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Model Order Reduction for Problems with large

Convection Effects

Nicolas Cagniart, Yvon Maday and Benjamin Stamm

Abstract The reduced basis method allows to propose accurate approximations for

many parameter dependent partial differential equations, almost in real time, at least

if the Kolmogorov n-width of the set of all solutions is small, under variation of the

parameters. The idea is that any solutions may be well approximated by the linear

combination of some well chosen solutions that are computed once and for all (by

another, more expensive, discretization) for some well chosen parameter values. In

some cases however, such as for problems with large convection effects, the linear

representation is not sufficient and, as a consequence, the set of solutions needs to be

transformed/twisted so that the combination of the proper twist and the appropriate

linear combination recovers an accurate approximation. This paper presents a simple

approach towards this direction, preliminary simulations support this approach.

1 Introduction

Fast reliable solutions to many queries parametric Partial Differential Equations

(PDE) have many applications among which real time systems, optimization prob-

lems and optimal control. Many different methods for reducing the complexity of
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the computations when such many queries are required have blossomed for answer-

ing this specific need. One of the approaches that have emerged is reduced order

modeling (ROM). Methods in this category have been developed and are now well

understood and set on firm grounds.

The reduced basis method, which is the method that we focus on in this paper,

enters in this frame and consists in, i) defining a sequence of low dimensional spaces

for the approximation of the whole set of all solutions to the parametric PDE when

the parameters vary (called hereafter the solution manifold associated to our prob-

lem); ii) once such a sequence of low dimensional spaces (known as reduced basis

spaces) is known, an approximate solution is sought in such a chosen reduced space

to the PDE for the values of the parameter we are interested in. The approximation

is often based on a Galerkin formulation. For such reduced basis methods, both the

variety of applications and the theory are now quite sound. For instance, reliable al-

gorithms with a priori estimates and certified a posteriori errors have been developed

for elliptic and parabolic problems, with or without so-called affine parameter de-

pendence, see e.g. the two recent books on the subject [12] and [20] and, of course,

the publications therein.

Reduced basis methods, classically, consider the solution manifold associated to

the parametrized problem as outlined above and are appropriate if this manifold

can be approximated accurately by a sequence of finite dimensional spaces. The

mathematical frame for this is inherently linked to the notion of Kolmogorov width

of solution manifolds, i.e. on how well the solution manifold can be approached by

a finite dimensional linear space. More precisely, let M be a manifold embedded in

some normed linear space X . The Kolmogorov n-width of M is defined as:

dn(M ,X) = inf
En

sup
f∈M

inf
g∈En

‖ f −g‖X (1)

The first infimum being taken over all linear subspaces En of dimension n embedded

in X .

Even if, from the practical point of view, there are various ways of checking that

this is the case, the first natural mathematical question is to provide an estimation of

the Kolmogorov n-width of M . Second, the question of an applied mathematician

is if one can actually build an optimal, or close to optimal sequence of basis sets for

these spaces?

Of course, in the vast majority of real cases, there is no analytical expression for

this dimension but there are some papers giving bounds for some restricted classes

of problems in the literature. For instance, in [17] bounds on dn are found for solu-

tion manifolds corresponding to regular elliptic problems and where the parameter

dependence is on the forcing term. More general cases can be handled using the re-

sults in [8]. The hypothesis therein is on the regularity of the solution with respect to

the parameter dependence, it is proven that, under analyticity assumption on the be-

havior of the parameters in the PDE, the small Kolmogorov n-width of the manifold

of parameters C (≤ cn−t , t > 1) implies the smallness of the Kolmogorov n-width

of the associated solutions manifold MC (≤ cn−s, s ≤ t −1).
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In practice, instead of the “optimal” linear subspace of dimension n in the sense

described earlier, we build a “good” linear subspace. In the literature, the two most

classical algorithms are the greedy method based on a certified (or at least fair

enough) a posteriori estimator, and the Proper Orthogonal Decomposition (POD).

We proceed assuming that the chosen algorithm has given a “good” basis “close” to

the optimal one, that is, we assume that our reduced family of spaces {Xn}n satisfies:

dn(M ,X)≈ sup
f∈M

inf
g∈Xn

‖ f −g‖X (2)

A first paper on this subject is [16], where the authors derived error bounds on

the error for the Reduced Basis Method (RBM) approximation in case of a single

parameter dependent elliptic PDE. More general results have been obtained more

recently for the greedy approach of the RBM [3, 10]. The optimality considered in

the case of POD is slightly different. The POD focuses on minimizing the average

error (parameter wise), in some norm. More precisely, we have the well known

relation
∫

C

‖u(µ)−ΠPODu(µ)‖2 dµ = ∑
i>NPOD

λi (3)

where ΠPOD is the orthogonal projection onto the POD reduced space of dimension

NPOD and the λi are the eigenvalues of the associated correlation operator, in de-

creasing order. The faster the decay of the eigenvalues, the fewer modes are needed

for a good (in average) reconstruction of the solution manifold.

Up to now, most of the literature on the subject, deals with problems where one

can expect/check/prove/ or hope, that the solution manifold MC has a small Kol-

mogorov n-width. There are however cases where the plain approach does not work

and some transformation of MC needs to be done. An example is for instance the

use of the Piola transform in the processing of the velocity field when the PDE is

the Stokes or Navier Stokes problem and the parameter includes the geometry of the

computational problem (see e.g. [14]).

The most classical and simple example illustrating limitations of reduced models

due to large Kolmogorov n-width is the pure transport equation, with constant speed

c > 0. Formally, we consider the following parametric PDE over the domain Ω =
(a,b)⊂ IR







∂tu(x, t)+ c∂xu(x, t) = 0, in Ω×]0,T [
u(x,0) = u0(x), in Ω
c ∈ C := [cmin,cmax].

(4)

The analytic solution is given by

u(x, t;c) = u0(x− ct). (5)

We can consider two solution manifolds. Either the space time solution manifold

M
x,t
C

= {u(·, ·;c), c ∈ C } , (6)

or a more natural solution manifold in our context is the snapshot solution manifold
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M
x
C = {u(·, t;c), t ∈ [0,T ], c ∈ C } . (7)

We will first give an illustrative idea of dn(M
x
c ), i.e for a fixed convection parameter.

The only “parameter” left thus time and dn(M
x
c ) is, of course, smaller than dn(M

x
C
).

Suppose now that our initial solution is compactly supported and let ℓ denote

the Lebesgue measure of its support. Let us assume in addition that its support is

included in ]a,a+ ℓ[. Then, there are at least (b− a)/ℓ snapshots {u(·, tk;c)}k ob-

tained for tk = kℓ/c that are two by two orthogonal proving that a lower bound of the

Kolmogorov n-width is (b−a)/ℓ. For a given accuracy, reducing ℓ, we can make the

size of the reduced basis needed arbitrarily large. Another example of badly behaved

manifold space can also be found in [22].

Our objective is to use the fact that, apart from a translation, the solution manifold

for the whole time simulation can be represented by a unique basis. However, let us

stress that this translation is not a linear process hence the Kolmogorov process

cannot capture it. An additional ingredient to existing reduced order methods has

thus to be added so as to capture this very simple problem structure.

Most of the works in the reduced order modeling community on convection dom-

inated problem have been done on the stabilization issue, and not on the reduction

of the Kolmogorov n-wdith. For instance, the authors in [9] have proven that using,

as usual, the residual of the PDE as a surrogate for the true error, is not adapted if

convection is dominating as the relative a posteriori estimator is not fair enough.

Their method involves other norms than the natural ones, and increases the stability

at each iteration by enriching the trial space. Once again, their method improves the

stability of the construction of a reduced basis, but does not handle the fact that the

solution manifold can have a large Kolmogorov n-width.

In the same direction let us quote the papers related to the so called GNAT ap-

proach [6], [7] where the authors propose also an alternative reduction approach for

these type of problems.

In [1], the authors address the stability issue in another direction. They give ideas

and show numerical examples illustrating the fact that using L1-minimisation, in-

stead of the — more classical — L2-minimisation (corresponding to a Galerkin

scheme, which is natural in the reduced modeling context), does a better job for

handling shocks (as appears in non linear convection problems) and provides more

stable results. However this approach does not cure the problem that we have indi-

cated above related to the large dimension of the solution manifold.

Let us also mention at this level, as an intermediate approach, the paper [5]. As

standard reduced order modeling fails, the author chooses, in a preprocessing step,

to “chop off” the reduced basis functions resulting in a kind of adaptive coarse

enriched finite element method.

Very few papers takle the n-width issue directly. In [22], the authors propose a

method that is the first attempt to use shock fitting related ideas in the context of

reduced order modeling. The idea is to decompose the spatial domain into zones

separated by shocks. In each zone, classical reduced order modeling is performed,

and the shocks dynamic is handled using another equation. For them, it is given by
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Rankine-Hugoniot conditions. This method, just as any other shock fitting method,

is somehow limited to one dimensional problems.

In [11], the authors develop a method where the POD basis is reconstructed at

each time step to follow the propagation of the phenomenon. More precisely, by

referring to Lax–pairs, they choose as reduced basis the modes of the Schrödinger

operator where the potential is taken as the solution at the previous time step. Even

if no theoretical proof of this ansatz is presented, the numerical results presented

in that paper illustrate the interest of the approach for selecting the reduced space

and adding stability to the process without curing however the large increase of the

dimension of the reduced space when the accuracy requirement increases.

The method presented in [13] is similar to our work in many aspects, in particu-

lar in looking for a change of variable for better representing the solution manifold.

Their approach relies on the existence of a main mode u0 that, by convection, rep-

resents most of the solution. The proper change of variable (written as a sum of

advection modes) is fitted by evaluating Wasserstein distances between the snap-

shots in M x
C

, with modes being obtained by solving Monge-Kantorovich optimal

transport problems w.r.t. the reference mode u0. Various numerical results illustrate

the approach, however only in cases where the solution exhibits indeed such a main

mode u0 which is doubtful in nonlinear processes. We will come back on their ideas

in the following sections.

The last approach in this direction developed in [2] and in [19] uses the same ini-

tial idea. Their formal and general presentation is quite interesting and enlightening,

however the restrictions imposed on the formulation of the transformed equations

seems to be somhow too stringent for many reduction processes.

This paper is the first of a series where we develop our approach in different

situations. We start here by presenting the general framework and notations. We in-

troduce the notion of ”preconditioning” of a solution manifold based on our knowl-

edge of the process (differing here somehow from the optimal transport problem

approach in [13]). We then apply our method to the specific problem of the one di-

mensional unsteady viscous Burger equation and we then present some numerical

simulations confirming the feasibility of the method. The end of the paper states

some perspectives.

2 Formal presentation

Let us consider a general time dependent parametric PDE in some physical space

Ω ⊂ IRd , d = 1,2,3







ut +L (u; µ) = 0 in [0,T ]×Ω
u(·, t = 0; µ) = u0(·,µ) in Ω
B(u; µ) = 0 on ∂Ω

(8)
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where µ varies in some compact parameter space C . Our approach considers the

corresponding snapshot solution manifold M x
C

as defined in (7) that is embedded in

X , that, for the sake of conveniency, we choose equal to L2(Ω).
Let us assume that the solution manifold has a simple structure, not reflected

though by the Kolmogorov n-width but hidden by a transformation of the solution

manifold. As stated in the introduction, we can think of the transport equation as

being the simplest example for which this is occurring. The objective is to find,

through a “preconditioning” step, how to recover the simple structure of the solution

manifold.

In this “preconditioning” step, we target a family of (smooth) invertible mappings

FC =
{

F : Ω 7→ Ω
}

(9)

in which there exists well chosen applications

[0,T ] × C → FC

(t,µ) 7→ Ft;µ
(10)

such that the corresponding preconditioned solution manifold, defined as:

M
x
F ,C :=

{

u(F−1
t;µ (·), t; µ), µ ∈ C , t ∈ [0,T ]

}

(11)

has a smaller Kolmogorov n-width. The definition of the set FC is based on a priori

expertise on the behavior of the solution. We aim to conceive and design it during a

preprocessing step (generally called “offline” in the RBM community).

In what follows, we explain how we use this preconditioned solution manifold

and how we pick the correct application Ft;µ , in a computationally efficient way.

2.1 Algorithm

For simplicity, let us assume that we are using an explicit Euler scheme for the

time discretization. Extensions to implicit, higher order time discretization, or more

involved conservative numerical scheme, is straightforward and will be reported in

a future paper1. Our semi-discretized PDE then becomes







un+1−un

dt
+L (un; µ) = 0 in Ω

u(·, t = 0; µ) = u0(·,µ) in Ω
B(un; µ) = 0 on ∂Ω

(12)

Here, as is classical, dt denotes the time step, and un an approximation for the solu-

tion to (8) at time ndt.

1 Note that, of course, this choice of an explicit scheme involves a limitation on the time step due

to a CFL condition that can be severe for an accurate finite element or finite difference scheme but

reveals to be moderate in the reduced basis framework.



Model Order Reduction for Problems with large Convection Effects 7

Assume we have a basis {φi} such that span{φi} approaches to a given accuracy

the preconditioned solution manifold M x
F ,C defined in (11). Since M x

F ,C is as-

sumed to be of small Kolmogorov n-width, we expect that we can find such a basis

of moderate size. At each time step, we look for coordinates (αn+1
i )i on the reduced

basis and an application Fn+1 ∈ FC such that u(·, tn+1; µ) is well approximated by:

un+1 :=
M

∑
i=1

αn+1
i φi ◦Fn+1. (13)

In order to expect the search for Fn+1 be computationally tractable, let us assume

that our family FC can be parametrized by a few parameters: that is

∀Ft;µ ∈ FC , ∃(γ j) j, such that Ft;µ = F [γ1(t; µ), . . . ,γm(t; µ)] . (14)

In the discrete setting, the search for Fn+1 then reduces to the search for (γn+1
j ) j,

and we set Fn+1 = F
[

γn+1
1 , . . . ,γn+1

m

]

.

We are thus simultaneously looking for a proper appropriate reduced space (de-

fined as the span of the (φi ◦Fn+1)i) and for coordinates on this reduced space. We

have chosen to derive our solution from some minimization problem of the form:

(γn+1
j ,αn+1

i ) = argmin
(γ j ,αi)

∥

∥

∥

∥

∥

∑
i

αi φi ◦F([γ j] j)−un +dtL (un; µ)

∥

∥

∥

∥

∥

(15)

for some appropriate norm ‖ · ‖ on X .

Remark 1. It is interesting to note that our approach, in this context, may be pre-

sented as a shock fitting method, and thus one may fear that it will suffer from the

classical drawback of this class of approach, especially the difficulty to generalize

to multidimensional framework. One reassuring element is that the position of the

fitting Fn is not defined through the Rankine-Hugoniot conditions but through the

minimization process (15), and the evolution in time can be chosen to follow any

appropriate conservative numerical scheme (this does not mean, however, that the

extension to two dimensional problems does not lead to some difficulties ! This is

under investigation and will be presented in a future paper (see also [4])).

Several choices are possible for the sense in which we will minimize this quan-

tity. One example will be given in the next section. We propose the following generic

algorithm.

Initialize αi and γ j

(αn+1,0
i ,γn+1,0

j ) = (α ini
i ,γ ini

j ) (16)

α ini
i and γ ini

j will depend on the previous timesteps, namely on (αk
i )i and (γk

j ) j for

k ≤ n.
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Then, assuming that (αn+1,q
i ,γn+1,q

j ) are known for some internal iteration q ≥ 0,

we proceed

Fit the αi given γ
n+1,q
j

Find (αn+1,q+1
i )i that minimizes the following quantity (in some sense):

∑
i

α
n+1,q+1
i φi ◦F

(

(γn+1,q
j ) j

)

−un +dt ∗L (un; µ) (17)

Fit the γ j given (αn+1,q+1
i )i

Find (γn+1,q+1
j ) j that minimizes the following quantity (in some sense):

∑
i

α
n+1,q+1
i φi ◦F

(

(γn+1,q+1
j ) j

)

−un +dt ∗L (un; µ) (18)

until convergence (for which, say q = q∗). Then, we set

(αn+1
i ,γn+1

j ) = (αn+1,q∗+1
i ,γn+1,q∗+1

j ). (19)

2.2 Discussion

The two closest methods to ours are first the one developed in [2, 19], second the

one presented in [13].

In the former method, there is also the search for a phase component: F(t; µ) and

a shape component: v := u(·, t; µ)◦F(t; µ) that they name the “calibrated solution”.

They present the approach in the frame of Lie group action and thus introduce the

notion of equivariance with respect to the group action for the calibrated solution.

Hence, instead of best fitting these two objects from the discrete equation (12) by

solving the optimal problem (15), the idea is to find an equation satisfied by the cal-

ibrated solution, i.e an operator L̃ such that v is solution to the following equation

vt + L̃ (v; µ) = 0 in [0,T ]×Ω (20)

To close the system, they need to add a well chosen equation on F(t; µ). Well chosen

here means that the calibrated equation has to be well posed, and the dynamics of

the shape component should be much simpler than those of the original solution.

The second paper [13] differs on two points. There is a unique reference mode u0

that allows to characterize the mapping, obtained from an optimal transport problem.

The interest is that there is no need to have an expertise on what is the set FC —
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the Monge-Kantorovich optimal transport problem doing the job — , the drawback

is that the problem should have a unique natural reference mode.

3 Illustration on the viscous Burger’s equation in one dimension

The viscous Burger’s equation has already received some attention in the reduced

modeling context. We mention [23] for the stationary case and when the solution

manifolds can be well represented by a small finite dimensional linear space, with-

ough any preconditioning.

We work in Ω = (−1,1), and solve for the time dependent viscous Burger equa-

tion with no forcing term and periodic boundary conditions (we will see later why

these are important in our analysis). The extension to non periodic boundary condi-

tions is under control and will be presented in a future paper (see also [4]).







ut +νuux − εuxx = 0 in [0,T ]×Ω
u|t=0 = u0

u periodic

(21)

The parameters of this problem are the triplets: µ = (u0,ν ,ε). We want to choose a

parameter domain C so that the problem is

• convection dominated so that the solution manifold has a large Kolmogorov n-

width

• not too stiff so as not to be bothered by stabilization issues as mentioned in the

introduction, hence, we shall only consider the cases ε ≥ ε0 > 0 (see the recent

[15] that tackles this problem).

We have chosen the following

C =







λ ∈ [0.5,1.3],
ν ∈ [4.,6.],
ε ∈ [0.04,0.2].

(22)

.

3.1 Variational formulation and truth approximation

For the truth approximation to the solution of problem (21), let us consider a semi

implicit scheme (so as not to be bothered by a two stringent stability constraint) with

time step dttruth. Let

X = H1
per(Ω) (23)

and let us denote by 〈·, ·〉 and ‖ · ‖ the usual L2 inner product and norm. For each

µ = (u0,ν ,ε) ∈ C , for the semi-discrete (in time) truth problem, we are looking for
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un+1 ∈ X (approximation of u(.,(n+1)dttruth,µ)) such that: ∀v ∈ X

〈un+1(µ),v〉+dttruthεa(un+1(µ),v) = 〈un(µ),v〉−dttruthνc(un(µ),un(µ),v) (24)

where

c(w,z,v) =
∫

Ω
w zx v and a(w,v) =

∫

Ω
wx vx (25)

This semi discretized problem is trivially well posed. In order to finalize the dis-

cretization, let us introduce an appropriate finite element discretization, the truth

approximation space, XN . We pick it fine enough so that, with the chosen time step

dttruth, it is able to represent well our solution manifold. From now on, we will con-

sider that the exact solution u(·, t; µ) and the “truth” solution uN (·, t,µ) cannot be

distinguished.

3.2 Model order reduction — offline stage

As mentioned earlier, the first question we need to answer is: does our solution

manifold M x
C

(in practice represented by M
x,truth
C

) have a large Kolmogorov n-

width? And if so, can we find better behaved “calibrated” manifold solution? Figure

1 shows some snapshots
{

u(·, tk; µ), k ∈ 1 . . .K
}

taken in M x
C

for some parameters.

−1.0 −0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

Fig. 1: Snapshots of the solution to the unsteady viscous Burger equation with u0 = λ + sin(x),
λ = 1.3, ν = 4, ε = 0.04

From basic expertise on the Burger’s equation, we choose the following mapping

family: F =
{

Ft;µ

}

, where Ft;µ are defined as translation operators:

Ft;µ : Ω 7→ Ω
x 7→ x− γ(t; µ)

(26)
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With this choice, our family of mappings is a one parameter family, i.e:

F = {F(γ), γ ∈ R} . (27)

Unlike in the pure translation problem of the introduction (4), our parameter γ is

not constant (it is a function of µ and time) and has no analytical expression. One

possible calibration (and the most natural one) is presented on Figure 2. where we

pick γ manually so that all steepest points coincide. Our calibrated solution manifold

is then

M
x
F ,C = {u(·− γ(t; µ), t; µ), t in [0,T ],µ ∈ C }, (28)

that is represented in Figure 2 where we understand that the Kolmogorov n-width

of M x
F ,C is smaller than the original one represented in Figure 1.

−1.0 −0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

Fig. 2: Calibrated set of the above snapshots for u0 = λ + sin(x), ν = 4, ε = 0.04

This is confirmed in Figure 3 which presents the decay of the POD eigenvalues in

logarithmic scale for M x
C

and M x
F ,C . As we could have expected, to achieve a fixed

accuracy, the number of POD modes needed to represent the calibrated manifold is

much smaller than the number of modes needed for the original solution set. To

confirm this, we present on Figure 4 the 3rd and 6th POD modes of the calibrated

and non calibrated simulations. As we can see, in the calibrated case, with just 3

modes, our L2-projection focuses on reproducing the shock, whereas in the non

calibrated case, the modes desperatly try to represent shocks centered anywhere in

Ω . We mention again the fact that even in the calibrated case, our algorithm could

be improved using L1-minimization. We present on Figure 5 the projection of one of

the snapshot on the first three POD modes. With 10 POD modes in the uncalibrated

case, the projection shown on Figure 5 exhibit the oscillatory behaviour as described

in [1].

At this stage, we suppose that we have found a “calibrated” solution manifold,

with nice Kolmogorov n-width decay. That is, we have calibrated an original dataset,

and obtained a reduced orthonormal basis:
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0 50 100 150 200
−20

−15
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−5

0

5

10

15

Fig. 3: Eigenvalues of the POD decomposition of the original set of snapshots ( in red) and of the

calibrated set of snapshots (in green)

0 200 400 600 800 1000
−0.10

−0.05

0.00

0.05

0.10

0 200 400 600 800 1000
−0.25

−0.20
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−0.10

−0.05

0.00
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0.10

Fig. 4: 3rd (left) and 6th (right) POD modes for the calibrated (green) and original (red) simulations
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Fig. 5: Projection of a snapshot (blue) on:

• left: 3 POD modes in the calibrated case

• center: 3 POD modes in the non calibrated case

• right: 10 POD modes in the non calibrated case

span{φi, i = 1 . . .M} ⊂ X (29)

that approximates well the calibrated solution manifold M x
F ,C .

We now need to explicit the algorithm presented in the previous section. The

biggest question is how do we pick the F ∈ F at each time step?
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3.3 Model order reduction — online stage

As was introduced in the previous section (see (12)), for the time semi-discretization

of the RBM approach, we use a forward Euler discretization with a time step dt that

may be different from dttruth, at each time step we are looking for the solution to the

following elliptic problem 2:

un+1 = un −dtνunun
x +dtεun

xx (30)

with periodic boundary conditions over (−1,1), which leads to the following varia-

tional formulation that will be used to provide the Galerkin formulation of the RBM:

knowing un, compute un+1 ∈ X such that

∀v ∈ X , 〈un+1(µ),v〉= 〈un(µ),v〉−dtνc(un(µ),un(µ),v)−dtεa(un(µ),v). (31)

One could fear that a problem with this discretization is the stringent CFL con-

dition on the time-step. Our reduced basis formulation will allow for very fast com-

putation, which will mitigate this issue on which we shall dwell upon later. As said

already, we could also consider an implicit Euler scheme. We refer to [23] (station-

ary) and [18] (non stationary), for the development of reduced order model in that

case.

The full RBM discretization starts from the knowledge of the (supposedly accu-

rate) approximation of un as an expansion

un :=
M

∑
i=1

αn
i φi ◦Fn, (32)

where the {φi}i are the reduced basis elements of the good approximation of the

calibrated solution manifold that have been introduced in (29) as a result of the

offline process. Fn is here F(γn) where γn is the current translation value. In order

to deduce the next approximation,

un+1 :=
M

∑
i=1

αn+1
i φi ◦Fn+1, where Fn+1 = F(γn+1) (33)

as described in the previous section, we iterate between the search for the reduced

coordinates (αn+1
i )i and for the mapping Fn+1 i.e. for the translation parameter γn+1,

we initialize these entities as follows:

α
n+1,0
i = αn

i

γn+1,0 = γn +
(

γn − γn−1
)

.
(34)

2 Indeed there is no reason why using the same discretization in time for the truth solution and for

the reduced basis scheme
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In the first part of the iterative step indexed by q, assuming we know ((αn+1,q
i )i,γ

n+1,q)

we fit the αi for a fixed translation parameter γ , i.e.we are looking for (αn+1,q+1
i )i

that satisfy

{α
n+1,q+1
i }= argmin

(αi)i∈RN

∥

∥

∥

∥

∥

∑
i

αiφi ◦F(γn+1,q)−un −dtνunun
x +dtεun

xx

∥

∥

∥

∥

∥

2

2

(35)

The nice feature with the chosen norm is that we pick our reduced coordinates such

that our residual is orthogonal to the translated reduced space, the space spanned

by the {φi ◦F(γn+1,q)}i. Using un’s expansion on its reduced basis, the coefficients

{α
n+1,q+1
i }i are given by the first-order optimality condition:

α
n+1,q+1
i = ∑ j αn

j 〈φ j ◦F(γn),φi ◦F(γn+1,q)〉

− dtν ∑ j ∑p αn
j αn

p〈φ j ◦F(γn)(φp ◦F(γn))
x
,φi ◦F(γn+1,q)〉

− dtε ∑ j αn
j 〈(φ j ◦F(γn))

x
,
(

φi ◦F(γn+1,q)
)

x
〉.

(36)

In order to evaluate this expression, we need to compute the following integrals:











∀i, j,
∫

Ω φ j ◦F(γn)(x)φi ◦F(γn+1,q)(x)

∀i, j, p,
∫

Ω φ j ◦F(γn)(x)(φp ◦F(γn))
x
(x)φi ◦F(γn+1,q)(x)

∀i, j,
∫

Ω φ j ◦F(γn)
x
(x)φi ◦F(γn+1,q)x(x)

(37)

We will see in the next subsection how to achieve efficient offline/online decompo-

sition for these quantities.

Once this is done, we fit the γ . Let us define first the residual function r(γ):

r(γ) =

∥

∥

∥

∥

∥

∑
i

α
n+1,q+1
i φi ◦Fγ −un −dtνunun

x +dtεun
xx

∥

∥

∥

∥

∥

2

2

, (38)

then we choose γn+1,q+1 as the ”best”, i.e residual minimizing, translation parame-

ter. It is given by:

γn+1,q+1 = argmin
γ

r(γ) (39)

Next we develop r(γ):

r(γ) =
∥

∥

∥∑i α
n+1,q+1
i φi ◦F(γ)

∥

∥

∥

2

2
+‖un −dtνunun

x +dtεun
xx‖

2
2

−2〈∑i α
n+1,q+1
i φi ◦F(γ),un −dtνunun

x +dtεun
xx〉.

(40)

The second term is independent of γ . The first one, using periodicity, happens also to

be independent of γ . We can thus replace the minimization of r by the minimisation

of the following quantity r̃:
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r̃(γ) =−〈∑
i

α
n+1,q+1
i φi ◦F(γ),un −dtνunun

x +dtεun
xx〉. (41)

Here again, we we need to evaluate the quantities











∀i, j,
∫

Ω φ j ◦F(γn)(x)φi ◦F(γ)(x)

∀i, j, p,
∫

Ω φ j ◦F(γn)(x)(φp ◦F(γn))
x
(x)φi ◦F(γ)(x)

∀i, j,
∫

Ω φ j ◦F(γn)
x
(x)φi ◦F(γ)x(x)

(42)

for various values of γ in order to derive the value of γ that minimizes r (or r̃).

3.4 Offline/Online decomposition of the expressions depending on

γ .

In both the search for γ (see (41)) and (αi)i (see (37)), we need to compute scalar

products of the form:

〈ψi ◦F(γn),ψ j ◦F(γ)〉 (43)

where ψ can be one of the POD basis or one of its x-derivatives. γn and γ can

take any value in Ω . Our key ingredient here is that, due to translation invariance

(because we are in a periodic settings), we can replace the previous terms by

〈ψi ◦F(γn − γ),ψ j〉= 〈ψi ◦F(∆γ),ψ j〉. (44)

We have plotted on Figure 6 these quantities (after rescaling) as a function of ∆γ
for some pairs of chosen ψ’s and we notice that, as can be expected because we are

essentially using a primitive function of the integrant, these are regular functions of

∆γ .

For a sufficiently small time step, we expect ∆γ to be of order dt ∗ c where c is

some local characteristic velocity. We have chosen the following method:

• precompute the scalar products for a predefined set of values of ∆γ
• using some regularity hypothesis, use spline interpolation to get approximated

values for all γ in [−dt ∗ cmax,dt ∗ cmax], where cmax is the maximum expected

shock speed during the simulation.

Remark 2. For the optimization of r̃ we have also tested to linearize our problem

around γn which leads to a doable method but does not work better that the above.
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Fig. 6: A few values of the quantities (43) as a function of ∆γ . The x axis is scaled to multiples of

c∗∆ t.

4 Numerical results

4.1 About the CFL Condition

We represent in Figure 7 the value of the CFL condition of our reduced scheme using

the space calibrated M x
F ,C as a function of the dimension M of the discrete space

expressed in Equation (32). Of course, the bigger the reduced basis, the smaller the

time step required for stability. We remark that there is a plateau for large values of

M that is above the CFL-condition for the truth solver. More importantly, for M = 5,

we can use a discrete time step 3,000 times bigger than the one of the fine (finite

element) scheme (that was dttruth ≤ 10−6).

4.2 Convergence Illustration

On the next Figure 8, we have plotted the L2-error of the solution of (15) in case

of problem (21) as a function of time for different values of the reduced basis for

dt = 2.5 10−4. The different colors represent various values of M used in (32) (Note

that on the same figure, the plots close the x axis represent the projection errors of

the solution onto the set M x
F ,C with the exact value of the translation γ). We see

that our numerical scheme is convergent, as a function of M. The final accuracy is

somehow difficult to grasp since it is a function of ∆ t and the number of degrees

of freedom used in the spatial direction (here M) as for any discretization of an



Model Order Reduction for Problems with large Convection Effects 17

Fig. 7: A few values of the quantities (43) as a function of ∆γ . The x axis is scaled to multiples of

c∗∆ t.

evolution problem. It is however also a function of the way the value of γ is found

as each time step as a solution of the full minimization problem (15). As one can

expect, the maximum of the error is decreasing as M increases.

Fig. 8: Relative L2-error of the solution as a function of time for different values of the reduced

basis.
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5 Conclusion

This paper is the first of a series that explain how to correct the impossibility of the

standard reduced basis method (or actually most model reduction methods) to ap-

proximate well convection dominated phenomenon. The additional ingredient is to

propose a change of variable, that should also be represented by few coefficients,

that are updated thanks to the numerical scheme that is used classically for the

discretization of the convection dominated problem. This simple approach can be

implemented in an online/offline paradigm that allows online to contribute with a

complexity that, at each time step, is a function of the number of reduced basis that

are used for the approximation. This paper that allows to set the scene of this new

approach deals with a problem with periodic boundary conditions to focus on the

main feature of the approach.

The reduced basis here is composed of snapshots of the solution. Note that we

could also use the gradient of these snapshots in order to diminish the effect of the

mismatched of the correct value of γ in the iterative process used to solve (15). In the

toy problem used here this does not improve the accuracy but in multidimensional

situations it may be useful, more tests on this are under investigations.

Acknowledgement This paper is dedicated to Professor Olivier Pironneau on the

occasion of his 70th birthday. The French government is greatly acknowledged for

its funding of the FUI MECASIF project.

References

1. Abgrall, R. and Amsallem, D., “Robust Model Reduction by L-norm Minimization and Ap-

proximation via Dictionaries: Application to Linear and Nonlinear Hyperbolic Problems”,

preprint, 2015.
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