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Model Order Reduction of Time-Delay Systems using a Laguerre

Expansion Technique

Elizabeth Rita Samuel, Luc Knockaert, Senior Member, IEEE, and Tom Dhaene, Senior Member, IEEE

Abstract—The demands for miniature sized circuits with
higher operating speeds have increased the complexity of the
circuit, while at high frequencies it is known that effects such as
crosstalk, attenuation and delay can have adverse effects on signal
integrity. To capture these high speed effects a very large number
of system equations is normally required and hence model order
reduction techniques are required to make the simulation of the
circuits computationally feasible.

This paper proposes a higher order Krylov subspace algorithm
for model order reduction of time-delay systems based on a
Laguerre expansion technique. The proposed technique consists
of three sections i.e., first the delays are approximated using the
recursive relation of Laguerre polynomials, then in the second
part, the reduced order is estimated for the time-delay system
using a delay truncation in the Laguerre domain and in the third
part, a higher order Krylov technique using Laguerre expansion
is computed for obtaining the reduced order time-delay system.
The proposed technique is validated by means of real world
numerical examples.

Index Terms—Hankel singular values, Krylov matrix, La-
guerre polynomials, Model Order Reduction, Time-delay systems.

I. INTRODUCTION

T
HE ever increasing quest for high density and high

operating speed requires more accurate models in modern

electronic design, and this implies that the analysis of inter-

connects and high-speed circuits has become a critical aspect

for studying system reliability, and speed of operation [1], [2].

The gigabit per second range for high-speed links has made

signal integrity (SI) analysis and design of interconnections of

great importance.

For printed circuit board (PCB) structures, long transmission

lines (TLs) are often needed for accurate simulations. Lossy

TLs are traditionally modeled by ladder networks with cas-

caded sections of RLC components [3]. The effects of different

packaging components such as bond wires, traces, vias and

balls can also be modeled as RLC lumped components.

When geometric dimensions become electrically large and the

frequency content of signal waveform increases, time delays

must be taken into account and, included in the modeling

process [4], [5]. A major drawback of this brute force approach

is the potentially huge number of system equations leading

to high CPU cost in the circuit simulation. To alleviate this,

efficient model order reduction (MOR) techniques can be used.
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Most MOR approaches are based on moment matching

techniques (MMTs) and in general, MOR methods can be

classified as explicit or implicit MMTs. The explicit MMT

using a single Padé expansion [6]–[8] is known as asymptotic

waveform evaluation (AWE). However, AWE and the under-

lying Padé approximation induces numerical ill-conditioning,

while the approximant may produce unstable poles. Also,

AWE does not guarantee passivity. The implicit MMTs based

on Krylov-subspace algorithms [5], [9]–[13] use congruence

transformation to deal with ill-conditionedness, and can also

guarantee the preservation of passivity in the reduced models.

Time-delay systems (TDSs) are systems with aftereffect

or dead-time, which belong to the class of functional differ-

ential equations (FDEs), as opposed to ordinary differential

equations (ODEs) [14]. TDSs in the Laplace domain contain

elements with exponential factors e−sτ where τ corresponds

to the time delays present in the circuit. In [15], the equivalent

representation of the TDSs are build as an infinite-dimensional

linear problem and is then reduced to a system without delay.

In [16], [17], the exponential terms corresponding to the delays

are expanded in a Taylor series and subsequently the moments

of the system are obtained via Krylov-subspace techniques.

This MOR technique guarantees passivity preservation for cer-

tain specific cases of RLC networks by means of congruence

transformations. But in [16], [17] the original system needs to

be augmented by introducing extra state variables, and finally

the resulting reduced order model does not preserve the TDS

structure of the original system. In the approach of [5], [12],

the moments are calculated using extra state variables, but

the dimension of the row of the augmented system moments

that is used for the reduction of the original mode is same as

the number of state variables in the original model. But still

the computation effort is excessive, as the moment matrix is

calculated with the extra state variables.

These shortcomings were somewhat alleviated in [13] by

proposing multiorder Arnoldi. In that technique the moments

of the original system are calculated implicitly using a higher

order Krylov technique [18], [19] without having to introduce

extra state variables and the structure of the reduced model

resembles the original.

In this paper we propose a novel technique using a higher

order Krylov subspace decomposition with orthonormal La-

guerre functions, which do provide good approximations for

a large class of time-delay systems [20]. The link with the

singular value decomposition (SVD) leads to a simple and

stable implementation of the algorithm. The present technique

is a generalization and extension of the well-known Laguerre-

SVD method [21] to TDS.

As a first step towards improving the efficiency, the pro-

posed technique estimates the reduced order using a smart
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approximation of the delay terms after approximating the

delays using a recursive relation using Laguerre polynomials.

As a second step higher order Laguerre approximation is used

to obtain the reduced order TDS.

More precisely, the three steps of the proposed algorithm

are:

1) Delay Approximation - The time delay term e−sτ , is

approximated using a recursive relation of Laguerre poly-

nomial.

2) Zero-Order Approximation Technique (ZAT) - The time

delay term e−sτ , is approximated as e−2ατ , where α is the

Laguerre parameter [20]–[22]. So an approximate linear

time-invariant (LTI) system is obtained, whose Hankel

singular values (HSVs) are computed using the Matlab

command hsvd. From the HSVs an initial guess of the

reduced order can be estimated depending on the required

(predefined) accuracy.

3) Higher-order Laguerre Approximation Technique

(HLAT) - The delays are replaced by their approximations

in the Laguerre domain and then the higher order Krylov

subspace is computed [23] in order to reduce the original

system.

Thereby, the proposed Laguerre expansion technique computes

the Krylov subspace more efficiently, and generates an accu-

rate reduced order model.

This paper is organized as follows. Section II gives an

overview of classical Laguerre-based MOR. Section III de-

scribes the proposed MOR algorithm for TDS and proposes

a flowchart with the algorithmic steps of the novel approach.

Section IV validates the proposed algorithms by means of real

world examples and by comparing the proposed technique with

some recent techniques of MOR for TDS in the literature.

II. OVERVIEW OF LAGUERRE-BASED MODEL ORDER

REDUCTION

Consider a multiple-input-multiple-output (MIMO) descrip-

tor system of the form

Eẋ(t) = Ax(t)+Bu(t)

y(t) = Cx(t)+Du(t) (1)

with (McMillan) degree n and number of ports p. A and E are

respectively known as the state and descriptor matrices. The

dimensions of the matrices A, B, C, D, E are respectively

n×n, n× p, p×n, p× p and n×n.

The transfer function of this system is

H(s) = C(sE−A)−1B+D. (2)

Note that it is usually required that sE−A is a regular matrix

pencil [24].

The ith Laguerre polynomial is defined as

Li(t) =
et

i!

di

dt i
(e−tt i). (3)

and the scaled Laguerre functions are

Φα
i (t) =

√
2αe−αt

Li(2αt) i = 0,1... (4)

Here α is a positive scaling parameter called the Laguerre

parameter or time-scale factor [25]

In the Laplace domain, the transformation of the scaled

Laguerre functions can be written as

Φα
i (s) =

√
2α

s+α

(

s−α

s+α

)i

i = 0,1... (5)

In [21], it has been shown that the transfer function of a

strictly proper (D = 0) stable system can be expanded into the

Laguerre orthonormal basis Φα
i (s) as

H(s) = C(sE−A)−1B =

√
2α

s+α

∞

∑
i=0

Fi

(

s−α

s+α

)i

(6)

where the Fi’s are the Laguerre coefficients, which can be

matrices in general. Applying the bilinear transformation (7)

to the r.h.s of formula (6),

s = α
1+u

1−u
(7)

we obtain

C(u(αE+A)− (A−αE))−1B =
1√
2α

∞

∑
i=0

Fiu
i
. (8)

From this it can be inferred that the qth-order Padé approx-

imation of the modified transfer matrix

Ĥ(u) = C(u(αE+A)− (A−αE))−1B (9)

in the u-domain is equivalent to the qth-order Laguerre

approximation in the s-domain.

Note that the bilinear transformation (6) maps the Laplace

s−domain onto the Laguerre u−domain. It is seen, by compar-

ing (9) and (2) that the state-space matrices have been modified

to Eu = αE+A and Au = A−αE.

Thus, on defining G = A−1
u Eu and L = A−1

u B, for a reduced

order q the n×q modified Krylov subspace Kq [26], [27] is:

Kq(G,L) = colspan[L,GL,G2L, ...,Gq−1L] (10)

This yields a reduced order system described by

Ar = QT AQ,

Er = QT EQ,

Br = QT B,

Cr = CQ. (11)

Here the column-orthogonal matrix Q is found through the

singular value decomposition (SVD) approach on the Krylov

subspace Kq (10) i.e;

UΣVT = SV D(Kq(G,L)) (12)

where U is the column-orthogonal matrix, Σ is a diagonal

matrix containing the singular values and V is orthogonal

matrix of dimensions N × q, q× q and q× q respectively, q

is the reduced order.

Thus Q is equal to the left SVD column-orthogonal factor

U.
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Note that the algorithm makes use of the Laguerre functions,

but they do not appear in the algorithm. The main aim of

using the Laguerre functions is to get rid of the s term in

(sE−A)−1 (2). Instead the algorithm makes use of the inverse

of Au = (A−αE). The parameter α is chosen such that the

inverse exists.

III. PROPOSED ALGORITHM

Consider a time-delay system of degree n with p ports

having k delays τ j, present in both the state and descriptor

matrices, which can be represented in general delayed state

space form as:

E0ẋ(t) +
k

∑
j=1

Ejẋ(t − τ j) =

A0x(t)+
k

∑
j=1

Ajx(t − τ j)+Bu(t)

y(t) = Cx(t)+Du(t). (13)

Here, x(t) ∈ Rn is the state vector; u(t) ∈ R p is the control

input with u(t) = 0 for t < 0; y(t) ∈ R p is the output.

A0,Aj,E0,Ej,B,C,D are constant matrices with appropriate

dimensions. From (13) we obtain the transfer function H(s)
as:

H(s) = C(s(E0 +
k

∑
j=1

E je
−sτ j)

− (A0 +
k

∑
j=1

A je
−sτ j))−1B+D. (14)

A. Dealy Approximation

The delay terms e−sτ j in (14) are mapped onto the Laguerre

domain by applying the bilinear transformation (7). Thus

obtaining:

e−sτ j = e−a j( 1+u
1−u )

where a j = ατ j. As the generating function of the Laguerre

polynomial [28] [29] is given by,

e
−xt
(1−t)

(1− t)
=

∞

∑
i=0

Li(x)t
i
. (15)

we can easily prove that

e−a j( 1+u
1−u ) = e−a j e(−2a j( u

1−u )) = e−a j(1−u)
∞

∑
i=0

Li(2a j)u
i
. (16)

Using the recurrence relation of Laguerre polynomials, we

obtain the approximation series in powers of u as shown,

e−a j( 1+u
1−u ) = e−a j +

∞

∑
i=1

e−a j(Li(2a j)−Li−1(2a j))u
i
. (17)

This will help us to obtain a suitable form for the transfer

function of the TDSs in u domain for deriving the higher-order

Krylov.

The delay term is approximated to an order r i.e;

e−a j( 1+u
1−u ) ≈ T r

d = e−a j +
r

∑
i=1

e−a j(Li(2a j)−Li−1(2a j))u
i
. (18)

Such that the error is below a defined threshold as shown

‖ e−a j( 1+u
1−u )−T r

d ‖2 ≤ threshold. (19)

The threshold is set to a desired level of accuracy required

for the reduced order model.

Then (14) is mapped to the u-domain similar to that of

(9), in which the approximated delay term (18) is substituted

to obtain an accurate reduced order TDS as described in the

following section.

B. Reduced Order Estimation

A priori reduced order estimation makes the construction

of the reduced order TDS much more efficient. The reduced

order can be estimated by studying the Hankel singular values

(HSVs) of the system. The HSVs provides a measure of energy

for each state in a system [30].

1) Zero-order Approximation Technique (ZAT): To obtain

an initial estimation for the reduced order of the TDSs we

consider a zero order approximation for the delay term i.e;

e−a j( 1+u
1−u ) ≈ e−a j (20)

Thus, approximating the system matrices of (13) with delay

as:

EZAT (u) = E0 +
k

∑
j=1

E j(e
−a j( 1+u

1−u ))≈ E0 +
k

∑
j=1

E j(e
−a j)

AZAT (u) = A0 +
k

∑
j=1

A j(e
−a j( 1+u

1−u ))≈ A0 +
k

∑
j=1

A j(e
−a j) (21)

From the decay rate of the HSVs of the system (AZAT , B, C,

D, EZAT ), the reduced order q can be estimated [31]. Then the

reduced order is increased from q by a bottom-up approach

depending on the required pre-defined accuracy.

C. Higher-Order Laguerre Approximation Technique (HLAT)

After estimating the reduced order, the transfer function (14)

of the strictly proper TDS is then written in terms of Laguerre

expansion similar to that of (9), i.e. by mapping s-domain to

u-domain

H(u) = C

(

α

(

1+u

1−u

)

ET DS(u)−AT DS(u)

)−1

B (22)

Then, (18) is substituted for the delay term in (22) such that

(21) becomes:



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I 4

ET DS(u) = E0 +
k

∑
j=1

E j(e
−a j)

( 1+
r

∑
i=1

e−a j(Li(2a j)−Li−1(2a j))u
i)

AT DS(u) = A0 +
k

∑
j=1

A j(e
−a j)

( 1+
r

∑
i=1

e−a j(Li(2a j)−Li−1(2a j))u
i).

(23)

On substituting (23) in (22) we can write the modified transfer

function in u-domain as,

Ĥ(u) = C
(

φr+1ur+1 +φru
r + ...+φ1u+φ0

)−1
B. (24)

Here φi for i = 0,1, ...,r+ 1 are the coefficients of ith power

of u, where the constant term

φ0 = α(E0 +
k

∑
j=1

E j(e
−a j))− (A0 +

k

∑
j=1

A j(e
−a j)), (25)

the coefficient of u

φ1 = α(E0 +
k

∑
j=1

E j(e
−a j)(1−2a j))

+ A0 +
k

∑
j=1

A j(e
−a j)(1+2a j), (26)

the coefficient of ui for i = 2, ...,r

φi = α
k

∑
j=1

E j(e
−a j(Li(2a j)−Li−2(2a j))

−
k

∑
j=1

A j(e
−a j(Li(2a j)−2Li−1(2a j)+Li−2(2a j))

(27)

and the coefficient of ur+1

φr+1 =
k

∑
j=1

(αE j +A j)(e
−a j(Lr(2a j)−Lr−1(2a j)). (28)

Note that different order of approximation can be chosen

for each delay thereby the coefficients of u will change

accordingly for (24). In this paper the order of approximation

is considered equal for all the delays and is equal to that of the

largest delay in the TDSs so that the accuracy is guaranteed.

In [32], [33], moment matching theorems for Krylov sub-

space based model reduction of higher order linear dynamical

systems are presented in the context of higher order Krylov

subspaces.

For a transfer function of the form,

H(s) = C
(

σrs
r +σr−1sr−1 + ...+σ1s+σ0

)−1
B. (29)

The rth order Krylov subspace is defined as

Kq(G1,G2, ...,Gr,L) = colspan [P0,P1, ...,Pq−1], (30)

where L = σ−1
0 B and Gi = σ−1

0 σi for i = 1,2, ...,r and

P0 = L; Pi = 0 for i < 0

Pi = G1Pi−1 + ...+GrPi−r, (31)

This subspace is a generalization of Krylov subspaces for

higher order systems and eliminates the linearization step of

rewriting the higher-order system in an equivalent first-order

form to prove moment-matching properties. However, to match

the moments of an r-th order model, the matrix σ0 should be

invertible. Thus, (24) can be inferred as Padé approximation

of the modified transfer matrix in the u-domain.

Thereby, the higher order Krylov subspace Kq is defined as

in (30), with L = φ−1
0 B and Gi = φ−1

0 φi for i = 1,2, ...,r+1.

The column-orthogonal matrix Q for congruence transforma-

tion is found through the singular value decomposition (SVD)

approach i.e;

UΣVT = SV D(Kq(G1,G2, ...,Gr,L)) (32)

Thus Q is equal to the left SVD column-orthogonal factor

U of dimension n × q associated with the (r + 1)th Krylov

subspace.

The column-orthogonal matrix Q thus yields reduced or-

der state-space matrices through congruence transformation

described by

A0r = QT A0Q , Ajr
= QT AjQ,

E0r = QT E0Q , Ejr
= QT EjQ,

Br = QT B , Cr = CQ, (33)

such that the reduced-order transfer matrix Hr(s) is

Hr(s) = Cr(s(E0r +
k

∑
j=1

Ejr
e−sτ j)

− (A0r +
k

∑
j=1

Ajr
e−sτ j))−1Br (34)

The algorithmic steps of the proposed techniques is shown

as a flowchart in Fig. 1.

Concerning the complexity of the proposed technique, it

can be noted that the most expensive step is related to ZAT

for an initial guess of the reduced order and its complexity is

O(n3) with n equal to the actual order of the system. If the

order of the system n is larger than 3000, then its advisable

to estimate the order using the bottom-up approach. Next, the

higher-order Krylov subspace is computed and the SVD has to

be performed to obtain the column-orthogonal matrix Q (32),

which has a complexity of O(4n2q) where q is the column

size of the Q matrix.

IV. NUMERICAL RESULTS

The numerical simulations were performed on a Windows 7

platform on Intel(R) Core(T M)2 Duo P8700 2.53 GHz machine

with 2 GB RAM and has been implemented in Matlab R2010a.

Error criteria

The reduced order estimation using ZAT as described in

Section III-A depends on the pre-defined accuracy required.
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Fig. 1. Flowchart of the proposed algorithm.

For this paper, the weighted RMS error is used to assess the

accuracy of the reduced order model with a target accuracy of

0.001.

The weighted RMS error between the original frequency

response Hi j and the reduced order model Hr,(i j) is defined as:

Err =

√

√

√

√∑
Ks
k=1 ∑

Pin
i=1 ∑

Pout
j=1

|Hr,(i j)(sk)−H(i j)(sk)|2
W(i j)(sk)

PinPout Ks

W(i j)(sk) = |H(i j)(sk)|2. (35)

In (35) Ks, Pin and Pout are the number of frequency samples,

input and output ports of the system, respectively.

The results obtained using the proposed technique is vali-

dated by comparing with Augmented MOR [5] and multiorder

Arnoldi MOR [13].

A. Backplane Vias (BPV)

A simple backplane via is considered [34] which consists of

a probe launch, the differential via, which includes the through

part and the stub part, and the uniform stripline section. A

simple topology that includes these features is shown in Fig. 2.

Each probe launch is composed of four uniform transmission

line elements which is modeled using the conventional lumped

model as in [21]. The via model is the simplest possible

model and the uniform stripline structure is modeled using

the method of characteristics [5] as a simple, dual lossless

stripline based on the geometry as described in [34], [35].

Then the TDSs is constructed as a linear interconnect

network with a set of TLs as elaborated in [5]. For the

modeling, the per-unit-length (PUL) parameter matrices of the

TLs are extracted utilizing the approaches described in [1].

Fig. 2. BPV: Block Diagram of backplane vias.

The order of the original model is 1448 with τmax = 0.057ns.

The Laguerre parameter α for the proposed technique is 38πe9

and the expansion point for the comparison technique is set

to half of the maximum frequency.

Fig. 3 plots the HSVs of the approximated TDS, from which

an initial guess for the reduced order of the TDSs is obtained.

Fig. 3. BPV: Hankel Singular Values (state contributions) of the approximated
model using ZAT.

Fig. 4 and Fig. 5 plots the magnitude and phase of S14(s)
of the original model with reduced order models of order 387

obtained using the proposed technique.

Table I compares the efficiency of the different techniques

for achieving a weighted RMS error (35) smaller than 0.001

with 201 frequency samples in the range [1-10] GHz. For

both the techniques the delays are approximated to an order



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I 6

Fig. 4. BPV: Magnitude of S14.

Fig. 5. BPV: Phase of S14.

of 7 and is obtained by setting a threshold of 0.01 for (19). If

we consider a higher threshold then we might not be able to

obtain an accuracy of 0.001 for the reduced order TDSs. Fig. 6

shows the approximation curve for τmax = 0.057ns considering

r=2,5,7.

In Table I the CPU time for the proposed technique includes

the time for the reduced order estimation and the time for

generating the reduced TDSs, while that for the multiorder

Arnoldi is with a bottom-up approach for generating the

reduced order TDSs with the required accuracy. The technique

presented in [5] using augmented first order systems could not

be used for the comparison due to memory limitations.

Table II compares the total size and simulation times of

the original and proposed algorithm. For this example, the

simulation time of the reduced order TDSs is about 388 times

faster when compared to the original system.

Thus the proposed method is more efficient, and it also

TABLE I
BPV: EFFICIENCY COMPARISON FOR ACHIEVING A

WEIGHTED RMS ERROR OF 0.001

Technique Multiorder Arnoldi [13] Proposed

Initial Order 1448 1448

Order of delay approximation 7 7

Reduced Order 388 387

CPU time (sec) 897.7 702.2

Fig. 6. BPV: Approximation of the delay term.

provides a compact model with the Laguerre expansion.

B. RLC Network With Delay Elements

A system consisting of two lossless multiconductor trans-

mission lines (MTLs) and three RLC networks has been

modeled ( see Fig. 7). The detailed procedures of constructing

such TDSs are elaborated in [5]. Each MTL block is composed

of three conductors and it has a length equal to 2 cm in total

and the RLC network has a length of 1.5 cm in total.

The order of the original network is 2625 with τmax =
0.02ns. The frequency range of interest for this system is [0-6]

GHz. The Laguerre parameter α for the proposed method is

24πe9 and the expansion point for the compared techniques

is set to half of the maximum frequency.

The reduced order is estimated as described in Section III-B,

from the HSVs of the approximated TDSs.

Fig. 9 - Fig 10 compares the magnitude and phase of the

original and Laguerre-based reduced delayed model Y14(s). A

good agreement is obtained between the original and reduced

model.

Table III compares the efficiency of the different techniques

for achieving a weighted RMS error (35) smaller than 0.001

with 201 frequency samples in the range [0-6] GHz. As in

the former example for a threshold of 0.01 for (19), the order

of approximation for the delay is 5 for both the techniques.
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TABLE II
BPV: COMPUTATIONAL INFORMATION

Solution method Size CPU Time for
generating the re-
duced TDSs

Simulation Time

Original System 1448 2406.82

Proposed 387 702.2 6.21

Fig. 7. Schematic of RLC network including delay elements.

The CPU time for the proposed technique includes the time

for the reduced order estimation and the time for generating

the reduced TDSs, while that for the multiorder Arnoldi is

with a bottom-up approach for generating the reduced order

TDSs with the required accuracy. The technique presented in

[5] using augmented first order systems could not be used for

the comparison due to memory limitations.

TABLE III
RLC: EFFICIENCY COMPARISON FOR ACHIEVING A

WEIGHTED RMS ERROR OF 0.001

Technique Multiorder Arnoldi [13] Proposed

Initial Order 2625 2625

Order of delay approximation 5 5

Reduced Order 212 213

CPU time (sec) 934.70 896.73

TABLE IV
RLC: COMPUTATIONAL INFORMATION

Solution method Size CPU Time for
generating the re-
duced TDSs

Simulation Time

Original System 2625 3409.42

Proposed 213 896.73 3.48

Similar to the previous example Table IV compares the

total size and simulation times of the original and proposed

Fig. 8. RLC: Hankel Singular Values (state contribution) of the approximated
model using ZAT.

Fig. 9. RLC: Magnitude of Y14.

algorithm and the simulation time of the reduced order TDSs is

about 980 times faster when compared to the original system.

Thus, from the above results we see that the proposed

technique is able to reduce TDS more efficiently to achieve

the required accuracy using Laguerre expansion.

V. CONCLUSION

In this paper, we have presented a novel model order

reduction method for large linear networks that contain delay

elements. The algorithm is based on higher order Krylov sub-

space for model order reduction of time-delay systems based

on a Laguerre expansion technique.The proposed technique

consists of two parts: 1) the delays are approximated using

recursive relation of Laguerre polynomial then 2) the reduced

order is estimated for the time-delay system using a smart



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I 8

Fig. 10. RLC: Phase of Y14.

truncation of the delay term and 3) a higher order Krylov

subspace is computed using Laguerre expansion for obtaining

the congruence-based reduced order time-delay system. The

proposed technique is validated by real world examples for its

efficiency and accuracy.

/
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