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In the domain of numerical computation, Model Order Reduction approaches are more and more frequently applied in mechanics 

and have shown their efficiency in terms of reduction of computation time and memory storage requirements. One of these 

approaches, the Proper Orthogonal Decomposition (POD), can be very efficient in solving linear problems but encounters limitations 

in the non-linear case. In this paper, the Discret Empirical Interpolation Method coupled with the POD method is presented. This is an 

interesting alternative to reduce large-scale systems deriving from the discretization of non-linear magnetostatic problems coupled 

with an external electrical circuit.  

 
Index Terms— Discret Empirical Interpolation Method, Model Order Reduction, Non-linear Problem, Proper Orthogonal 

Decomposition, Static fields. 

 

I. INTRODUCTION 

O DESCRIBE the behavior of electrical machines coupled 

with an external electrical circuit, the Finite Element 

Method associated with a time-stepping scheme is often used 

to numerically solve Maxwell’s equations coupled with the 

circuit equations. When a fine mesh and a small time step are 

used, the computation time of the large-scale system obtained 

from the discretization of the Non-Linear Partial Differential 

Equations (NL-PDE) can be prohibitive. To tackle this issue, 

an alternative method is to apply model order reduction 

methods. In the literature, the Proper Orthogonal 

Decomposition has been widely used to solve many problems 

in engineering [1]. This method consists of performing a 

projection onto a reduced basis, meaning the size of the 

equation system to solve can be highly reduced. The snapshot 

approach is the most popular to determine the discrete 

projection operator between the original basis (generating 

from the mesh) and the reduced basis [2]. In computational 

electromagnetics, the POD method has been applied to study 

the behavior of a transformer with a non-linear core [3][4] or 

to solve magnetoquasistatic and electroquasistatic field 

problems [5][6]. In the case of linear PDEs, the POD approach 

can lead to a dramatic reduction in the computation time. In 

the non-linear case, this method is not quite as efficient due to 

the computation cost of the non-linear terms in the reduced 

system, which requires the assembling of the equation system 

of the full initial problem. To tackle this issue, the Discret 

Empirical Interpolation Method (DEIM) method can be 

coupled with the POD approach [7]. DEIM interpolates the 

non-linear behavior of the magnetic field on the whole spatial 

domain from evaluations of the non-linear behavior law on a 

reduced number of localized regions. The determination of 

such localized regions is automatic and does not require any 

intervention from the user. The computation time of the non- 

linear terms when applying the POD is thus highly reduced.  

In this paper, the DEIM-POD approach is applied to solve a 

non-linear magnetostatic problem coupled with an electrical 

circuit using the vector potential formulation. First, the 

numerical model is presented. Secondly, the Snapshot POD 

method and the DEIM are developed. Finally, non-linear 

models based solely on either the POD method or the DEIM-

POD are compared. The results obtained with the reduced 

models are also compared in terms of accuracy and 

computation time using the full Finite Element model. 

II. NON-LINEAR MAGNETOSTATIC PROBLEM COUPLED WITH 

ELECTRIC CIRCUIT 

Let us consider a domain D of boundary Γ (Γ=ΓB∪ΓH and 

ΓB∩ΓH=0) (Fig. 1). The problem is solved on D×[0,T] with T 

the width of the time interval. The source field is created by a 

stranded inductor supplied by a voltage v(t). 
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Figure 1. Non-linear magnetostatic problem coupled with electrical circuit 
 

In magnetostatics, the problem can be described by the 

following equations: 
 

curl H(x,t) = N(x)i(t) 

                         div B(x,t)  = 0 

              H(x,t)  = ν(B) (x) B(x,t)          

(1) 

(2) 

(3) 
 

with B the magnetic flux density, H the magnetic field, N 

and i the unit current density and the current flowing through 

the stranded inductor and finally ν(B) (x)  the reluctivity. For 

the ferromagnetic material, ν(B) (x) may depend on B in the 

non-linear case. To impose the uniqueness of the solution, 

boundary conditions must be added such that:  
 

B(x,t).n=0 on ΓB  and  H(x,t)×n=0 on  ΓH (4) 

T 
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with n the outward unit normal vector. In order to impose 

the voltage v(t) at the terminals of the stranded inductor, the 

following relation must be considered:  
 

v(t)Ri(t)
dt

(t)d
=+

Φ  (5) 

with R the resistance of the inductor and Φ the flux linkage.  

The previous problem can be solved by introducing the 

vector potential A. From (2), this potential is defined such that 

B(x,t)=curlA(x,t) with A(x,t)××××n=0 on ΓB. To take into account 

the non-linear behavior of the ferromagnetic material, the 

fixed point technique can be used [8]. In this case, the 

magnetic field H(x,t) can be expressed by 

H(x,t)=νfpB(x,t)+Hfp(B(x,t)) with νfp a constant and  

Hfp(B(x,t))=(ν(B) (x)-νfp)B(x,t) a virtual magnetization vector. 

According to (1) and (5), the equations to solve are 
 

t))),(((-)i(t)(t)),(( fpfp xcurlAHcurlxNxcurlAcurl =−ν , (6) 

 v(t) Ri(t))dD(t).,(
dt

d

D

=+∫ xNxA . (7) 

To ensure the unicity of the solution, a gauge condition must 

be added. To solve this problem, A(x,t) and N(x) are 

discretised using edge and facet elements [9]. We denote Ai(t) 

the value of A along the i
th

 edge and Ne the number of edges. 

Then, applying the Galerkin method to (6) and (7), a system of 

differential algebraic equations is obtained 
 

(t))((t)
dt

(t)d
(t) fp XMF

X
KMX −=+  (8) 

with X(t) the vector of unknowns of size Nun=Ne+1 such 

that (Xi(t))1≤i ≤Ne =(Ai(t)) 1≤i ≤Ne and XNun(t) = i(t). M and K are 

Nun×Nun matrices and F(t) and Mfp(X(t)) Nun×1 vectors.  

III. MODEL ORDER REDUCTION WITH DEIM-POD 

A. Proper Orthogonal Decomposition 

In order to reduce the computation time required to solve 

system (8), the POD method is applied [1]. The vector X(t) is 

approximated in a reduced basis by a vector Xr(t) of size Ns 

(Ns<<Num). To obtain a discrete projection operator ΨΨΨΨ  such 

that 

(t)(t) rΨXX = , (9) 

the snapshot approach is typically applied [2]. The system (8) 

is solved for the first Ns time steps (called snapshots). The 

snapshot matrix Ms is defined by Ms=(X
j
)1≤j≤Ns with X

j
 the 

solution X(t) at the j
th

 time step. Applying the Singular Value 

Decomposition (SVD), Ms can be decomposed under the 

form:  
 

Ms=VΣΣΣΣW
t
 (10) 

with VNun×Nun and WNs×Ns orthogonal matrices and ΣΣΣΣNun×Ns 

the diagonal matrix of the singular values. The i
th

 row of W 

represents the entries of the i
th
 vector of the matrix Ms 

projected in the reduced basis formed by the Ns vectors of the 

matrix VΣΣΣΣ.  The operator ΨΨΨΨ is then given by normalizing the 

matrix VΣΣΣΣ or MsW. Finally, in the reduced basis, the new 

system to solve can be deduced combining (8) and (9)  
 

(t))((t)
dt

(t)d
(t) rfp

ttr
rrr ΨXMψFψ

X
KXM −=+  

with MΨΨM t
=r

  and   ΨKΨK
t

=r
 . 

(11) 

 

In practical terms, the computational time of the SVD of Ms 

can be prohibitive due to its size which depends on Nun and 

Ns. To tackle this issue, the matrix of correlations Cs of Ms is 

used. This matrix is determined such that  
 

s
t
s

s

s
N

1
MMC =

 
(12) 

The size of Cs is Ns×Ns. The eigenvalue decomposition of 

Cs can be applied to obtain the matrix W because Cs = WΣΣΣΣV
t 

VΣΣΣΣW
t
= W∆∆∆∆W

t
. In this case, the complexity and the 

computational time to determine W is highly reduced 

compared to a SVD of Ms.  

B. Discret Empirical Interpolation Model with POD 

In the non-linear case, the computational complexity of the 

vector fnl(t) = Mfp(ΨΨΨΨXr(t)) can be significant (see (12)). In fact, 

it is necessary to evaluate the solution X(t)=ΨΨΨΨXr(t) in the 

original basis to determine the vector Mfp(X(t)). To tackle this 

issue, an alternative is to apply the DEIM [7]. This approach 

proposes to approximate the non-linear function fnl(t) by 

combining projections with interpolations. All the entries of 

the vector fnl(t) no longer need to be evaluated. The 

approximation of fnl(t) is determined from a linear 

combination of a limited number entries of fnl(t) selected 

automatically applying the DEIM.  The j
th

 entry fnl
j
(t) of the 

vector fnl(t) is equal to the integral over the domain of curl Hfp 

weighted by the edge shape function wj. Since wj is null 

except on the elements connected to the j
th
 edge denoted by 

supp{j}, the calculation of  fnl
j
(t) is local just requiring the 

circulations of A along the edges belonging to the j
th

 edge to 

be able to evaluate Hfp everywhere on supp{j}. For this 

reason, the calculation of this selected terms of fnl(t) is then 

very fast. We seek to approximate fnl(t) by  
 

(t))((t) rnl XUcf =  (13) 

with c(Xr(t)) the interpolation vector of size Ndeim×1 and U 

an orthogonal Num×Ndeim matrix calculated by applying a POD 

method with the vectors Mfp(X(t)) on the Ndeim first time steps. 

The system (13) is over-determined. To express the 

coefficients of c(Xr(t)), Ndeim distinct rows from the over-

determined system are selected by applying a matrix P such as 

P
t
fnl(t)= P

t
Uc(Xr(t)). The algorithm presented in [7] is used to 

determine the matrix P=(Ii)1≤i≤Ndeim with Ii a column of the 

identity matrix INun×Nun.  The DEIM algorithm thus extracts a 

set of indices which correspond to the DEIM edges. Then, c(t) 

can be expressed by 
 

c(t)=(P
t
U)

-1
 P

t
fnl(t) = (P

t
U)

-1
 P

t
Mfp(ΨΨΨΨXr(t)) (14) 
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Moreover, in the case of a non-linear magnetostatic problem 

coupled with an electrical circuit, it can be shown that, in (14), 

the vector P
t
Mfp(ΨΨΨΨXr(t)) is equivalent to Mfp(P

t
ΨΨΨΨXr(t)). 

Finally, by combining (13) and (14), the vector fnl(t) is 

approximated by  
 

(t))()((t))( (t) r
tt

fp
1t

fpnl XΨPMUPUXMf −
≈=  (15) 

 

In this expression, the calculation of the term Mfp(P
t
ΨΨΨΨXr(t)) 

simply requires the evaluation at the Ndeim DEIM edges of the 

non-linear function, and not at all edges, as in (11), to 

interpolate the term Mfp(X(t)). In practical terms, the term 

ΨΨΨΨ
t
U(P

t
U)

-1
 is only calculated once. 

IV. APPLICATION 

A 3D magnetostatic example, made of a single phase EI 

transformer at no load supplied at 50Hz with a sinusoidal 

voltage, is studied. Due to the symmetry, only one eighth of 

the transformer is modeled (Fig. 2). The non-linear magnetic 

behavior of the iron core is considered. The 3D spatial mesh is 

made of 12659 nodes and 67177 tetrahedrons. The Euler 

scheme is used to solve (11) with 30 time steps per period. 
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Figure 2. Example of application (a: geometry, b: non-linear curve of the core) 
 

In the following, we compare the results obtained from the 

POD and DEIM-POD reduced models with those obtained 

using the full model. The solution given by the full model will 

be considered as the reference. 

A. Influence of the number of snapshots on the evolution of 

the current 

In order to evaluate the influence of the number of 

snapshots on a global value, the evolutions of the current i(t) 

versus time, obtained from the POD and DEIM-POD models, 

are compared with the reference in Fig. 3 and Fig. 4. The Ns 

snapshots correspond to the vector A for the Ns first time steps 

of the full model. The size of the reduced model (11) is equal 

to the number of snapshots. The reduced model is then run 

again starting at t=0. The number of snapshots influences the 

evolution of the current for both reduced models. The POD 

models as expected gives the same results as the full model for 

the Ns first time step and then it appears a divergence. This 

property is not satisfies anymore with the DEIM-POD method 

since the non-linearity is not accounted as in the full model. 

We can observe that the current waveform converges towards 

the reference with both approaches when Ns increases. In 

order to estimate the convergence versus the number of 

snapshots, an error estimator εi is defined  

2ref

2redref

iε
i

ii −
=

 
(16) 

 

with iref and ired the vectors of current values at each time 

step obtained from the reference and the POD (or DEIM-

POD) model respectively. Figure 5 presents the evolution of εi 

versus the number of snapshots. We can see that the 

convergence is faster with POD where the non-linear vector 

Mfp  in (11) is evaluated for all edges of the mesh. In the case 

of the DEIM-POD model, this vector is interpolated with a 

low number of edges using (15). In our case, the number of 

DEIM edges is equal to the number of snapshots. Then, the 

number of DEIM edges must be sufficient to obtain a good 

interpolation of the vector Mfp(ΨΨΨΨXr(t)). This vector is 

correctly expressed with 8 DEIM edges. The error on the 

current is equal to 0.03%. For the same number of snapshots, 

the error is 0.004% for the POD model. The DEIM-POD 

approach requires more snapshots to obtain a result very close 

to that of the reference than the POD model. Figure 6 presents 

the edges selected automatically by the DEIM for 8 snapshots. 

As expected, these edges are located in the saturated area. 
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Figure 3. Evolution of the current obtained from the POD model 
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Figure 4. Evolution of the current obtained from the DEIM-POD model 
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Figure 5. Error of the current versus the number of snapshots 
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DEIM edge 

 
(a) 

 
(b) 

Figure 6. DEIM edges in the magnetic core (a: 3D view, b: view of top) 

B. Influence of the number of snapshots on the distribution 

of the fields 

According to (9), the vector solution is approximated by a 

linear combination of vector ΨΨΨΨj of ΨΨΨΨ, often called a mode. 

Each ΨΨΨΨj corresponds to a field distribution. Figures 7 and 8 

present the field distribution corresponding to ΨΨΨΨj for the first 

four modes in the magnetic core. The distribution 

corresponding to ΨΨΨΨ1 and ΨΨΨΨ2 are close to a physical distribution 

of the magnetic flux density encountered in a transformer. The 

distributions corresponding to ΨΨΨΨ3 and ΨΨΨΨ4 have no physical 

meaning except that they enable us to better take into account 

the saturation at the corner of the core.  
 

  
Figure 7. Distributions of ΨΨΨΨ1 (a) and ΨΨΨΨ2 (b) 
 

  
Figure 8. Distributions of ΨΨΨΨ3 (a) and ΨΨΨΨ4 (b) 

 

  
Figure 9. Distribution of the difference between the magnetic flux density 

obtained by the reference model and the POD (a) and DEIM-POD (b) 

(t=10ms) 
 

In figure 9, the error of the distribution determined with the 

POD and DEIM-POD models for 8 snapshots are given. Their 

distributions express the truncation of the solution between the 

reference model and the reduced models. If we increase the 

number of snapshots, the error will decrease. We can observe 

that the distributions of the error are different between the 

POD and DEIM-POD models. This difference can be 

explained by the interpolation of the non-linear term in the 

case of the DEIM-POD model.  

C. Computation time 

In terms of computation time, with a time interval width of 

0.12s and 120 time steps, the reference model requires 

130min. For 8 snapshots, the computation time is 24min with 

the POD and 11min with the DEIM-POD. These computation 

times do not take into account the computation time required 

to evaluate the solutions of the snapshots: for 8 snapshots, the 

computation time is 8min42s. The DEIM-POD model is faster 

than the POD model, the ratio being 2.2. This ratio is a 

function of the number of elements in the magnetic core. With 

a finer mesh and a fixed number of snapshots, the computation 

time required to evaluate the non-linear term Mfp(ΨΨΨΨXr(t)) in 

(11) is more significant and thus, the computation time ratio 

for the non-linear term between the POD and DEIM-POD 

models increases.  

V. CONCLUSION 

The Proper Orthogonal Decomposition and the Discret 

Empirical Interpolation Method associated with a FEM vector 

potential formulation have been developed in order to solve a 

3D non-linear magnetostatic problem coupled with an external 

circuit. Based on the example here, it has been shown that the 

POD model associated with the DEIM enables us to reduce 

the computation time significantly while obtaining good 

precision. In this paper, the fixed point technique has been 

used to account for the non linearity. Future work will be to 

extend the application of the POD-DEIM when the Newton 

Raphson method is applied. 
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