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1. INTRODUCTION 

Regression models are powerful tools frequently used to predict a dependent 
variable from a set of predictors. They are widely used in a number of different 
contexts. An important problem is whether results of the regression analysis on 
the sample can be extended to the population the sample has been chosen from. 
If this happens, then we say that the model has a good fit and we refer to this ques-
tion as a goodness-of-fit analysis, performance analysis or model validation analysis for the 
model (Hosmer and Lemeshow, 2000; D’Agostino et al., 1998; Harrell et al., 1996; 
Stevens, 1996). Application of modelling techniques without subsequent per-
formance analysis of the obtained models can result in poorly fitting results that 
inaccurately predict outcomes on new subjects. 

We deal with how to measure the quality of the fit of a given model and how 
to evaluate its performance in order to avoid poorly fitted models, i.e. models 
which inadequately describe the above mentioned relationship in the population. 

First we state an important preliminary assumption and the aim of our work, 
and we introduce the concept of goodness-of-fit and the principle of optimism. 
Then we illustrate a brief review of the diverse techniques of model validation. 
Next, we define a number of properties for a model to be considered “good,” 
and a number of quantitative performance measures. Lastly, we describe a meth-
odology for the assessment of the performance of a given model. 

2. GOODNESS-OF-FIT ASSESSMENT

We begin our discussion of methods for assessing the fit of an estimated logis-
tic regression model, with the assumption that we are at least preliminarily satis-
fied with our efforts at the model building stage. By this we mean that, to the best 
of our knowledge, the model contains those variables (main effects as well as in-
teractions) that should be in the model and that those variables have entered in 
the correct functional form. That is to say, we are not concerned with any model 
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building issue nor are we comparing competing models - each model is taken as it 
is and its performance is evaluated for validation purposes only. Furthermore, we 
are not investigating how possible changes of the set of covariates included in the 
model may result in larger overall significance or higher performance. 

We illustrate our approach with reference to logistic regression and we apply it 
to evaluate and validate logistic regression equations. Anyway, because our ap-
proach is not concerned with the development of the model but treats it as a 
“black box”, it can be applied to any statistical model that generates predicted 
probabilities such as, for example, classification trees and neural networks.  

As we have already mentioned, our aim is to evaluate and measure how effec-
tively the model we have describes the outcome variable both in the sample and 
in the population. Before dealing with methods for assessing the measure of 
model performance, we want to stress the reason why this phase is so important 
in any statistical analysis. 

We have seen that after deciding which covariates to include in the logistic 
model, coefficients are estimated in order to maximize the overall likelihood of 
the sample. The maximum likelihood technique used for this estimation is a 
mathematical maximization procedure, and hence there is a great opportunity for 
capitalization on chance, especially if the number of subjects is not large com-
pared to the number of variables (Stevens, 1996). As we shall see later, the result-
ing regression equation often outperforms on the sample used to fit the model, 
but it does not generalize to other samples from the same population. That is to 
say, the logistic regression equation computes the best possible event predictions 
on the sample used to fit the model, but its predictive power drops away when 
applied to an independent sample from the same population (i.e. to similar sub-
jects not included in the original sample).  

If this is the case, the model will very likely work better for the data used to fit 
it than for any other data. Analysts usually refer to this fact as the principle of opti-
mism (Picard and Cook, 1984). As a consequence, when assessing the goodness-
of-fit of a regression equation, it is not enough to evaluate how well it predicts on 
the sample used to fit the model: it is of crucial importance for the researcher to 
obtain some quantitative and objective measures of how well the regression equa-
tion will predict on an independent sample of similar data in order to determine 
its degree of generalizability. 

If the predictive power drops off sharply, then the results of the analysis (i.e. 
the predictive equation) are sample-specific and have no generalizability, thus be-
ing of limited scientific utility.  

At a first glance, one could think of assessing the goodness-of-fit of the model 
by fitting the model to the sample and then using the model to predict the event 
probability for each subject in the sample. Any measure of the distance between 
the observed values of the response variable and the predicted event probabilities 
would then be a good indicator of the performance of the model.  

The idea of the comparison is good - the distance measure would be a simple 
and intuitive indicator of the reliability of the prediction. Of course, we would li-
ke the predicted probabilities to accurately reflect the distribution of the positive 
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events in the sample. The problem here is that we are using the same sample twi-
ce - to fit the model and to evaluate its performance. As we have already stated, 
each model is mathematically optimised to best fit the data on which it is built. 
Thus, any performance indicator measured on the same sample used to fit the 
model is biased in favour of the model, i.e. indicates the highest possible per-
formance. On the contrary, we are interested in evaluating how well the model 
can predict the probability of the positive event for subjects not included in the 
original sample on which the model was built.  

As a consequence, the use of independent data to fit and test the model is 
preferable when we are interested in demonstrating the generalizability of the 
model in order to use it to predict outcomes for future subjects (Hosmer and 
Lemeshow, 2000; Harrell et al., 1996; Stevens, 1996). This type of assessment is 
often called model validation. Here follows a brief review of the main possible ap-
proaches.  

In some situations it may be possible to obtain a new sample of data from the 
same population or from a similar population. This new sample can then be used 
to assess the goodness-of-fit of a previously developed model by applying the 
model as it is to the new sample. This type of assessment is called external valida-
tion; as stated by Harrell et al., (1996). External validation is the most stringent and 
unbiased test for the model and for the entire data collection process. 

Most of the times it is not possible to obtain a new independent external sam-
ple from the same population or a similar one. It may then be possible to inter-
nally validate the model. The most accredited methods for obtaining a good inter-
nal validation of a model’s performance are data-splitting, repeated data-splitting, jack-
knife technique and bootstrapping. The core concept of these methods is similar in 
order to exclude a sub sample of observations, develop a model based on the re-
maining subjects, and then test the model in the originally excluded subjects. 

The methods differ from one another in the way they identify the sub-sample 
used to build the model. 

i) Data-splitting 
A random portion of the sample, usually between two thirds and three quar-

ters, is used for model development. The obtained model is then “frozen” and 
applied as it is to the remaining portion of the sample for assessing the model’s 
performance (Harrell et al., 1996; Picard and Berk, 1990). 

ii) Repeated data-splitting 
This consists in repeating the previous analysis many times. Each iteration of 

the analysis splits the original sample in a different way. Such a repeated analysis 
is far more accurate than a simple data-splitting (Harrell et al., 1996). 

iii) Jack-knife technique 
The jack-knife technique is very similar to data-splitting. The only difference is 

in the size of the two sub samples. Here, the model is fitted on all but one of the 
subjects in the original sample and is then tested on the set-aside case (Mosteller 
and Tukey, 1977; Stone, 1974). This procedure can be repeated as many times as 
the number of subjects in the original sample. 
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iv) Bootstrapping 
Bootstrapping is an alternative method of internal validation which involves 

taking a large number of simple random samples with replacement from the original 
sample (Harrell et al., 1996) and fitting the model on each of these samples. 

The sampling procedure is the main difference between bootstrapping and 
data-splitting – bootstrapping samples are taken with replacement while data-
splitting samples are taken without replacement. As a consequence, a duplication 
of the subjects in the original sample is possible.  

The replication allows us to obtain large samples even from small original 
samples. However, if the original sample is bad, the samples obtained using these 
techniques will be bad as well. What is more, the interpretation of bootstrapping 
results is controversial. 

A detailed review of this technique can be found in Efron and Tibshirani (1993).  
After an in-depth analysis of the abovementioned techniques, we have opted 

for repeated data-splitting. Although bootstrapping appears to be a very powerful 
technique, we choose not to use it in order to obtain easily interpretable results. 
We prefer data-splitting to the jack-knife technique because the former provides 
us with more data for model testing purposes. If the model is tested on a single 
subject (as in the jack-knife technique) it is not possible to assess one of the most 
important dimensions of model’s performance, i.e. calibration, which we shall de-
fine in one of the following paragraphs. We repeat the data-splitting to obtain 
more accurate results. 

At this point of our analysis, we remind the reader that our aim is to assess the 
goodness-of-fit of a given model, and to determine whether the model can be u-
sed to predict the outcome of a subject not included in the original sample. Given 
this aim, we would need to have some specific ideas about what it means to say 
that a model fits. 

In the following paragraph firstly we distinguish between fitting and validation 
samples, then we introduce the concepts of calibration and discrimination as the 
two main dimensions of model performance. Next we describe three measures 
for evaluating model calibration and discrimination and finally, we develop a 
procedure to evaluate the overall performance and validate a number of specific 
logistic regression models. 

3. FITTING AND VALIDATION SAMPLES

In accordance with the principles of data-splitting we distinguish between fit-
ting and validation samples - they are samples from the same population, but are 
distinct and independent from one another. Furthermore, they constitute a total 
partition of the original sample - they are from the same population but, at the 
same time, are distinct and independent from one other. 

Firstly we use the fitting sample to fit the model. Then we take the fitted 
model as it is, apply it to the validation sample, and evaluate the model’s per-
formance on it. 
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The sizes of the two sub-samples must be chosen in such a way as to have e-
nough data in the fitting sample to fit the model and enough data in the valida-
tion sample to validate the model. This is a delicate point, which we shall discuss 
later.

Since the fitted model performs in an optimistic manner on the fitting sample, 
we are to expect a lower performance of the model on the validation sample.  

Our focus is to measure the predictive performance of a model, i.e. its ability 
to accurately predict the outcome variable on new subjects. We are interested in 
quantifying the closeness of the model’s probability estimates to the correct out-
come values. For the fitting sample we are interested in evaluating how well the 
model fits the data on which it was developed. For the validation sample we 
evaluate how valid the model is as it attempts to predict an independent sample. 
Interest in the latter relates in particular to how much the performance ability de-
creases or degenerates from what was quantified in the fitting set. If the decrease 
is small, we can conclude that the model can be used to predict the outcome of 
subjects which are not in the original sample.  

We now introduce the concepts of discrimination and calibration which are the 
two main dimensions of the model’s performance.  

3.1 Discrimination 

Discrimination refers to the “ability of the model to distinguish correctly the two 
classes of outcomes” (D’Agostino et al., 1998); in other words, it is a measure of 
the ability of the model to “separate subjects with different responses” (Harrell et
al., 1996). Let us consider a logistic regression model fitted on a given sample.  

According to the observed values of the outcome variable, the sample can be 
divided into two sub-groups. The first, which we call positive, contains all the sub-
jects with a positive observed outcome and the second, which we call negative,
contains all the subjects with a negative observed outcome. 

Using the model’s regression equation, we can compute the predicted probabili-
ties of the positive event for the subjects in both the sub-groups. Subsequently, we 
can plot the distributions of these predicted probabilities for each of the two sub-
groups. Perfect discrimination would result in two non-overlapping distributions of 
predicted probabilities for the two sub-groups (D’Agostino et al., 98). The idea be-
hind this is intuitive. If the two curves do not overlap, then the predicted event 
probability allows us to distinguish between positive and negative subjects. 

Figure 1 intuitively illustrates this point. Given the regression equation, we can 
select an adequate cut-off point and declare that a subject is positive if its pre-
dicted event probability is larger than the cut-off point. If the two curves do not 
overlap, the chance of a wrong classification is small. If this is the case, we say 
that the model discriminates between the positive and the negative subjects in the 
sample. Note that discrimination is not concerned with the probability values. 

Given the estimated event probability for a subject, we can select a probability 
value, say p*, as a cut-off point to decide whether the subject is declared to be 
more likely to have a positive or a negative outcome.  
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All subjects with predicted probabilities equal to or greater than p* will be de-
clared as positive, the others as negative. Once this is done, a two by two table, 
such as the following, can be generated to assess the performance of this decision 
rule:

TABLE 1 

Classification table 

  predicted 
  + - 

+ a b 

actual
- c d 

We can define: sensitivity =
ba

a

+
; specificity = 

dc

d

+
.

Sensitivity is a measure of the percentage of positive subjects which are classi-
fied as positive. Specificity is a measure of the percentage of negative subjects 
which are classified as negative. A classification table can be made for any possi-
ble choice of the cut-off point and the corresponding values of sensitivity and 
specificity can be computed. In general, a cut-off point with a high specificity 
tends to have a small sensitivity and vice versa. 

Figure 1 – Discrimination.
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Sensitivity and specificity rely on a single cut-off point. A more complete de-
scription of classification accuracy is given by the area under the ROC (Receiver 
Operating Characteristic) curve. This curve plots the probability of correctly clas-
sifying a positive subject (sensitivity) against the probability of incorrectly classify-
ing a negative subject (one minus specificity) for the entire range of possible cut-
off points. 

The area under the ROC curve, which ranges from zero to one, provides a 
measure of the model’s ability to discriminate - the larger the area under the ROC 
curve, the more the model discriminates. 

If we want to choose an optimal cut-off point for the purposes of classifica-
tion, one might select a cut-off point that maximizes both sensitivity and specific-
ity. This choice is facilitated by the use of the ROC curve area - the best choice 
for the cut-off point is approximately where the curve starts bending. 

More intuitively, the interpretation of the ROC curve area can be viewed from 
a different angle. We can divide the sample into two sub-groups of positive and 
negative subjects. Let us call the n1 subjects in the positive group u1, u 2, … , u s,
… , u n1  and the n2 subjects in the negative group v1, v2, … , vt, … , vn2.

Let us consider a random pair of subjects (us, vt), of which the first belongs to 
the positive group and the second belongs to the negative group. 

Let us estimate P(us) and P(vt). Since us has a positive outcome and vt has a 
negative outcome, we would like the following inequality to be true:  

( ) ( )s tP u P v>  (1) 

If P(u s) > P(vt), we say that the pair (us, vt) is concordant; if P(us) < P(vt), we say 
that it is discordant; and if P(us) = P(vt), we say that the pair is a tie.

If we repeat this comparison for all the n1 × n2 possible pairs, we can define the 
following statistic, which we call the C statistic:

       # of concordant pairs + 0.5 * # of ties 

C =   , (2) 
       # of concordant pairs + # of discordant pairs + 0.5 * # of ties 

where 0 ≤ C ≤ 1. 
We can interpret the C statistic as the probability that a positive subject us and 

a negative subject vt, results in P(us) > P(vt). That is, we are computing the number 
of times that a subject with a positive outcome has a higher event probability than 
a subject with a negative outcome. Half the ties are considered to be concordant 
pairs and half discordant pairs. This is clearly a measure of discrimination. 

Hanley and McNeil (1982) showed that the C statistic is equivalent to the ROC 
curve area. 

As a general rule (Hosmer and Lemeshow, 2000): 
• if C  0.9, the model is considered to have outstanding discrimination. 
• if 0.8  C < 0.9, the model is considered to have excellent discrimination; 
• if 0.7  C < 0.8, the model is considered to have acceptable discrimination; 
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• if C = 0.5, the model has no discrimination (predicted probabilities are pure 
random: we might as well flip a coin); 

• If C < 0.5, the model has a negative discrimination, i.e. it is worse than ran-
dom (Harrell et al., 1996). Such a model tends to classify positive subjects 
as negative and negative subjects as positive. 

We notice that the above mentioned levels should be adjusted according to the 
specific field of research. For instance, medical applications usually require higher 
values of the statistic than social studies or weather forecasting. 

For a given model, we can compute the C statistic both for fitting and valida-
tion samples. We expect the C statistic to be larger for the former than for the 
latter. We can say that a model discriminates well on new subjects if the drop in 
value of the C statistic is quite small, and its value for the validation sample is still 
large enough. 

3.2 Calibration 

Calibration is a measure of how close the predicted probabilities are to the ob-
served rate of the positive outcome for any given configuration of the independ-
ent variables of the model (D’Agostino et al., 1998; Harrell et al., 1996).

For a given configuration X of the independent variables, perfect calibration 
results in a prediction of the positive outcome that numerically agrees with the 
observed frequency of the event when that configuration occurs. 

For example, if we have 8 statistical units in the sample that share the same 
configuration Xc of the independent variables and 6 of them have a positive out-

come, we say that the model has a good calibration if P(Y = 1|Xc) ≅ 6/8 = .75. 
We define bias as: 

bias = M(Pi) - M(Y) (3) 

where M(Pi) denotes the mean of the predicted event probabilities Pi‘s in the 
sample and M(Y) is the observed rate of positive outcomes in the sample. Bias is 
a crude but desirable measure of calibration (D’Agostino et al., 1998). 

Logistic regression is a mathematically unbiased method. Thus, it should be 
unbiased for the fitting sample and only slightly biased for the validation sample. 

More accurate measures of calibration are often statistics which partition the 
data into groups and check how the average of the predicted probabilities com-
pares with the outcome prevalence in each group. 

Hosmer and Lemeshow (1980) have produced a widely used statistic to test the 
ability of a given model to calibrate. 

Let the sample size be N. The most common version of this test arranges the 
subjects according to ascending predicted probabilities and divides them into Q
groups of the same size so that the first group contains the N/Q subjects having 
the smallest estimated event probabilities, the second group contains the next 
N/Q subjects having the next smallest estimated event probabilities, and the Q-th
group contains the N/Q subjects having the largest estimated event probabilities. 
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Usually the grouping is out of Q=10 deciles, but any other choice of number of 
groups is possible. It is suggested that each group contains enough subjects both 
on the fitting and the validation samples. The higher the number of covariates 
included in the model, the higher the number of subjects needed in each group 
for the test to have power. 

Given the groups, the above mentioned test compares the observed number of 
positive outcomes (prevalence or observed frequency) with the mean of the predicted 
probabilities (expected frequency) in each group. 

The more the groups’ observed frequencies are close to the corresponding ex-
pected frequencies, the better the ability of the model to calibrate. 

This closeness and thus the ability of the model to calibrate can be quantified 
using the Hosmer and Lemeshow ² formula: 

2

2

1

( )

(1 )

Q
j j j

j j j j

O n P

n P P
χ

=

−
=

−
 (4) 

where nj, Oj, and Pj are respectively the number of observations, the number of 
positive outcomes and the average predicted probabilities for the jth group. 

Using an extensive set of simulations, Hosmer and Lemeshow (1980) demon-
strated that, under the null hypothesis that the logistic regression model is the 
correct model, the statistic has approximately an asymptotic chi-squared distribu-
tion with Q-2 degrees of freedom. As a consequence, an observed value less than 
the critical value of the chi-squared distribution with Q-2 degrees of freedom at 
0.05 α-level, indicates good calibration. 

As for the choice of the number Q of groups, it is important that each group 
has enough subjects for the observed and expected event frequencies in the 
group to be significant. As a general rule, the higher the number of covariates in-
cluded in the model, the higher the number of subjects needed in each group for 
the Hosmer and Lemeshow test to have enough power. As a basic indication, 
groups with less than ten observations could give a biased indication of calibra-
tion.

The advantage of the Hosmer and Lemeshow chi-squared test is that it pro-
vides  analysts with a single, easily interpretable value that can be used to measure 
the calibration of a model. 

We compute the Hosmer and Lemeshow chi-squared statistic for both the fit-
ting and the development samples. For each group we compare the prevalence to 
the average predicted probability. 

When applying the statistic to a validation set, the same number of groups 
should be used in order to compare the value of the statistic for the fitting and 
the validation samples. Figures 2 and 3 illustrates what we call calibration bar 
plots: they provide a visual interpretation of the above-mentioned statistic. If the 
model has a good calibration, the bars representing the prevalence and the av-
erage of predicted probabilities in each group should be very close to each 
other.
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A reduction in calibration is to be expected as we pass from the fitting to the 
validation sample, but this reduction should be small. The bar plots in figure 2 
and 3, for example, represent a model whose calibration ability pathologically de-
generates when we pass from the fitting to the validation sample. 

When the model generates predicted probabilities that are very close to 0 or to 
1, the above mentioned statistic results in very large values because of the factor 
Pj (1-Pj) in the denominator. To avoid this problem and to better take into con-
sideration the number Q of groups, the statistic has been modified to obtain the 
adjusted Hosmer and Lemeshow ² formula: 

2

2

1

( )
( )

1 1
1

Q
j j j

j

j j j

j j

O n P
adjusted

n P P
n n

χ
=

−
=

+ − +

 (5) 

The theory concerning the distribution of this statistic is not yet complete, but 
we can presume a distribution in some way similar to a chi-squared distribution 
with Q-2 degrees of freedom. 

3.3 Discrimination versus calibration 

A complete assessment of model performance should take into consideration 
both discrimination and calibration (Hosmer and Lemeshow, 2000). In any case, it 
is believed that discrimination is more important than calibration (Harrell et al.,
1996). If discrimination is good, the predictive model can in some way be recali-
brated without sacrificing discrimination. If the predictive model has poor dis-
crimination, no adjustment can correct the model.  

Analysts should be aware that the importance of calibration relative to dis-
crimination is strongly influenced by the field of analysis and the intended appli-
cation. When predicting the efficacy of a new drug on a patient, for instance, not 
only are we interested in knowing if the drug has an effect or not (discrimination), 
but we are also concerned with an accurate prediction of the probability that the 
patient will recover from the disease within a defined period of time (calibration). 
In contrast, if our aim is to identify successful companies in order to have an in-
sight into the best practices, then we might be more interested in a model with a 
very high discrimination, no matter what the value of calibration is. As a general 
rule, whenever the model is needed only to rank likely outcomes and not predict 
absolute probabilities, then calibration is much less important than discrimination 
(Harrell et al., 1996). 
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Figure 2 – Calibration bar plot – Fitting sample. 

Figure 3 – Calibration bar plot – Validation sample.

Furthermore, note that a predictive model cannot have both a perfect calibra-
tion and a perfect discrimination (Diamond, 1992). A model that maximizes dis-
crimination does so at the expense of calibration, and, on the other hand, a model 
that maximizes calibration does so at the expense of discrimination. As a conse-
quence, a good model should balance between these two dimensions of perform-
ance in order to find the best trade-off. 

4. MODEL VALIDATION PROCEDURE

In the previous paragraphs we have discussed what we mean by model valida-
tion and why it is a crucial phase of any modelling analysis. We have also intro-
duced the main dimensions of model performance and a number of statistics 
used to quantitatively assess them. We now illustrate a possible strategy for model 
validation. The procedure is aimed at evaluating the performance of those mod-
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els, with regards to their ability to predict the outcome variable. Because models 
are taken as they are, the procedure is very general in scope and applies to any 
statistical model that generates predicted probabilities. 

As we have already mentioned and motivated, we follow the repeated data-
splitting approach. Data-splitting is the act of partitioning available data into two 
portions for model validation purposes. The first portion of the data, called fitting
sample, is used to fit the model and the latter, called validation sample, is used to 
evaluate its performance. The fitting sample is as large as 75% of the original 
sample and is extracted from the original sample through a simple random sam-
pling without replacement (the choice of the cut-off point of 75% will be moti-
vated later). The remaining data is used as a validation sample. That is, the split is 
purely random and there is no data duplication. 

A possible objection to the use of splitting is the loss of information incurred 
in the model fitting. If we fit the model to the fitting sample rather than to all the 
original data, we “waste” some of the available data, i.e. we do not use all the a-
vailable data to fit the model. Deriving the parameter estimates using only a por-
tion of the data is a clear violation of the sufficiency principle (Picard and Cook, 
1984). We have found a way for our strategy not to suffer due to that violation - 
at each split we fit the model to part of the data and we evaluate it on the remain-
ing data. After we have performed all the necessary splits, and if the repeated 
splits prove that the model validates, then we compute its coefficients using all 
the data, according to the sufficiency principle. 

Here follows a brief conceptual presentation of the procedure used to evaluate 
a regression model.  

i) Data-splitting 
The original sample is randomly split into the fitting and validation samples. 

ii) Model fitting 
The model is fitted on the fitting sample using the SAS logistic procedure. 
The SAS logistic procedure computes the model’s coefficients, the overall sig-
nificance of the model and the partial significance of each variable included 
in the model. 

iii) Event probability estimation 
We use the fitted model to estimate the probability of a positive outcome for 
each of the subjects in both the fitting and the validation samples. 

As a consequence, for each subject we know: 
- the configuration of the covariates X;
- the observed outcome Y;
- the predicted probability of a positive outcome P(Y = 1|X).
We want to stress the fact that the model is fitted on the fitting sample (i.e., 

its coefficients are computed taking into account only the observations in the 
fitting sample), and is then used to estimate the event probability for the sub-
jects both in the fitting and in the validation samples.  

iv) Computation of performance measures on both samples 
For both the fitting and the validation samples we compute the following 
statistics: 
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- C statistic (measure of discrimination); 
- Hosmer and Lemeshow chi-squared test (measure of calibration); 
- bias (measure of calibration). 

v) Iterations and full model 
In order for a model to be validated, the above described procedure is re-
peated 100 times. After that we also fit the model on the full original sample. 

vi) Results 
Each time the procedure is repeated the sample is split into two random 
portions, the model is fitted on one of the two portions, and its performance 
is evaluated on both portions. Since each iteration is based on a different 
split of the original data, it results in different model coefficients, signifi-
cance levels, and performance values. 
At the end of the 100 repetitions we obtain: 
- the model fitted on the whole original sample; 
- the distribution of the model’s coefficients over the 100 fitted models; 
- the distribution of the model’s overall significance over the 100 fitted 

models;
- the distribution of the partial significance of all the covariates included in 

the model over the 100 fitted models; 
- the distribution of each of the performance measures (c statistic, Hosmer 

and Lemeshow chi-squared test, and bias) over the 100 fitting samples; 
- the distribution of each of the performance measures over the 100 vali-

dation samples. 
Before proceeding, we define two terms which we shall use in the following 
paragraphs - the fitting distribution of a variable is the distribution of that vari-
able computed on the fitting samples, while the validation distribution of a vari-
able is computed on the validation samples. 

vii) Presentation of the results 
Results are presented using both tables and box-plots. 

viii) Interpretation of the results 
As for the quality of fit, we are concerned with the variability of the esti-
mates of the model’s parameters over the 100 repetitions. If the variability is 
large, then the model’s coefficients highly depend on the particular portion 
of the original data used to fit the model. This is a clear symptom of instabil-
ity of the model and, what is worse, of overfitting. We say that a model is 
overfitted when there are not enough data to compute a reliable estimation 
of the model’s parameters. The whole available set of data is used to com-
pute the model’s parameters and there are no data left to assess the good-
ness of the estimation.   

Going back to the assessment of the model’s quality of fit, we would also like 
the distributions of the estimates to be averaged around the same values as the 
estimates computed on the whole original sample. If this does not happen, the 
model cannot be validated because of its internal instability. 

In order for the model to be validated, we need to assess its performance out-
side the fitting sample. This can be done by comparing the fitting to the valida-
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tion distributions of the measures of discrimination and calibration. Because of 
the mathematical optimization nature of the regression modelling technique, we 
expect the model to perform better on the fitting sample, i.e. we expect lower le-
vels for both discrimination and calibration when shifting from the fitting to the 
validation distribution. Thus, a reduction in the magnitude of the performance 
measures is to be expected. If the drop in value of the measures is too large, the 
model does not validate outside the fitting sample. 

5. EXAMPLE FROM A MANAGEMENT STUDY

The procedure has been developed in order to measure the performance of a 
model developed within a management study. In the specificity of the models, the 
subjects of the sample are companies, the response variable is a dichotomous 
variable measuring time performance in the New Product Development (NPD) 
Process of the company (where the occurrence of the event signifies that the 
company is among the best in the sample as for that dimension of performance), 
and the independent variables are drivers related to the NPD process, to the 
NPD practices, or to the NP Strategic guide and internal environment. The sam-
ple size consists of 85 subjects. 

We present the results of the analysis of a logistic regression model including 
three variables: X1 X2 X3 and all interactions up to the third-order interaction. 

We remind the reader that the mathematical model is: 

0 1 1 2 2 3 3 12 12 13 13 23 23 123 123

0 1 1 2 2 3 3 12 12 13 13 23 23 123 123
( 1| )

1

b b x b x b x b x b x b x b x

b b x b x b x b x b x b x b x

e
P Y

e

+ + + + + + +

+ + + + + + +
= =

+
X  (6) 

5.1 The model’s quality of fit 

i) Stability of the parameters’ estimates 
Table 2 presents the parameters’ estimates computed on the full sample of 85 

units, and the information describing the fitting distribution of their estimates. 

TABLE 2 

Quality of the model’s fit: stability of the parameters’ estimates 

Stability of the parameters’ estimate 

FIT=100% FIT=75% - 100 iterations 

FULL MEDIANE QRNG/2* ~ C Var** MIN MAX 

b0 5.64 5.31 2.03 38% -5.26 16.4 

b1 -0.70 -0.58 0.61 105% -4.44 3.87 

b2 -1.57 -1.55 0.61 39% -5.26 0.99 

b3 -1.03 -0.88 0.76 86% -4.92 2.37 

b12 -0.14 -0.19 0.20 106% -1.47 0.79 

b13 0.10 0.06 0.23 379% -0.91 1.28 

b23 0.22 0.19 0.18 95% -0.64 1.60 

b123 0.07 0.08 0.06 72% -0.27 0.35 

* half of the interquartile range; ** ratio between QRNG/2 and the median 
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The variability is large, indicating the presence of some degree of overfitting. 
The estimates average around the values computed on the full sample. 

We remind the reader that, when we find that the model validates outside the 
available sample, we use the parameter’s estimates computed on the full sample. 
In this case, the model would be the following: 

1 2 3 12 13 23 123

1 2 3 12 13 23 123

5.64 0.70 1.57 1.03 0.14 0.10 0.22 0.07

5.64 0.70 1.57 1.03 0.14 0.10 0.22 0.07
( 1| )

1

x x x x x x x

x x x x x x x

e
P Y

e

− − − − + + +

− − − − + + +
= =

+
X  (7) 

ii) Model’s significance 
Table 3 presents  the overall significance of the model and the partial signifi-

cance of each of the covariates. Again, we present both the information related to 
the full model and the information describing the fitting distribution.  

The overall model has a very high significance both on the full sample (overall 
p-value = 0,001) and on the 100 fitting samples (median of the overall p-value fit-
ting distribution = 0,006; interquartile range = 0,012). 

All the covariates in the model are partially non significant. It is likely that the 
number of covariates included in the model (7) is too large if compared to the 
sample size (85).

As for the quality of the model’s fit, we can conclude that the model is highly 
significant. At the same time, we can reasonably believe that there are too many 
covariates in the model compared to the sample size of 85 observations. This re-
sults in some degree of overfitting. As a matter of fact, there is too much variabil-
ity in the estimates of the model’s parameters over the 100 fitting samples, and, 
furthermore, the partial significance of any single covariate is too small. 

TABLE 3 

Quality of the model’s fit: significance 

Overall and partial significance of the model 

 FIT=100% FIT=75% - 100 iterations 

 FULL MEDIANE QRNG/2 ~ C Var MIN MAX 

Overall_p 0.001 0.006 0.006 94% 0.000 0.099 

p0 0.387 0.489 0.160 33% 0.116 0.967 

p1 0.700 0.715 0.175 25% 0.146 0.994 

p2 0.421 0.514 0.147 29% 0.133 0.968 

p 3 0.607 0.671 0.180 27% 0.135 0.978 

p 12 0.789 0.715 0.165 23% 0.135 0.996 

p 13 0.854 0.733 0.168 23% 0.172 0.995 

p 23 0.683 0.708 0.152 21% 0.134 0.994 

p 123 0.626 0.623 0.163 26% 0.132 0.998 

5.2 Generalizability of the model: validation 

i) Discrimination: C statistic 
Table 4 and Figure 4 present the information concerning discrimination. 
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The model fitted on the full sample has an excellent discrimination (C = 0,803). 
The model fitted on the full sample has an excellent discrimination (C = 0,803). 
The fitting distribution of the C statistic is also very good. The median is 0,805 

and the distribution is concentrated around the median (QRNG/2 = 0,019; ~C 
Var = 2%). Furthermore, the minimum value of the distribution is 0,741, which is 
still an acceptable value for discrimination. Thus the model discriminates very 
well between the two classes of outcome in the 100 fitting samples. 

TABLE 4 

Discrimination 

Discrimination: C statistic 

 FIT=100% FIT=75% - 100 iterations 

 FULL MEDIANE QRNG/2 ~ C Var MIN MAX 

C_fit 0.803 0.805 0.019 2% 0.741 0.874 

C_val  0.725 0.062 9% 0.445 0.931 

The validation distribution of the C statistic is not as good as the previous one, 
but still proves to be an acceptable discrimination of the model on the validation 
samples. The median value of the distribution is 0,725 and nearly 25% of the dis-
tribution is larger in value than 0,8. 

Figure 4 – Discrimination: fitting versus validation distributions.

We can conclude saying that the model perfectly discriminates on the original 
sample and discriminates well outside it. Thus we believe that the regression 
equation underlying this model has a discrimination property which is not specific 
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to the available sample, but is extendable to the whole population. In other 
words, it is very likely that the model discriminates well on data which is new and 
independent from the sample used to fit the model. 

ii) Calibration: Hosmer and Lemeshow test and bias 
Table 5 and Figure 5 present the information regarding calibration. 
We have introduced two measures of calibration:  
- bias is a very simple but still desirable measure. 
- the Hosmer and Lemeshow test is a very reliable measure of calibration, 

which results in a statistical test. 
Note that we compute the statistic using only four groups in order to have e-

nough observations in each group both for the fitting and for the validation sam-
ples. Since there are only four groups, we are not testing for an accurate calibra-
tion. We only require the model to rank each observation out of four possible 
classes of probability of the outcome as being positive. 

We remind the reader that, under the null hypothesis that the logistic regres-
sion model is the correct model, the Hosmer and Lemeshow test has approxi-
mately an asymptotic chi-squared distribution with Q-2 degrees of freedom, 
where Q is the number of groups. For this model then, under the null hypothesis, 
the test has a chi-squared distribution with two degrees of freedom. 

TABLE 5 

Calibration

Calibration: Hosmer and Lemeshow test and bias 

 FIT=100% FIT=75% - 100 iterations 

 FULL MEDIANE QRNG/2 -CVar MIN MAX 

HL_fit 1.312 1.15 0.60 53% 0.02 5.03 

HL_val  5.53 3.41 62% 0.62 100.80 

       

Bias_fit 0.00 -3E-08 1.42E-07 456 -4E-06 3.66E-06 

Bias_val  -0.010 0.081 808 -0.233 0.201 

       

Chi-square Distribuztion: 2DF    

Alpha = 0.10: critical value =4.6052    

Alpha = 0.05: critical value =5.9915    

Alpha = 0.01: critical value =9.2103    

Table 5 presents the critical values for the chi-squared distribution with 2 de-
grees of freedom for three different choices of the alpha-level. In figure 5, we 
only draw the critical value corresponding to the 0,5 alpha-level, i.e. 5,9915. That 
is, a value of the test smaller than 5,9915 indicates good calibration for the model 
in the example. 
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Figure 5 – Calibration: fitting versus validation distributions. 

We can interpret the two distributions saying that the calibration on the fitting 
samples is excellent but it degenerates somewhat on the validation samples. 

The validation distribution of the test has, in fact, a median value which is 
slightly smaller than the critical value: 5,53. That is, for almost half of the itera-
tions, the model does not properly classify the subjects in the validation sample 
out of the four probability groups. As for bias, Figure 6 describes the fitting and 
the validation distributions. 

Logistic regression is, as it should be, unbiased for the fitting samples. As for 
the validation distribution, the first quartile is –0,075, and the third is 0,087. 

Figure 6 – Calibration: bias. 
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We have defined bias as the mean value of the predicted probabilities minus 
the event frequency in the sample. Each of the 100 validation samples has a size 
of 21 and about 10 positive subjects. This means that the observed event fre-
quency in the sample is about 50%. A bias value of for instance 0,08 means that 
on average the predicted frequency is 58%. This results in a relative error of 16%. 
This confirms the indications of the Hosmer and Lemeshow test. 

5.3 Generic information about the samples 

Table 6 illustrates summary information about the different samples involved 
in the procedure: 

TABLE 6 

Generic information about the samples 

Samples information 

 FIT=100% FIT=75% - 100 iterations 

 FULL MEDIANE QRNG/2 -CVar MIN MAX 

Fitting site 85 64 0    

n1_fit 41    31.0 1.0  3% 26.0 35.0 

Validation site  21    0    

n1_val     10.0 1.0 10%  6.0 15.0 

The original sample has a size of 85 observations and each split divides it into a 
fitting sample containing 64 observations, and validation sample containing the 
remaining 21 observations. Out of the 85 observations 41 are positive. Out of the 
64 observations in the fitting samples about 31 are positive. Out of the 21 obser-
vations in the fitting samples about 10 are positive. 

After having illustrated the procedure, and commented on its results, we want 
to assess the point of how many observations should be reserved to the fitting 
sample.

6. FINAL REMARKS: DETERMINATION OF THE OPTIMAL NUMBER OF OBSERVATIONS FOR 

THE FITTING AND VALIDATION SAMPLES

As a general rule, the ability to predict future observations suffers when too 
small a portion of the available data is reserved for model fitting. Similarly, the 
ability to assess the fitted model suffers when too small a portion of the available 
data is reserved for validation (Picard and Berk, 1990). Properly splitting the data 
involves a trade-off between these considerations. 

In practice, the portion of observations reserved for validation is always less 
than ½ and is usually in the ¼ to 1/3 range (Harrell et al, 1996).  

We now want to justify the choice of reserving 75% of the available data to the 
fitting of the model, and the remaining 25% to validation. In particular, we want 
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to demonstrate that the chosen cut-off point constitutes the best trade-off be-
tween the reliability of the model fitting phase and the reliability of the model 
validation phase.  We do this by testing different cut-off points for the above de-
scribed model and by comparing the results of the validation procedure. 

Table 7 reports the model fitted on the full available sample and the results of 
the procedure for five different cut-off points:  

• 1st column: the model is fitted on the whole available data; 
• 2nd column: the fitting sample includes 80% of the available data; 
• 3rd column: the fitting sample includes 75% of the available data; 
• 4th column: the fitting sample includes 70% of the available data; 
• 5th column: the fitting sample includes 66% of the available data; 
• 6th column: the fitting sample includes 50% of the available data 
From table 7 we can clearly see that the larger the portion of the available data 

reserved for the validation samples, the smaller the variability of the estimates of 
the model, and, on the contrary, the worse the calibration of the model on the 
validation samples. 

TABLE 7 

Determination of the optimal size of the fitting and validation samples 

Data splitting: optimum cut-off point --- 100 iterations 

100% 80% 75% 70% 66% 50% 
Fitting size 

All sample Median - CVar Median -CVar Median - Var Median - CVar Median -CVar 

b0 5.64 5.7 32 5.3 38 5.6 48 5.6 56 6.3 87

b1 -0.70 -0.6 -96 -0.6 -105 -0.6 -147 -0.6 -175 -0.6 -343

b2 -1.57 -1.6 -32 -1.6 -39 -1.7 -52 -1.7 -51 -1.8 -77

b3 -1.03 -1.0 -47 -0.9 -86 -0.7 -113 -1.0 -94 -1.4 -133

b12 -0.14 -0.2 -91 -0.2 -106 -0.1 -244 -0.1 -199 -0.2 -207

b13 0.10 0.1 282 0.1 379 0.0 -4654 0.0 1328 0.1 781

b23 0.22 0.2 69 0.2 95 0.2 115 0.2 101 0.3 134

b123 0.07 0.1 53 0.1 72 0.1 113 0.1 86 0.1 164

Overall_p 0.001 0.005 84 0.006 94 0.006 241 0.011 121 0.022 186

p0 0.387 0.465 29 0.489 33 0.514 35 0.479 39 0.529 40

p1 0.700 0.717 26 0.715 25 0.662 27 0.690 26 0.547 43

p2 0.421 0.481 27 0.514 29 0.520 39 0.517 36 0.530 39

p 3 0.607 0.664 19 0.671 27 0.706 27 0.641 28 0.614 38

p 12 0.789 0.719 18 0.715 23 0.674 34 0.652 31 0.636 32

p 13 0.854 0.776 22 0.733 23 0.701 24 0.701 27 0.560 36

p 23 0.683 0.705 19 10708 21 0.714 26 0.674 21 0.633 29

p 123 0.626 0.639 22 0.623 26 0.666 33 0.642 31 0.631 36

C_fit 0.803 0.807 3 0.805 2 0.815 4 0.815 3 0.833 4

C_val  0.736 11 0.725 9 0.716 9 0.726 7 0.693 7

HL_fit 1.31 1.08 68 1.15 53 1.15 88 1.26 74 1.47 58

HL_val  5.20 100 5.53 62 5.74 105 7.71 84 12 130

Bias_fit 0.00 -7E-08  -3E-08  -1E-08  -7E-09  -3E-09 

Bias_val  0.037  0.010  0.034  0.003  0.007 

Sample

size_fit

85 68  64  59  56  42 

Sample

size_val

 17  21  26  29  43 
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Also note that if the validation samples are too small, we do not have enough 
observations in each of the four groups used to reliably compute the Hosmer and 
Lemeshow test. 

Among the five possible cut-off points, the best one seems to be the 75% one. 
It allows us to have enough data to fit the model and obtain good estimates of 
the parameters and, at the same time, enough data to validate it. 
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RIASSUNTO

Analisi di adattamento e validazione di modelli di regressione logistica 

In questo lavoro viene presentata una nuova procedura di validazione per modelli di 
regressione logistica. Inizialmente viene illustrata una breve sintesi delle diverse tecniche 
di validazione dei modelli. Vengono definite quindi le proprietà richieste ad un modello 
per essere considerato “buono” e un insieme di misure quantitative di adattamento. Infine 
è descritta una metodologia per la valutazione dell’adattamento di un modello utilizzato in 
uno studio di management aziendale. 

SUMMARY

Model performance analysis and model validation in logistic regression 

In this paper a new model validation procedure for a logistic regression model is pre-
sented. At first, we illustrate a brief review of different techniques of model validation. 
Next, we define a number of properties required for a model to be considered “good,” 
and a number of quantitative performance measures.  Lastly, we describe a methodology 
for the assessment of the performance of a given model by using an example taken from 
a management study. 


