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ABSTRACT
As interconnect feature sizes continue to scale to smaller dimen-
sions, long interconnect can dominate the IC timing perfor-
mance, but the interconnect parameter variations make it
difficult to predict these dominant delay extremes. This paper
presents a model order-reduction technique for RLC intercon-
nect circuits that includes variational analysis to capture man-
ufacturing variations. Matrix perturbation theory is combined
with dominant-pole-analysis and Krylov-subspace-analysis
methods to produce reduced-order models with direct inclusion
of statistically independent manufacturing variations. The ac-
curacy of the resulting variational reduced-order models is
demonstrated on several industrial examples.

1. INTRODUCTION
Due to the complicated physical and chemical processes involved
in the manufacturing of today’s microelectronic devices, there will
always be discrepancies between the conceptual design and the
manufactured product. Typical examples of thesemanufacturing
variations are fluctuations in critical dimensions (CD) and inter-
level dielectric (ILD) thicknesses. These manufacturing variations
are random in nature, and significant effort is continually aimed at
minimizing the process variability. These fluctuations cannot be

eliminated, however, and have been continuously increasing in rel-
ative magnitude as new generations of the deep submicron (DSM)
technologies are introduced.

Typically, the effect of these process variations are captured by
a set of worst-case SPICE model parameters. The impact on circuit
performance is then estimated via multiple circuit simulations to
explore the “worst-case corners”. However, for RLC interconnect
analysis these “parameter corners” can no longer guarantee the
worst/best-case delay calculation accuracy due to the way in which
resistance and capacitance inversely vary as a function of actual
width and thickness. Moreover, the delay variations of the inter-
connect are now of the size and correlation complexity that the true
critical path can go undetected when process variations are not
considered. In addition, the delay variations due to interconnect
parameter fluctuations produce clock skews that are well beyond
the acceptable limits for today’s high performance microproces-
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sors. A Monte Carlo method or one of its design-of-experiment
(DOE) variations can produce the required delay accuracy, but
these approaches are prohibitively expensive due to the large num-
ber of simulations required.

One possible approach to avoid the expensive Monte Carlo
technique is the interval analysis method[5]. In the interval
method proposed in [5], the Rubinstein-Penfield model[12], which
is essentially min/max bounds about the Elmore delay, is used to
represent the RC interconnect delay. For DSM technologies the
Elmore delay accuracy is insufficient due to the increasing magni-
tude of the interconnect series resistance that is not fully captured
in this model. The higher order macromodels obtain via moment
matching[10] or Krylov subspace methods[3][9][13] can produce
the required accuracy; however, interval methods are not readily
incorporated into these algorithms.

In this paper, we present a model order-reduction technique for
interconnect that includes variational analysis. The technique is
based on matrix perturbation expansion theory and extensions to
existing interconnect model order-reduction methods. The new
technique uses a few model order-reduction procedures to gener-
ate a complete variational reduced-order model in which the true
manufacturing variations are explicitly incorporated. The varia-
tional reduced-order model can be then used for further delay and
waveform calculation purposes.

2. BACKGROUND

2.1. Properties of manufacturing variations and
key assumptions

As has been shown in many research reports, the true causes of
manufacturing variations are very complicated[11][15]. For exam-
ple, the CD-variations can be attributed to either mask inaccuracy,
proximity effects, lens aberrations, or combinations thereof. In this
paper, we do not deal with the real physical origin of these varia-
tions. Instead, we capture them in terms of the “true geometrical
variations” which we assume to be statistically independent. Exam-
ples of such variations are CD variations, ILD thickness variations,
or metal layer thickness variations.

Manufacturing variations are random in nature, and generally
classified into two categories: temporal and spatial. Temporal vari-
ations are due to time-varying equipment conditions, incoming
wafer or consumable material characteristics. They manifest them-
selves aslot-to-lot or wafer-to-wafer variations. On the other hand,
spatial variations can occur on the wafer-to-wafer scale (e.g., due
to nonuniformity in the deposition or etch chamber), within-wafer
(die-to-die) or within-die[1][16]. We further classify these varia-
tions into two categories: global variations and local varia-
tions(Fig. 1). Global variations manifest themselves at the wafer-
scale, and can be assumed to be constant within specific die. Local
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variations occur at a smaller geometric scale and are more com-
plicated to analyze. For example, if the CD-variations in metal
layer are caused by the non-uniform distributions of the exposure
dose, then they can be considered as global variations[11]. In
contrast, the ILD variations caused by the chemical mechanical
polishing (CMP) process depend on the density of the underlying
poly-layer, hence they are more suitably treated as local varia-
tions[15]. Although local variations can be taken into account
due to their systematic nature, in this paper we focus only on glo-
bal variations and leave the analysis of local variations to future
research.

It is assumed that the variations in the metal layers are inde-
pendent from the variations in the active devices. We further
assume that the true geometrical variations are mutually indepen-
dent. For example, we assume not only that the variation of M4
thickness is independent of the variations of M5 thickness, but
also that it is independent of the M4 linewidth variation. We
believe that this is a valid assumption given the planarization of
the subsequent layers in the state-of-the-art IC manufacturing.

Finally, we only consider the first-order effect of the geomet-
ric variations on the circuit parameters, i.e., resistance, capaci-
tance and inductance. For instance, if there is a w1 variation in

the M3 width and a w2 variation in the M3 height, then for a spe-

cific segment on this layer, we assume the resistance of that seg-
ment can be expressed as:

(1)
We normalize the values of∆R1 and∆R2 so that the values of w1
and w2 are between -1 and 1. Similarly, for any capacitance in the

circuit subject to the variations w1 and w2 we can express the vari-

ational value of the capacitance as:
(2)

Although there is no restriction on the number of variations in our
approach, for notational simplicity we consider only these two
variation sources throughout this paper.

2.2. Reduced-order model with variations

Any linear RLC circuit can be described by its MNA equations:
(3)

When resistance and capacitance parameters are subject to varia-
tions of the form in (1) and (2), the MNA terms in the G and C ma-
trices are also subject to the same variations:

(4)

Combine (4) with (3):
(5)

Equation (5) is essentially a set of ordinary-differential equa-
tions with varying parameters. It is seemingly impossible to ana-
lyze the effect of variations w1 and w2 without directly referring

to the full description in (5). However, as we will show in the
remaining portions of the paper, when the magnitudes of the vari-
ations are reasonably small, key characteristics of the circuit,
such as the poles, only “fluctuate” in the proximity of the poles of
the nominal circuit. This enables us to construct a compact model
of (5) with direct inclusion of variations w1 and w2. This com-

pact model is more efficient than the full description. More
importantly, without the unnecessary details in the full descrip-
tion, the compact model will provide a better understanding of
the variational effects on key circuit characteristics.

2.3. Projection-based model order-reduction

Model order-reduction generates a compact analytic admittance/
impedance model by matchingmoments[10] or poles[8]. In order
to overcome the instability caused by numerical noise for high or-
ders of approximation, projection-based order reduction via the
Lanczos or Arnoldi algorithm can be used as part of the moment
or pole matching process[4].

In this paper we consider two projection-based order-reduc-
tion techniques, PACT[8] and PRIMA[9]. However, our
approach can also be extended to other model order-reduction
methods such as MPVL[3] and the Arnoldi method in [13]. Due
to limited space we will only discuss the PACT-based method in
detail, since it most clearly demonstrates our variational
approach. It should be noted that our description of PACT is
slightly different from the original version in [8].

2.3.1. PACT

An RC circuit is uniquely described by a conductance matrix G
and a susceptance matrix C, as shown in (3). In PACT, these two
matrices are further partitioned as:

(6)

where GP is the port conductance matrix, GI is the internal con-

ductance matrix and GC is the connection matrix. The suscep-

tance matrix C is partitioned in the same way. GT denotes the
transpose operation of matrix G. If we denote xP as a port voltage

vector, xI as an internal voltage vector, and bP as a port excitation

vector, then the circuit can be expressed as:

(7)

It can be shown that GP, GI, CP and CI are symmetric[8]. For a

circuit with a unique dc solution it also can be shown that GI is

positive semi-definite. Note that for most interconnect analysis
problems, the size of GP is small while the size of GI is large. The

admittance matrix, which has a size equal to the number of ports,
can be obtained from (7):

(8)

The PACT algorithm consists of two congruence transforma-
tions, TC-1 and TC-2. TC-1 is the same as matching the first
moment m0 in the moment-matching approaches such as

global variations local variations

FIGURE 1: Global variations vs. local variations.

R w1 w2( , ) R0 R1∆ w1⋅ R2∆ w2⋅+ +=

C w1 w2( , ) C0 C1∆ w1⋅ C2∆ w2⋅+ +=

G sC+( )x b=

G w1 w2,( ) G0 ∆G1w1 ∆G2w2+ +=

C w1 w2,( ) C0 ∆C1w1 ∆C2w2+ +=

G w1 w2,( ) sC w1 w2,( )+( )x b=

G
GP GC

T

GC GI

,= C
CP CC

T

CC CI

=

GP GC
T

GC GI

s
CP CC

T

CC CI

+
 
 
 
  xP

xI

bP

0
=

Y s( ) GP sCP GC sCC+( )T GI sCI+( ) 1– GC sCC+( )⋅ ⋅–+=



AWE[10], thereby preserving the dc gain of the reduced-order
model. It is performed by applying a congruence transformation X
on both G and C, where X is defined as:

(9)

The resulting new conductance and susceptance matrices are:

(10)

and

(11)

It can be shown that after TC-1, the admittance matrix is:

(12)

TC-2 then generates a compact model by dropping the non-
dominant poles. Here we express it in the context of ageneralized
eigenvalue problem, which is based on the following theorem[14]:

Theorem 1:For symmetric matrix pair (A, B), let B be positive
definite. Then there exist a nonsingular matrix U satisfying
UTBU=I such that UTAU=Λ, whereΛ is real and diagonal.

Following Theorem 1, (12) can be re-written as:

(13)
Note that in (13) matrix U is still a square matrix and its column
space is a complete set of generalized eigenvectors of the symmet-
ric pair (GI,CI). If we choose only a few eigenvectors correspond-

ing to the dominant eigenvalues, then a reduced-order model can be
generated:

(14)

There are many methods to calculate the dominant eigenvector
matrix Ur without the complete factorization of matrix pair (GI,

CI). The most efficient method is applying Cholesky factorization

and Lanczos methods[4]. Because GI is positive semi-definite, a

Cholesky factorization can be applied as:

(15)
Thus part of (12) can be written as:

where column space of X are the eigenvectors of L-1CIL
-T. If only

the dominant eigenvectors are calculated using Lanczos algorithm
and are grouped into Xr, then:

(16)

Because GI is a sparse matrix, its Cholesky factorization L is

also sparse. Thus, the inversion of L is easy to calculate. It is triv-
ial to show that the above procedure is essentially identical to the
original PACT technique. When relatively high orders of approxi-
mation are required, an improved Lanczos algorithm such as
LASO is required[4]. However, such cases are generally RLC cir-
cuits for which we use PRIMA.

2.3.2. PRIMA

In PRIMA, an RLC circuit is described by four matrices

, which are defined by:

(17)

Note that matrices G and C are constructed in a different way than
PACT. The key problem in PRIMA is to calculate an invariant sub-

space X, orKrylov subspace, of matrix , such that:

(18)

Where Hq is a block Hessenberg matrix. Note that the rank of X is

much smaller than the rank of the original matrix A. A reduced-or-

der model, , can be generated by projecting the original
system onto this invariant subspace:

(19)

3. VARIATIONAL ANALYSIS

3.1. Results in matrix perturbation theory

The key problem in our variational analysis is to find the relation-
ship between the variations and the dominant eigenvalues/eigen-
vectors. Fortunately, the matrix perturbation theory gives us some
insight into the variational behavior of the eigenvalues/eigenvec-
tors, as summarized in the following theorems[6][14].
Theorem 2:Let A be a symmetric matrix with eigenvalues:

(20)
and denote a symmetric perturbation of A with
eigenvalues:

(21)
Let the eigenvalues of E be:

(22)
Then, for ,

(23)

In our application, the magnitude of the perturbation, matrix E,
is generally small. Thus the above theorem guarantees the varia-
tional eigenvalues be in the proximity of the nominal eigenvalues.
The next theorem describes the behavior of the variational eigen-
vectors:

Theorem 3:For a symmetric matrix pair (A,B), let B be positive
definite. For matrices X1 and X2 such that

where

(24)

Given symmetric perturbations of E and F such that:

If the distance between the eigenvalue clusters of (A1, B1)
and (A2, B2) is sufficiently large, and the perturbations E
and F are sufficiently small, then there exist matrices P and
Q such that the columns of

X
I 0

GI
1– GC– I

I 0

V I
= =

G' XTGX
GP GC

TV+ 0

0 GI

G'P 0

0 GI

= = =

C'
CP VTCC CC

TV V TCIV+ + + CC CIV+( )T

CC CIV+ CI

C'P C'C
T

C'C CI

= =

Y s( ) G'P sC'P s2C'C
T GI sCI+( ) 1–

C'C–+=

Y s( ) G'P sC'P s2C'C
TUT I sΛ+( ) 1– UC'C–+=

Yr s( ) G'P sC'P s2C'C
TUr

T I sΛr+( ) 1– UrC'C–+=

GI LL T=

GI sCI+( ) 1– LL T sCI+( ) 1– L T– I sL 1– CIL
T–+( ) 1– L 1–= =

L T– I sXΛXT+( ) 1– L 1– L T– X I sΛ+( ) 1– XTL 1–= =

Ur Xr
TL 1–=

G C B L, , ,( )

C
td

dx⋅ G x⋅+ B up⋅=

ip LT x⋅=





A G– 1– C≡

XTX I q,= XTAX H q=

G̃ C̃ B̃ L̃, , ,( )

G̃ XTGX,= C̃ XTCX=

B̃ XTB,= L̃ XTL=

λ1 λ2 … λn≥ ≥ ≥
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(25)

span the eigenspace of pair .

3.2. Variational analysis of PACT

3.2.1. Variational analysis of TC-2

Theorem 3 is very attractive in the context of PACT algorithm. If
we regard X1 as the dominant eigenvectors of the matrix pair (GI,

CI) from (6), then the theorem actually tells us how the dominant

eigenvectors behave under the influence of the variations. Howev-
er, direct application of Theorem 3 is not practical because matri-
ces P and Q can only be calculated after solving a set ofgeneralized
Sylvester equations. Furthermore, even if we know the matrix P, we
still have to calculate the non-dominant eigenvectors X2. The con-

sequence is that we have to perform a complete eigen-decomposi-
tion of the matrix pair (GI, CI). The complete eigen-decomposition

is very costly and is actually in the opposite objective of order-re-
duction.

Intuitively, we can see that the values of P and Q in Theorem 3
depend on the perturbations E and F. When there is no perturba-
tion, P will be identically zero. Because the magnitudes of the
variations are small, a Taylor expansion can be used to express the
variational eigenvalues and eigenvectors, but the Taylor expansion
is of a higher dimension. This principle has been used in quantum
mechanics for decades[7], and the parameters of the Taylor expan-
sion can be calculated by solving a set of linear equations.

More specifically, assume thatΛr and Ur are the dominant

eigenvalues/eigenvectors of the matrix pair (GI, CI). If the internal

conductance matrix and internal susceptance matrix are subject to
the following variations:

(26)

thenΛr and Ur are in the format of:

(27)

In order to determine the parameters involved in (27), we pick up
some “sample points” and calculate the dominant eigenvalues/
eigenvectors. The parameters are uniquely determined by a set of
linear equations. Here we choose sample point as (w1 = 0, w2 = 0),

(1,0), (-1,0), (0,1) and (0,-1).

3.2.2. Variational analysis of TC-1

Recall that the purpose of the first congruence transformation, TC-
1, is to preserve the dc gain. The key point in TC-1 is calculating

. When GI and GC are subject to variations, we ex-

pect V to depend on the variations as well. By a careful review of
the KCL description in (7), we find that V can actually be calculat-
ed by obtaining the dc solution of the circuit. In (7), if we assume
the susceptance matrix is identically zero and there is no current in-
jection to all internal nodes, then the port and internal voltages can
be expressed as:

(28)
from which:

(29)

Thus, if we drive one port node with a unit voltage source and
ground all the remaining port nodes, then the dc solution of all the
internal nodes will be the corresponding column of the matrix V.
Repeating this procedure will generate the complete matrix. Note
that in this process, only the excitation vector of the MNA formu-
lation needs to be modified. Thus only one LU factorization is need
in the whole process.

If we assume that the variational matrix V can be expressed as:

(30)
then parameters∆V1 and∆V2 are actually sensitivities of the inter-

nal node voltages. We can then use adjoint sensitivity analysis[2]
to calculate these sensitivities. Note that in the adjoint sensitivity
analysis, no extra LU factorization is needed. Instead, the sensitiv-
ities are calculated by multiple backward- and forward-substitu-
tions.

However, because sensitivities are only accurate within a very
small range close to the nominal values, in practice we found that
the results obtained by adjoint sensitivity are not satisfactory. To
improve the accuracy, we once again use the perturbation expan-
sion to express the variational V as:

(31)
The parameters are calculated in the same manner as those in TC-2.

3.2.3. Overall flow of variational analysis in PACT

To summarize, we assume that the variations of the conductance
matrix and susceptance matrix can be expressed as:

(32)

If we partition the two matrices in a manner similar to that in (6),
then we have the following:

(33)

There are two variational congruence transformations, denoted
VTC-1 and VTC-2, similar to the two congruence transformations
in PACT.
• VTC-1
Calculate∆V11, ∆V12, ∆V21, ∆V22 in (31) by Taylor expansion. In

the results of VTC-1, all the terms with order higher than 2 are
dropped. Thus:

where

(34)
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(35)

Furthermore

All the terms related to w2 can be handled similarly.

• VTC-2
For the variational pair,  we use the ex-

pansion method discussed in the previous subsection to calculate
the expansion parameters:

The variational reduced-order model is then given by:

(36)

with term  expressed as:

(37)

where

(38)

The parameters related to w2 can be calculated in a similar way.

3.3. Variational analysis of PRIMA

The key objective of PRIMA is to calculate an invariant subspace
which forms the column space of matrix X. Therefore, we apply
the following theorem regarding invariant subspace[14].
Theorem 4:Let (X1 Y2) be unitary and suppose that column

space of X1 is a simple invariant subspace of A, so that

(39)

Given a perturbation E, if the spectra of L1 and L2 are
sufficiently far away and the perturbation is sufficiently
small, then there exists a matrix P, such that

(40)

form the orthonormal bases for simple right and left
invariant subspace of .

Once again, it is impractical to calculate matrix P. Instead, we
seek to calculate the expansion of the Krylov subspace:

(41)
The parameters are also calculated by choosing sample points. A
variational reduced-order can then be constructed by inserting the
resulting variational Krylov-subspace into (19) and collecting
variational terms up to the 2nd-order.

4. EXAMPLES
Both the PACT-based and PRIMA-based variational analysis al-
gorithms have been implemented in C as SPICE-in-SPICE-out
analysis tools.

4.1. Top-level of a clock tree

The first example is the top-level of the clock tree in a 0.35µ in-
dustrial design. This level carries the clock signal from the center
of the block to seven distinct locations in the block, from which
the signal is distributed to the second-level. The top-level is routed
solely in metal layers M2, M3 and M4. The widths of these three
layers are subject to 3σ-variations with magnitude of up to 30%.
The circuit is modeled as an 8-port and the order of the approxi-
mation is 5. Variational analysis was performed on the 8-port.

In order to demonstrate the accuracy of our variational
reduced-order model, we performed 50 tests. In each test, a set of
three uniformly distributed numbers is generated as the width
variations of the three metal layers. The original netlist is modi-
fied based on these variations and a reduced-order model is
directly calculated as the true value. The second reduced-order
model is generated by using the variational reduced-order model.
We then compared the difference between the poles and residues
of these two reduced-order models. The distribution of error in
the poles is shown in Fig. 2. For the figure, 77% of the tests have
the error between -0.2% and +0.2%, even though the poles varied
by as much as 27%.

We further perform multiple SPICE simulations for models
constructed in two different methods under multiple variations.

The results of the first 10 test are tabulated in Table 1.
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TABLE 1: Fifty-percent delay at a fan-out node in Example 1.

Variations (30% 3σ) Fan-out Delay (ps)

M2-w M3-w M4-w Direct Variational
-17.25% +20.35% +7.73% 388.49 388.72
-2.91% -27.37% -28.37% 334.45 334.81

-17.25% +20.35% +7.73% 388.49 388.72
+20.77% +1.51% -17.84% 357.99 357.88
+2.04% +13.63% -11.44% 368.74 368.66
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FIGURE 2: Error distribution of all the poles in the top-level
clock tree example.



4.2. Three closely coupled nets

The second example is extracted from a 0.25µ industrial design.
The circuit consists of three closely-coupled nets routed on layers
Metal 4 and Metal 5. The process is characterized by±20% vari-
ations in linewidth and height for both M4 and M5 metal layers
(3σ). We once again constructed the reduced-order model with the
inclusion of those variations. We performed 50 SPICE simula-
tions with randomly generated variations to test the accuracy of

our model. The results of the first 10 are listed in Table 2.

4.3. A simple RLC circuit

To demonstrate the variational analysis of PRIMA, we construct-
ed a three-segment RLC circuit. The capacitance of each segment
is 2pF and the inductance 1nH. The resistance of each segment is
10Ω, 2Ω and 35Ω, respectively. Segments 1 and 3 were subjected
to a common variation of up to 15% in magnitude for the R, L and
C values. A variational reduced-order model was constructed. The
Bode plots for an admittance with of 13.5% are shown in Fig. 3.
As we can see, the variational analysis matches the directly calcu-
lated reduced-order extremely well.

5. CONCLUSION
In this paper we present a novel order-reduction technique for
variational analysis of the RLC interconnect circuits. The tech-
nique constructs a reduced-order model with the direct inclusion
of the statistically independent geometrical variations. Experi-
ments on industrial examples demonstrate the satisfactory accura-
cy for multiple variations with magnitudes up to 30% which cover
the typical 3σ ranges in the DSM technologies.
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+13.65% +29.97% +29.97% 413.82 414.58
+13.65% -1.30% +3.29% 377.29 377.31

-5.28% +14.67% -13.92% 366.40 366.28
+10.93% -11.83% +2.50% 372.11 371.97
-26.55% -7.95% +7.89% 377.11 377.02

TABLE 2: Fifty-percent delay at a fan-out node in Example 2.

Variations (20% 3σ) Fanout delay(ps)

M4-w M4-h M5-w M5-h Direct Vari.
-16.67% -13.05% -8.41% -4.20% 2114.5 2115.7
+15.21% -5.12% -10.64% -4.29% 2288.6 2288.5
+16.04% +5.99% +11.13% +15.90% 2463.7 2464.2
+12.67% +17.47% +0.93% -2.07% 2431.0 2431.1
+6.36% +10.27% -5.60% -1.11% 2374.0 2374.2

+14.42% -4.03% -13.58% -13.02% 2245.5 2245.1
-15.18% +9.97% -13.54% -18.51% 2223.7 2225.1
+11.65% +0.76% -6.44% -14.82% 2272.4 2272.3
-19.36% -6.84% -19.47% -18.38% 2044.5 2046.0
+1.37% -13.40% -14.03% -2.70% 2180.9 2181.2

TABLE 1: Fifty-percent delay at a fan-out node in Example 1.

Variations (30% 3σ) Fan-out Delay (ps)

M2-w M3-w M4-w Direct Variational
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FIGURE 3: Bode plot of an admittance term in RLC example with
variation of +13.5%. Note that directly calculated and variational

model results are overlapping.


