output is a smoothing capacitor, its smoothing effect will be ex-
plained with the aid of some simulation results.

An input sinusoidal signal and its rectified signal is shown in figure (8.6), the peak
frequency voltage is doubled and the output signal is diminished by the amount of
voltage falling across the diodes. This rectified voltage although non-negative, does not
yet resemble a direct current.
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Figure 8.5: Operation under negative half cycle

Figure 8.6: Bridge rectifier - no smoothing.
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To smooth the signal a capacitor can be added and varied to suit, this is shown in (8.7).
On the upward voltage output curve the capacitor charges, once the rectified output
voltage curve drops the capacitor discharges at a slower rate which keeps the voltage
at a higher level, the capacitor charge is refilled on the next upward cycle. The rectified
output signal is now a ripple that looks more like a DC signal. The peaks of the ripples
coincide with the peaks of the original rectified signal.

Figure 8.7: Bridge rectifier- with smoothing.

A singular value analysis of the circuit above, with and without a smoothing capac-
itor gives the distribution in (8.8). You can see that we could reduce the circuit by a
POD projector constructed using 3 or even 2 singular values. In figures (8.9) and (8.10)
we overlay the circuit output signal, for smoothing and non-smoothing configurations,
when solving systems of varying model sizes.

In both cases, a reduction to 3 singular values preserves the circuit behaviour, a re-
duction to 2 singular values also gives a reasonable preservation of circuit behaviour
which would depend upon design tolerances.
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Figure 8.8: Bridge rectifier singular value distribution

Figure 8.9: Bridge rectifier - no smoothing, reduced models.
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Figure 8.10: Bridge rectifier - with smoothing, reduced models.

8.3 Industrial examples

As the methods developed need to be used in an industrial environment with challeng-
ing and state-of-the-art problems, designers within NXP Semiconductors were asked to
provide a number of examples for which we can put our methods to the test. As the
focus within the company is mainly on high performance mixed signal designs rather
than the large digital designs that were studied some years ago, we concentrated on the
following 3 examples:

• Battery Charger

• Ring Oscillator

• Car Transceiver

These are not the largest of examples, but nevertheless do contain quite a lot of un-
knowns and many nonlinear devices. The examples can be considered to be represen-
tative also for larger examples.

As mentioned in Chapter 6, implementation of BRAM and BRAM II into the in-house
circuit simulator Pstar was declined and advised against in view of the effort needed
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in programming the methods. These conclusions were mainly a result of the financial
crisis, urging managers to carefully consider any new developments and investments.
We feel, however, that the results in this section are convincing, and will hopefully lead
to a future implementation of the backward reduced adjoint methods. But, for now,
we will need to be satisfied with investigations of the performance of POD on these
three industrial examples, which will enable us to estimate the speed-up when using
the backward reduced adjoint methods.

In the final section, we consider another way of using the sensitivity results, namely as
the basis of a reduction technique for parasitic layout networks.

8.4 Battery charger

This circuit, that was already presented in Section 7.4, has been designed to charge a
Li-Ion battery using a standard USB port, a process that it quite delicate and in need of
constant detailed monitoring. Without attention and care the battery and the charger
itself could be damaged beyond practical use. The most obvious monitoring require-
ment is the detection of the battery voltage, to detect when a battery needs charging or
when it is full. Other monitoring requirements are the detection of the charge current
and the ability to vary the current and various stages of the battery charge level; battery
temperature and chip temperature, again used to limit the current trickled or even stop
the circuit at limits placed by the designer.

The charge cycle requirements are implemented with a combination of ring oscillators,
temperature diode threshold sensors, current detectors and resistive temperature sen-
sors which turns the deceptively simple task of charging a battery into a complex circuit
implementation consisting of at least 3495 unknowns demanding an involved time do-
main simulation.

Figure (8.11) shows the three well defined active states of the battery charger.

1. Trickle charging takes place up to a battery voltage of 2.8V

2. Constant current charge (Fast Charge) takes place between 2.8V and 4.2V

3. Under constant voltage charge the current is down from 100% to 10%

The charging cylce (8.12) begins with charger on at this step a check takes place to see
whether or not a supply source is detected and present. If successfull, the next step is
to check if the attached battery is charged or not. The threshold here is 4.05 volts, if the
battery voltage is below this value the battery charging cycle can begin. The following
order of checks are designes so as not to damadge the battery. The first check taken is to
find out if the battery is in a state where trickle charge is the most suited initial charge.
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Figure 8.11: Active Charge States



124 Academic & Industrial Examples

This is done by testing the battery voltage and checking to see if it is below 2.8V. If
trickle charge is needed, a constant current of 10% the full normal current charge phase
is supplied to the battery. The next voltage level threshold is 2.8V, above this value it is
safe to apply the maximum current at a constant value, it is safe to do so up untill about
4.2 volts. Above this level the battery of the voltage is held at a constant voltage and
the current is varied supply the charge in this final stage. As the battery becomes full,
the applied current is reduced and once the battery current decreases below 10% of the
nominal charge current the charge process is stopped, the battery is full. Unexpected
variations in current supply can occur and this also must be monitord, figure (8.14)
shows the flow chart for a subcircuit responsible for this monitoring.

Li-Ion batteries have a build in thermistor to help give an measure on the battery tem-
perature. The set up is as follows, two resistive dividers one not dependent on the tem-
perature and one with negative temperature coefficient thermistor generates a cross-
over voltage that can be used to define a temp ok signal. (8.13) is a flow chart of the
temperature detection circuit requirements.
The charging circuit temperature itself must also be taken care of, and current flows
must be limited at higher chip temperatures. Depending upon the battery voltage, the
USB voltage and the charge current, the output transistor can dissipate up to 600mW.
The desicion to operate in a temperature limit mode is taken by referencing the voltage
over a bipolar diode (PNP as diode) compared with a temperature threshold level de-
rived from the bandgap voltage. Figure (8.15) shows the flow chart for this subcircuit.
As you can tell by these breif descriptions this circuit is quite involved. A schematic is
shown in figure (8.16).

8.4.1 Voltage states only: 0-200u

The following figure shows the transient response of the circuit between 0 and 200u,
where we made a selection of the states. This gives an impression about the transient
behavior of the circuit. The complete transient response can be captured in a snapshot
matrix whose structure is a collection of column vectors representing the state of the
circuit at each point on the time grid used in the simulation. Simulations were carried
out using Pstar, which is NXP’s in-house circuit simulator.

W = [x(t1)...x(tn)],W ∈ R
N×n (8.39)

The dimensions of this snapshot matrix are N× n where N is defined as the number of
unknown circuit states and n is the number of time grid points. In this case, N = 3459

and n was taken to be 502.

The singular value decomposition analysis of the system snapshot matrix W ∈ R
N×n

reveals the complete basis U spanning the circuit response space, the singular values S
and the coordinate data V . Figure 8.18 shows the log plot of the circuit singular values
in descending order of importance.
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Figure 8.12: Charging Process Flow Chart
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Figure 8.13: Battery Temperature Detection Flow Chart

Figure 8.14: Current Monitor Flow Chart



8.4 Battery charger 127

Figure 8.15: Chip Temperature Flow

It is clear from the decay of these singular values some are more dominant than oth-
ers; each of these values has an associated dominant basis vector which suggests that
the complete system can be approximated by a subset of the most dominant compo-
nents. Therefore, the POD approximation of the system response is done by using the K
most dominant basis vectors to reconstruct the snapshot matrix from the singular value
decomposition Wk = U(:, 1 : K)S(:, 1 : K)V(:, 1 : K). The reconstructed snapshot can
be compared with the original by taking a vector induced matrix norm of the difference
W−WK, this represents the error of reconstruction from the first Kth dominant singular
values. This error, using the 2-norm, is plotted against the index value of the associated
Kth singular value. This error analysis shows clearly that an 80 percent data reduction
is possible or in other words only the first 100 dominant POD modes are needed. A
similar plot, using the infinity norm, on the next page is in agreement.

In fact, these results imply that the original system can be represented by approximately
100 POD basis vectors, and this indeed leads to a significant reduction of the full system
of equations.
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Figure 8.16: Battery Schematic
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Figure 8.17: Transient response of battery charger circuit
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Figure 8.18: Decay of singular values for battery charger circuit
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Figure 8.19: Error of POD approximation in 2-norm
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Figure 8.20: Error of POD approximation in ∞-norm

8.5 Ring Oscillator

The next example is a much smaller circuit, as the state vector contains 252 unknowns.
But again, approximately 500 data samples are taken for SVD analysis. In the first fig-
ure, we show the transient response of the circuit as simulated by the NXP in-house
simulator Pstar.

Next we look at the singular values that were calculated for the snap shot matrix, these
are displayed in Figure 8.22. Figures 8.23 and 8.24 show the error of the POD approxi-
mation in the 2-norm and ∞-norm, respectively.
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Figure 8.21: Transient response of ring oscillator
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Figure 8.22: Decay of singular values for ring oscillator
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Figure 8.23: Error of POD approximation for ring oscillator (2-norm)
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Figure 8.24: Error of POD approximation for ring oscillator (∞-norm)

Also for this example we find a drastic reduction of the POD basis is possible, from the
full basis to a reduced one. The original matrix contains more than 500 snap shots, but
it turns out that 45 basis vectors is more than enough for an accurate modeling of the
ring oscillator.

8.6 Car Transceiver

Our final industrial example is a car transceiver, again a bit smaller than the previous
example with a state Vector containing 126 unknowns. Just as for the previous 2 indus-
trial examples, the simulator Pstar determines approximately 500 time points within the
simulation of the circuit. Thus, we have just over 500 snap shots for which we perform
an SVD.

First we present the transient response; as can be seen from Figure 8.25, the circuit has
most of its activity in the range up to 60u, and then becomes steady.

As for our previous two industrial examples, we now examine the singular values (Fig-
ure 8.26) and the error for the POD approximation, both in the 2-norm (Figure 8.27) and
the ∞-norm (Figure 8.28).
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Figure 8.25: Transient behavior of car transceiver
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Figure 8.26: Singular values for car transceiver
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Figure 8.27: 2-norm of POD error for car transceiver
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Figure 8.28: ∞-norm of POD error for car transceiver

The conclusion in this case is that the POD basis need only contain at most 60 elements,
but we can probably do very well with only 20 in view of the rapid decay of the error.
It is clear that this, again, provides a very significant saving, and will lead to reduced
order models that are extremely efficient for this problem.



138 Academic & Industrial Examples

8.7 An alternative reduction technique using sensitivities

Within the COMSON project (see Section 1.2), also other reduction techniques have
been investigated. One technique that has been quite effective makes use of the calcu-
lated sensitivities in order to decide which parameters are important, and which are less
important. Thus, the emphasis is not on the efficient calculation of the sensitivities, but
merely on the reduction of the total coupled circuit including parasitic effects.

The approach starts with the simulation of the original circuit, in conjunction with an ex-
traction (via the commercially available tool Assura, see http://www.cadence.com) of
the layout in order to account for electromagnetic effects due to the interconnect struc-
ture (see Chapter 1 for a brief explanation). Next, a sensitivity analysis is performed for
the coupled circuit. After this has been done, a list of parasitic elements with the highest
contribution to the circuit behavior is selected, based upon the results of the sensitivity
analysis. This information is used to perform an aggressive reduction of the circuit to
achieve a major reduction in complexity. Clearly, this reduction process will not affect
the parameters which were found to have a significant impact on the circuit behavior.

The resulting reduced (original + parasitic) circuit can then be fed back into multiple
simulations in which transistor parameters are varied, as well as inputs to the system.
As the number of cases to be simulated is increasing with each technology generation,
a significant speed-up can be achieved by this approach.

The approach was tested on an industrial benchmark, namely a block in a DRAM design
whose task is to correct a duty cycle of a clock signal. The frequency of the input and
output signals is 400 MHz, and the time needed to stabilize the output is 300 nanosec-
onds. The goal of the optimized design is to achieve a duty cycle of 50 percent. The
latter is measured by performing two measurements during a simulation: the output
clock period T , and the time T1 between an rising and a falling edge. The duty cycle is
then simply given by T1/T .

The original circuit was coupled with a circuit describing the extracted layout, which
contained many parasitic resistances and coupled capacitors. Then the coupled circuit
was simulated, performing the measurements T and T1 and also calculating the sensi-
tivities with respect to all resistors and capacitors in the extracted layout. This led to the
computation of in total over 60000 sensitivities.

Then the filtering took place: any resistor or capacitor whose sensitivity was more than
10 percent of the highest sensitivity found was considered to be important, and kept.
The rest was discarded, and in this way the extracted layout was reduced considerably.
The resulting new coupled circuit, i.e. the original one coupled to the reduced extracted
one, was then simulated many times in order to optimize the value of the duty cycle.
The results of the reduction are shown in Table 8.1.

From the table we see that, even with the drastic reduction, a very good result is ob-
tained. In addition, the reduced circuit runs much faster than the original one. Of
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full circuit reduced circuit
# resistors 15199 251

# capacitors 144067 2089
T (ns) 2500 2492
T1 (ns) 1238 1232

duty cycle 49.52 % 49.44 %

Table 8.1: Result of DRAM reduction

full circuit full circuit reduced circuit
+ sensitivity

run time 167 min 424 min 35 min
memory 77 Mb 1.3 Gb 27 Mb

Table 8.2: Timing and memory consumption

course, this comes with the price of the sensitivity analysis, but once this has been done
and the parasitic netlist has been reduced, the optimization can perform many simu-
lations at a very low cost. This is demonstrated in Table 8.2, where the timings and
memory consumption are provided.

8.8 Conclusions

The most important conclusion from this chapter is that POD is an excellent method
to reduce challenging industrial circuits, and obtain reduced order models (via the
Galerkin projection) that lead to very efficient simulations. Having projected the for-
ward problem, the BRAM II method can be used to obtain sensitivities, and it is clear
that these are obtained much more efficiently than with the normal backward adjoint
method as presented in literature.





Chapter 9

Conclusions

In this thesis, we described our efforts to perform more efficient sensitivity analyses for
electronic circuits. To this end, two methods have been suggested, both of them based
upon the well known backward adjoint method. The new feature introduced is the use
of proper orthogonal decomposition (POD), which is a method that is able to produce
reduced order models of nonlinear circuits. The first method proposed is the backward
reduced adjoint method (BRAM), which consists of using the POD basis determined
for the forward simulation problem also for the backward adjoint problem. The second
method, BRAM II, is a modification in which the forward problem is reduced by em-
ploying a Galerkin projection with the POD basis. In this case, the backward reduced
problem will yield the exact sensitivities, whence the error is fully due to the difference
of the original and the projected forward problem.

9.1 Main results described in the thesis

We arrived at the main results as follows:

• In Chapter 2, we presented the method of Modified Nodal Analysis, leading to
a differential algebraic system for nonlinear circuits. One of the most important
observations here is that the circuit incidence matrix remains constant, this is vital
for the analysis in view of Tellegen’s theorem

• Chapter 3 briefly discusses model order reduction as a field of research, and then
concentrates on the proper orthogonal decomposition (POD) method that is a vital
ingredient for the methods developed in this thesis

• In Chapter 4, we began by showing how adjoints are being formed for differential
algebraic systems, and then continued to show how sensitivities can be calculated
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using either direct forward methods or backward adjoint methods. The latter class
of methods is most attractive for us, as it is very efficient for situations where many
parameters are involved. A special derivation was given for the case of the circuit
equations, being a DAE of special type

• Chapter 5 then contains a discussion of the first method suggested for reducing the
computation time of the backward adjoint method. In this case, we use the POD
basis obtained for the forward problem also for the backward adjoint problem. We
made plausible that this can be done, i.e. that the POD bases are very similar. This
is partly done by showing that Tellegen’s theorem applies, and also by showing
that the observation function is often a linear combination of the original state
vector

• As the error for the BRAM method contains several different contributions, it is
hard to analyse this method. For this reason, a second method has been suggested
in Chapter 6, BRAM II, that avoids these complications entirely. It comes with a
cost, namely an additional forward simulation, but in practice the Galerkin pro-
jected forward system may be used anyway as a reduced order model to simulate
the forward problem in an optimization loop. The sensitivities obtained from the
backward adjoint method in this case are exact, and hence the error of the method
can be influenced fully by choosing the set of POD basis vectors appropriately

• As the main error is caused by the POD basis, we analyzed in Chapter 7 how this
basis is influenced by the parameters in the problem. Indeed, it is essential for
the BRAM II method to work properly, that the POD basis used for the nominal
parameter setting coincides (approximately) with the POD basis for other param-
eter settings, say, up to 30 percent difference. We checked this for an industrial
example, and also developed a method of comparing two POD bases

• Chapter 8 then contains a number of challenging industrial examples, all with
quite a large proportion of nonlinear components. The experimental results clearly
demonstrate the effectiveness of the POD method

9.2 Suggestions for future work

This thesis provides a sound basis for a much more effective sensitivity analysis for
nonlinear electronic circuits. It will be especially effective in case of design optimization,
as the forward problem can be reduced considerably, and sensitivities can be calculated
exactly.

What is missing, unfortunately, is a sound implementation of the methods. As has been
explained, this was not feasible within the framework of this project due to restrictions
in the company. However, enough evidence has been provided so as to be certain that
the methods will perform well in an industrial or commercial simulator. This is also the
most important message regarding future work:



9.2 Suggestions for future work 143

• implement the possibility to calculate a POD basis

• implement the Galerkin projection using the POD basis

• use the reduced order model in subsequent design optimizations

• use the reduced forward model as the basis for the backward adjoint method to
calculate sensitivities

A remaining research topic is to use an adaptive way for determining the POD basis. In
this thesis, we stored all time snap shots and calculated the SVD for the corresponding
full matrix. Clearly, this may lead to very large systems and may render the SVD im-
possible. However, a smart way of coping with the snap shots may be very useful, as
our examples have clearly shown that the POD basis can be reduced considerably. For
example, we may gradually build up the POD basis and check whether new time snap
shots are already within the span of the previously generated basis vectors. As this was
not our prime research target, this is left for future invesigations.
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Summary

The electronics industry provides the core technology for numerous industrial innova-
tions. Progress in the area of microelectronics is highlighted by several milestones in
chip technology, for example microprocessors and memory chips. The ongoing increase
in performance and memory density would not have been possible without the exten-
sive use of computer simulation techniques, especially electronic circuit simulation. The
basis of the latter is formed by a sound framework of methods from the area of numer-
ical methods.

In recent years, the demands on the capabilities of circuit simulation have become even
more stringent. Circuit simulators have become the core of all simulations within the
electronics industry. Crosstalk effects in interconnect structures are modeled by large
extracted RLC networks. Also, substrate effects that start playing a crucial role in de-
termining the performance are modeled by extracting, again, large resistive or RC net-
works. New algorithms are needed to cope with such situations that are extremely
crucial for designers.

The complexity caused by these parasitic extractions must be reduced to facilitate the
simulation of the circuit while preserving accuracy. Fortunately, highly accurate para-
sitic extraction is not necessary for all parts of the design. Each layout contains critical
blocks or paths whose timing and performance is crucial for the overall functionality of
the chip. High precision interconnect modeling must be used for these circuit parts to
verify the functionality of the design. On the other hand, there is interconnect outside of
critical paths which adds to the complexity but whose exact model is not necessary and
can be simplified. For the critical paths a so-called sensitivity analysis can bring a major
achievement in speed-up, by automatically determining the critical parasitic elements
that provide the most dominant influence.

Another important aspect is the fact that there is an increasing deviation between de-
sign and manufacturing. Due to the ever decreasing feature sizes in modern chips,
deviations from the intended dimensions are becoming more probable. Designers need
to cope with this, and design the circuits in such a way that a deviation from intended
dimensions does not alter the functionality of the circuit. In order to investigate this
properly, one needs to assume that all components can possibly be slightly different af-
ter manufacturing.The effects this has on the performance of the circuit can be studied
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by introducing many thousands or even millions of parameters, describing the devia-
tions, and performing a sensitivity analysis of the circuit w.r.t. parameter changes.

The aforementioned problems form the inspiration for the study in this thesis. Sen-
sitivity analysis is crucial for the correctness of virtual design environments based on
electronic circuit simulators, and gives designers insight in how to alter the designs
in order to guarantee more robustness with respect to variability in the design. The
problem is that a thorough sensitivity analysis requires derivatives of the solution with
respect to a large amount of parameters. This is not feasible using classical methods,
being far too time-consuming for modern circuits. Recently proposed methods using
the adjoint problem to calculate sensitivities are far more efficient, and these form the
basis for our methodology. Our work has concentrated on making such methods even
more efficient, by mixing them with concepts from the area of model order reduction.
This leads to very efficient, robust and accurate methods for sensitivity analysis, even if
the underlying circuit is large and the number of parameters is excessive.



Samenvatting

De electronische industrie levert de kerntechnologie voor veel industriële innovaties. Er
zijn verschillende hoogtepunten aan te wijzen van de sterke vooruitgang op het gebied
van de microelectronica, zoals bijvoorbeeld de ontwikkeling van microprocessoren en
geheugenchips. De almaar voortdurende verbeteringen in rekenkracht en geheugen-
dichtheid zouden onmogelijk zijn geweest zonder uitgebreid gebruik te maken van
computersimulaties, en dan met name de simulatie van electronische schakelingen.
De basis voor dit laatste wordt gevormd door een krachtig bouwwerk van numerieke
methoden.

In de afgelopen jaren zijn de eisen aan de mogelijkheden van software voor de simulatie
van electronische circuits enkel nog maar stringenter geworden. Circuitsimulatoren,
zoals we ze kortweg noemen, vormen de kern van alle simulaties die tegenworordig
worden uitgevoerd in de electronische industrie. Zo worden overspraakeffecten in in-
terconnectstructuren gemodelleerd door grote RLC netwerken. Daarnaast worden sub-
straateffecten ook steeds belangrijker, en daardoor is extractie van modellen voor dit
gedrag ook essentiëel. Vaak gebeurt dit door grote weerstandsnetwerken of RC mod-
ellen mee te simuleren. Nieuwe numerieke algoritmen zijn nodig teneinde met dit soort
grote netwerken om te kunnen gaan. Dit alles is van groot belang voor de ontwerpers
van de electronische schakelingen.

De additionele complexiteit die wordt veroorzaakt door deze parasitaire extracties di-
ent gereduceerd te worden teneinde de volledige simulatie van een schakeling te kun-
nen uitvoeren, maar met behoud van nauwkeurigheid. Gelukkig is het niet nodig om
overal dezelfde mate van nauwkeurigheid te hebben. Elk ontwerp bevat een aantal
kritische blokken of paden die cruciaal zijn voor het overall gedrag, en het is duidelijk
dat deze nauwkeurig gesimuleerd dienen te worden. Maar de delen van de intercon-
nect structuur die buiten de kritische paden vallen, kunnen drastisch vereenvoudigd
meegenomen worden. Voor de kritische paden kan een zogenaamde gevoeligheids-
analyse gebruikt worden om de simulaties dramatisch te versnellen, juist door de meest
dominante parasitaire elementen te identificeren.

Een ander belangrijk aspect is het feit dat er een toenemende discrepantie is tussen on-
twerp en gereed product. Vanwege de alsmaar kleiner wordende details in moderne
schakelingen, worden afwijkingen van de bedoelde afmetingen steeds waarschijnlijker.
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Ontwerpers dienen hiermee om te leren gaan, en de schakelingen op een zodanige wi-
jze te ontwerpen dat afwijkende afmetingen de functionaliteit van de schakeling niet
beı̈nvloeden. Om dit te kunnen onderzoeken, dient men aan te nemen dat alle compo-
nenten enigszins af kunnen wijken na productie. Het effect dat dit heeft op het gedrag
van de schakeling kan dan bestudeerd worden door vele duizenden of zelfs miljoenen
parameters in te voeren welke de afwijkingen beschrijven. Men dient dus een gevoe-
ligheidsanalyse uit te voeren van het gedrag van het circuit ten opzichte van de param-
eterveranderingen.

De hiervoor genoemde problemen vormen de inspiratie voor de studie en het onder-
zoek uitgevoerd en beschreven in dit proefschrift. Gevoeligheidsanalyses zijn cruciaal
om de correctheid van een virtueel ontwerp te kunnen testen met circuitsimulatoren,
en geven ontwerpers inzicht in hoe de ontwerpen aan te passen om meer robuustheid
ten opzichte van parameterveranderingen te verkrijgen. Het probleem nu is dat een
gedegen gevoeligheidsanalyse afgeleiden vereist van de oplossing naar een grote ho-
eveelheid parameters. Dit is onmogelijk met behulp van klassieke methoden te doen,
omdat het veel te tijdrovend zou zijn. Recent voorgestelde methoden welke gebruik-
maken van het geadjungeerde probleem om gevoeligheden te berekenen zijn echter veel
efficiënter, en vormen derhalve de basis voor onze methodieken. Het werk heeft zich
geconcentreerd op het nog efficiënter maken van deze klasse van methoden, door ge-
bruik te maken van model orde reductie. Dit leidt tot zeer tijdsefficiënte, robuuste en
nauwkeurige methoden voor het doen van gevoeligheidsanalyses, zelfs als de onder-
havige electronische schakeling erg groot is en het aantal parameters excessief.
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