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ABSTRACT 

Computational fluid dynamics modeling has been widely applied to study 

flow and heat transfer problems in nuclear engineering. However, due to the 

prohibitively high computation cost, fast or real-time solution of nontrivial 

problems is still a challenging task under context of many-quires. Model 

order reduction is an efficient way to achieve significant speedup. For the 

turbulent mixed heat transfer problems, the Proper Orthogonal 

Decomposition (POD)-Galerkin projection method is introduced and then 

applied to solve the problem of non-isothermal mixing in a T-junction pipe 

with the inlet velocities treated as parameters. It is shown that a speedup of 

two orders of magnitude has been achieved. For new parameters out of the 

scope of the samples, the reduced order model still can give satisfactory 

results. 

 
 

1. INTRODUCTION  
With tremendous advances in computational power, computational fluid dynamics (CFD) has 
gained wide applications in the study of flow and heat transfer problems in nuclear 
engineering. However, CFD simulations often face great computational challenges 
considering finely resolved grids have to be used for the nontrivial transient applications. As 
early as 2012, the CASL (Consortium for the Advanced Simulation of Light Water Reactors) 
project attempted to couple the commercial CFD software, i.e., STAR-CCM+, and the 
neutronics software to simulate the flow and the heat transfer behavior of a 1/4 reactor core 
[1]. Due to the large scale of the problem, the computation took 10,000 CPU cores and 1 TB 
of memory. A recent study applied the CFD simulation to study the thermal shock of a reactor 
pressure vessel [2]. The simulation of a 300s transient process took about 200 hours 
(Hardware: 64 cores, 64 GB memory; Software: STAR-CCM+). Obviously, it is impractical 
to conduct parametric studies or do optimal design by using the costly CFD simulations. 
Despite the great advances in computation power in recent years, it is still difficult to achieve 
a speedup of several orders of magnitude just through parallel computation considering the 
limitation imposed by the communication overhead between nodes [3]. 

Conducting parametric studies and investigating major effects are the main purpose of 
numerical modelling. When conducting parametric studies, the underlying governing equation 
of the problem remains the same but the physical parameters (e.g., viscosity coefficient), 
boundary conditions (e.g., inlet velocity and temperature) and even the spatial domain (e.g., 
the diameter of the inlet) may change for each simulation. If the coefficients or the boundary 
conditions are considered as parameters, such problems can be described by a parameterized 
governing equation. 
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The most straightforward means of speeding up the solution of parametric problems is to apply 
model order reduction (MOR) methods to reduce the number of unknowns to be solved [4]. 
The basic idea of model order reduction is to project a full order model (FOM) containing 
large number of degrees of freedom (DOFs) into a low-order subspace, transforming a 
complex full order model into a reduced order model (ROM) containing only much fewer 
degrees of freedom. The most widely used model order reduction method for linear problems 
is the reduced basis finite element method [5]. However, when the nonlinear model described 
by the Navier-Stokes (N-S) equation is treated by the reduced basis finite element method, the 
inner product of the transport term and the reduced basis function leads to a trilinear term, 
which poses great difficulties in deriving the reduced order model [6]. Unlike the finite 
element method, the finite volume method integrates the governing equation directly within 
the control volume without defining the test function and the local stabilization term. 
Therefore, the model order reduction methods based on the finite volume method are more 
suitable for the flow problems. 

Proper orthogonal decomposition (POD) and greedy algorithm (GA) are the two most 
commonly used methods for constructing the low-order subspaces. The former directly 
analyzes the typical solution snapshots while the latter requires a posteriori error estimator. 
The basic principle of the POD method is to use singular value decomposition (SVD) to filter 
out the most representative modes from the solution snapshots collected at different moments 
and parameters. Then an orthogonal basis 𝜓𝜓 = [𝜓𝜓1,𝜓𝜓2, … ,𝜓𝜓𝑁𝑁] is constructed by using, for 
example, the Gram-Schmidt process [7]. The full order solution can thus be represented by a 
linear combination of the small set of basis functions as shown in Eq. (1), 
 

𝑢𝑢𝑛𝑛 = ∑ 𝛼𝛼𝑖𝑖𝜓𝜓𝑖𝑖𝑁𝑁
𝑖𝑖=0                                                         (1) 

 
The freedom of the model is greatly reduced by using the basis function with global 

support. 
The model order reduction methods built upon the POD can be divided into the non-

intrusive methods and the intrusive methods. The non-intrusive methods do not depend on the 
governing equation and essentially build a surrogate model between the input data and the 
output data. Within the context of POD, the surrogate model is usually used to obtain the 
decomposition coefficient (i.e. 𝛼𝛼𝑖𝑖 in Eq. (1)) for the solution of a new parametric 
configuration. Radial basis function (RBF) and Kriging are two popular methods for 
construction of surrogate models [8,9]. The non-intrusive reduced order model, although 
simple to construct and fast to compute, is essentially a fitting of the decomposition 
coefficients and may produce large errors when solving transient problems. On the other hand, 
the intrusive method still requires solving the governing equations commonly projected onto 
the subspace spanned by the POD basis [10]. The intrusive reduced order model retains the 
physical properties of the original problem. So its mathematical form is more rigorous and the 
accuracy is usually higher even the new parameters are out of the scope for sampling the 
solution snapshots. Use of the POD-Galerkin projection method to construct reduced order 
models for flow problems has received much attention in recent years [11]. 
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Compared to the applications in engineering fields such as the mechanical engineering 
and the aerospace engineering, application of the model order reduction method in nuclear 
engineering is rather limited. This paper investigates the model order reduction of a typical 
problem in nuclear engineering, i.e., turbulent mixed heat transfer, within the framework of 
finite volume method. The Reynolds averaged Navier-Stokes (RANS) equations are projected 
on the subspace spanned by the POD basis with the inlet conditions treated as parameters. 
Finally, the accuracy and the efficiency of the reduced order model of a T-Junction of pipes 
are studied. The results show a speedup of two orders of magnitude is achieved with 
acceptable accuracy. Finally, the predictive capability of the reduced order model is evaluated 
and discussed. 
 
2 GOVERNING EQUATION AND POD-GALERKIN PROJECTION 
METHOD 
2.1 Governing equation 
For the problem of turbulent mixed heat transfer of the incompressible fluid (only passive heat 
transfer is considered in this paper), the governing equations are given in Eq. (2) - (4), 
 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜌𝜌𝑈𝑈 + 𝛻𝛻 ⋅ (𝜌𝜌𝑈𝑈⊗𝑈𝑈) = 𝛻𝛻 ⋅ �2𝑣𝑣eff𝐷𝐷 − 2

3
𝑣𝑣eff(𝛻𝛻 ⋅ 𝑈𝑈)𝐼𝐼� − 𝛻𝛻 ⋅ (𝑝𝑝∗𝐼𝐼)                   (2) 

 
𝛻𝛻 ⋅ 𝑈𝑈 = 0                                                           (3) 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
�                                             (4) 

 
where 𝑈𝑈 is the time-averaged velocity field, 𝑇𝑇 is the temperature, 𝐷𝐷� is the Renault mean strain 
rate tensor, 𝜌𝜌 is the density, and 𝐼𝐼 is the unit matrix. 𝜈𝜈𝑒𝑒𝑒𝑒𝑒𝑒 is the effective turbulent viscosity 
defined as 𝜈𝜈𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜈𝜈t + 𝜈𝜈1 of which 𝜈𝜈𝑡𝑡 is the turbulent viscosity and 𝜈𝜈1 is the molecular turbulent 
viscosity. 𝑝𝑝∗ is the pressure field modified by the RANS model. 𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 is the effective turbulent 
thermal diffusion coefficient defined as 𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 = 𝛼𝛼𝑡𝑡+𝛼𝛼1 of which 𝛼𝛼𝑡𝑡 is the turbulent thermal 
diffusion coefficient and 𝛼𝛼1 is the molecular turbulent thermal diffusion coefficient. The two 
coefficients are respectively defined as 𝛼𝛼𝑡𝑡 = 𝜈𝜈𝑡𝑡

𝑝𝑝𝑟𝑟𝑡𝑡
 and 𝛼𝛼1 = 𝜈𝜈1

𝑝𝑝𝑟𝑟
 where 𝑝𝑝𝑟𝑟𝑡𝑡 is the turbulent Prandtl 

number and 𝑝𝑝𝑟𝑟 is the molecular turbulent Prandtl number. 
In addition, the boundary conditions and the initial conditions are given in Eq. (5), 
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𝑢𝑢(𝑡𝑡, 𝑥𝑥) = 𝑓𝑓(𝑥𝑥) 𝑜𝑜𝑜𝑜 𝛤𝛤ln × [0,𝑇𝑇]
𝑢𝑢(𝑡𝑡, 𝑥𝑥) = 0

𝑇𝑇(𝑡𝑡, 𝑥𝑥) = h(𝑥𝑥)
𝛻𝛻𝛻𝛻(𝑡𝑡, 𝑥𝑥) ⋅ 𝑛𝑛 = 0

 
𝑜𝑜𝑜𝑜 𝛤𝛤0 × [0,𝑇𝑇]
𝑜𝑜𝑜𝑜 𝛤𝛤ln × [0,𝑇𝑇]
𝑜𝑜𝑜𝑜 𝛤𝛤0 × [0,𝑇𝑇]

(𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑝𝑝𝑝𝑝)𝑛𝑛 = 0 𝑜𝑜𝑜𝑜 𝛤𝛤out × [0,𝑇𝑇]
𝑢𝑢(0, 𝑥𝑥) = g(𝑥𝑥)  in T0 
𝑇𝑇(0, 𝑥𝑥) = k(𝑥𝑥)  in T0

                                          (5) 

 
where 𝛤𝛤 = 𝛤𝛤𝑙𝑙𝑙𝑙 ∪ 𝛤𝛤𝑜𝑜𝑜𝑜𝑜𝑜 ∪ 𝛤𝛤0, and 𝛤𝛤𝑙𝑙𝑙𝑙, 𝛤𝛤𝑜𝑜𝑜𝑜𝑜𝑜 and 𝛤𝛤0 are the inlet, the outlet and the solid wall 
boundaries, respectively. The function f(x) represents the inhomogeneous boundary condition 
of the velocity field, g(x) represents the initial condition of the velocity field at moment 0, 
h(x) represents an inhomogeneous boundary condition of the temperature field, and k(x) 
represents the initial condition of the temperature field at moment 0. 

 
2.2 Introduction of POD 
The POD method was first applied to study the pseudo-sequential structure in turbulent flows 
[12]. After decades of development, the POD method has become a common method for 
building reduced order model and has found many applications in hydromechanics, heat 
transfer and other fields [13-15].  

Before applying the POD technique, it is necessary to prepare sufficient sample data, i.e. 
the flow and the temperature fields of different parametric configurations at different 
moments. These field data are called snapshots and can be obtained from full order CFD 
simulations or experimental measurements. The matrix of snapshots consisting of a series of 
snapshots is represented as U ∈ ℛ𝑛𝑛×𝑛𝑛𝑠𝑠, where 𝑛𝑛𝑠𝑠 is the number of snapshots (i.e., one snapshot 
is stored as a column vector) and n is the length of each snapshot. U can be decomposed as 
shown in Eq. (6), 
 

𝑈𝑈 = 𝑋𝑋ΣY𝑇𝑇                                                             (6) 
 
where the columns of the matrices X ∈ ℛ𝑛𝑛×𝑛𝑛𝑠𝑠 and Y ∈ ℛ𝑛𝑛𝑠𝑠×𝑛𝑛𝑠𝑠 are the left and the right 
singular vectors of U, respectively, and Σ∈Rns×ns=diag(σ1,σ2,…,σns) is the singular values 
of U where 𝜎𝜎1 ≥ 𝜎𝜎2 ≥ ⋯ ≥ 𝜎𝜎𝑛𝑛𝑛𝑛.The POD modes 𝜓𝜓 = [𝜓𝜓1,𝜓𝜓2, … ,𝜓𝜓𝑁𝑁] are defined as N 
leftmost singular vectors of U, which correspond to the N largest singular values, respectively. 
POD provides an efficient low-dimensional representation of the snapshot data and the POD-
basis is optimal in an ℓ2 sense over the parameter space. It can be rigorously demonstrated 
that the square of the reconstruction error is equal to the first discarded singular value [7]. 
Therefore, the singular values are the main indicator for selection of the POD modes. 
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2.3 POD-Galerkin projection method 
After obtaining the dominant modes of the system, the velocity field, the pressure field, and 
the temperature field can be expressed as a linear combination of these POD modes as shown 
in Eq. (7) – (9), 
 

𝑈𝑈(𝑥𝑥, 𝜇𝜇, 𝑡𝑡) ≈ 𝑈𝑈𝑠𝑠 = ∑ 𝛼𝛼𝑖𝑖
𝑁𝑁𝑢𝑢𝑠𝑠
𝑖𝑖=1 (𝜇𝜇, 𝑡𝑡)𝜙𝜙𝑖𝑖(𝑥𝑥)                                          (7) 

 

𝑝𝑝(𝑥𝑥, 𝜇𝜇, 𝑡𝑡) ≈ 𝑝𝑝𝑠𝑠 = ∑ 𝑏𝑏𝑗𝑗
𝑁𝑁𝑝𝑝𝑠𝑠

𝑗𝑗=1 (𝜇𝜇, 𝑡𝑡)𝜓𝜓𝑗𝑗(𝑥𝑥)                                          (8) 
 

𝑇𝑇(𝑥𝑥, 𝜇𝜇, 𝑡𝑡) ≈ 𝑇𝑇𝑠𝑠 = ∑ 𝑐𝑐𝑘𝑘
𝑁𝑁𝑇𝑇
𝑠𝑠

𝑘𝑘=1 (𝜇𝜇, 𝑡𝑡)𝜒𝜒𝑘𝑘(𝑥𝑥)                                          (9) 
 
𝜙𝜙𝑖𝑖(𝑥𝑥), 𝜓𝜓𝑖𝑖(𝑥𝑥) and 𝜒𝜒𝑖𝑖(𝑥𝑥) are the POD modes obtained by decomposing the snapshot matrix. 
α(µ,t), b(µ,t) and c(µ,t) are the decomposition coefficients of the velocity field, the pressure 
field and the temperature field, respectively. 𝑁𝑁𝑢𝑢𝑠𝑠, 𝑁𝑁𝑝𝑝𝑠𝑠 and 𝑁𝑁𝑇𝑇𝑠𝑠 are the number of the POD modes 
of the three fields. µ is the vector of the parameters of the system (e.g., inlet velocity, inlet 
temperature, etc.). 

The momentum equations are then projected onto the subspace spanned by the velocity 
modes, the continuous equation onto the subspace spanned by the pressure modes and the 
scalar transport equation onto the subspace spanned by the temperature modes as shown in 
Eq. (10) – (12), 
 

�𝜙𝜙𝑖𝑖(𝑥𝑥), 𝜕𝜕
𝜕𝜕𝜕𝜕
𝜌𝜌𝑈𝑈 + 𝛻𝛻 ⋅ (𝜌𝜌𝑈𝑈⊗𝑈𝑈) − 𝛻𝛻 ⋅ �2𝑣𝑣eff𝐷𝐷 − 2

3
𝑣𝑣eff(𝛻𝛻 ⋅ 𝑈𝑈)𝐼𝐼� + 𝛻𝛻 ⋅ (𝑝𝑝∗𝐼𝐼)�

𝐿𝐿2(𝛺𝛺)
= 0     (10) 

 
⟨𝜓𝜓𝑖𝑖(𝒙𝒙),𝛻𝛻 ⋅ 𝒖𝒖⟩𝐿𝐿2(𝛺𝛺) = 0                                                    (11) 

 

�𝜒𝜒𝑖𝑖(𝒙𝒙), 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑈𝑈𝑗𝑗
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

− 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗
��
𝐿𝐿2(𝛺𝛺)

= 0                                  (12) 

 
The RANS equations (i.e. Eq. (2)-(4)) can thus be converted into a set of ordinary 

differential equations with coefficients to be determined as shown in Eq. (13) – (23), 
 

𝑀𝑀𝛼𝛼
.

+ 𝛼𝛼𝑇𝑇𝑄𝑄𝑄𝑄 − 𝑣𝑣eff 𝑄𝑄𝑇𝑇𝛼𝛼 + 𝑃𝑃𝑃𝑃 = 0                                              (13) 
 

Rα = 0                                                                 (14) 
 

𝐾𝐾𝑐𝑐
.

+ 𝛼𝛼𝑇𝑇𝐺𝐺𝐺𝐺 − 𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 𝑁𝑁𝑁𝑁 = 0                                                  (15) 
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where 
 

(𝑀𝑀)𝑖𝑖𝑖𝑖 = �𝜙𝜙𝑖𝑖 ,𝜙𝜙𝑗𝑗�𝐿𝐿2(𝛺𝛺)
                                                     (16) 

 
(𝑄𝑄)𝑖𝑖𝑖𝑖𝑖𝑖 = �𝛻𝛻 ⋅ �𝜙𝜙𝑖𝑖 ⊗ 𝜙𝜙𝑗𝑗�,𝜙𝜙𝑘𝑘�𝐿𝐿2(𝛺𝛺)

                                           (17) 

 
(𝑄𝑄)𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖= �𝛻𝛻 ⋅ 𝜉𝜉𝑖𝑖�𝛻𝛻𝜙𝜙𝑗𝑗�,𝜙𝜙𝑘𝑘�𝐿𝐿2(𝛺𝛺)

                                          (18) 

 
(𝑃𝑃)𝑖𝑖𝑖𝑖 = �𝛻𝛻𝜓𝜓𝑖𝑖 ,𝜙𝜙𝑗𝑗�𝐿𝐿2(𝛺𝛺)

                                                   (19) 

 
(𝑅𝑅)𝑖𝑖𝑖𝑖 = �𝛻𝛻 ⋅ 𝜙𝜙𝑖𝑖 ,𝜓𝜓𝑗𝑗�𝐿𝐿2(𝛺𝛺)

                                                 (20) 

 
(𝐾𝐾)𝑖𝑖𝑖𝑖 = �𝜒𝜒𝑖𝑖 ,𝜒𝜒𝑗𝑗�𝐿𝐿2(𝛺𝛺)

                                                    (21) 

 
(𝐺𝐺)𝑖𝑖𝑖𝑖𝑖𝑖 = �𝛻𝛻 ⋅ �𝜙𝜙𝑖𝑖𝜒𝜒𝑗𝑗�,𝜒𝜒𝑘𝑘�𝐿𝐿2(𝛺𝛺)

                                            (22) 

 
(𝑁𝑁)𝑖𝑖𝑖𝑖 = �𝛥𝛥𝜒𝜒𝑖𝑖 ,𝜒𝜒𝑗𝑗�𝐿𝐿2(𝛺𝛺)

                                                   (23) 

 
Considering the above reduced matrix are precomputed low-order matrices, the degrees of 

freedom of the reduced order model (i.e., Eq. (13)-(15)) are greatly reduced. 
For the RANS model, the turbulent viscosity can be decomposed into a linear combination 

of its POD modes in the same way as shown in Eq. (24), 
 

𝑣𝑣𝑡𝑡(𝑥𝑥, 𝜇𝜇, 𝑡𝑡) ≈ 𝑣𝑣𝑡𝑡𝑠𝑠 = ∑ 𝑙𝑙𝑖𝑖
𝑁𝑁𝑣𝑣𝑡𝑡
𝑠𝑠

𝑖𝑖=1 (𝜇𝜇, 𝑡𝑡)𝜉𝜉𝑖𝑖(𝑥𝑥)                                         (24) 
 
where ξ(x) and l(µ,t) denote the POD modes of turbulent viscosity and the corresponding 
coefficient. Considering that multiple forms of turbulence models (e.g., Spalart-Allmaras, k-
ε, k-ω, etc.) [16] are available and that turbulence mainly introduces a new term in the 
momentum equation that approximates the vortex viscosity, it is enough to reduce the 
turbulent viscosity field only. To achieve a separation of reduced turbulent viscosity field from 
the specific turbulence model, the interpolation by using radial basis functions (RBFs) instead 
of the POD-Galerkin projection is applied in the present study. The basic form of the RBF 
interpolation is given in Eq. (25), 
 

𝑙𝑙𝑖𝑖(𝜇𝜇) = ∑𝑤𝑤𝑚𝑚𝜍𝜍(|𝜇𝜇 − 𝜇𝜇𝑚𝑚|)                                                (25) 
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where 𝑙𝑙𝑖𝑖 is the coefficient in Eq. (24), 𝜇𝜇 is the parameter vector and 𝜇𝜇𝑚𝑚 is the m-th sample 
parameter, 𝜍𝜍(𝑥𝑥) is the kernel function and 𝑤𝑤𝑚𝑚 is the weight. For each sample parameter 𝜇𝜇𝑚𝑚, 
the corresponding coefficient 𝑙𝑙𝑖𝑖(𝜇𝜇𝑚𝑚) is known. So, the weight 𝑤𝑤𝑚𝑚 can be determined by 
solving a simple linear set of equations. For each new parameter vector (e.g., different 
moments or different boundary conditions), the POD decomposition coefficient for turbulent 
viscosity can be quickly obtained by Eq. (25). The form of the kernel function selected in this 
paper is given in Eq. (26), 
 

𝜁𝜁(𝑟𝑟) = (𝑟𝑟2 + 𝑟𝑟02)1 2⁄                                                      (26) 
 
where the parameter 𝑟𝑟0 controls the region of influence of the kernel function. 
 
2.4 Parameterization of boundary conditions 
The main purpose of model order reduction is not to reconstruct known solutions, but to 
quickly solve solutions of new configurations. The homogeneous boundary conditions are 
included in the governing equations after projection and therefore do not require special 
treatment. For models that contain parametrized inhomogeneous boundary conditions, a 
lifting function can be used to homogenize the solution so that the boundary conditions can 
be separated from the snapshot matrix. For example, the homogeneous velocity field can be 
expressed as Eq. (27), 
 

𝑢̄𝑢′(𝑥𝑥, 𝜇𝜇, 𝑡𝑡) = 𝑢̄𝑢(𝑥𝑥, 𝜇𝜇, 𝑡𝑡) −∑ 𝑢𝑢𝐷𝐷𝑗𝑗
𝑁𝑁𝐵𝐵𝐵𝐵
𝑗𝑗=1 (𝜇𝜇, 𝑡𝑡)𝜙𝜙𝑐𝑐𝑗𝑗(𝑥𝑥)                           (27) 

 
where 𝑁𝑁𝐵𝐵𝐵𝐵 is the number of boundary conditions, 𝑢𝑢𝐷𝐷𝑗𝑗 is the velocity on the boundary, 𝜑𝜑𝑐𝑐 is 
the lift function at each boundary which takes the value of 1 at the boundary and 0 at other 
locations. The procedure is shown in the pseudo-code of Algorithm 1. 

 
 

The POD decomposition of the homogeneous snapshot matrix yields the dominant modes 
of each field. And then the homogeneous solution of a new parameter can be obtained by 
solving the reduced order model (i.e., Eqs. (13)-(15)). Finally, the inhomogeneous solution 
can be recovered by imposing the boundary conditions through the lifting function. For 
example, for the velocity field as shown in Eq. (28), 
 

U(x, μ, 𝑡𝑡) = ∑ u𝐷𝐷𝑗𝑗
𝑁𝑁𝐵𝐵𝐵𝐵
𝑗𝑗=1 (μ, 𝑡𝑡)𝜙𝜙𝑐𝑐𝑗𝑗 + ∑ 𝛼𝛼𝑖𝑖

𝑁𝑁𝑢𝑢𝑠𝑠
𝑖𝑖=1 (𝑡𝑡, 𝜇𝜇)𝜙𝜙𝑖𝑖(x)                         (28) 
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Algorithm 1 Parameterization of boundary conditions 

input: 𝑁𝑁𝐵𝐵𝐵𝐵,𝛤𝛤𝐷𝐷=⋃𝑖𝑖=1
𝑁𝑁𝐵𝐵𝐵𝐵𝛤𝛤𝐷𝐷𝑖𝑖,𝑁𝑁𝑠𝑠

𝑢𝑢=total number of snapshots 
 
output: {𝜙𝜙𝐶𝐶𝐼𝐼}𝑖𝑖=1

𝑁𝑁𝐵𝐵𝐵𝐵 
 
1: for i = 1 in 𝑁𝑁𝐵𝐵𝐵𝐵 
2: for j = 1 in 𝑁𝑁𝐵𝐵𝐵𝐵 
3: if i == j then 𝑢𝑢|𝛤𝛤𝐷𝐷𝑖𝑖=1 else  𝑢𝑢|𝛤𝛤𝐷𝐷𝑖𝑖=0 
4: end for 
5: for k = 1 in 𝑁𝑁𝑠𝑠𝑢𝑢 
6: Find the full order solution 𝑢𝑢𝑖𝑖𝑖𝑖 
7: end for 
 
8: 𝜙𝜙𝐶𝐶𝐼𝐼=

1
𝑁𝑁𝑠𝑠𝑢𝑢
∑ 𝑢𝑢𝑖𝑖𝑖𝑖
𝑁𝑁𝑠𝑠𝑢𝑢
𝑙𝑙=1  

 
9: end for 
 
3 TEST AND RESULTS 
The above method is verified using the non-isothermal mixing in a T-junction pipe with the 
inlet velocities treated as parameters (Fig. 1). The diameter of the main pipe is 𝐷𝐷𝑚𝑚=160mm 
and the diameter of the branch pipe is 𝐷𝐷𝑏𝑏=40mm. The total length of the main pipe is 
𝐿𝐿𝑚𝑚=1.2m. The bending radius is 𝐿𝐿𝑏𝑏=160mm. The branch pipe is located at 0.5𝐿𝐿𝑚𝑚. Γ𝑙𝑙𝑙𝑙1, Γ𝑙𝑙𝑙𝑙2, 
Γ𝑜𝑜𝑜𝑜𝑜𝑜, Γ0 are respectively the boundaries of the main pipe inlet, the branch pipe inlet, the main 
pipe outlet and the solid wall. The boundary conditions are listed in Table 1. In order to test 
the predictive capability of the reduced order model, the snapshot matrix is prepared by 
collecting the solution snapshots only with the boundary conditions shown Table 1. The 
reduced order model are built upon the POD modes and then used to obtain the solutions at 
other inlet velocities. 

The full order model is solved using the open source CFD software OpenFOAM and the 
coupling of the flow and the passive heat transfer models (i.e., Eq (4)) is achieved by 
modifying the pisoFoam solver. The convection term is discretized by the second-order 
upwind and central difference scheme. 
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The diffusion term is discretized by the second-order central difference scheme. And the 
temporal term is discretized by the first-order backward Euler scheme. The two-equation k-ω 
model is adopted for the turbulence term. The total simulation time is 50s and the time step is 
0.05s. The relative error of the reduced order model with respect to the full order model is 
defined as shown in Eq. (29), 
 

 
Fig.1 Computational mesh of the T-junction pipe 

 
Table 1 The boundary conditions 
 Γ0 Γ𝑙𝑙𝑙𝑙1 Γ𝑙𝑙𝑙𝑙2 Γ𝑜𝑜𝑜𝑜𝑜𝑜 
Velocity ▽u=0 (0.6,0,0) (0,1.2,0) ▽u·n=0 
Pressure ▽p·n=0 ▽p·n=0 ▽p·n=0 0 
Temperature ▽t·n=0 60 70 ▽t·n=0 
 

𝜖𝜖∞(𝑡𝑡) =
‖𝑋𝑋𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)−𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡)‖𝐿𝐿2(𝛺𝛺)

‖𝑋𝑋𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)‖𝐿𝐿2(𝛺𝛺)
                                  (29) 

 
It is found that that an interval of 0.1s is accurate enough for collecting the solution 

snapshots. Figure 2 shows the cumulative energy errors of the velocity field, the temperature 
field, the pressure field and the turbulent viscosity field after POD decomposition. The 
required numbers of modes for the velocity field, the temperature field, the pressure field, and 
the turbulent viscosity field are respectively 20, 10, 5 and 25 if the truncation error is set to be 
10-4. 
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Table 2 Comparison between the solutions of the full order model (FOM) and the 
reduced order model (ROM) at t=50s 

Field FOM ROM 

Velocity 

  

Pressure 

  

Temperature 

  

Viscosity 
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Fig.2 Error of cumulative energy for temperature, velocity, pressure and viscosity 

 

 
Fig.3 Error for different velocity inlet conditions. v1 is the inlet velocity of main pipe 
and v2 is the inlet velocity of branch pipe 
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The flow and the temperature fields with other different boundary conditions are solved 
using the reduced order model. The maximum error of the velocity field with is shown in 
Figure 3. For the boundary conditions with an inlet velocity of 0.8 m/s and a branch pipe inlet 
velocity of 1.6 m/s, the solutions obtained by the reduced order model are compared with 
those obtained by the full order model (Table 2). It can be seen that the reduced order model 
constructed using the POD-Galerkin method shows good stability and satisfactory predictive 
capability. 

In these calculations, the full order model takes about 232.6 seconds (single-core CPU, 
32G memory) while the reduced order model takes only 3.3 seconds. A speedup of 2 orders 
of magnitude has been achieved. 

In this paper, the solution snapshots are collected from only one set of parameters as shown 
in Table 1. It is anticipated when the new parameters are closer to the sampled parameters, the 
built reduced order model can yield accurate results (Fig.3). However, the accuracy of the 
reduced order model decreases when the new parameters are far from the sampled parameters. 
To further improve the accuracy of the reduced order model, it is a standard practice to collect 
the solution snapshots at multiple sets of parameters. 
 
4 CONCLUSIONS 
The POD-Galerkin projection method is an accurate and efficient method for solving 
parametric problems under many-queries context. In this paper, a model order reduction 
technique for a typical problem in nuclear engineering, i.e., the mixed turbulent heat transfer, 
is investigated. It is shown that a speedup of two orders of magnitude has been achieved. 

The classical POD method usually requires a large snapshot matrix and multiple full order 
solutions have to be prepared. For large-scale industrial problems, however, every solution is 
very expensive. Further work may combine the greedy algorithm and the surrogate error 
model to develop an efficient sampling method. 
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